
IDENTIFYING SOFTWARE ARCHITECTURE

EROSION THROUGH CODE COMMENTS

Vidudaya Neranjan Bandara

(168206G)

Degree of Master of Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

June 2018

IDENTIFYING SOFTWARE ARCHITECTURE

EROSION THROUGH CODE COMMENTS

Herath Mudiyanselage Vidudaya Neranjan Bandara

(168206G)

Thesis submitted in partial fulfillment of the requirements for the

degree Master of Science in Computer Science and Engineering

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

June 2018

i

DECLARATION

I declare that this is my own work and this thesis does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another

person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce

and distribute my dissertation, in whole or in part in print, electronic or other

medium. I retain the right to use this content in whole or part in future works (such as

articles or books)

Signature: Date: ...….............................

H.M.Vidudaya Neranjan Bandara

The above candidate has carried out research for the Masters thesis under my

supervision.

Name of the supervisor: Dr. Indika Perera

Signature of the supervisor: Date:

ii

Abstract

Software architecture erosion or the as-implemented architecture is not complying with the

as-intended architecture is one of the major problems faced by many organizations. There is

no easy way to trace design decisions or tracking back or reconstructing those decisions by

looking at the source code level elements is one of the major reasons for software

architecture erosion. Other than that the mistakes or carelessness of the programmer may

lead the system to an eroded status eventually. Lack of domain knowledge, lack of

knowledge about intended architecture and unable to identify possible violations of as-

intended architecture (by identifying architectural degradation) are some other reasons for

software architecture erosion.

There are various methodologies and tools for architecture conformance checking and

analyzing the static architecture and provide comparison results which can be used to

determine whether the architecture of a system is altered or not [10]. Most of them require

high end tool support and providing the implemented architecture and the intended

architecture each time the analysis needs to done.

As the main research objective it identified a missing area of software architecture

conformance checking methodologies and analyzed and identified a way to prevent software

architecture erosion using that. This research is more focused on unconventional usability of

the code comments and how it can be leveraged to capture the architecture of the application

and how it can be used as an effective architecture conformance checking mechanism.

This research states a methodology which uses Java Doc comments to inject architecture

specific information into the code base and a mechanism to capture them and compare them

with a pre-defined architecture rule set. An empirical and theoretical evaluation has been

done to prove this concept actually works in real life scenarios. It opened up a new area of

architecture conformance checking to the future researchers of the field of software

architecture.

iii

ACKNOWLEDGEMENT

My sincere appreciation goes to my family for the continuous support and motivation

given to make this thesis a success. I also express my heartfelt gratitude to the

research supervisor Dr. Indika Perera, for the supervision, advice and continues

guidance given throughout to make this research a success. Also I am grateful for the

support and advice given by Dr. Malaka Walpola, by encouraging continuing this

research.

My special thanks go to Mr. Umesh Indith Liyanage and Dr. Rasika Withanawasam

for sharing their knowledge regarding software architecture and software architecture

conformance.

Finally I wish to thank the academic and nonacademic staff of Department of

Computer Science and Engineering and colleagues of MSC‟16 for the support and

encouragement given.

iv

TABLE OF CONTENTS

DECLARATION .. i

Abstract .. ii

ACKNOWLEDGEMENT ..iii

TABLE OF CONTENTS .. iv

LIST OF FIGURES ... vii

LIST OF TABLES .. ix

LIST OF ABBREVIATIONS .. x

Chapter 1 INTRODUCTION ... 1

1.1 Background ... 2

1.2 Software Architecture and Software Engineering ... 3

1.3 Problem Statement .. 3

1.4 Motivations to Solve the Problem ... 4

1.5 Research Objectives .. 5

1.6 Overview of the Document ... 6

Chapter 2 LITERATURE REVIEW... 7

2.1 Software Architecture Erosion and Industry Software 8

2.2 Industrial Examples of Design and Architecture Erosion 8

2.3 Causes of Erosion .. 9

2.4 Effects of Architecture Design Erosion on a System 11

2.5 When to Decide the Software Is Eroding and Needs to Be Repaired 12

2.6 What Kind of Solutions Are Applied To Fix an Eroded System 12

2.7 Architecture Reconstruction Techniques .. 13

2.8 Architecture Refactoring ... 14

2.9 Preventing Architecture Erosion ... 14

2.10 Preventing Software Architecture Erosion through Static Architecture

Conformance Checking .. 15

2.11 GRASP ADL Based Static Architecture Conformance Checking Tool for

Java 17

v

2.12 Reflexion Modeling and Inverting Reflexion for Design Control (An

Industrial Case Study of Architecture Conformance) .. 19

2.12.1 Reflexion Modeling .. 20

2.12.2 Inverting Reflexion for Design Control .. 21

2.13 Traceability Model For Viewing Architectural Tactics Using Code

Comments .. 22

Chapter 3 METHODOLOGY ... 26

3.1 Identifying a Possible Architecture Capturing Mechanism 27

3.2 Identifying Possible Architecture Violation Types to Consider For a Proof

of Concept .. 28

3.3 Developing a Proof of Concept ... 29

3.4 Evaluation of the Proof of Concept ... 29

Chapter 4 SOLUTION ARCHITECTURE AND IMPLEMENTATION 30

4.1 Presentation of Rules for Style Invariants and Prescriptive Architecture ... 31

4.1.1 Presenting the Rules via XML .. 31

4.1.2 Presenting the Rules via JSON ... 32

4.2 Mapping Source Elements to Architectural Information 33

4.2.1 Mapping Elements Using Java Annotations ... 34

4.2.2 Mapping Elements Using JavaDoc Tags .. 35

4.2.3 Comparison of Java Annotations and JavaDoc ... 36

4.3 Solution Architecture .. 37

4.3.1 Validating System Architecture Using JavaDoc Tags in the Source Code

 .. 38

4.3.2 How Descriptive Architecture Information Is Identified 39

4.4 Prototype Implementation ... 41

4.5 Generating Views for the Reports ... 43

4.6 Style Invariants Checker Added As a Separate Dependency through Maven

 43

Chapter 5 EVALUATION .. 49

5.1 Empirical Evaluation the Correctness Of the SIC 50

5.1.1 Evaluate the Correctness of the Loaded Prescriptive Architecture by SIC

 .. 51

5.1.2 Evaluation of the Style Invariants Checker Validation Components........ 52

vi

5.1.3 Evaluation of the Success Path ... 53

5.1.4 Evaluation of the Failure Paths ... 54

5.2 Performance Testing of SIC ... 57

5.2.1 Performance Testing By the Complexity of the Prescriptive Architecture

Rule Set .. 57

5.2.2 Performance Testing By the Size of the Code Base 59

5.3 Analytical Evaluation Of The Impact Of SIC When It Is Added To A

Continuous Integration Flow ... 62

Chapter 6 CONCLUSION .. 64

6.1 Research Contribution ... 65

6.2 Research Limitations ... 66

6.3 Future work and Conclusion ... 66

REFERENCES ... 67

APPENDIX A .. 70

APPENDIX B .. 72

