

FPGA IMPLEMENTATION OF EEG CLASSIFIER

USING LDA

Nadun Manohara Ellawala

148455A

Degree of Master of Science

Department of Electronic and Telecommunication Engineering

University of Moratuwa

Sri Lanka

January 2019

ii

FPGA IMPLEMENTATION OF EEG CLASSIFIER

USING LDA

Thesis submitted in partial fulfillment of the requirements for the

degree Master of Science in Electronics and Automaton Engineering

Nadun Manohara Ellawala

148455A

Degree of Master of Science

Department of Electronic and Telecommunication Engineering

University of Moratuwa

Sri Lanka

January 2019

iii

Declaration by candidate

I declare that this is my own work and this thesis does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another

person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to

reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic

or other medium. I retain the right to use this content in whole or part in future works

(such as articles or books).

Signature: ……………………… Date: ………………………

Declaration by supervisor

The above candidate has carried out research for the Masters thesis under my

supervision.

Name of the supervisor: ………………………

Signature of the supervisor: ……………………… Date: ………………

iv

ABSTRACT

FPGA implementation of EEG classifier using LDA

Supervised by: Dr. S. Thayaparan

Key words: LDA, EEG, FPGA, DWT, HDL

Design and implementation of feature classification in Electroencephalography (EEG)

signal processing system on Field Programmable Gate Array (FPGA) hardware platform is

presented in this thesis. Today there is a growing demand for medical devices which process

EEG signals, for which, it is important to implement the EEG processing system in hardware

instead of software. Processing of EEG signals consist of extracting features from EEG signal

and then processing those features to classify the signals. As of today, in most of EEG

processing systems, classification part is done on software platform even though the feature

extraction is done on hardware. In this project, classification is done with Linear Discriminant

Analysis (LDA), based on the features extracted using Discrete Wavelet Transform (DWT),

for EEG signals obtained through PhysioNet website. The hardware implementation was done

on Field Programmable Gate Array (FPGA) platform using SystemVerilog Hardware

Description Language (HDL). Final design has minimum resource utilization, hence is able

implement on Basys 3 Artix-7 FPGA Trainer Board with the accuracy of 80%. Therefore, it

is concluded this design is suitable for developing low cost, marketable products like sleep

detectors for automobile divers. Nevertheless, ultimate goal is to design a simple Application

Specific Integrated Circuit (ASIC) chip, which can extract features and classify EEG, so that

the full system can be implemented on a portable mobile device without using software

platform.

v

To beloved Parents and Teachers

vi

ACKNOWLEDGEMENT

It is great pleasure to use this opportunity to complete my responsibility by

rewarding the gratitude to all the key personals who were involved in the process of

making this project a success.

My sincere gratitude always goes to my project supervisor, Dr. S. Thayaparan

for the immense support he gave with continuous guidance and kind advice. Further I

am thankful to Dr. Anjula De Silva, Dr. Chamira U. S. Edussooriya, Dr. Upeka

Premaratne and Dr. Jayathu Samarawikrama for his valuable instructions. Also, this

project would not have become successful without the immense support extended by

other academic staff members of the Department of Electronic and

Telecommunication Engineering University of Moratuwa, who were always willing to

share their ideas and experience, which was invaluable.

I also pay my gratitude to the non-academic staff of the Department of Electronic

and Telecommunication Engineering University of Moratuwa for the immense support

they have shown in utilizing laboratories and laboratory equipment. My special thanks

go to Mr. Chinthaka, Technical Officer, Department of Electronic and

Telecommunication Engineering University of Moratuwa for allowing me to use the

Post Graduate laboratory of the department when required.

Further I appreciate the supportive and enthusiastic batch mates who motivated

me to achieve success while working on their research projects.

vii

TABLE OF CONTENTS

ABSTRACT ... iv

ACKNOWLEDGEMENT .. vi

TABLE OF CONTENTS .. vii

LIST OF FIGURES ... x

LIST OF TABLES ... xii

LIST OF ABBREVIATIONS .. xiii

Chapter 1 .. 1

INTRODUCTION .. 1

1.1 Problem Identification ... 1

1.2 Motivating for the research ... 2

1.3 Existing solutions and technologies .. 2

1.4 Novel Contribution .. 3

Chapter 2 .. 4

HARDWARE IMPLEMENTATION .. 4

2.1 EEG feature extraction .. 4

2.1.1 Obtaining EEG signals .. 4

2.1.2 What features to extract? ... 7

2.1.3 Discrete Wavelet Transform ... 7

2.1.4 Approximations and Details calculation ... 9

2.2 Classification of EEG signals .. 9

2.2.1 Selection of classification method .. 10

2.2.2 Classification using Linear Discriminant Analysis ... 11

2.3 Architecture design .. 14

2.3.1 Algorithm for the full system .. 14

2.3.2 Architecture of the full design .. 15

2.2.3 Requirements to process EEG signals offline ... 16

viii

2.4 MATLAB implementation .. 16

2.4.1 Classification system... 16

2.4.2 Wavelet and fixed points widths selection .. 18

2.5 RTL Implementation ... 20

2.5.1 Architecture of RTL design .. 20

2.5.2 Finite State Machine in the Arbiter ... 21

2.5.3 Fixed point calculations on Verilog .. 22

2.5.4 Simulations ... 25

2.6 FPGA Implementation .. 25

2.6.1 FPGA design flow ... 25

2.6.2 Selection of a FPGA development board .. 26

2.6.3 Specifying Constraints using XDC ... 28

2.6.4 Timing Closure ... 30

2.6.5 Power Utilization .. 31

2.7 Feasibility on Arduino implementation ... 31

2.7.1 Implementation on Arduino Mega 2650 ... 31

2.7.2 Necessities to implement on FPGA .. 33

Chapter 3 .. 34

RESULTS AND DEMONSTRATION... 34

3.1 Timing and Power results for FPGA implementation .. 34

3.1.1 Modular timing analysis.. 36

3.2 Simulation results ... 37

3.2 Demonstration on FPGA development board ... 40

3.4 Accuracy of hardware implemented design .. 40

3.5 Comparison of hardware and software results ... 42

Chapter 4 .. 43

DISCUSSION ... 43

ix

4.1 Commonly Used Tools ... 43

4.1.1 Vivado Design Suite ... 43

4.1.2 Xilinx ISE ... 44

4.1.3 MATLAB .. 44

4.1.4 Arduino IDE .. 45

4.2 Problems and solutions .. 45

4.3 Recourse utilization in FPGA ... 46

4.3.1 Issues due to resource utilization ... 47

Chapter 5 .. 48

CONCLUSION AND FUTURE WORK ... 48

5.1 Conclusion .. 48

5.2 Future work .. 48

BIBLIOGRAPHICAL REFERENCES ... 50

x

LIST OF FIGURES

Figure 2-1 EEG Electrode locations .. 4

Figure 2-2 First EEG sample from unhealthy patient .. 5

Figure 2-3 Second EEG sample from healthy patient .. 6

Figure 2-4 Third EEG sample from unhealthy patient... 6

Figure 2-5 Daubechies 6 (db6) wavelet function ... 8

Figure 2-6 Decomposition of discrete wavelet transform .. 9

Figure 2-7 Average percentage accuracy of SVM and LDA 10

Figure 2-8 Data projection on different axes ... 11

Figure 2-9 New axis creation in LDA .. 12

Figure 2-10 Algorithm for the EEG classification system ... 14

Figure 2-11 Architecture for the EEG classification system 15

Figure 2-12 GUI for the EEG classifier ... 18

Figure 2-13 Architecture of the RTL design .. 20

Figure 2-14 Finite State Machine in Arbiter .. 21

Figure 2-15 Qn.m format for Fixed-point Arithmetic .. 22

Figure 2-16 FPDA design flow .. 26

Figure 2-17 Basys 3 Artix-7 FPGA Trainer Board .. 27

Figure 2-18 Design Constraints using XDC .. 28

Figure 2-19 Flow to remove negative slack ... 30

Figure 2-20 Arduino Mega 2650.. 31

Figure 2-21 Simulation on Proteus with Arduino Mega 2560 32

Figure 2-22 Simulation results from Proteus ... 32

Figure 3-1 Design Timing Summary ... 34

Figure 3-2 Timing Report .. 35

Figure 3-3 Power Consumption ... 36

Figure 3-4 Batch mode simulation ... 37

Figure 3-5 Behavioral Simulation .. 38

Figure 3-6 Post-Synthesis functional simulation ... 38

Figure 3-7 Post-Synthesis timing simulation ... 39

Figure 3-8 Post-Implementation functional simulation ... 39

xi

Figure 3-9 Post-Implementation timing simulation ... 39

Figure 3-10 Demonstration on Basys3 FPGA board ... 40

Figure 3-11 Inputs and outputs in K fold testing demonstration 41

Figure 4-1 Vivado 2017.1 .. 43

Figure 4-2 Xilinx ISE 14.7 ... 44

Figure 4-3 MATLAB 2017a .. 44

Figure 4-4 Arduino 1.8.5 .. 45

Figure 4-5 Post implementation resource utilization ... 46

Figure 4-6 Resource utilization with in FPGA device ... 46

xii

LIST OF TABLES

Table 2-1 Abbreviations and Anatomical landmarks for the electrodes 5

Table 2-2 Classification accuracy of different classification methods 10

Table 2-3 MATLAB files for EEG classification system .. 17

Table 2-4 MATLAB internal function ... 17

Table 2-5 Definitions of Accuracy Measures TP, FP, FN and TN 18

Table 2-6 MATLAB files to compare the different wavelets 19

Table 2-7 Comparison of different wavelets .. 19

Table 2-8 MATLAB files to compare the different fixed-point calculations 20

Table 2-9 Comparison of different fixed-point calculations 20

Table 2-10 Functionality of RTL modules... 21

Table 2-11 States in Finite State Machine ... 22

Table 2-12 Addition in fixed point calculations .. 24

Table 2-13 Comparison of FPGA Boards .. 27

Table 3-1 Worst slack for the setup times and hold times for sub modules 36

Table 3-2 Accuracy for different k-fold validation tests .. 41

Table 3-3 Comparison of accuracies for software and hardware implementation..... 42

file:///C:/Users/Nadun/Desktop/VIVA/Thesis_IET_07_01_2019/Thesis_07_01_2019_v3.docx%23_Toc6309957

xiii

LIST OF ABBREVIATIONS

Abbreviation Description

ASIC Application Specific Integrated Circuit

ATM Automated Teller Machine

CWT Continuous Wavelet Transform

BCI Brain Computer Interfaces

Db4 Daubechies 4

DWT Discrete Wavelet Transform

EDF European Data Format

EEG Electroencephalography

FPGA Field Programmable Gate Array

HDL Hardware Description Language

HDVL Hardware Design and Verification Language

IO Input Output

ISE Integrated Synthesis Environment

KFD Kernel Fisher Discriminant

LDA Linear Discriminant Analysis

LED Light Emitting diode

LUT Look Up Table

MIF Memory Initialization File

PCA Principal Component Analysis

RAM Random Access Memory

RTL Register Transfer Level

SPI Serial Peripheral Interface

SVM Support Vector Machines

TNS Total Negative Slack

WNS Worst Negative Slack

xiv

1

Chapter 1

INTRODUCTION

1.1 Problem Identification

With the advancement of digital electronics and signal processing, currently

there is a growing demand for medical devices which diagnose health conditions of

patients. In this context, processing of Electroencephalography(EEG) signals has also

become very active research area and most of the interest is currently on implementing

them on hardware, because of the advantages it has over software implementations.

When diagnosing a disease, the processing of EEG signals that should be done

to a make decision, can be broadly divided in to two stages. That is the relevant feature

extraction and classification of EEG signals based on those features. From these two

stages, compared to feature extraction, the classification of EEG signals is still mostly

done on software which runs offline, even though there are some researches that have

been done. However, it is important to implement classification part also in hardware

so that full EEG processing system can be implemented on portable medical devices

without requiring any operating system. Apart from that there are many advantages

also in implementing EEG classification on hardware like being able to process large

amount of information with minimum delay because ability of process data parallelly.

This research will be focused on hardware implementation of EEG signal

classification system on the FPGA (Field Programmable Gate Array) development board,

using Linear Discriminant Analysis (LDA). Here I will focus on developing optimal

algorithm and designing the architecture first and implement all in software, which

helps to debugging as well. Then after that it will be migrated to hardware platform,

that will be coded using SystemVerilog HDL (Hardware description Language). After

the hardware implementation, the design has been tested with actual EEG data records

available on PhysioNet (https://www.physionet.org), a website which provides

research resources for complex physiological signal. Finally, optimized results will be

provided compared to existing systems.

2

1.2 Motivating for the research

There are two researches that have become the background and the motivation

for this design of EEG classification system. First research paper presents a

generalized platform for a FPGA design architecture that offers preprocessing steps

and set of predefined features where user can configure BCI applications [1]. As a

future work, this paper suggests to include a set of classification algorithms to further

push the hardware interface of BCIs (Brain–Computer Interfaces).

Second paper presents a reasonable and widespread comparison of some

frequently used classification methods under the same conditions where the valuation

of different classifiers will be more convictive [2]. This paper concludes that the

feature extraction and the classification algorithms should be considered together

when designing a BCI system.

From the future work part of first paper and the conclusion part of second paper,

it can be concluded that it is important to implement a full system in hardware which

has feature extraction and set of classification methods, that is integrated together.

Therefore, this project will be part of this integrated system where I focus on

classification of signals with the help of LDA.

Also, I have implemented this system for two class scenarios, that is to decide

whether a person have an abnormal EEG pattern or not. Hence small percentage

changes in accuracy should be acceptable for this implementation, since the final

decision from integrated system will based on multiple classification systems.

1.3 Existing solutions and technologies

Even though as of now, the researches have not been done to implement EEG

classification systems using hardware there are researches that have been done for the

software implementations. In the below papers, LDA classifiers have been

implemented for EEG signals as a part of the research.

3

▪ Research Paper: EEG features extraction using PCA plus LDA approach based

on L1-norm for motor imaginary classification [3]

o PCA plus LDA is used for classifying EEG signals and is implemented on

software

• Research Paper: Classification of human emotions from EEG signals using

SVM and LDA Classifiers [4]

o EEG signal classification is done using both SVM and LDA and is also

implemented on software

In both of these research papers, LDA is been implemented on software along

with other classification systems. And less attention is been given to the ability to

implement it on small marketable devices where hardware implementation become

important.

1.4 Novel Contribution

When considering the existing LDA classifiers for EEG signals, in current

implementations, most of attention is been given for the hardware implementation of

EEG feature extraction and most of EEG classification is done on software platforms.

Also, it can be observed that [2], When designing a BCI system, it is important

to implement, multiple classification algorithms, in order to make accurate decisions.

And Both feature extraction as well as the classification method should be considered

for each algorithm.

Based on this analysis, this research project has been done with novelty

contribution for development of the algorithm, designing the system and hardware

implementation of LDA for EEG classification.

4

Figure 2-1 EEG Electrode locations

Chapter 2
HARDWARE IMPLEMENTATION

2.1 EEG feature extraction

2.1.1 Obtaining EEG signals

The functionality of this system required three set of EEG signals. That is, first

EEG sample from a healthy person who have normal EEG pattern and second EEG

sample from a patient who has abnormal EEG pattern. Finally test EEG signal is

required, which will be checked for the abnormality. In real world applications, first

two samples should be available offline, and third sample will be available in real time.

In order to reduce the complexity of implementation, in this research project, all the

three samples have been provided offline to the FPGA development board.

For this implementation, EEG signals from The Sleep-EDF Database [5] have

been used for both training and testing the system. This is a collection of 197 whole-

night PolySomnoGraphic sleep recordings in EDF format (European Data Format),

which also contains EEG signals along with other biomedical signals.

5

Figure 2-2 First EEG sample from unhealthy patient

Table 2-1 Abbreviations and Anatomical landmarks for the electrodes

Nasion: the depressed point where the

top of the nose meets the ride of the

forehead

Inion: Lowest point of the skull at the

back of the head, normally felt as a

prominent bump

F: Frontal lobe T: Temporal lobe

C: Central P: Parietal lobe

O: Occipital lobe z: zero(midline)

A: Earlobe Fp: Frontal polar

Even numbers: represent electrodes on

the right hemisphere

Odd numbers: represent electrodes on

the left hemisphere

These EEG signals are taken from Fpz-Cz and Pz-Oz electrode locations placed

on 10-20 international system shown in Figure 2-1. The abbreviations used in this

figure is described in Table 2-1. This is an EEG electrode placement system developed

from International Federation of Societies for Electroencephalography and Clinical

Neurophysiology, in order to ensure standardized reproducibility over time among

patients. Here 10 and 20 refer to the actual distance between adjacent electrodes, which

is either 10% or 20% of the total front-back or right-left distance of the skull. This

electrode placement system has 75 electrodes and 10% division is used. This is a high-

resolution version of conventional electrode system which has only 21 electrodes.

6

Figure 2-3 Second EEG sample from healthy patient

Figure 2-4 Third EEG sample from unhealthy patient

For this research project I have used 12 hours long EEG signals. These EEG

signals are obtained through the PhysioBank ATM in the PhysioNet

(https://www.physionet.org/cgi-bin/atm/ATM). The input configurations for the three

EEGs taken from this PhysioBank ATM are shown in Figure 2-2, 2-3 and 2-4. In these

records files, SC means Sleep Cassette and these records were obtained through

healthy subjects without any sleep related issues. ST means sleep telemetry and it

contains records obtained from subjects who had mid difficulty in falling sleep, but

were healthy otherwise.

https://www.physionet.org/cgi-bin/atm/ATM

7

2.1.2 What features to extract?

After obtaining EEG signals, in order to classify them, it is required to extract

statistical features which can represent them accurately. Features that can be extracted

from EEG signals includes [1], [4].

• Power spectral density

• Phase synchronization

• Energy of different bands

• Discrete Wavelet Transform (DWT)

• Zero crossing histogram

From the above available feature extraction methods, DWT has been selected for

this project, because it is suitable for analysing spontaneous signals like EEG and also

there are many researches related to EEG signals, have already been done using DWT

[1].

In DWT, an analog signal is decomposed in to set of coefficients in each sub

band as described in the 2.1.3 section below. From these coefficients also one set of

features has to be selected that is convenient to be used in the classification method.

These include [6], for each sub band, taking maximum or minimum from all the

wavelet coefficients or taking mean or standard deviation for all wavelet coefficients.

In each sub band, the maximum from all the wavelet coefficients is used for testing

this design as described below.

2.1.3 Discrete Wavelet Transform

Wavelet is a wave-like oscillation with zero mean that exist for limited time

duration. It decays rapidly and captures both frequency and location information.

There are different wavelets like Mexican hat, Morelet, Symlets 4 (sym4), Haar,

Daubechies 2 (db2), db4, db6. Based on the calculations done on Section 2.4.2 for this

project, I have used the data generated using ‘db6’ wavelet. Also, the smoothing

8

features Daubechies wavelets are more suitable for the detecting changes in EEG

signals [7].

The Wavelet Transform is defined by:

𝑊𝑓(𝑠, 𝜏) = ∫ 𝑓(𝑡) 𝛹(𝑠,𝜏)
∗ (𝑡)𝑑𝑡 (2-1)

The wavelets are created from a wavelet function called “mother wavelet” and t

is defined as:

𝛹𝑠,𝜏(𝑡) =
1

√𝑠
𝛹 (

𝑡 − 𝜏

𝑠
) (2-2)

Here “s” is the dilation factor and “τ” is the translation factor. The signal f(t) is

sampled by dilated and moved mother wavelet versions.

The wavelet transforms can be calculated in two ways. That is discreate manner

and continuous manner. Those transforms are called Discrete wavelet transform

(DWT) and Continuous Wavelet Transform (CWT). The continuous wavelet

transform is calculated by taking summation over all time of the signal which is

multiplied by scaled, shifted wavelet. CWT can operate at every scale and it is

continuous in terms of shifting. In contrast to that, in DWT the scaling and shifting is

Figure 2-5 Daubechies 6 (db6) wavelet function

Time

A
m

p
li

tu
d

e

9

h[n]: the low-pass filter

g[n]: high-pass filter

Figure 2-6 Decomposition in discrete wavelet transforms

done based on power of two. Hence it is more accurate and efficient. This is done

through calculating the approximations and the details for the signal.

2.1.4 Calculation of Approximations and Details

The low-frequency, high-scale components of the signal are called the

approximation and the high-frequency, low-scale components called the details. High-

pass and low-pass filters in each stage are used for the decomposition of

approximations and details from the signal as described in the Figure 2-5.

In this project, after calculating Approximations and Details for the EEG signal,

following features have been selected to be used in classification.

• Maximum A1 co-efficient for each sample

• Maximum D1 co-efficient for each sample

2.2 Classification of EEG signals

After extracting the features from EEG signals, those can be used to process and

classify the EEG signals. Many of the researches have been done based on

classification methods such as Support Vector Machine (SVM), principal component

10

Figure 2-7 Average percentage accuracy of SVM and LDA

Table 2-2 Classification accuracy of different classification

methods

analysis (PCA), Linear Discriminant Analysis, K-nearest neighbors (KNN) and other

patter recognition methods.

2.2.1 Selection of classification method

Different classification methods have different efficiency for different

application and different testing parameters. According to [4] and [8], Support Vector

Machine (SVM) have higher accuracy than LDA. As described in the Figure 2-6

below, the feelings are more accurately classified by SVM [8].

As mentioned in the Table 2-3, according to [2], LDA is not the best

classification method for EEG signals, yet it is important to use in classification, since

11

Figure 2-8 Data projection on different axes

with actual data there are no one best classification method and every method have

different rate of accuracy for different test parameters. Also, it is important to note that

the accuracy differences among different classification methods are not significant.

Also, when compared to other classification systems like SVM and PCA, LDA

algorithm is less complex, especially for two class classification. And the

implementation of less complex algorithm results in less resource utilization in the

design which helps to reduce the overall cost. Therefore, for the low-cost classification

requirements it is better to select lesser complex algorithms like LDA.

For this implementation, I have selected LDA as the classification method, based

on less complexity and also since in actual implementation of a product it is also

important to LDA along with other classification methods.

2.2.2 Classification using Linear Discriminant Analysis

LDA is a procedure that uses linear combination of features to differentiate two

or more classes of events or objects. LDA create new axis by maximizing the distance

between means, while minimizing the variation. The aim of this procedure is to reduce

dimensionality, keeping information which helps for class discrimination as much as

possible.

12

Figure 2-9 New axis creation in LDA

As an example, Figure 2-8 shows two classes of objects and two axis which can

be used to project the data. The vatical axis is a bad projection, since with that two

classes are not distinctive with mean and variance of the classes. The horizontal axis

is a good projection, since with that two classes are distinctive with mean and variance

of the classes [9]. Likewise, LDA will find a projection axis which will have the

maximum separation of two classes. This new axis will be created by LDA as

described in Figure below.

In this project, algorithm will be implemented for two class scenarios. And there

are two phases of classification. That is, the Training phase where it calculates

projection vector W for the largest eigen value for the system and the Deciding phase

where it calculates new (y) values for hyper plane.

• Training phase:

In this phase the system will be trained based on the training sets available. For

that, following mathematical operations will be applied on the data sets of each class.

1. Mean calculation for each training class

𝜇1 =
1

𝑁1
∑ 𝑋1 (2-3)

𝜇2 =
1

𝑁2
∑ 𝑋2 (2-4)

Here N1 and N2 are the number of samples for 1st and 2nd class respectively.

13

2. Covariance matrix calculation for each training class

𝑆1 = ∑(𝑥1 − 𝜇1)(𝑥1 − 𝜇1)𝑇 (2-5)

𝑆2 = ∑(𝑥2 − 𝜇2)(𝑥2 − 𝜇2)𝑇 (2-6)

3. Within class scatter matrix. This is calculated from the sum of covariance for

each class.

𝑆𝑤 = 𝑆1 + 𝑆2 (2-7)

4. Inverse within class scatter matrix

𝑆𝑤
−1 (2-8)

5. Projection vector W calculation for maximum eigen value

𝑤∗ = 𝑆𝑤
−1(𝜇1 − 𝜇2) (2-9)

• Testing phase or Deciding phase

In this phase, the class of the testing sample will be decided based on the distance

it has for the projection vector. In order to decide the class, the testing sample date will

go through following steps.

1. Mean calculation for each training class

𝜇𝑡 =
1

𝑁𝑡
∑ 𝑋𝑡 (2-10)

Here Nt is the number of samples that is used for testing.

2. Calculate the deviation of test sample from each class along the projection

vector

14

Figure 2-10 Algorithm for the EEG classification system

𝑑1 = |(𝜇1 − 𝑥)𝑤∗| (2-11)

𝑑2 = |(𝜇2 − 𝑥)𝑤∗| (2-12)

This will give the absolute distance for two classes along the projection vector

from test samples.

3. Classify the test sample based on the absolute deviation

𝑖𝑓𝑑1 < 𝑑2: 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡 𝐸𝐸𝐺 𝑠𝑖𝑔𝑛𝑎𝑙 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 1𝑠𝑡 𝑐𝑙𝑎𝑠𝑠

𝑖𝑓𝑑1 > 𝑑2: 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑡𝑒𝑠𝑡 𝐸𝐸𝐺 𝑠𝑖𝑔𝑛𝑎𝑙 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 2𝑛𝑑 𝑐𝑙𝑎𝑠𝑠

2.3 Architecture design

2.3.1 Algorithm for the full system

15

Figure 2-11 Architecture for the EEG classification system

Figure 2-10 shows the full algorithm for the EEG classification system, which

was described in section 2.1 and 2.2 above. Here ‘Reading EEG’ and ‘Feature

extraction’ is implemented on software platform. And the ‘Training for LDA’ and

‘Testing with LDA’ is implemented on hardware.

2.3.2 Architecture of the full design

Figure 2-11 above shows the full architecture of EEG classification system. This

includes hardware implemented part as well as software implemented part. This full

system was first implemented on MATLAB software. Therefore, all the module parts

and their functionality are described in 2.4 section below. From these modules,

calc_LDA and test_LDA has been used to implement the EEG classification part on

hardware.

16

2.2.3 Requirements to process EEG signals offline

When designing the architecture, it should be decided whether to use real time

EEG processing or offline EEG processing for the implementation. For that,

advantages and disadvantages of each method should be considered.

To do online EEG processing, this project should be enhanced using Ethernet IP

so that it can communicate to a PC in real time, to get the extracted features from EEG

data to be processed. But for this implementation, EEG signals are processed offline

due to following reasons.

1. Obtaining EEG signals are in the range of milliseconds, even though the

processing of EEG data is in the range of micro seconds. (check this after

implementation). Therefore, it will not be a bottleneck even though it was

implemented separately.

2. This project focuses on increasing the efficiency of EEG classification part

3. In a real product, the part which reads EEG signals can be, implemented

without the use of FPGA

2.4 MATLAB implementation

Before implementing the system on RTL, I have implemented the same system

in MATLAB. Objectives of implementing the full system in MATLAB is to,

• Generate the DWT features that is used in final hardware implementation

• Select more efficient wavelet transform and fixed-point precision for the

implementation

• Debug the algorithm more easily before going to RTL implementation

2.4.1 Classification system

Full design including reading EEG signals, DWT feature extraction and LDA

classification has been implemented on MATLAB. Functionality of the MATLAB

17

files are described in the table below. Also, it describes the functionality of the modules

mention in the Figure 2-11 in section 2.3.2 above.

Table 2-3 MATLAB files for EEG classification system

MATLAB file Functionality

eeg_classification_gui.m This is the main file and it has the code

for eeg_classification_gui.fig, which is

shown in Figure 2-12.
eegclassify_gui.m This file is called from the GUI and it

corresponds to top most module in

Figure 2-11. In the beginning it reads the

EEG files and finally it gave the class of

the test EEG. This also has all the

intermediate data flows.

get_features.m Corresponds to get_features module. It

gives the maximums of each

Approximations and Details for EEG

signals.

calc_dwt.m This is called from get_features module

and calculated DWT for signals.

calc_lda.m Corresponds to calc_LDA module. This

calculates LDA for two input classes and

outputs the highest eigen value

test_lda.m Corresponds to test_LDA module. This

module will decide the class of test

signal based on eigen value of projection

vector for other two signals

create_mif.m This creates MIF (Memory Initialization

File) files from the features extracted

from DWT. These MIF files is used as

inputs in RTL implementation

In addition to those files, I have also used following MATLAB internal functions

to write and read intermediate data files.

Table 2-4 MATLAB internal function

MATLAB internal functions Functionality

csvwrite Write data in CVS format

csvread Read files in CVS format

dlmwrite Write find in to data with specific delimiter

18

Figure 2-12 GUI for the EEG classifier

The graphical user interface (GUI) for the system is shown in the Figure 2-11

below. From this GUI, two training samples and the test sample can be selected which

should be given in CVS (Comma Separated Value) format. Then class of the test signal

can be checked from “Classify EEG” button.

2.4.2 Wavelet and fixed points widths selection

Here I have used MATLAB to select most suitable DWT wavelet and the fixed-

point width precision using K- fold cross validation [4]. Here I have used 5-fold cross-

validation. In that the full data set is separated into 5 equal sets. From these 5 sets, the

system is trained using 4 sets and the system is tested using 1 set. Then using that data,

I have calculated accuracy, sensitivity and specificity [8] from the equations below.

Table 2-5 Definitions of TN, TP, FN and FP

Detection With Obstructive Sleep Apnea Without Obstructive Sleep Apnea

NO FN (False Negative) TN (True Negative)

YES TP (True Positive) FP (False Positive)

19

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)
(2-13)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
(2-14)

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

(𝐹𝑃 + 𝑇𝑁)
(2-15)

• Comparison of different DWTs

Using the equations mentioned above I have written following MATLAB files

in the table to compare the different wavelets. This table does not include the same

files mentioned in the Table 2-3.

Table 2-6 MATLAB files to compare the different wavelets

MATLAB file Functionality

cross_validation.m K fold cross validation for the EEG

classification system. This gives

Accuracy, Sensitivity, Specificity for the

provided signals

eeg_classify.m In the beginning it reads the EEG files

and finally it gave the class of the test

EEG. This also has all the intermediate

data flows.

Accuracy, sensitivity and specificity calculated using those MATLAB files for

different wavelets are shown in table below. From that table, it can be observed that

Daubechies wavelet of order 6 (db6) have the maximum accuracy also higher

sensitivity and specificity in general. Therefore, I have selected the db6 wavelet as the

feature extraction method for the EEG classification.

Table 2-7 Comparison of different wavelets

Wavelet Accuracy Sensitivity Specificity

haar 0.70 0.88 0.52

db2 0.76 0.72 0.80

db4 0.78 0.72 0.84

db6 0.80 0.76 0.84

bior6.8 0.72 0.60 0.84

sym4 0.60 0.52 0.68

sym2 0.76 0.72 0.80

20

Figure 2-13 Architecture of the RTL design

• Comparison of different fixed points widths

Table 2-8 MATLAB files to compare the different fixed-point calculations

MATLAB file Functionality

test_lda_precision.m Same functionality as test_lda.m file mentioned in

Table 2-3, but precision of the can be set by the user

using w variable

calc_lda_precision.m Same functionality as calc_lda.m file mentioned in

Table 2-3, but precision of the can be set by the user

using w variable

The accuracy, sensitivity and specificity for different fixed-point width has been

calculated using the MATLAB files mentioned in the Table 2-7, in addition to the files

mentioned in Table 2-6.

For this data set, as mentioned in table 2-8, it can be observed that the accuracy,

sensitivity and specificity reduce when the width of fixed-point calculation reduces.

Hence for this implementation I have used 32-bit width so that it has the accuracy as

required, also the less resource utilization in FPGA implementation.

Table 2-9 Comparison of different fixed-point calculations

Word length of

fixed-point

calculations

Accuracy Sensitivity Specificity

64 0.7000 0.7600 0.6400

32 0.7000 0.7600 0.6400

16 0.6200 0.6000 0.6400

2.5 RTL Implementation

2.5.1 Architecture of RTL design

21

Figure 2-14 Finite State Machine in Arbiter

Architechture of the RTL design is shown in the Figure 2-13 above. The

functionality of each module in the design is described in the Table below.

Table 2-10 Functionality of RTL modules

Module Functionality

TB (Testbench) The wrapper module for the design

which has simulation related data.

DUT (Design Under Test) This is the RTL design which is

implemented on FPGA

Arbiter This module will decide the timing and

the sequence of the status that the design

operates. This is done through the Finite

State Machine (FSM) in this module.

RAM This stores the DWT features extracted

from EEG signals for offline processing

LDA This is the module where the LDA

training and testing algorithms are been

implemented

2.5.2 Finite State Machine in the Arbiter

Above diagram describes the Finite State Machine (FSM) in the Arbiter module,

which controls the sequence of states the design should operates. Here, clock pulse

count is used to decide the timing to go to next state. And the reset signal can be used

to get to the FSM to initial state again, which is IDLE. Each state has three signals

22

Figure 2-15 Qn.m format for Fixed-point Arithmetic

which are used for enabling output of RAM, calculation enable for LDA and output

enable or LDA. Following are the Table 2-10 shows the various states of this FSM.

Table 2-11 States in Finite State Machine

State Description

IDLE This is the initial state of the design. No operation will happen in

this state. Also, the design comes back to this state with the reset

signal, which can be given by the user from the FPGA

development board.

RAM_READ During this state, the data stored in the RAM will be read and will

be given to the LDA module.

LDA_CALC All the LDA calculations will happen in this stage. This is the final

state of the arbiter. Once this state is reached, the arbiter will

remain in this status until user send a reset signal.

2.5.3 Fixed point calculations on Verilog

In this RTL implementation, to represent the floating points, Qn.m format has

been used [10]. It is a fixed-point number system that can be used for floating points

arithmetic. I have referred fixed-pint implementation available in OpenCores [11], for

my project, by applying the following arithmetic procedures.

Figure 2-15 shows how floating points are represented in this format. The sign

indicated by the most significant bit. For positive numbers it is 0. Qn.m means, to the

left there are n bits and to the right there are m bits, from the binary point.

23

• Reasons to select fixed point arithmetic

Main advantage in fixed point implementation is, it has simpler hardware

compared to floating point hardware, hence consume less power and required less

resources. And it does not require normalization after each operation like in floating

point arithmetic. Also, it is more convenient since place of decimal point is fixed.

There are some disadvantages also in fixed pint arithmetic. It is less readable and

in multiplication operation id doubles the number of bits. However, for this project I

have selected fixed point arithmetic, since it has more advantages comparatively for

less complex hardware implementations.

Example: 01 1011 0000

In Q2.8 format the value is = 1 + ½ + (½)3 + (½)4

 = 1.6875

 = 1B0 in Verilog

• Representation of negative numbers

Negative number in fixed point arithmetic are represented using the ‘1’ in the

sign bit of the number

Example: 10 1011 0000

In Q2.8 format the value is = -1 x (½ + (½)3 + (½)4)

 = -0.6875

• Addition in Q.n.m format

Assume the two numbers of Qn1.m1 and Qn2.m2 formats are added

respectively, and the result is given in Qn.m given format. Then the larger of n1 and

n2 is the n and the larger of m1 and m2 is the m. Before the addition operation the

points need to be aligned.

24

Example:

First number a in Q2.8 format = 01 1001 0000

Second number b in Q3.4 format = 010 0101

Addition (a+b) in Q3.8 format = 011 1110 0000

Table 2-12 Addition in fixed point calculations

Number Align binary points Value

a 0 1 . 1 0 0 1 0 0 0 0 1.5625

b 0 1 0 . 0 1 0 1 2.3125

(a+b) 0 1 1 . 1 1 1 0 0 0 0 0 3.8750

• Multiplication in Q.n.m format

Assume the two numbers of Qn1.m1 and Qn2.m2 formats are multiplied

respectively, and the result is given in Qn.m given format. Then the larger of n1 and

n2 is the n and the larger of m1 and m2 is the m. In Fixed-point multiplication, the

position of the binary point should be determined after the multiplication [12].

Example.:

First number a in Q2.8 format = 01 1001 0000 == 1.5625

Second number b in Q3.4 format = 010 0101 == 2.3125

 0110010000

 x 0100101

 01 1001 0000

 000 0000 000

 0110 0100 00

 0 0000 0000 0

 00 0000 0000

 011 0010 000

0000 0000 00

0011 1001 1101 0000 == 0011.1001 1101 0000 == 3. 61328125

25

2.5.4 Simulations

The functionality of a design is validated using the simulation. This is done

through test bench in batch mode simulation as well as waveform simulation. Here I

have done Post-synthesis, Post-implementation, functional and timing simulations.

Functional simulation simply tests the functionality of the design. In timing simulation,

in addition to functionality the delays are also considered, hence it is much closer to

testing the RTL design in FPGA. It will allow to ensure that the implemented design

meets all timing and functional requirements and have expected behavior after

downloading in to the FPGA.

Also, it is important to check post-synthesis and post-implementation, since

functional changes can be caused after synthesis and implementation due to reasons

like, operation of asynchronous paths, differences between synthesis of HDL

languages in various simulators, simulation and implementation mismatches caused

by synthesis attributes or constraints. Simulation results for this design is presented in

3.2 Section.

2.6 FPGA Implementation

2.6.1 FPGA design flow

Below Figure 2-16 describe the design flow that is followed during the FPGA

implementation. All the steps in this flow, except the first step and the last step, are

generally done with the help of EDA tools provided by the FPGA vendor. In this

project, I have used the Xilinx Vivado® Design Suite, which is compatible with Basys

3 Artix-7 FPGA Trainer Board.

RTL describe the functionality of the design in HDL The RTL should be

simulated in order to verify that the design have the required functionality. Then in

Logical Synthesis stage, RTL is converted it to a logic circuit, which consist of nets

and logical cells. Logic Mapping and Logic Optimization also happens at this stage.

26

In Layout stage, the place components and Route the nets is done using the

resources available in FPGA device. Then the design tool (Vivado IDE) runs series of

must pass the timing and the power requirement. After that it will generate the bit

stream according to the configuration provided by the user. Finally, user has to

download that generated bit stream in to FPGA device in order to configure it.

2.6.2 Selection of a FPGA development board

I identified that FPGA (Field Programmable Gate Array) is the best way to start

the initial implementation of this design. It provides the way to running the RTL

designs inside the Reconfigurable logic. FPGA development boards have readily

available rich set of tools and is helpful in initial prototyping an RTL design in early

stages of ASIC design process. I targeted the Xilinx FPGA platforms due to wider

availability, advanced development tools and wider support.

Figure 2-16 FPDA design flow

27

Figure 2-17 Basys 3 Artix-7 FPGA Trainer Board

In order to select best suitable board from the available FPGA development

boards, I have compared their features and cost in the below Table 2.2.

Table 2-13 FPGA Boards Comparison

FPGA

developme

nt kit

Xilinx

Virtex-7

FPGA

VC707

Evaluatio

n Kit

Atlys

Spartan-

6 FPGA

Trainer

Board

ZedBoard

Zynq-7000

ARM/FPGA

SoC

Development

Board

Basys 3

Artix-7

FPGA

Trainer

Board

Genesys 2

Kintex-7

FPGA

Developme

nt Board

FPGA Xilinx

Virtex-7

FPGA

Xilinx

Spartan-

6

Xilinx Zynq-

7000 AP SoC

Xilinx

Artix-7

FPGA

Xilinx

Kintex-7™

FPGA

Memory 1GB

DDR3

SODIMM

800MHz /

1600Mbps

2.1Mbits

of fast

block

RAM

512 MB

DDR3

1,800

Kbits of

fast block

RAM

Close to 16

Mbits of fast

block RAM

Logic Cells 485,760 6,822 85,000 33,280 50,950

DSP Slices 2,800 58 220 90 840

Cost $3,495 $490.00 $449.00 $149.00 $999.00

Decision Enough

resources,

High cost,

Suitable

for

complex

projects

Not

supporte

d in

Vivado

new

versions

Enough

resources

Cost is

moderate

Enough

resources,

Cost is

low

Enough

resources,

Cost is

moderate

28

Based on the comparison in the table above, I have selected Basys 3 Artix-7

FPGA Trainer Board, because of its availability, low cost and it has enough resources

to implement this project.

2.6.3 Specifying Constraints using XDC

In order to implement the RTL design in hardware, there are timing and physical

configuration that needs to be specified. These are given to FPGA through Xilinx

Design Constraints (XDC) file. XDC is an extension of the industry standard Synopsys

Design Constraints (SDC). SDC is specifically designed for ASIC designing, therefore

it only has Timing constraints. XDC consist of Timing constraints as we as Physical

constraints, since in FPGA design flow, physical configuration also needs to be given

for the development board. These constraints are order dependent, therefore

constraints written in first part of XDC file will be overridden by constraints written

in later. XDC file which is in .xdc format is shown in Figure below for this project.

Figure 2-18 Design Constraints using XDC

29

a) Timing Constraints

This includes clock information, input and output timing requirements and

exceptions which overrides basic constraints. Performance expectations of the design

are communicated to the implementation tool through timing constraints. There are

two types of timing constraints. That is can be Global Timing Constraints and Path

Specific Timing Constraints.

1) Global Timing Constraints

There are timing constraints which defined for entire design. Following are the

main global timing constraints.

Period - (using create_clock) This constraint specifies delay paths between

synchronous elements

Offset in – This constraint specifies delay paths from input pins to synchronous

elements

Offset out – This constraint specifies delay path from synchronous elements to output

pins

2) Path Specific Timing Constraints

These timing constraints are defined only for specific paths in the design.

set_multicycle_path - Defines the multicycle path.

set_false_path – Defines the false path

b) Physical Constraints

This includes all the constraints which are not timing specific like IO

(input/output) constraints, floor planning, device configuration. For this design I have

used two set of IO constraints. Those are, LEDs to show the final class of EEG test

signal and a push button to reset the design, as shown in Figure 2-18.

30

2.6.4 Timing Closure

After RTL designing and defining design constraints, design tool will run the

synthesis and implementation on the design. Then if there are any timing violations,

tool will report them in timing report. These timing violations should be resolved

before generating bit stream to download in to FPGA device.

Slack is related to difference between required time and the arrival time and

negative slack means, the timing requirements are not met. To have timing closure,

Worst Negative Slack (WNS) and Total Negative Slack (TNS) should be positive.

Also, both WNS and TNS should be improved as much as possible. WNS will limit

the maximum frequency that the design can run. This can be achieved by either

reducing the clock speed or using different placer directives from Vivado IDE. Several

placer directives can be tried to find a better directive for the design. If none of these

methods do not improve the negative slack, RTL should be changed in order to correct

the issue. This procedure is known as Timing Closure. Figure 2-19 shows an algorithm

that I have used to improve negative slack during implementation in Vivado IDE.

Results of the timing closure for this design is described in 3.1 section.

Synthesized

design

Optimize the design

using a placer directive

Run routing for

the design

Completed

WNS > 0 ?

WNS > 0 ?

Figure 2-19 Flow to remove negative slack

31

Figure 2-20 Arduino Mega 2650

2.6.5 Power Utilization

It is important to implement any design to consume less power as possible. There

are two sources for the power consumption in FPGA devices. That is Static power

consumption and Dynamic Power consumption. Static power refers to power

dissipation due to leakage current when the device is in standby mode. Dynamic power

dissipation happens when the capacitance of logic cells charges and discharges when

the device is operating.

Power optimization is done in the synthesis and implementations stages from the

design tool. However, it is possible to reduce the power consumption by writing the

RTL in optimal manner. I have written the optimal mathematical operations and

efficiently used the if else, case statements, so that there will be less power

consumption after implementation. The power consumption of this design is described

in 3.1 section.

2.7 Feasibility on Arduino implementation

When implementing any system on hardware, most of the time the first choice

is to implement it on Arduino board. Therefore, in this section I address the importance

of implementing the EEG classification system on FPGA instead of Arduino.

2.7.1 Implementation on Arduino Mega 2650

To implement the EEG classifier, I have selected Arduino Mega 2650. Even

though there are many low-cost Arduino development boards available that this one,

all of them did not have enough memory to store the source code and the extracted

EEG feature data. I have simulated this on “Proteus” software as shown in Figure 27.

And also, was able to get the simulation data as shown in Figure 2-20.

32

Figure 2-21 Simulation on Proteus with Arduino Mega 2560

Figure 2-22 Simulation results from Proteus

33

2.7.2 Necessities to implement on FPGA

Following are the necessities to implement on FPGA device instead of Arduino

micro controller.

• Memory available on Arduino chips are not enough to process huge amount of

data. Even with Arduino Mega 2560 which has 256KB flash memory, there

was a memory overload for this design. And also, this Arduino board costs

$38.50. Hence it is not cost effective also.

• FPGA Implementation can process data much faster than the Arduino

implementation. It can scale the design to be used with more data. Also, it can

enhance the design to be used with real time data by using adaptive LDA

• Apart from the implementation, there are also limitations on simulating the

design when using Arduino. I have faced below memory allocation issues

while during Proteus simulations and was unable to proceed. Main issue here

is the Arduino chips as well as the Arduino simulation software are not design

to implement more complex system like EEG classifier.

 Invalid opcode 0xFFFF at PC=0xDA10

 Hence it is more efficient and convenient to implement this EEG clarifier on

FPGA instead of Arduino.

34

Chapter 3
RESULTS AND DEMONSTRATION

Results of my project “Hardware Implementation of EEG classifier” is presented

in this chapter. The main target of my project is to implement a working EEG classifier

for two class scenarios in a FPGA with minimal resources. For that it is necessary to

show that my design can classify the EEG signal accurately and also it utilizes

minimum resources. In addition to that, it is required to show that the design meet all

the timing and performance requirements. These results and the demonstration on the

FPGA implementation are present in this chapter.

3.1 Timing and Power results for FPGA implementation

Timing summary of the design is shown in the Figure 3-1 below. Here it can be

observed that there are no timing violations, no setup time and hold time violations.

Figure 3-1 Design Timing Summary

Figure 3-2 shows the Timing report for the design. This can be generated using

the following TCL command.

report_timing_summary -file timing.rpt

Also, the minimum time requirement in order to run the design and the maximum

frequency that the design can operate can be calculated from the ‘Max Delay Path’

section of that report as shown below. From this report it can be observed that the

timing requirement is 80ns and there is a positive slack of 0.630ns. That means clock

35

period for clk signal can be 0.630ns shorter, hence maximum frequency would be

12.58MHz for implementation in this FPGA board, which depends on the RTL.

Minimum time = 80ns-0.630ns

= 79.370ns

Maximum Frequency = 1/(80ns-0.630ns)

= 1/79.370

= 12.60MHz

Design clock frequency = 1/80ns

 = 12.5 MHz

Figure 3-2 Timing Report

As mentioned in 2.6.3 Section, clock cycle of clock signal for this design is set

to be 80ns using XDC physical constrains. Which means the provided clock is

12.5MHz. Since this is less that maximum frequency 12.60MHz, design runs without

any timing issues.

Power consumption for the design is shown is the Figure 3-3 below. It has low

confidence level since the power specifications are not defined in the design. Defining

power specifications are not required in this stage of the design. That will be required

when this design is going for production. And also, this design has total on-chip power

36

Figure 3-3 Power Consumption

consumption of 0.138W, which is due to both static and dynamic power consumption

(Described in 2.3.5 Section).

3.1.1 Modular timing analysis

Module timing analysis is important to analyze the timing issues modular wise

and also to get to know about what modules should be considered for the

parallelization, to speed up a design. For this design, here I have considered LDA,

RAM and Arbiter submodules for this analysis, which are shown in figure 2-13. Here

LDA is a combinational module while RAM and Arbiter are sequential module. Table

3-1 below shows the worst slack for the setup times and hold times for these modules.

From that, it can be observed that, all three modules have same worst slack for setup

times and RAM module have the lowest worst slack for hold times. Hence to improve

the slack for hold time of overall design, the RAM module should be considered

Table 3-1 Worst slack for the setup times and hold times for sub modules

Sub module ARBITER RAM LDA

Setup time 0.630ns 0.630ns 0.630ns

Hold time 6.604ns 0.122ns 6.180ns

37

Figure 3-4 Batch mode simulation

3.2 Simulation results

• Batch mode simulation

Figure shows that the batch mode simulation gives the correct output for this

design. Apart from testing the final output, batch mode simulation helps debug the

design since from that it is easy to print the required intermediate values. In the Figure

3-4, I have printed one approximation, detail and the distance for each projection

vector before taking the final decision, to which class the test EEG belong.

• Waveform mode simulation

In addition to batch mode simulation, to debug the timing it is important to check

the behavior through the waveform. From Figures 3-5 to 3-9, it can be observed that

behavioral simulation as well as post-synthesis, post-implementation, timing and

38

Figure 3-6 Post-Synthesis functional simulation

Figure 3-5 Behavioral Simulation

functional simulations waveforms show the correct class value for the input EEG

signal. In addition to that this also shows the reading of RAM when ‘oe’ signal is high.

39

Figure 3-7 Post-Synthesis timing simulation

Figure 3-8 Post-Implementation functional simulation

Figure 3-9 Post-Implementation timing simulation

40

3.2 Demonstration on FPGA development board

Figure shows the implementation of this project in the Basys3 FPGA trainer

development board. In this, when the reset button (BINC push button) in push, two

LEDs will reset and will tuned off. Otherwise it will show the binary value of the class

which the test EEG belong to. In this picture, LD0 LED is tuned off and LD1 LED is

tuned on, which means that the class it belongs is 2b’10 or 2nd class.

For the demonstration I will make use of Quads SPI(Serial Peripheral Interface)

flash memory (Macronics part number is mx25l3233f) available in Basys 3 FPGA

development board. The bit file generated from the program can be stored on this flash

memory so that there is no need to reprogram the FPGA device every time when turn

on the power.

3.4 Accuracy of hardware implemented design

After implementing the design on Basys3 FPGA development board, I have

calculated the accuracy of the output for different the k-fold cross tests using the same

formula mentioned in Section 2.4.2. To demonstrate this K fold testing, I have used

Reset (BINC

or U18) button

Two LEDs to

indicate the

class test of

EEG (LD0

and LD1)

Power switch

Figure 3-10 Demonstration on Basys3 FPGA board

41

the ports and peripherals available in the FPGA development board as shown in the

Figure 3-11. Here first 3 switches are used to select the EEG set and it will be shown

in 2nd digit in 7 segment display. Similarly, K fold validation and true class can be set

using switches and will be shown in other 7 segment digits as shown in Figure 3-11.

After that from 1st digit will show the class of test EEG signal. This data can be use to

calculate the accuracy of the output.

Results from this test is shown in the Table below. Hence it can be concluded

that by using 4-fold cross validation testing, this LDA classification design for EEG

signals has 80% accuracy.

Table 3-2 Accuracy for different k-fold validation tests

Cross validation Accuracy

4-fold 0.8000

5-fold 0.4000

6-fold 0.6000

7-fold 0.6000

EEG set
K fold

validation EEG set

True class

EEG class

True class

K fold

validation

Figure 3-11 Inputs and outputs in K fold testing demonstration

42

3.5 Comparison of hardware and software results

Table 3-3 shows the comparison of accuracies between software implementation

and hardware implementation for different cross fold validations. Here the software

accuracy is been calculated from the MATLAB code mentioned in the 2.4.2 section.

From this it can be concluded that the 4-fold validation has highest accuracy difference

for hardware implementation which is calculated from (3-1) equation below.

Table 3-3 Comparison of accuracies for software and hardware implementation

Cross validation Accuracy of

Software

implementation

Accuracy difference Percentage

of hardware implementation

4-fold 0.6600 +21.21%

5-fold 0.8000 -50.00%

6-fold 0.7400 -18.92%

7-fold 0.5800 +3.45%

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑑𝑖𝑓𝑓𝑒𝑟𝑎𝑛𝑐𝑒 𝑓𝑜𝑟 𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒
𝑎𝑛𝑑 ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑖𝑡𝑜𝑛𝑠

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑜𝑓 𝑠𝑜𝑓𝑡𝑤𝑎𝑟𝑒 𝑖𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
 𝑋 100% (3 − 1)

43

Figure 4-1 Vivado 2017.1

Chapter 4
DISCUSSION

In this chapter, I hope to discuss about the tools I have used, the problems I have

encountered and how I have overcome those during my project. Also, finally I have

discussed about the resource utilization of this project.

4.1 Commonly Used Tools

In the design process of the EEG classifier, I have used several software

packages for different purposes as mention below.

4.1.1 Vivado Design Suite

Vivado Design Suite is a synthesis and analysis tool developed by Xilinx

specifically for FPGA design flow. It also has an in-build RTL simulator. I have used

this software as the IDE (Integrated development environment) for RTL coding,

simulation, implementation and programming bit file generation. Design

implementation includes all other design steps involved in the FPGA design flow like

synthesis, translate, map, place & route.

44

Figure 4-3 MATLAB 2017a

Figure 4-2 Xilinx ISE 14.7

4.1.2 Xilinx ISE

I had to use Xilinx ISE in order to implement the design in Basys 2 board and

Atlys Spartan 6 FPGA development boards. This software was developed by Xilinx,

before developing Vivado software, and not it is discontinued from further

developments.

4.1.3 MATLAB

MATLAB is a numerical computing software developed by MathWorks. I have

used this for the software implementation of this project. Also, the DWT features that

has been used for hardware implementation was generated using MATLAB.

45

Figure 4-4 Arduino 1.8.5

4.1.4 Arduino IDE

The Arduino IDE has been used for programming Arduino board, while doing

feasibility study on Arduino implementation of EEG classifier.

4.2 Problems and solutions

When designing and implementing this project, I had to face many problems.

The main problem I have faces is the selecting the FPGA development board. I have

created this project, did the designing, debugging and also the implementation for

Basys 3 trainer board, because I was in the impression that it is available in the

laboratory. However, after finalizing the project, I have got to know that only Basys 2

development board is available in the post graduate laboratory. Hence, I dad to

implement the design again for that board. Also, I had to switch to Xilinx ISE software

since Vivado do not have the support for Basys 2 development board. Compared to

Vivado Design suite, ISE do not have support for SystemVerilog, hence I had to

convert the design from SystemVerilog to Verilog. However, after implementing it on

Basys 2, I have noticed that the resources available in that board is not enough for this

project. Then I have implemented the design on Atlys Spartan 6 FPGA development

board, however it is not a suitable for this project because of high cost compared to

resource utilization of this project. Hence, I have decided to order a Basys3 Trainer

board through Digilent web site in order to demonstrate the project.

46

Figure 4-6 Resource utilization with in FPGA device

Figure 4-5 Post implementation resource utilization

Another problem that I have faced is representing DWT values in Verilog so that

it can be loaded in to RAM. Since DWT values are in floating points, an appropriate

representation system should be selected. For this, I have selected fixed point format

considering several factors, as described in Section 2.5.3.

4.3 Recourse utilization in FPGA

One major objective of this project is to design a low-cost EEG classifier. For

that it should be able to use FPGA with minimum resources. Post implementation

resource utilization for this LDA classification is shown in the Figure 4-5 above. From

that it can be observed that available Look Up Tables (LUTs), Flip Flops (FFs), DSPs,

Input/Outputs (IOs) and BUFGs (Global Buffers) in FPGA is enough for the design.

Here FFs indicates the amount of sequential element usage and DSPs indicates the

usage of slices dedicated for DSP (Digital Signal Processing) functions. Hence this

design can be implemented even with Basys 3 Artix-7 FPGA Trainer board. The

resources utilization within the FPGA device is shown in Figure 4-6.

47

4.3.1 Issues due to resource utilization

 The high resource utilization in FPGA chip might appear to be a practical issue

in this implementation. As shown in Figure 4-5, this design utilizes 95.45% of

available LUTs and 100% of DSP slices available in the FPGA chip. In an application

like sleep detectors for automobile drivers, the FPGA chip will always do calculations

continuously. Hence if the FPGA starts to heat due to the higher utilization resources

when running for long hours, there might be a necessity to add cooler to the FPGA

which will become an additional cost to the final product. However, this will not be an

issue like in high processor usage in computers, since the operating frequency is low

(12 MHz), compared to computer processor speed which are in Giga Hertz range.

48

Chapter 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

With the development of medical electronics and popularity of portable devices,

there is a huge demand for portable medical devices these days. This research project

also can be used for development of those kind of products.

Hardware implementation allows to implement EEG classification systems on

portable devices without using software layer, also since this can be implement on

FPGA with minimum resources, it is very useful for developing low cost device.

There are many accidents happens due to drivers falling sleep, especially in

highways. If it is possible to detect if the is going to sleep, then alarm can be given to

avoid the accident. This can be done analyzing the EEG signals. Here it should decide

whether driver is going to sleep or not, therefore it is a two-class scenario, similar to

this project. Hence sleep detectors for automobile drivers is an ideal use case for this

project.

5.2 Future work

There are two areas that can be focused, as future work for this project. That is

first integrating the feature extraction method in order to come up with a full system

and secondly to enhance the EEG classification as adaptive classifier.

Here I have implemented only the EEG classification part in hardware, since

DWT feature extraction is already implemented in hardware in previous projects.

However, in order to design a product, it is necessary to integrate DWT feature

extraction with classification system. In addition to that apart from LDA classification

other classification systems like SVM (Support Vector Machine), KFD (Kernel Fisher

Discriminant) can also be included in to the classification part of the design [2]. Then

49

the final decision that is taken considering several classification methods will be more

accurate.

In this project, classification is done based only on the EEG signals provided at

the time of testing. This can be further enhanced using adaptive LDA, to use previously

provided EEG signal data also to consideration while doing the classification. Also,

currently this design decides the class of EEG signal from previous EEG signals

recorded for 12 hours. After implementing this in adaptive nature, it will be possible

to decide the EEG class in real time, based on the signal receive.

It has been analyzed and proved that supervised adaption is the best option, when

implementing adaptive LDA. [13] In order to implement that mean and the common

variance used in this design should be replaced by following estimated adaptive mean

and the estimated common variance matrix.

Estimated adaptive mean:

𝜇𝑖(𝑡) = (1 − 𝑈𝐶) ∙ 𝜇𝑖(𝑡 − 1) + 𝑈𝐶 ∙ 𝑥 (5-1)

with ‘i’ is the lass of x(t) and UC is the update coefficient

Estimated adaptive common variance matrix:

𝛴(𝑡)−1 =
1

(1 − 𝑈𝐶)
∙ (𝛴(𝑡 − 1)−1 −

1

1 − 𝑈𝐶
𝑈𝐶 + 𝑥(𝑡)𝑇 ∙ 𝜐(𝑡)

∙ 𝜐(𝑡) ∙ 𝜐(𝑡)𝑇) (5-2)

50

BIBLIOGRAPHICAL REFERENCES

[1] L. P. Wijesinghe, D. S. Wickramasuriya, and A. A. Pasqual, “A generalized

preprocessing and feature extraction platform for scalp EEG signals on FPGA,”

IECBES 2014, Conf. Proc. - 2014 IEEE Conf. Biomed. Eng. Sci. “Miri, Where Eng.

Med. Biol. Humanit. Meet,” no. December, pp. 137–142, 2015.

[2] B. Wang, C. M. Wong, F. Wan, P. U. Mak, P. I. Mak, and M. I. Vai,

“Comparison of different classification methods for EEG-based brain computer

interfaces: A case study,” 2009 IEEE Int. Conf. Inf. Autom. ICIA 2009, pp. 1416–1421,

2009.

[3] S. Gupta and H. Saini, “EEG features extraction using PCA plus LDA

approach based on L1-norm for motor imaginary classification,” 2014 IEEE Int. Conf.

Comput. Intell. Comput. Res. IEEE ICCIC 2014, 2015.

[4] A. Bhardwaj, A. Gupta, P. Jain, A. Rani, and J. Yadav, “Classification of

human emotions from EEG signals using SVM and LDA Classifiers,” 2015 2nd Int.

Conf. Signal Process. Integr. Networks, pp. 180–185, 2015.

[5] A. L. Goldberger, “The Sleep-EDF Database,” physionet.org. [Online]. Available:

http://www.physionet.org/physiobank/database/sleep-edfx/. [Accessed: Dec. 27,

2018].

[6] M. Vatankhah, M. R. Akbarzadeh-T., and A. Moghimi, “An intelligent system

for diagnosing sleep stages using wavelet coefficients,” Proc. Int. Jt. Conf. Neural

Networks, pp. 0–4, 2010.

[7] I. Güler and E. D. Übeyli, “Adaptive neuro-fuzzy inference system for

classification of EEG signals using wavelet coefficients,” J. Neurosci. Methods, vol.

148, no. 2, pp. 113–121, 2005.

[8] W. S. Almuhammadi, K. A. I. Aboalayon, and M. Faezipour, “Efficient

Obstructive Sleep Apnea Classification Based on EEG Signals,” 2015.

 [9] K Hong, “Data Compression Via Dimensionality Reduction - Linear Discriminant

Analysis (LDA),” 2016. bogotobogo,com [Online]. Available:

https://www.bogotobogo.com/python/scikit-

learn/scikit_machine_learning_Data_Compresssion_via_Dimensionality_Reduction_

2_Linear_Discriminant_Analysis.php. [Accessed: Dec. 27, 2018].

http://www.physionet.org/physiobank/database/sleep-edfx/

51

 [10] Z. Hussain and K. N. Parvin, “Q-Format Data Representation and Its Arithmetic,”

vol. 7109, pp. 57–62, 2016.

 [11] S. Sam, “Fixed Point Arithmetic Modules,” opencores.org, Jan 23,

2018.[Online]. Available:

https://opencores.org/projects/fixed_point_arithmetic_parameterized. [Accessed:

Dec. 27, 2018].

 [12] C. Felton, “A Fixed-Point Introduction by Example,” dsprelated.com, April 25,

2011. [Online]. Available: https://www.dsprelated.com/showarticle/139.php.

[Accessed: Dec. 27, 2018].

 [13] C. Vidaurre, A. Schloegl, B. Blankertz, M. Kawanabe, and K.-R. Müller,

“Unsupervised adaptation of the LDA classifier for Brain-Computer Interfaces.,”

Computer (Long. Beach. Calif)., vol. 2008, no. 2, pp. 1–6, 2008.

	ABSTRACT
	ACKNOWLEDGEMENT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	Chapter 1
	INTRODUCTION
	1.1 Problem Identification
	1.2 Motivating for the research
	1.3 Existing solutions and technologies
	1.4 Novel Contribution

	Chapter 2
	HARDWARE IMPLEMENTATION
	2.1 EEG feature extraction
	2.1.1 Obtaining EEG signals
	2.1.2 What features to extract?
	2.1.3 Discrete Wavelet Transform
	2.1.4 Calculation of Approximations and Details

	2.2 Classification of EEG signals
	2.2.1 Selection of classification method
	2.2.2 Classification using Linear Discriminant Analysis

	2.3 Architecture design
	2.3.1 Algorithm for the full system
	2.3.2 Architecture of the full design
	2.2.3 Requirements to process EEG signals offline

	2.4 MATLAB implementation
	2.4.1 Classification system
	2.4.2 Wavelet and fixed points widths selection

	2.5 RTL Implementation
	2.5.1 Architecture of RTL design
	2.5.2 Finite State Machine in the Arbiter
	2.5.3 Fixed point calculations on Verilog
	2.5.4 Simulations

	2.6 FPGA Implementation
	2.6.1 FPGA design flow
	2.6.2 Selection of a FPGA development board
	2.6.3 Specifying Constraints using XDC
	2.6.4 Timing Closure
	2.6.5 Power Utilization

	2.7 Feasibility on Arduino implementation
	2.7.1 Implementation on Arduino Mega 2650
	2.7.2 Necessities to implement on FPGA

	Chapter 3
	RESULTS AND DEMONSTRATION
	3.1 Timing and Power results for FPGA implementation
	3.1.1 Modular timing analysis

	3.2 Simulation results
	3.2 Demonstration on FPGA development board
	3.4 Accuracy of hardware implemented design
	3.5 Comparison of hardware and software results

	Chapter 4
	DISCUSSION
	4.1 Commonly Used Tools
	4.1.1 Vivado Design Suite
	4.1.2 Xilinx ISE
	4.1.3 MATLAB
	4.1.4 Arduino IDE

	4.2 Problems and solutions
	4.3 Recourse utilization in FPGA
	4.3.1 Issues due to resource utilization

	Chapter 5
	CONCLUSION AND FUTURE WORK
	5.1 Conclusion
	5.2 Future work

	BIBLIOGRAPHICAL REFERENCES

