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Abstract 

 

Software architecture erosion or the as-implemented architecture is not complying with the 

as-intended architecture is one of the major problems faced by many organizations. There is 

no easy way to trace design decisions or tracking back or reconstructing those decisions by 

looking at the source code level elements is one of the major reasons for software 

architecture erosion. Other than that the mistakes or carelessness of the programmer may 

lead the system to an eroded status eventually. Lack of domain knowledge, lack of 

knowledge about intended architecture and unable to identify possible violations of as-

intended architecture (by identifying architectural degradation) are some other reasons for 

software architecture erosion.  

There are various methodologies and tools for architecture conformance checking and 

analyzing the static architecture and provide comparison results which can be used to 

determine whether the architecture of a system is altered or not [10]. Most of them require 

high end tool support and providing the implemented architecture and the intended 

architecture each time the analysis needs to done.  

As the main research objective it identified a missing area of software architecture 

conformance checking methodologies and analyzed and identified a way to prevent software 

architecture erosion using that. This research is more focused on unconventional usability of 

the code comments and how it can be leveraged to capture the architecture of the application 

and how it can be used as an effective architecture conformance checking mechanism.  

This research  states a methodology which uses Java Doc comments to inject architecture 

specific information into the code base and a mechanism to capture them and compare them 

with a pre-defined architecture rule set. An empirical and theoretical evaluation has been 

done to prove this concept actually works in real life scenarios. It opened up a new area of 

architecture conformance checking to the future researchers of the field of software 

architecture.  
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