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ABSTRACT 

 

FPGA implementation of EEG classifier using LDA 

Supervised by: Dr. S. Thayaparan 

 

Key words: LDA, EEG, FPGA, DWT, HDL 

 

Design and implementation of feature classification in Electroencephalography (EEG) 

signal processing system on Field Programmable Gate Array (FPGA) hardware platform is 

presented in this thesis. Today there is a growing demand for medical devices which process 

EEG signals, for which, it is important to implement the EEG processing system in hardware 

instead of software. Processing of EEG signals consist of extracting features from EEG signal 

and then processing those features to classify the signals. As of today, in most of EEG 

processing systems, classification part is done on software platform even though the feature 

extraction is done on hardware. In this project, classification is done with Linear Discriminant 

Analysis (LDA), based on the features extracted using Discrete Wavelet Transform (DWT), 

for EEG signals obtained through PhysioNet website. The hardware implementation was done 

on Field Programmable Gate Array (FPGA) platform using SystemVerilog Hardware 

Description Language (HDL). Final design has minimum resource utilization, hence is able 

implement on Basys 3 Artix-7 FPGA Trainer Board with the accuracy of 80%.  Therefore, it 

is concluded this design is suitable for developing low cost, marketable products like sleep 

detectors for automobile divers. Nevertheless, ultimate goal is to design a simple Application 

Specific Integrated Circuit (ASIC) chip, which can extract features and classify EEG, so that 

the full system can be implemented on a portable mobile device without using software 

platform.   
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Chapter 1   

INTRODUCTION 
 

1.1 Problem Identification 

 

With the advancement of digital electronics and signal processing, currently 

there is a growing demand for medical devices which diagnose health conditions of 

patients. In this context, processing of Electroencephalography(EEG) signals has also 

become very active research area and most of the interest is currently on implementing 

them on hardware, because of the advantages it has over software implementations.  

When diagnosing a disease, the processing of EEG signals that should be done 

to a make decision, can be broadly divided in to two stages. That is the relevant feature 

extraction and classification of EEG signals based on those features. From these two 

stages, compared to feature extraction, the classification of EEG signals is still mostly 

done on software which runs offline, even though there are some researches that have 

been done. However, it is important to implement classification part also in hardware 

so that full EEG processing system can be implemented on portable medical devices 

without requiring any operating system. Apart from that there are many advantages 

also in implementing EEG classification on hardware like being able to process large 

amount of information with minimum delay because ability of process data parallelly.  

This research will be focused on hardware implementation of EEG signal 

classification system on the FPGA (Field Programmable Gate Array) development board, 

using Linear Discriminant Analysis (LDA). Here I will focus on developing optimal 

algorithm and designing the architecture first and implement all in software, which 

helps to debugging as well. Then after that it will be migrated to hardware platform, 

that will be coded using SystemVerilog HDL (Hardware description Language). After 

the hardware implementation, the design has been tested with actual EEG data records 

available on PhysioNet (https://www.physionet.org), a website which provides 

research resources for complex physiological signal. Finally, optimized results will be 

provided compared to existing systems.  
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1.2 Motivating for the research  

 

There are two researches that have become the background and the motivation 

for this design of EEG classification system. First research paper presents a 

generalized platform for a FPGA design architecture that offers preprocessing steps 

and set of predefined features where user can configure BCI applications [1]. As a 

future work, this paper suggests to include a set of classification algorithms to further 

push the hardware interface of BCIs (Brain–Computer Interfaces).  

Second paper presents a reasonable and widespread comparison of some 

frequently used classification methods under the same conditions where the valuation 

of different classifiers will be more convictive [2]. This paper concludes that the 

feature extraction and the classification algorithms should be considered together 

when designing a BCI system.  

From the future work part of first paper and the conclusion part of second paper, 

it can be concluded that it is important to implement a full system in hardware which 

has feature extraction and set of classification methods, that is integrated together. 

Therefore, this project will be part of this integrated system where I focus on 

classification of signals with the help of LDA.  

Also, I have implemented this system for two class scenarios, that is to decide 

whether a person have an abnormal EEG pattern or not. Hence small percentage 

changes in accuracy should be acceptable for this implementation, since the final 

decision from integrated system will based on multiple classification systems.   

 

1.3 Existing solutions and technologies   

 

Even though as of now, the researches have not been done to implement EEG 

classification systems using hardware there are researches that have been done for the 

software implementations. In the below papers, LDA classifiers have been 

implemented for EEG signals as a part of the research. 
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▪ Research Paper: EEG features extraction using PCA plus LDA approach based 

on L1-norm for motor imaginary classification [3] 

o PCA plus LDA is used for classifying EEG signals and is implemented on 

software  

• Research Paper: Classification of human emotions from EEG signals using 

SVM and LDA Classifiers [4]  

o EEG signal classification is done using both SVM and LDA and is also 

implemented on software  

In both of these research papers, LDA is been implemented on software along 

with other classification systems. And less attention is been given to the ability to 

implement it on small marketable devices where hardware implementation become 

important.  

 

1.4 Novel Contribution 

 

When considering the existing LDA classifiers for EEG signals, in current 

implementations, most of attention is been given for the hardware implementation of 

EEG feature extraction and most of EEG classification is done on software platforms. 

 

Also, it can be observed that [2], When designing a BCI system, it is important 

to implement, multiple classification algorithms, in order to make accurate decisions.  

And Both feature extraction as well as the classification method should be considered 

for each algorithm.  

 

Based on this analysis, this research project has been done with novelty 

contribution for development of the algorithm, designing the system and hardware 

implementation of LDA for EEG classification. 
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Figure 2-1 EEG Electrode locations 

Chapter 2  
HARDWARE IMPLEMENTATION 

 

2.1 EEG feature extraction 

 

2.1.1 Obtaining EEG signals  

 
The functionality of this system required three set of EEG signals.  That is, first 

EEG sample from a healthy person who have normal EEG pattern and second EEG 

sample from a patient who has abnormal EEG pattern. Finally test EEG signal is 

required, which will be checked for the abnormality. In real world applications, first 

two samples should be available offline, and third sample will be available in real time. 

In order to reduce the complexity of implementation, in this research project, all the 

three samples have been provided offline to the FPGA development board. 

 

For this implementation, EEG signals from The Sleep-EDF Database [5] have 

been used for both training and testing the system. This is a collection of 197 whole-

night PolySomnoGraphic sleep recordings in EDF format (European Data Format), 

which also contains EEG signals along with other biomedical signals.  
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Figure 2-2 First EEG sample from unhealthy patient 

Table 2-1 Abbreviations and Anatomical landmarks for the electrodes 

Nasion: the depressed point where the 

top of the nose meets the ride of the 

forehead 

Inion: Lowest point of the skull at the 

back of the head, normally felt as a 

prominent bump 

F: Frontal lobe T: Temporal lobe 

C: Central P: Parietal lobe 

O: Occipital lobe z: zero(midline) 

A: Earlobe  Fp: Frontal polar 

Even numbers: represent electrodes on 

the right hemisphere 

Odd numbers: represent electrodes on 

the left hemisphere 

 

These EEG signals are taken from Fpz-Cz and Pz-Oz electrode locations placed 

on 10-20 international system shown in Figure 2-1. The abbreviations used in this 

figure is described in Table 2-1. This is an EEG electrode placement system developed 

from International Federation of Societies for Electroencephalography and Clinical 

Neurophysiology, in order to ensure standardized reproducibility over time among 

patients. Here 10 and 20 refer to the actual distance between adjacent electrodes, which 

is either 10% or 20% of the total front-back or right-left distance of the skull. This 

electrode placement system has 75 electrodes and 10% division is used. This is a high-

resolution version of conventional electrode system which has only 21 electrodes.  
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Figure 2-3 Second EEG sample from healthy patient 

Figure 2-4 Third EEG sample from unhealthy patient 

For this research project I have used 12 hours long EEG signals. These EEG 

signals are obtained through the PhysioBank ATM in the PhysioNet 

(https://www.physionet.org/cgi-bin/atm/ATM).  The input configurations for the three 

EEGs taken from this PhysioBank ATM are shown in Figure 2-2, 2-3 and 2-4. In these 

records files, SC means Sleep Cassette and these records were obtained through 

healthy subjects without any sleep related issues. ST means sleep telemetry and it 

contains records obtained from subjects who had mid difficulty in falling sleep, but 

were healthy otherwise.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

https://www.physionet.org/cgi-bin/atm/ATM
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2.1.2 What features to extract?  

 
After obtaining EEG signals, in order to classify them, it is required to extract 

statistical features which can represent them accurately. Features that can be extracted 

from EEG signals includes [1], [4].  

• Power spectral density  

• Phase synchronization  

• Energy of different bands 

• Discrete Wavelet Transform (DWT)  

• Zero crossing histogram 

 

From the above available feature extraction methods, DWT has been selected for 

this project, because it is suitable for analysing spontaneous signals like EEG and also 

there are many researches related to EEG signals, have already been done using DWT 

[1].  

 

In DWT, an analog signal is decomposed in to set of coefficients in each sub 

band as described in the 2.1.3 section below. From these coefficients also one set of 

features has to be selected that is convenient to be used in the classification method. 

These include [6], for each sub band, taking maximum or minimum from all the 

wavelet coefficients or taking mean or standard deviation for all wavelet coefficients. 

In each sub band, the maximum from all the wavelet coefficients is used for testing 

this design as described below.  

 

2.1.3 Discrete Wavelet Transform 

 

Wavelet is a wave-like oscillation with zero mean that exist for limited time 

duration. It decays rapidly and captures both frequency and location information. 

There are different wavelets like Mexican hat, Morelet, Symlets 4 (sym4), Haar, 

Daubechies 2 (db2), db4, db6. Based on the calculations done on Section 2.4.2 for this 

project, I have used the data generated using ‘db6’ wavelet. Also, the smoothing 
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features Daubechies wavelets are more suitable for the detecting changes in EEG 

signals [7].   

 

 

 

 

 

 

 

 

The Wavelet Transform is defined by: 

𝑊𝑓(𝑠, 𝜏) = ∫ 𝑓(𝑡) 𝛹(𝑠,𝜏)
∗ (𝑡)𝑑𝑡  (2-1) 

The wavelets are created from a wavelet function called “mother wavelet” and t 

is defined as: 

𝛹𝑠,𝜏(𝑡) =
1

√𝑠
𝛹 (

𝑡 − 𝜏

𝑠
) (2-2) 

Here “s” is the dilation factor and “τ” is the translation factor. The signal f(t) is 

sampled by dilated and moved mother wavelet versions. 

 

The wavelet transforms can be calculated in two ways. That is discreate manner 

and continuous manner. Those transforms are called Discrete wavelet transform 

(DWT) and Continuous Wavelet Transform (CWT). The continuous wavelet 

transform is calculated by taking summation over all time of the signal which is 

multiplied by scaled, shifted wavelet. CWT can operate at every scale and it is 

continuous in terms of shifting.  In contrast to that, in DWT the scaling and shifting is 

Figure 2-5 Daubechies 6 (db6) wavelet function 

Time 

A
m

p
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d

e 
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h[n]: the low-pass filter 

g[n]: high-pass filter 

Figure 2-6 Decomposition in discrete wavelet transforms 

done based on power of two. Hence it is more accurate and efficient. This is done 

through calculating the approximations and the details for the signal.   

 

 

 

 

 

 

 

 

 

2.1.4 Calculation of Approximations and Details  

The low-frequency, high-scale components of the signal are called the 

approximation and the high-frequency, low-scale components called the details.  High-

pass and low-pass filters in each stage are used for the decomposition of 

approximations and details from the signal as described in the Figure 2-5.  

In this project, after calculating Approximations and Details for the EEG signal, 

following features have been selected to be used in classification.   

• Maximum A1 co-efficient for each sample  

• Maximum D1 co-efficient for each sample  

 

 

2.2 Classification of EEG signals  

After extracting the features from EEG signals, those can be used to process and 

classify the EEG signals. Many of the researches have been done based on 

classification methods such as Support Vector Machine (SVM), principal component 
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Figure 2-7 Average percentage accuracy of SVM and LDA 

Table 2-2 Classification accuracy of different classification 

methods 

analysis (PCA), Linear Discriminant Analysis, K-nearest neighbors (KNN) and other 

patter recognition methods.  

2.2.1 Selection of classification method 

Different classification methods have different efficiency for different 

application and different testing parameters. According to [4] and [8], Support Vector 

Machine (SVM) have higher accuracy than LDA. As described in the Figure 2-6 

below, the feelings are more accurately classified by SVM [8].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As mentioned in the Table 2-3, according to [2], LDA is not the best 

classification method for EEG signals, yet it is important to use in classification, since 
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Figure 2-8 Data projection on different axes 

with actual data there are no one best classification method and every method have 

different rate of accuracy for different test parameters. Also, it is important to note that 

the accuracy differences among different classification methods are not significant.  

Also, when compared to other classification systems like SVM and PCA, LDA 

algorithm is less complex, especially for two class classification. And the 

implementation of less complex algorithm results in less resource utilization in the 

design which helps to reduce the overall cost. Therefore, for the low-cost classification 

requirements it is better to select lesser complex algorithms like LDA.   

For this implementation, I have selected LDA as the classification method, based 

on less complexity and also since in actual implementation of a product it is also 

important to LDA along with other classification methods.   

2.2.2 Classification using Linear Discriminant Analysis 

LDA is a procedure that uses linear combination of features to differentiate two 

or more classes of events or objects. LDA create new axis by maximizing the distance 

between means, while minimizing the variation. The aim of this procedure is to reduce 

dimensionality, keeping information which helps for class discrimination as much as 

possible.  
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Figure 2-9 New axis creation in LDA 

As an example, Figure 2-8 shows two classes of objects and two axis which can 

be used to project the data. The vatical axis is a bad projection, since with that two 

classes are not distinctive with mean and variance of the classes. The horizontal axis 

is a good projection, since with that two classes are distinctive with mean and variance 

of the classes [9]. Likewise, LDA will find a projection axis which will have the 

maximum separation of two classes. This new axis will be created by LDA as 

described in Figure below.  

 

 

 

 

 

 

In this project, algorithm will be implemented for two class scenarios. And there 

are two phases of classification. That is, the Training phase where it calculates 

projection vector W for the largest eigen value for the system and the Deciding phase 

where it calculates new (y) values for hyper plane. 

• Training phase:  

In this phase the system will be trained based on the training sets available. For 

that, following mathematical operations will be applied on the data sets of each class.  

1. Mean calculation for each training class 

 

𝜇1 =  
1

𝑁1
∑ 𝑋1 (2-3) 

𝜇2 =  
1

𝑁2
∑ 𝑋2 (2-4) 

Here N1 and N2 are the number of samples for 1st and 2nd class respectively. 
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2. Covariance matrix calculation for each training class  

𝑆1 =  ∑(𝑥1 − 𝜇1)(𝑥1 − 𝜇1)𝑇 (2-5) 

 

 

𝑆2 =  ∑(𝑥2 − 𝜇2)(𝑥2 − 𝜇2)𝑇 (2-6) 

 

3. Within class scatter matrix. This is calculated from the sum of covariance for 

each class.  

𝑆𝑤 =  𝑆1 +  𝑆2 (2-7) 

 

4. Inverse within class scatter matrix 

𝑆𝑤
−1 (2-8) 

5. Projection vector W calculation for maximum eigen value   

𝑤∗ =  𝑆𝑤
−1(𝜇1 −  𝜇2) (2-9)  

 

• Testing phase or Deciding phase  

In this phase, the class of the testing sample will be decided based on the distance 

it has for the projection vector. In order to decide the class, the testing sample date will 

go through following steps.  

1. Mean calculation for each training class 

𝜇𝑡 =  
1

𝑁𝑡
∑ 𝑋𝑡 (2-10) 

Here Nt is the number of samples that is used for testing. 

2. Calculate the deviation of test sample from each class along the projection 

vector  
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Figure 2-10 Algorithm for the EEG classification system 

𝑑1 = |(𝜇1 − 𝑥)𝑤∗| (2-11) 

𝑑2 = |(𝜇2 − 𝑥)𝑤∗| (2-12) 

This will give the absolute distance for two classes along the projection vector 

from test samples.  

3. Classify the test sample based on the absolute deviation   

𝑖𝑓𝑑1 <  𝑑2: 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡 𝐸𝐸𝐺 𝑠𝑖𝑔𝑛𝑎𝑙 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 1𝑠𝑡 𝑐𝑙𝑎𝑠𝑠  

𝑖𝑓𝑑1 >  𝑑2: 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡 𝐸𝐸𝐺 𝑠𝑖𝑔𝑛𝑎𝑙 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 2𝑛𝑑 𝑐𝑙𝑎𝑠𝑠  

 

2.3 Architecture design  

 

2.3.1 Algorithm for the full system  
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Figure 2-11 Architecture for the EEG classification system 

Figure 2-10 shows the full algorithm for the EEG classification system, which 

was described in section 2.1 and 2.2 above. Here ‘Reading EEG’ and ‘Feature 

extraction’ is implemented on software platform. And the ‘Training for LDA’ and 

‘Testing with LDA’ is implemented on hardware. 

 

2.3.2 Architecture of the full design  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-11 above shows the full architecture of EEG classification system. This 

includes hardware implemented part as well as software implemented part. This full 

system was first implemented on MATLAB software. Therefore, all the module parts 

and their functionality are described in 2.4 section below. From these modules, 

calc_LDA and test_LDA has been used to implement the EEG classification part on 

hardware.  
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2.2.3 Requirements to process EEG signals offline 

 

When designing the architecture, it should be decided whether to use real time 

EEG processing or offline EEG processing for the implementation. For that, 

advantages and disadvantages of each method should be considered.  

To do online EEG processing, this project should be enhanced using Ethernet IP 

so that it can communicate to a PC in real time, to get the extracted features from EEG 

data to be processed. But for this implementation, EEG signals are processed offline 

due to following reasons.  

1. Obtaining EEG signals are in the range of milliseconds, even though the 

processing of EEG data is in the range of micro seconds. (check this after 

implementation). Therefore, it will not be a bottleneck even though it was 

implemented separately.  

2. This project focuses on increasing the efficiency of EEG classification part  

3. In a real product, the part which reads EEG signals can be, implemented 

without the use of FPGA 

 

2.4 MATLAB implementation 

 

Before implementing the system on RTL, I have implemented the same system 

in MATLAB. Objectives of implementing the full system in MATLAB is to, 

• Generate the DWT features that is used in final hardware implementation 

• Select more efficient wavelet transform and fixed-point precision for the 

implementation  

• Debug the algorithm more easily before going to RTL implementation  

 

2.4.1 Classification system  

Full design including reading EEG signals, DWT feature extraction and LDA 

classification has been implemented on MATLAB. Functionality of the MATLAB 
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files are described in the table below. Also, it describes the functionality of the modules 

mention in the Figure 2-11 in section 2.3.2 above.   

Table 2-3 MATLAB files for EEG classification system 

MATLAB file  Functionality  

eeg_classification_gui.m  This is the main file and it has the code 

for eeg_classification_gui.fig, which is 

shown in Figure 2-12.  
eegclassify_gui.m This file is called from the GUI and it 

corresponds to top most module in 

Figure 2-11. In the beginning it reads the 

EEG files and finally it gave the class of 

the test EEG. This also has all the 

intermediate data flows.  

get_features.m Corresponds to get_features module. It 

gives the maximums of each 

Approximations and Details for EEG 

signals. 

calc_dwt.m This is called from get_features module 

and calculated DWT for signals. 

calc_lda.m Corresponds to calc_LDA module. This 

calculates LDA for two input classes and 

outputs the highest eigen value 

test_lda.m Corresponds to test_LDA module. This 

module will decide the class of test 

signal based on eigen value of projection 

vector for other two signals 

create_mif.m This creates MIF (Memory Initialization 

File) files from the features extracted 

from DWT. These MIF files is used as 

inputs in RTL implementation 

 

In addition to those files, I have also used following MATLAB internal functions 

to write and read intermediate data files. 

Table 2-4 MATLAB internal function 

MATLAB internal functions Functionality  

csvwrite Write data in CVS format  

csvread Read files in CVS format  

dlmwrite Write find in to data with specific delimiter  
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Figure 2-12 GUI for the EEG classifier 

The graphical user interface (GUI) for the system is shown in the Figure 2-11 

below. From this GUI, two training samples and the test sample can be selected which 

should be given in CVS (Comma Separated Value) format. Then class of the test signal 

can be checked from “Classify EEG” button.  

 

 

 

 

 

 

 

 

 

 

 

 
 

2.4.2 Wavelet and fixed points widths selection 

 

Here I have used MATLAB to select most suitable DWT wavelet and the fixed-

point width precision using K- fold cross validation [4].  Here I have used 5-fold cross- 

validation. In that the full data set is separated into 5 equal sets. From these 5 sets, the 

system is trained using 4 sets and the system is tested using 1 set. Then using that data, 

I have calculated accuracy, sensitivity and specificity [8] from the equations below. 

Table 2-5 Definitions of TN, TP, FN and FP 

Detection  With Obstructive Sleep Apnea Without Obstructive Sleep Apnea 

NO FN (False Negative) TN (True Negative) 

YES TP (True Positive) FP (False Positive) 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)
(2-13) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
(2-14) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

(𝐹𝑃 + 𝑇𝑁)
(2-15) 

 

• Comparison of different DWTs 

Using the equations mentioned above I have written following MATLAB files 

in the table to compare the different wavelets. This table does not include the same 

files mentioned in the Table 2-3. 

 

Table 2-6 MATLAB files to compare the different wavelets 

MATLAB file  Functionality  

cross_validation.m  K fold cross validation for the EEG 

classification system. This gives 

Accuracy, Sensitivity, Specificity for the 

provided signals  

eeg_classify.m In the beginning it reads the EEG files 

and finally it gave the class of the test 

EEG. This also has all the intermediate 

data flows. 
 

Accuracy, sensitivity and specificity calculated using those MATLAB files for 

different wavelets are shown in table below.  From that table, it can be observed that 

Daubechies wavelet of order 6 (db6) have the maximum accuracy also higher 

sensitivity and specificity in general. Therefore, I have selected the db6 wavelet as the 

feature extraction method for the EEG classification.  

Table 2-7 Comparison of different wavelets 

Wavelet  Accuracy  Sensitivity  Specificity  

haar 0.70 0.88 0.52 

db2 0.76 0.72 0.80 

db4 0.78 0.72 0.84 

db6 0.80 0.76 0.84 

bior6.8 0.72 0.60 0.84 

sym4 0.60 0.52 0.68 

sym2 0.76 0.72 0.80 
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Figure 2-13 Architecture of the RTL design 

• Comparison of different fixed points widths  
 

Table 2-8 MATLAB files to compare the different fixed-point calculations 

MATLAB file  Functionality  

test_lda_precision.m Same functionality as test_lda.m file mentioned in 

Table 2-3, but precision of the can be set by the user 

using w variable  

calc_lda_precision.m Same functionality as calc_lda.m file mentioned in 

Table 2-3, but precision of the can be set by the user 

using w variable 
 

The accuracy, sensitivity and specificity for different fixed-point width has been 

calculated using the MATLAB files mentioned in the Table 2-7, in addition to the files 

mentioned in Table 2-6.   

For this data set, as mentioned in table 2-8, it can be observed that the accuracy, 

sensitivity and specificity reduce when the width of fixed-point calculation reduces. 

Hence for this implementation I have used 32-bit width so that it has the accuracy as 

required, also the less resource utilization in FPGA implementation.  

Table 2-9 Comparison of different fixed-point calculations 

Word length of 

fixed-point 

calculations 

Accuracy  Sensitivity  Specificity  

64 0.7000 0.7600 0.6400 

32 0.7000 0.7600 0.6400 

16 0.6200 0.6000 0.6400 
 

 

2.5 RTL Implementation  
 

2.5.1 Architecture of RTL design  
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Figure 2-14 Finite State Machine in Arbiter 

Architechture of the RTL design is shown in the Figure 2-13 above. The 

functionality of each module in the design is described in the Table below.  

Table 2-10 Functionality of RTL modules 

Module  Functionality  

TB (Testbench) The wrapper module for the design 

which has simulation related data. 

DUT (Design Under Test) This is the RTL design which is 

implemented on FPGA 

Arbiter This module will decide the timing and 

the sequence of the status that the design 

operates. This is done through the Finite 

State Machine (FSM) in this module. 

RAM This stores the DWT features extracted 

from EEG signals for offline processing 

LDA This is the module where the LDA 

training and testing algorithms are been 

implemented 

 

2.5.2 Finite State Machine in the Arbiter 

 

 

 

 

 

 

 

 

 

 

Above diagram describes the Finite State Machine (FSM) in the Arbiter module, 

which controls the sequence of states the design should operates. Here, clock pulse 

count is used to decide the timing to go to next state. And the reset signal can be used 

to get to the FSM to initial state again, which is IDLE. Each state has three signals 
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Figure 2-15 Qn.m format for Fixed-point Arithmetic 

which are used for enabling output of RAM, calculation enable for LDA and output 

enable or LDA. Following are the Table 2-10 shows the various states of this FSM. 

 

Table 2-11 States in Finite State Machine 

State  Description   

IDLE This is the initial state of the design. No operation will happen in 

this state.  Also, the design comes back to this state with the reset 

signal, which can be given by the user from the FPGA 

development board. 

RAM_READ During this state, the data stored in the RAM will be read and will 

be given to the LDA module. 

LDA_CALC All the LDA calculations will happen in this stage. This is the final 

state of the arbiter. Once this state is reached, the arbiter will 

remain in this status until user send a reset signal. 
 

2.5.3 Fixed point calculations on Verilog  
 

In this RTL implementation, to represent the floating points, Qn.m format has 

been used [10].  It is a fixed-point number system that can be used for floating points 

arithmetic. I have referred fixed-pint implementation available in OpenCores [11], for 

my project, by applying the following arithmetic procedures.  

 

  

 

 

 

 

Figure 2-15 shows how floating points are represented in this format. The sign 

indicated by the most significant bit. For positive numbers it is 0.  Qn.m means, to the 

left there are n bits and to the right there are m bits, from the binary point. 



23 
 

• Reasons to select fixed point arithmetic 

 

Main advantage in fixed point implementation is, it has simpler hardware 

compared to floating point hardware, hence consume less power and required less 

resources. And it does not require normalization after each operation like in floating 

point arithmetic. Also, it is more convenient since place of decimal point is fixed.  

There are some disadvantages also in fixed pint arithmetic. It is less readable and 

in multiplication operation id doubles the number of bits. However, for this project I 

have selected fixed point arithmetic, since it has more advantages comparatively for 

less complex hardware implementations.   

Example: 01 1011 0000 

In Q2.8 format the value is  = 1   + ½   + (½)3   + (½)4  

    = 1.6875 

    = 1B0   in Verilog  

 

• Representation of negative numbers  

 

Negative number in fixed point arithmetic are represented using the ‘1’ in the 

sign bit of the number  

Example: 10 1011 0000 

In Q2.8 format the value is  = -1 x (½   + (½)3   + (½)4)  

    = -0.6875  

 

• Addition in Q.n.m format 

 

Assume the two numbers of Qn1.m1 and Qn2.m2 formats are added 

respectively, and the result is given in Qn.m given format. Then the larger of n1 and 

n2 is the n and the larger of m1 and m2 is the m. Before the addition operation the 

points need to be aligned.  
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Example: 

First number a in Q2.8 format   =     01 1001 0000 

Second number b in Q3.4 format  =           010 0101 

Addition (a+b) in Q3.8 format   =   011 1110 0000 

 

Table 2-12 Addition in fixed point calculations 

Number  Align binary points Value 

a  0 1 . 1 0 0 1 0 0 0 0 1.5625 

b 0 1 0 . 0 1 0 1     2.3125 

(a+b) 0 1 1 . 1 1 1 0 0 0 0 0 3.8750 

 

• Multiplication in Q.n.m format 

Assume the two numbers of Qn1.m1 and Qn2.m2 formats are multiplied 

respectively, and the result is given in Qn.m given format. Then the larger of n1 and 

n2 is the n and the larger of m1 and m2 is the m. In Fixed-point multiplication, the 

position of the binary point should be determined after the multiplication [12].   

 

Example.:  

First number a in Q2.8 format   =     01 1001 0000 ==   1.5625 

Second number b in Q3.4 format  =           010 0101 ==   2.3125 

 

                0110010000 

                 x    0100101 

----------------------------- 

              01 1001 0000 

           000 0000 000 

         0110 0100 00 

      0 0000 0000 0 

    00 0000 0000 

  011 0010 000 

0000 0000 00 

----------------------------- 

0011 1001 1101 0000  ==  0011.1001 1101 0000   == 3. 61328125 
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2.5.4 Simulations  

 

The functionality of a design is validated using the simulation. This is done 

through test bench in batch mode simulation as well as waveform simulation. Here I 

have done Post-synthesis, Post-implementation, functional and timing simulations. 

Functional simulation simply tests the functionality of the design. In timing simulation, 

in addition to functionality the delays are also considered, hence it is much closer to 

testing the RTL design in FPGA. It will allow to ensure that the implemented design 

meets all timing and functional requirements and have expected behavior after 

downloading in to the FPGA.  

Also, it is important to check post-synthesis and post-implementation, since 

functional changes can be caused after synthesis and implementation due to reasons 

like, operation of asynchronous paths, differences between synthesis of HDL 

languages in various simulators, simulation and implementation mismatches caused 

by synthesis attributes or constraints. Simulation results for this design is presented in 

3.2 Section.   

 

2.6 FPGA Implementation   

 
2.6.1 FPGA design flow  

 
 

Below Figure 2-16 describe the design flow that is followed during the FPGA 

implementation. All the steps in this flow, except the first step and the last step, are 

generally done with the help of EDA tools provided by the FPGA vendor. In this 

project, I have used the Xilinx Vivado® Design Suite, which is compatible with Basys 

3 Artix-7 FPGA Trainer Board.  

 

RTL describe the functionality of the design in HDL The RTL should be 

simulated in order to verify that the design have the required functionality. Then in 

Logical Synthesis stage, RTL is converted it to a logic circuit, which consist of nets 

and logical cells. Logic Mapping and Logic Optimization also happens at this stage. 
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In Layout stage, the place components and Route the nets is done using the 

resources available in FPGA device. Then the design tool (Vivado IDE) runs series of 

must pass the timing and the power requirement. After that it will generate the bit 

stream according to the configuration provided by the user. Finally, user has to 

download that generated bit stream in to FPGA device in order to configure it.  

 

 

2.6.2 Selection of a FPGA development board  

 

 

I identified that FPGA (Field Programmable Gate Array) is the best way to start 

the initial implementation of this design. It provides the way to running the RTL 

designs inside the Reconfigurable logic. FPGA development boards have readily 

available rich set of tools and is helpful in initial prototyping an RTL design in early 

stages of ASIC design process. I targeted the Xilinx FPGA platforms due to wider 

availability, advanced development tools and wider support.  

 

 

 

 

 

Figure 2-16 FPDA design flow 
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Figure 2-17 Basys 3 Artix-7 FPGA Trainer Board 

 

 

 

 

 

 

 

 

 

 

In order to select best suitable board from the available FPGA development 

boards, I have compared their features and cost in the below Table 2.2. 

 

Table 2-13 FPGA Boards Comparison 

FPGA 

developme

nt kit  

Xilinx 

Virtex-7 

FPGA 

VC707 

Evaluatio

n Kit 

Atlys 

Spartan-

6 FPGA 

Trainer 

Board 

ZedBoard 

Zynq-7000 

ARM/FPGA 

SoC 

Development 

Board 

Basys 3 

Artix-7 

FPGA 

Trainer 

Board 

Genesys 2 

Kintex-7 

FPGA 

Developme

nt Board 

FPGA Xilinx  

Virtex-7 

FPGA  

Xilinx 

Spartan-

6  

Xilinx Zynq-

7000 AP SoC  

Xilinx 

Artix-7 

FPGA  

Xilinx 

Kintex-7™ 

FPGA  

Memory 1GB 

DDR3 

SODIMM 

800MHz / 

1600Mbps 

2.1Mbits 

of fast 

block 

RAM 

512 MB 

DDR3 

1,800 

Kbits of 

fast block 

RAM 

Close to 16 

Mbits of fast 

block RAM 

Logic Cells 485,760 6,822 85,000 33,280 50,950 

DSP Slices  2,800 58 220 90 840  

Cost $3,495 $490.00 $449.00 $149.00 $999.00 

Decision  Enough 

resources, 

High cost, 

Suitable 

for 

complex 

projects 

Not 

supporte

d in 

Vivado 

new 

versions 

Enough 

resources 

Cost is 

moderate 

Enough 

resources, 

Cost is 

low 

Enough 

resources, 

Cost is 

moderate 
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Based on the comparison in the table above, I have selected Basys 3 Artix-7 

FPGA Trainer Board, because of its availability, low cost and it has enough resources 

to implement this project.  

 

2.6.3 Specifying Constraints using XDC 
 

 

In order to implement the RTL design in hardware, there are timing and physical 

configuration that needs to be specified. These are given to FPGA through Xilinx 

Design Constraints (XDC) file. XDC is an extension of the industry standard Synopsys 

Design Constraints (SDC). SDC is specifically designed for ASIC designing, therefore 

it only has Timing constraints. XDC consist of Timing constraints as we as Physical 

constraints, since in FPGA design flow, physical configuration also needs to be given 

for the development board. These constraints are order dependent, therefore 

constraints written in first part of XDC file will be overridden by constraints written 

in later. XDC file which is in .xdc format is shown in Figure below for this project.    

 

 

Figure 2-18 Design Constraints using XDC 
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a) Timing Constraints  

 

This includes clock information, input and output timing requirements and 

exceptions which overrides basic constraints. Performance expectations of the design 

are communicated to the implementation tool through timing constraints. There are 

two types of timing constraints. That is can be Global Timing Constraints and Path 

Specific Timing Constraints.   

1) Global Timing Constraints  

There are timing constraints which defined for entire design. Following are the 

main global timing constraints.   

Period - (using create_clock) This constraint specifies delay paths between 

synchronous elements  

Offset in – This constraint specifies delay paths from input pins to synchronous 

elements  

Offset out – This constraint specifies delay path from synchronous elements to output 

pins  

2) Path Specific Timing Constraints  

These timing constraints are defined only for specific paths in the design.  

set_multicycle_path - Defines the multicycle path.  

set_false_path – Defines the false path  

 

b) Physical Constraints  

 

This includes all the constraints which are not timing specific like IO 

(input/output) constraints, floor planning, device configuration. For this design I have 

used two set of IO constraints. Those are, LEDs to show the final class of EEG test 

signal and a push button to reset the design, as shown in Figure 2-18.  
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2.6.4 Timing Closure  

  

After RTL designing and defining design constraints, design tool will run the 

synthesis and implementation on the design. Then if there are any timing violations, 

tool will report them in timing report.  These timing violations should be resolved 

before generating bit stream to download in to FPGA device.  

Slack is related to difference between required time and the arrival time and 

negative slack means, the timing requirements are not met. To have timing closure, 

Worst Negative Slack (WNS) and Total Negative Slack (TNS) should be positive. 

Also, both WNS and TNS should be improved as much as possible. WNS will limit 

the maximum frequency that the design can run. This can be achieved by either 

reducing the clock speed or using different placer directives from Vivado IDE. Several 

placer directives can be tried to find a better directive for the design. If none of these 

methods do not improve the negative slack, RTL should be changed in order to correct 

the issue. This procedure is known as Timing Closure. Figure 2-19 shows an algorithm 

that I have used to improve negative slack during implementation in Vivado IDE. 

Results of the timing closure for this design is described in 3.1 section.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Synthesized 

design 

Optimize the design 

using a placer directive 

Run routing for 

the design  

 

 

Completed 

 

WNS > 0 ? 

WNS > 0 ? 

Figure 2-19 Flow to remove negative slack 
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Figure 2-20 Arduino Mega 2650 

2.6.5 Power Utilization  

    

It is important to implement any design to consume less power as possible. There 

are two sources for the power consumption in FPGA devices. That is Static power 

consumption and Dynamic Power consumption. Static power refers to power 

dissipation due to leakage current when the device is in standby mode. Dynamic power 

dissipation happens when the capacitance of logic cells charges and discharges when 

the device is operating.  

Power optimization is done in the synthesis and implementations stages from the 

design tool. However, it is possible to reduce the power consumption by writing the 

RTL in optimal manner. I have written the optimal mathematical operations and 

efficiently used the if else, case statements, so that there will be less power 

consumption after implementation. The power consumption of this design is described 

in 3.1 section.   
 

2.7 Feasibility on Arduino implementation  

 

When implementing any system on hardware, most of the time the first choice 

is to implement it on Arduino board. Therefore, in this section I address the importance 

of implementing the EEG classification system on FPGA instead of Arduino.   

 

2.7.1 Implementation on Arduino Mega 2650 
 

To implement the EEG classifier, I have selected Arduino Mega 2650. Even 

though there are many low-cost Arduino development boards available that this one, 

all of them did not have enough memory to store the source code and the extracted 

EEG feature data. I have simulated this on “Proteus” software as shown in Figure 27. 

And also, was able to get the simulation data as shown in Figure 2-20.  
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Figure 2-21 Simulation on Proteus with Arduino Mega 2560 

Figure 2-22 Simulation results from Proteus 
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2.7.2 Necessities to implement on FPGA 

 

Following are the necessities to implement on FPGA device instead of Arduino 

micro controller.  

• Memory available on Arduino chips are not enough to process huge amount of 

data.  Even with Arduino Mega 2560 which has 256KB flash memory, there 

was a memory overload for this design. And also, this Arduino board costs 

$38.50. Hence it is not cost effective also.  

• FPGA Implementation can process data much faster than the Arduino 

implementation. It can scale the design to be used with more data. Also, it can 

enhance the design to be used with real time data by using adaptive LDA 

• Apart from the implementation, there are also limitations on simulating the 

design when using Arduino. I have faced below memory allocation issues 

while during Proteus simulations and was unable to proceed. Main issue here 

is the Arduino chips as well as the Arduino simulation software are not design 

to implement more complex system like EEG classifier.  

 Invalid opcode 0xFFFF at PC=0xDA10 

 

 Hence it is more efficient and convenient to implement this EEG clarifier on 

FPGA instead of Arduino.  

 

 

 

 

 

 

 

 



34 
 

Chapter 3  
RESULTS AND DEMONSTRATION 

 

Results of my project “Hardware Implementation of EEG classifier” is presented 

in this chapter. The main target of my project is to implement a working EEG classifier 

for two class scenarios in a FPGA with minimal resources. For that it is necessary to 

show that my design can classify the EEG signal accurately and also it utilizes 

minimum resources. In addition to that, it is required to show that the design meet all 

the timing and performance requirements. These results and the demonstration on the 

FPGA implementation are present in this chapter.  

 

3.1 Timing and Power results for FPGA implementation  

 

Timing summary of the design is shown in the Figure 3-1 below. Here it can be 

observed that there are no timing violations, no setup time and hold time violations.  

 

 

Figure 3-1 Design Timing Summary 

 

Figure 3-2 shows the Timing report for the design. This can be generated using 

the following TCL command.  

report_timing_summary -file timing.rpt 

Also, the minimum time requirement in order to run the design and the maximum 

frequency that the design can operate can be calculated from the ‘Max Delay Path’ 

section of that report as shown below. From this report it can be observed that the 

timing requirement is 80ns and there is a positive slack of 0.630ns. That means clock 



35 
 

period for clk signal can be 0.630ns shorter, hence maximum frequency would be 

12.58MHz for implementation in this FPGA board, which depends on the RTL.  

Minimum time    = 80ns-0.630ns 

= 79.370ns 

Maximum Frequency   = 1/(80ns-0.630ns) 

= 1/79.370 

= 12.60MHz 

Design clock frequency   = 1/80ns 

     = 12.5 MHz 

 

 

Figure 3-2 Timing Report 

 

As mentioned in 2.6.3 Section, clock cycle of clock signal for this design is set 

to be 80ns using XDC physical constrains. Which means the provided clock is 

12.5MHz. Since this is less that maximum frequency 12.60MHz, design runs without 

any timing issues.   

Power consumption for the design is shown is the Figure 3-3 below. It has low 

confidence level since the power specifications are not defined in the design. Defining 

power specifications are not required in this stage of the design. That will be required 

when this design is going for production. And also, this design has total on-chip power 
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Figure 3-3 Power Consumption 

consumption of 0.138W, which is due to both static and dynamic power consumption 

(Described in 2.3.5 Section).  

 

 

 

 

 

 

 

 

 

3.1.1 Modular timing analysis 

 

Module timing analysis is important to analyze the timing issues modular wise 

and also to get to know about what modules should be considered for the 

parallelization, to speed up a design. For this design, here I have considered LDA, 

RAM and Arbiter submodules for this analysis, which are shown in figure 2-13. Here 

LDA is a combinational module while RAM and Arbiter are sequential module. Table 

3-1 below shows the worst slack for the setup times and hold times for these modules. 

From that, it can be observed that, all three modules have same worst slack for setup 

times and RAM module have the lowest worst slack for hold times. Hence to improve 

the slack for hold time of overall design, the RAM module should be considered 

Table 3-1 Worst slack for the setup times and hold times for sub modules 

Sub module  ARBITER RAM LDA 

Setup time  0.630ns 0.630ns 0.630ns 

Hold time  6.604ns 0.122ns 6.180ns 
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Figure 3-4 Batch mode simulation 

3.2 Simulation results  

 

• Batch mode simulation 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure shows that the batch mode simulation gives the correct output for this 

design. Apart from testing the final output, batch mode simulation helps debug the 

design since from that it is easy to print the required intermediate values. In the Figure 

3-4, I have printed one approximation, detail and the distance for each projection 

vector before taking the final decision, to which class the test EEG belong.  

• Waveform mode simulation 
 

In addition to batch mode simulation, to debug the timing it is important to check 

the behavior through the waveform.  From Figures 3-5 to 3-9, it can be observed that 

behavioral simulation as well as post-synthesis, post-implementation, timing and 
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Figure 3-6 Post-Synthesis functional simulation 

Figure 3-5 Behavioral Simulation 

functional simulations waveforms show the correct class value for the input EEG 

signal. In addition to that this also shows the reading of RAM when ‘oe’ signal is high. 
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Figure 3-7 Post-Synthesis timing simulation 

Figure 3-8 Post-Implementation functional simulation 

Figure 3-9 Post-Implementation timing simulation 
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3.2 Demonstration on FPGA development board  

 

 

Figure shows the implementation of this project in the Basys3 FPGA trainer 

development board. In this, when the reset button (BINC push button) in push, two 

LEDs will reset and will tuned off. Otherwise it will show the binary value of the class 

which the test EEG belong to. In this picture, LD0 LED is tuned off and LD1 LED is 

tuned on, which means that the class it belongs is 2b’10 or 2nd class.   

 

 

 

 

 

 

 

 

 

 

 

 

For the demonstration I will make use of Quads SPI(Serial Peripheral Interface) 

flash memory (Macronics part number is mx25l3233f) available in Basys 3 FPGA 

development board. The bit file generated from the program can be stored on this flash 

memory so that there is no need to reprogram the FPGA device every time when turn 

on the power.  

3.4 Accuracy of hardware implemented design  

 

After implementing the design on Basys3 FPGA development board, I have 

calculated the accuracy of the output for different the k-fold cross tests using the same 

formula mentioned in Section 2.4.2. To demonstrate this K fold testing, I have used 

Reset (BINC 

or U18) button 

Two LEDs to 

indicate the 

class test of 

EEG (LD0 

and LD1)   

Power switch 

Figure 3-10 Demonstration on Basys3 FPGA board 
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the ports and peripherals available in the FPGA development board as shown in the 

Figure 3-11. Here first 3 switches are used to select the EEG set and it will be shown 

in 2nd digit in 7 segment display. Similarly, K fold validation and true class can be set 

using switches and will be shown in other 7 segment digits as shown in Figure 3-11.  

After that from 1st digit will show the class of test EEG signal. This data can be use to 

calculate the accuracy of the output.   

 

 

 

 

 

 

 

 

 

 

 

 

Results from this test is shown in the Table below. Hence it can be concluded 

that by using 4-fold cross validation testing, this LDA classification design for EEG 

signals has 80% accuracy. 

Table 3-2 Accuracy for different k-fold validation tests 

 

 

 

 

Cross validation Accuracy 

4-fold 0.8000 

5-fold 0.4000 

6-fold 0.6000 

7-fold 0.6000 

EEG set 
K fold 

validation EEG set 

True class 

EEG class 

True class 

K fold 

validation 

Figure 3-11 Inputs and outputs in K fold testing demonstration 
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3.5 Comparison of hardware and software results 

 

Table 3-3 shows the comparison of accuracies between software implementation 

and hardware implementation for different cross fold validations. Here the software 

accuracy is been calculated from the MATLAB code mentioned in the 2.4.2 section. 

From this it can be concluded that the 4-fold validation has highest accuracy difference 

for hardware implementation which is calculated from (3-1) equation below.  

 

Table 3-3 Comparison of accuracies for software and hardware implementation 

Cross validation Accuracy of 

Software 

implementation  

Accuracy difference Percentage 

of hardware implementation  

4-fold 0.6600 +21.21% 

5-fold 0.8000 -50.00% 

6-fold 0.7400 -18.92% 

7-fold 0.5800 +3.45% 

 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑑𝑖𝑓𝑓𝑒𝑟𝑎𝑛𝑐𝑒 𝑓𝑜𝑟 𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒
𝑎𝑛𝑑 ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑖𝑡𝑜𝑛𝑠

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑜𝑓 𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
 𝑋 100% (3 − 1)
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Figure 4-1 Vivado 2017.1 

Chapter 4  
DISCUSSION 

 

In this chapter, I hope to discuss about the tools I have used, the problems I have 

encountered and how I have overcome those during my project. Also, finally I have 

discussed about the resource utilization of this project.  

 

4.1 Commonly Used Tools 

 

In the design process of the EEG classifier, I have used several software 

packages for different purposes as mention below. 

4.1.1 Vivado Design Suite 

 

Vivado Design Suite is a synthesis and analysis tool developed by Xilinx 

specifically for FPGA design flow. It also has an in-build RTL simulator. I have used 

this software as the IDE (Integrated development environment) for RTL coding, 

simulation, implementation and programming bit file generation. Design 

implementation includes all other design steps involved in the FPGA design flow like 

synthesis, translate, map, place & route.  
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Figure 4-3 MATLAB 2017a 

Figure 4-2 Xilinx ISE 14.7 

4.1.2 Xilinx ISE 

 

I had to use Xilinx ISE in order to implement the design in Basys 2 board and 

Atlys Spartan 6 FPGA development boards. This software was developed by Xilinx, 

before developing Vivado software, and not it is discontinued from further 

developments.  

 

 

 

 

4.1.3 MATLAB 

 

MATLAB is a numerical computing software developed by MathWorks. I have 

used this for the software implementation of this project. Also, the DWT features that 

has been used for hardware implementation was generated using MATLAB.  
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Figure 4-4 Arduino 1.8.5 

4.1.4 Arduino IDE 

 

The Arduino IDE has been used for programming Arduino board, while doing 

feasibility study on Arduino implementation of EEG classifier.   

 

 

 

 

 

 

 

 

4.2 Problems and solutions 

 

When designing and implementing this project, I had to face many problems. 

The main problem I have faces is the selecting the FPGA development board. I have 

created this project, did the designing, debugging and also the implementation for 

Basys 3 trainer board, because I was in the impression that it is available in the 

laboratory. However, after finalizing the project, I have got to know that only Basys 2 

development board is available in the post graduate laboratory. Hence, I dad to 

implement the design again for that board. Also, I had to switch to Xilinx ISE software 

since Vivado do not have the support for Basys 2 development board. Compared to 

Vivado Design suite, ISE do not have support for SystemVerilog, hence I had to 

convert the design from SystemVerilog to Verilog. However, after implementing it on 

Basys 2, I have noticed that the resources available in that board is not enough for this 

project. Then I have implemented the design on Atlys Spartan 6 FPGA development 

board, however it is not a suitable for this project because of high cost compared to 

resource utilization of this project. Hence, I have decided to order a Basys3 Trainer 

board through Digilent web site in order to demonstrate the project.  
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Figure 4-6 Resource utilization with in FPGA device 

Figure 4-5 Post implementation resource utilization 

Another problem that I have faced is representing DWT values in Verilog so that 

it can be loaded in to RAM. Since DWT values are in floating points, an appropriate 

representation system should be selected. For this, I have selected fixed point format 

considering several factors, as described in Section 2.5.3.   

 

4.3 Recourse utilization in FPGA 

 

 

 

 

 

 

One major objective of this project is to design a low-cost EEG classifier. For 

that it should be able to use FPGA with minimum resources. Post implementation 

resource utilization for this LDA classification is shown in the Figure 4-5 above. From 

that it can be observed that available Look Up Tables (LUTs), Flip Flops (FFs), DSPs, 

Input/Outputs (IOs) and BUFGs (Global Buffers) in FPGA is enough for the design. 

Here FFs indicates the amount of sequential element usage and DSPs indicates the 

usage of slices dedicated for DSP (Digital Signal Processing) functions. Hence this 

design can be implemented even with Basys 3 Artix-7 FPGA Trainer board.  The 

resources utilization within the FPGA device is shown in Figure 4-6.  
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4.3.1 Issues due to resource utilization   

 The high resource utilization in FPGA chip might appear to be a practical issue 

in this implementation.  As shown in Figure 4-5, this design utilizes 95.45% of 

available LUTs and 100% of DSP slices available in the FPGA chip. In an application 

like sleep detectors for automobile drivers, the FPGA chip will always do calculations 

continuously. Hence if the FPGA starts to heat due to the higher utilization resources 

when running for long hours, there might be a necessity to add cooler to the FPGA 

which will become an additional cost to the final product. However, this will not be an 

issue like in high processor usage in computers, since the operating frequency is low 

(12 MHz), compared to computer processor speed which are in Giga Hertz range.  
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Chapter 5  

CONCLUSION AND FUTURE WORK 
 

5.1 Conclusion 

 

With the development of medical electronics and popularity of portable devices, 

there is a huge demand for portable medical devices these days. This research project 

also can be used for development of those kind of products.  

Hardware implementation allows to implement EEG classification systems on 

portable devices without using software layer, also since this can be implement on 

FPGA with minimum resources, it is very useful for developing low cost device.  

There are many accidents happens due to drivers falling sleep, especially in 

highways. If it is possible to detect if the is going to sleep, then alarm can be given to 

avoid the accident. This can be done analyzing the EEG signals.  Here it should decide 

whether driver is going to sleep or not, therefore it is a two-class scenario, similar to 

this project. Hence sleep detectors for automobile drivers is an ideal use case for this 

project.   

 

5.2 Future work 

 

There are two areas that can be focused, as future work for this project. That is 

first integrating the feature extraction method in order to come up with a full system 

and secondly to enhance the EEG classification as adaptive classifier.  

Here I have implemented only the EEG classification part in hardware, since 

DWT feature extraction is already implemented in hardware in previous projects. 

However, in order to design a product, it is necessary to integrate DWT feature 

extraction with classification system. In addition to that apart from LDA classification 

other classification systems like SVM (Support Vector Machine), KFD (Kernel Fisher 

Discriminant) can also be included in to the classification part of the design [2]. Then 
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the final decision that is taken considering several classification methods will be more 

accurate.  

In this project, classification is done based only on the EEG signals provided at 

the time of testing. This can be further enhanced using adaptive LDA, to use previously 

provided EEG signal data also to consideration while doing the classification. Also, 

currently this design decides the class of EEG signal from previous EEG signals 

recorded for 12 hours. After implementing this in adaptive nature, it will be possible 

to decide the EEG class in real time, based on the signal receive.  

It has been analyzed and proved that supervised adaption is the best option, when 

implementing adaptive LDA. [13] In order to implement that mean and the common 

variance used in this design should be replaced by following estimated adaptive mean 

and the estimated common variance matrix.  

 

Estimated adaptive mean: 

𝜇𝑖(𝑡) = (1 − 𝑈𝐶) ∙ 𝜇𝑖(𝑡 − 1) + 𝑈𝐶 ∙ 𝑥 (5-1) 

with ‘i’ is the lass of x(t) and UC is the update coefficient 

 

Estimated adaptive common variance matrix: 

𝛴(𝑡)−1 =
1

(1 − 𝑈𝐶)
∙ (𝛴(𝑡 − 1)−1 −

1

1 − 𝑈𝐶
𝑈𝐶 + 𝑥(𝑡)𝑇 ∙ 𝜐(𝑡)

∙ 𝜐(𝑡) ∙ 𝜐(𝑡)𝑇) (5-2) 
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