
TECHNIQUES TO SPEED-UP COUNTING
BASED DATA MINING ALGORITHMS ON

GPUS

Amila De Silva

168062J

Degree of Master of Science

Department of Computer Science & Engineering

University of Moratuwa

Sri Lanka

April 2019

TECHNIQUES TO SPEED-UP COUNTING
BASED DATA MINING ALGORITHMS ON

GPUS

Amila De Silva

168062J

Thesis/Dissertation submitted in partial fulfillment of the requirements for the

degree Master of Science in Computer Science and Engineering

Department of Computer Science & Engineering

University of Moratuwa

Sri Lanka

April 2019

DECLARATION

I declare that this is my own work and this dissertation does not incorporate with-

out acknowledgement any material previously submitted for a Degree or Diploma

in any other University or institute of higher learning and to the best of my knowl-

edge and belief it does not contain any material previously published or written

by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to

reproduce and distribute my dissertation, in whole or in part in print, electronic

or other medium. I retain the right to use this content in whole or part in future

works (such as articles or books).

Signature: Date:

The above candidate has carried out research for the Masters thesis/Dissertation

under my supervision.

Signature of the Supervisor: Date:

i

ACKNOWLEDGEMENTS

I am sincerely grateful for the advice and guidance of my supervisors Dr. Shehan

Perera and Prof. Sanath Jayasena. Without their help and encouragement this

project would not have been completed. I would like to thank them for taking

time out of their busy schedule to be available anytime that was needed with help

and advice.

I would also like to thank my progress review committee, Dr. Surangika

Ranathunga and Dr. Lochandaka Ranathunga. Their valuable insights and guid-

ance helped me immensely.

I would like to thank the entire staff of the Department of Computer Science

and Engineering, Both academic and non-academic for all their help during the

course of this work and for providing me with the resources necessary to conduct

my research.

My sincere gratitude goes to Senate Research Grant for funding this study.

This work was partially funded by the LK Domain Registry through Prof. V.K.

Samaranayake top-up grant.

Finally, I would like to express my gratitude to my family and all my friends

for their support.

ii

ABSTRACT

Techniques to speed-up counting based Data Mining Algorithms on

GPUs

Data Mining by its definition is meant to deal with large volumes of data. Ever

growing volumes of Data and increasing demand for data driven decisions are placing

new requirements on Data Mining algorithms. To respond to these demands Data

Mining practitioners are focusing on improving speed and turnaround time without

compromising accuracy.

Among different approaches in improving speed, one approach gaining increased

attention is the use of GPUs. Ability of GPUs to perform parallel executions at a

massive scale and inherently repetitive nature of Data Mining workloads make GPUs a

better candidate in improving speed.

Another area getting increased attention is using Bitmaps for Data Mining algo-

rithms. Bitmap representations have been abundantly used in analytical queries for

their ability to represent data concisely and for being able to simplify processing.

A number of studies have been carried out which combine these two techniques

to achieve greater performance improvements. But most of those studies are revolv-

ing around FIM based algorithms, processing of which naturally aligns with Bitmap

representations.

In this study, we explore the ability of using Bitmap techniques on GPUs to speed up

a class of Data Mining Algorithms. A Counting based Algorithm can be defined as an

Algorithm which can be separated into to two distinct phases a pattern counting phase

and a model building phase. We propose a framework based on Bitmap techniques,

which speeds up these counting based algorithms on GPUs. The proposed framework

uses both CPU and GPU for the algorithm execution, where the core computing is

delegated to GPU. We implement two algorithms Naïve Bayes and Decision Trees,

using the framework, both of which outperform CPU counterparts by several orders of

magnitude.

Keywords: Data Mining; GPU; Classification; Bitmaps;BitSlices;Naïve Bayes;Decision

Trees

iii

LIST OF FIGURES

Figure 3.1 Data set represented using Bitmaps. 17

Figure 3.2 Data set represented using Bit-Slices. 17

Figure 3.3 Converting a single column to Bit-Slices. 19

Figure 3.4 Counting occurrences of a number with a Bit-Slice column. 20

Figure 3.5 Converting two columns to Bit-Slice representation. 20

Figure 3.6 Counting co-occurrences with Bit-Slices. 21

Figure 3.7 Bitmap intersection & counting on GPU. 24

Figure 3.8 Bit-Slice intersection & counting on GPU. 28

Figure 3.9 Building Decision Trees with Bitmaps. 33

Figure 4.1 Execution time vs no. of instances - CPU Algorithms 39

Figure 4.2 Execution time vs no. of instances - CPU and GPU Algorithms 39

Figure 4.3 Execution time vs no. of instances - GPU Algorithms 40

Figure 4.4 Execution time vs no. of Patterns 40

Figure 4.5 Execution times with Different Data sets Results for Naïve Bayes. 41

Figure 4.6 Executions on GPU with the three Data Sets. 42

Figure 4.7 Speedup over Standard-CPU on different Data Sets. 43

Figure 4.8 Naïve Bayes speedup vs instance count 44

Figure 4.9 Execution times for Decision Tree with Different Data Sets 45

Figure 4.10 Speedup over Standard-CPU on different Data Sets. 46

iv

LIST OF TABLES

Table 4.1 Different implementations and their descriptions. 41

v

LIST OF ABBREVIATIONS

Abbreviation Description

ARM Associate Rule Mining

FIM Frequent Itemset Mining

GPGPU General purpose Graphic Processing Units

IOT Internet of Things

SIMD Single Instruction Multiple Data

vi

TABLE OF CONTENTS

Declaration of the Candidate & Supervisor i

Acknowledgement ii

Abstract iii

List of Figures iv

List of Tables v

List of Abbreviations vi

Table of Contents vii

1 Introduction 1

1.1 Data Mining on GPUs 1

1.2 Using Bitmap techniques for Data Mining 2

1.3 Problem Statement 3

1.4 Our Solution 4

1.5 Contributions 4

1.6 Organization 5

2 Literature Survey 6

2.1 Using GPUs for General purpose computing 6

2.2 Parallel Data Mining Algorithms that uses Bitmaps 7

2.2.1 Two FIM implementations with Bitmaps 7

2.2.2 gpuDCI 8

2.2.3 GMiner 9

2.3 GPU Frameworks for Data Mining Applications 9

2.3.1 GPUMiner 9

2.3.2 Index Structure for Similarity Joins 10

2.3.3 Framework for Mapping Data Mining Applications on GPUs 11

2.3.4 Three techniques to improve Data Mining algorithms 12

2.4 GPU Implementations for Naïve Bayes and Decision Trees 12

3 Methodology 14

3.1 Architecture 14

vii

3.2 Bit-Slice And Bitmap Representations 16

3.3 Processing Bit-Slices on a CPU 18

3.3.1 Counting a single element with Bit-Slices 18

3.3.2 Counting co-occurrence of two elements 19

3.4 Processing Bitmaps And Bit-Slices on GPU 23

3.4.1 Processing Bitmaps on GPU 23

3.4.2 Bit-Slice Processing on GPU 26

3.4.3 Batching operations 28

3.5 Algorithm Execution 29

3.5.1 Implementing Naïve Bayes on framework 29

3.5.2 Implementing Naïve Bayes 30

3.5.3 Implementing Decision Trees on framework 31

3.5.4 Building Decision Trees with Bitmaps 32

3.5.5 Running Decision Trees on GPU 34

4 Experimental Results 36

4.0.1 Data Sets 37

4.0.2 Experimental setup 38

4.0.3 Results for Co-OccurrenceCount 38

4.0.4 Running time for Naïve Bayes 39

4.0.5 Results for Decision Trees 44

5 Conclusions and Recommendations 47

References 49

viii

Chapter 1

INTRODUCTION

This chapter gives an overview on Data mining and briefly explains challenges

faced with analysing large volumes of data and methods being followed currently

to overcome those. This chapter also details the solution we are proposing and

highlights our contribution. The latter sections explain how the thesis is organ-

ised.

1.1 Data Mining on GPUs

Data Mining is defined as the process of finding patterns in Data according to [1].

The process usually involves scanning through large volumes of Data gathered

through disparate systems. The mining process is often an automated process

where data is ingested from different systems, refined and presented to different

algorithms where the actual Pattern Extraction Happens. According to Forbes [2]

proliferation of IOT devices and presence of internet have had such an impact on

data generation that nearly 90 percent of data has been generated over the last

2 years. To handle such growing volumes, researchers are on the look for efficient

Data mining tools.

Distributed Data processing frameworks such as Hadoop [3] and Spark [4]

emerged as a solution to this problem. These frameworks are capable of utilising

commodity hardware to scale up processing which helps bringing down processing

time. Amidst the presence of distributed Mining solutions, quest for efficient Data

mining solutions has not stopped. Distributed frameworks do allow churning data

in a parallel manner, but to achieve a higher degree of parallelism, Data and

commands need to be transferred over the network, which sometimes can become

a bottleneck. Since these grids rely on commodity hardware, processing nodes

do not increase grid resources in a proportional manner. There can be chances

when a more computing power is needed, but all offered from an additional node

1

is additional Memory and storage. These irregularities are motivating researches

to find options which allows scaling vertically first before going horizontally.

It is in this light researchers are turning their attention to GPUs. With the

availability of GPGPUs researchers are trying to achieve better scalability on a

single machine. Use of GPUs in Data Mining is not totally new. At a time

when GPUs have been first evaluated for General purpose computing, studies

have been carried out on using GPGPUs for database operations. And later

those studies have evolved into writing fully fledged Data mining algorithms on

GPUs. Data Mining algorithms can be easily ported onto GPUs because SIMD

parallelism offered by those naturally aligns with the processing that happens in

Data Mining algorithms. In a typical Data Mining algorithm, same operations

needs to be executed for different data points.

In most of the instances where GPUs have been used, they have been used to

accelerate a single algorithm. Some studies focus on running the entire algorithm

on the GPU, while some others try to use a CPU-GPU hybrid approach. Apart

from one or two instances, most of the studies are creating specific data structures

and data processing models, only applicable to one specific algorithm. There are

few exception to these, which try at providing a common framework to be used

by different algorithms. The few studies we went through either provide support

for basic operations, such as data transferring [5] or specifically improves one

core algorithm and improves supporting operations for other algorithms [6]. We

in our study attempt at coming up with a generic processing framework, where

algorithm execution happens in two phases. A phase in which Data set is queried

to count patterns and a phase in which algorithm is built to use the obtained

counts.

1.2 Using Bitmap techniques for Data Mining

As early as 1997 Bitmap based techniques have been used when evaluating long

predicate statements. Different varieties of Bitmap indices have been proposed to

obtain aggregates. Bitmaps are simple structures which can be stored with less

2

space which enables those to be loaded into memory quickly. Bitmap intersecting

is a simple operation that can be performed in an efficient manner with the bit-

wise operations available in CPUs. These reasons in combination have helped in

speeding up analytical queries when Bitmaps are used. The organisation and the

processing done with Bitmaps makes it a natural candidate for FIM algorithms.

In FIM algorithms such as Apriori, individual itemsets are mapped into distinct

Bitmaps so that generation of new itemsets can be easily done by intersecting

Bitmaps. Due to this, Bitmaps are widely used as a popular data structure in

FIM algorithms. But before being used in FIM algorithms, Bitmaps have been

considered as a complementary index, not as a complete data structure. Simplic-

ity in processing and lower consumption of memory makes Bitmaps a good fit for

processing on GPUs. Bitmap processing allows multiple GPU cores to be used in

parallel, allowing a higher degree of parallelism. Researchers have often obtained

speed ups by several orders of magnitude when using Bitmaps. For these reasons,

Bitmaps have been used in several GPU based Data Mining frameworks. The

most basic operation done with Bitmaps is intersecting and counting number of

1s. Since this is the same core operation performed in FIM algorithms, Bitmaps

are mostly used for FIM implementations. But this processing does not need to

be limited to FIM and can be extended to other Algorithms like Naïve Bayes.

One of the objectives of this study is to evaluate the extent to which Bitmaps

can be used for other algorithms through a common framework.

1.3 Problem Statement

Currently Bitmap techniques are being used with GPUs to speed up Data Mining

algorithms. But in most of the cases either the use of Bitmaps is very specific to

the algorithm, or Bitmaps are only used as a complementary structure which only

gets used for minor processing. So far FIM algorithms are using Bitmaps as a

core Data Structure, which helps those algorithms to achieve great speeds. Lack

of a generic framework limits the benefits offered by Bitmaps to FIM algorithms.

3

1.4 Our Solution

We propose a Data Structure based on Bitmaps which will act as the main in-

memory storage. This structure will be loaded onto the GPU during model

building. We also provide a set of core algorithms that would query the Data

set for a given pattern and would output the number of occurrences. We provide

a framework comprised with these features, which can be used to implement a

High Level data mining algorithm by expressing those as a series of core pattern

counting operations. The framework supports two Bitmap variations Bit-Slices

and Bitmaps each being good at a particular type of operation. We are using

Bitmaps for the underlying storage, because

• It provides parallel elements on which different processing units can works

on simultaneously

• Memory consumption is low which allows more elements to be loaded into

memory and reduces frequent transfers between Host and Device

• Bitmaps can be represented with Arrays and GPU kernels can be efficiently

written to process arrays.

1.5 Contributions

Our main contribution is a framework based on Bitmap Techniques for Data

mining Algorithms. In our study we propose a uniform approach for querying

data, which is algorithm agnostic. The novel contribution we make is the Batching

technique, which can be applied on many Bitmap processing algorithms. Since

this help improving speed, we have used batching for two main operations. We

also provide implementations for two algorithms, Naïve Bayes and Decision Trees

using Bitmap Techniques. By expressing these algorithms in counting operations,

we propose a method to use Bitmap manipulations. As a summary we can list

our contribution as below;

• A framework based on Bitmap Techniques for data mining algorithms.

4

• Batching technique to improve speed of Bitmap based algorithms.

• Implementations for Naïve Bayes and Classification Trees using Bitmap

Techniques

1.6 Organization

The rest of this document is organized as follows. Chapter 2 presents the past

work done in the area of Data Mining, Bitmaps and specifically on GPU based

Frameworks for Data Mining. Chapter 3 presents the methodology we used in

proposing our framework. Chapter 4 describes the experiments we performed

with the framework. Chapter 5 discusses the results and related areas we can

further research on.

5

Chapter 2

LITERATURE SURVEY

In this section, we take a look at previous work done on implementing Data

Mining algorithms with GPUs. We start with a short review on using GPUs

for computational tasks, where we review different approaches followed while

measuring performance. Then we review work done on Data Mining Algorithms

that use Bitmaps. Under this section we review different implementations done

for FIM algorithms. Next we look at GPU based frameworks proposed for Data

Mining algorithms. Since we implement Naïve Bayes and Decision Trees, in the

final section we review work done on parallelizing those two algorithms.

2.1 Using GPUs for General purpose computing

GPUs were originally invented to meet the demands of 3D rendering applications.

During a time when CPUs were used for graphic rendering, applications could

speed up rendering operations by offloading most of the computation directly to

the GPU. Impressive results delivered by GPUs led many researchers to tap into

their computational power.

Availability of massive number of simple micro processors makes GPU a good

candidate for parallelizing applications. In general, applications can be paral-

lelized on GPUs with two main approaches. Either all cores in GPU can execute

the same instruction or each core can execute a different instruction. For graphic

rendering applications it is the first type of processing that happens. For general

computing applications both the types are utilized. For computational tasks, like

Matrix multiplication, each core computes a different element. But in many Data

crunching applications, all the cores execute the same instruction.

Even though many applications can reap the benefits of massive computing

power, not all applications running on multi-core processors can be ported onto

GPUs. Che et al. [7], in their study, discuss about different domains where

6

GPUs can be used. They evaluate the effectiveness of CUDA as a general tool to

express parallel computing on GPUs. They select five representative problems,

implement on a GPU and on a high end multi-core CPU platform, and compare

the performance. In many of these comparisons, running time is measured against

the input size. In some of the comparisons, running time is measured by varying

number of threads and cores. For comparing Data Mining applications, they

mainly use number of instances as the input size.

We also take this space to review approaches followed while comparing Data

Mining Applications implemented on GPUs. Similar to [7], in many GPU related

studies running time has been measured against the input size. However, the

studies differ by the attribute they select as the input. In [8], authors have

considered both the number of instances and the length of itemsets as inputs.

Experiments have been carried out by varying these two attributes. Additionally,

they have also measured running time against the block size. Another study where

a comprehensive list of experiments are performed is GMiner [9]. In addition to

the above two inputs, they have measured running time against the number of

distinct itemsets, minimum support and width of the transaction blocks. While

measuring the performance, we also measured execution time against the number

of instances. Since what our framework does at a basic level is counting patterns,

we also measured the running time by varying the number of patterns.

2.2 Parallel Data Mining Algorithms that uses Bitmaps

In this section we mainly review work done on parallelizing Data Mining algo-

rithms. Since there are limited studies on using GPUs for parallelizing, we have

also considered studies done with CPU based many core platforms.

2.2.1 Two FIM implementations with Bitmaps

GPUs have been used abundantly for FIM algorithms, mainly because Item-

set generation and support counting is inherently parallel and can be naturally

aligned with GPU processing. In [10] authors present two efficient GPU based

7

Apriori algorithms, Pure Bitmap-based (PBI) algorithm, a one which entirely

uses Bitmaps, and a Trie Based Implementation (TBI) another one that uses a

Trie. PBI uses Bitmaps for both candidate generation and support counting and

runs on the GPU. TBI uses a Trie for candidate generation but uses a Bitmap

based structure to perform support counting. In TBI, candidate generation runs

on CPU, and support counting runs on the GPU. They bring out the argument

that, Trie traversal is an irregular operation which is mostly suited to a CPU. The

method used by them to execute TBI, is similar to the model we are following in

our framework. The data structure they manipulate, is common for both the im-

plementations. However, they use a lookup table while obtaining 1 counts, same

for which we use an instruction available on the GPU. Authors also highlight the

fact that when number of items are huge, the data structure they are using tend

to make non-coalesced memory accesses. We have avoided this in our framework

by selecting the direction with most elements as the vertical direction.

Another couple of studies where GPUs are used in FIM algorithms are [8]

and [9].

2.2.2 gpuDCI

In [8], authors propose a FIM implementation which defers using GPU until all

the frequent itemsets fit into device’s memory. This technique prevents frequent

data transfers between host and the device. In this study, the authors explore

two parallelizing strategies, Transaction-wise parallelization and Candidate-wise

parallelization. In the former, all cores of the GPU process elements belonging

to the same two Itemsets, while in the latter each individual Itemset is handled

by a different core. Authors also propose a batching technique which caches

results of intermediate intersections when provided a batch of Itemsets. With

these techniques, they have been able to obtain a maximum speed up of 6. They

further show that the techniques they propose help them to achieve better scaling.

Technique we use in processing Bitmaps is the same Transaction-wise parallelizing

technique proposed in this study. Authors claim that a better speed up can be

8

obtained when using Candidate-wise processing. But in the scope of our study

since number of intersections are far lower compared to the number of data points,

Transaction-wise parallelization is the suitable approach.

2.2.3 GMiner

GMiner [9] proposes a solution which partitions the Bitmaps (which represents

Itemsets) into fixed length elements, which enables them process Datasets larger

than the GPU memory. In this study authors have explored the possibility of

using multiple GPUs while exploiting the ability to compute a partial sum in

each thread block. While implementing [9], authors have studied different imple-

mentations existed at that time and have addressed scaling and load distribution

issues. They highlight the fact that, the vertical Bitmap organisation is better

suited for a GPU than a horizontal organisation, since the vertical organisation

allows utilising GPU memory in an efficient manner. With their techniques they

obtain speed ups greater than 1000 when compared with CPU algorithms.

2.3 GPU Frameworks for Data Mining Applications

2.3.1 GPUMiner

GPUMiner [6] is a Data Mining framework based on Bitmaps. They use both

Horizontal and Columnar Data layouts and facilitates multiple algorithms falling

into different categories. In GPUMiner, Bitmaps are being used for different

types of processing. For Apriori, Bitmaps are utilised to represent unique item-

sets and are used while computing support and generating candidates. From

Apriori’s point of view, Bitmaps are used for a core operation. But for clustering

algorithms, Bitmaps are used for tracking identity of different data points, which

is a secondary task compared to the distance calculating operation. GPUMiner

consists of three main components, the Storage and Buffer Management compo-

nent, Data Mining Component and Visualising component. Storage Components

is backed by a Berkley DB, which stores Data in Chunks. Bitmaps are created on

the fly as a part of algorithm execution. One important design decision they make

9

in implementing Algorithms is using GPUs for simple and regular processing and

doing irregular type of processing with CPU. This does make data transfers more

frequent between CPU and GPU, and their method to make those transfers small

is to only transfer the result back to CPU while keeping the Bitmap structure on

the GPU. This is the same design we used in our framework.

Authors compare their Apriori implementation with FIMI03 [11] and K-means

implementation with an algorithm known as UVirginia. GPUMiner reports a

maximum speed up of 10.4 against FIMI03 and a speed up of 5 against UVir-

ginia. While testing Apriori, they compare against a CPU based Bitmap variant,

in addition to FIMI03. This Bitmap variant reports a better speed up than

FIMI03. Since the GPU variant also uses Bitmaps, it is not clear which element

is responsible for the speed up; whether it is the parallel processing or it is the

Bitmap organisation.

2.3.2 Index Structure for Similarity Joins

Böhm et al. [12], proposes a framework which uses a multilevel index Structure

that speeds up similarity Joins. Similarity Join evaluates the degree to which one

data point is similar to another and presents a set of points with a difference less

than a given threshold. The algorithm starts by building the index structure in a

bottom wise fashion, which would sort the Data set and create high level partition

by a single attribute. Partitions will be further sorted by other attributes and sub

partitions will be created. They demonstrate how this index structure can be used

to speed up similarity join. The nested loop join, which is the version of Similarity

Join performed without the index structure, would iterate through entire Data

set in a point by point fashion. Evaluation happens in two iterations; one outer

loop picking the first point to be compared and another inner loop selecting the

second point and evaluating the threshold. With the index structure, they limit

the iterations in the inner loop because now they can find collocated points by

loading a partition.

They perform several experiments with their index structure. They compare

10

the efficiency of their index structure by comparing it with Nested Loop Join

on both CPU and GPU. And then they implement two clustering algorithms

DBSCAN and K-Means by expressing those with Similarity Join. They claim that

speed ups around 100 are achievable with their index structure. Even though they

propose this as a generic index which can be used with ARM and Classification

Algorithms, so far it has only been used with Clustering Algorithms.

Similarity between their approach and ours is that in both the studies algo-

rithms are implemented around a core operation, and by speeding up the core

operation, execution time is improved. In our framework it is by using a tech-

nique popular in FIM algorithms we speed up two Classification algorithms. So

in terms of extensibility, since the methods we use are widely used in FIM algo-

rithms we have more evidence to claim that our framework can be used across

Associate Rule Mining and Classification algorithms.

2.3.3 Framework for Mapping Data Mining Applications on GPUs

Another study that proposes a framework for Data Mining algorithms is [5],

where the framework optimises large data transfers required by algorithms. Au-

thors observe that by grouping Data points which gets processed together and by

pre-fetching data points, overall execution time can be reduced. The framework

consists of three main components, a Storage Component which handles mem-

ory transfers from Disk to Host’s Main memory and then to Device Memory, a

Scheduling component which schedules Tasks by minimising data dependencies

by each thread and finally the Mining component where all algorithms specific

optimisations can be included. To evaluate their framework, they compare it with

GPUMiner and with a custom implementation they did using Bitmaps. On some

data sets their framework shows a 3 percent improvement against GPUMiner, but

in some cases GPUMiner shows better results than the framework. In most of the

cases however, their custom Bitmap implementation shows the best improvement

which reports a maximum of a 14 percent gain. With their approach of unifying

data transfers, they could use optimization techniques applied for one algorithm

11

to improve another, but they have not been able to surpass speed ups that can

be obtained with Bitmaps.

2.3.4 Three techniques to improve Data Mining algorithms

In work done by Jian et al. [13] they propose 3 main techniques which improves

processing on GPUs. These techniques address three main problems occurring in

Data Mining applications. Their solution to process high-dimensional data is to

follow column-wise processing which enables GPU to apply sequential addressing

reduction [14], which is the same technique we use in our study.

2.4 GPU Implementations for Naïve Bayes and Decision Trees

Since we implement Naïve Bayes and Decision Trees using Bitmaps, we reviewed

previous studies done on the same.

Recently, Viegas et al. [15] implemented Naïve Bayes algorithm on GPUs. In

their implementation they used a compact data structure indexed by terms, which

helped them to minimize memory consumption. In their implementation, they

perform both model building and classification on GPUs. The compact structure

being used, help them to perform model building in parallel, allowing them to

achieve 35 times speed up over sequential CPU execution. The index structure

proposed is specially crafted for Automatic Document Classification and they do

not claim their implementation as a generic Naïve Bayes implementation. In our

approach we present a generic, Naïve Bayes implementation which only uses a

Bitmap-based structure to keep the underlying Dataset.

One of the earliest methods for building a Decision tree in parallel has been

proposed in SPRINT [16], where records are distributed among multiple proces-

sors. Algorithm SPRINT is an improvement over SLIQ [17], and has adopted

many characteristics from SLIQ. SPRINT proposes a parallel tree building tech-

nique which parallelize computation by delegating each node to a different pro-

cessor. But these algorithms are designed on multiprocessor systems, where each

processor has access to a dedicated memory and a hard disks. At a conceptual

12

level, data organisation and processing followed in our framework for Decision

Tree, is similar to the methods used in SPRINT [16]. In SPRINT, each mul-

tiprocessor receives a data partition with equal number of records. During the

execution each multiprocessor produces a local count matrix which is used to de-

termine the split point. In our framework, each GPU core processes a segment of

the original data column. Authors claim that this arrangement makes SPRINT

scale better with increasing Data volumes. Since our framework allocates a bal-

anced workload across multiple GPU cores, we show that the framework scales

better as Data volume increases. Authors compare SPRINT with two variants of

SLIQ. Against SLIQ/D and SLIQ/R they get speed ups of 16 and 4 respectively.

Techniques proposed in [16] have been adopted in CudaTree [18] which is a

GPU based implementation. In addition to the characteristics borrowed from

SPRINT, another approach CudaTree [18] explores is, blending task parallelism

and data parallelism by switching between two different modes of tree building.

They further state that data parallelism alone, increases computing overhead

when processing leaf nodes. We experienced the same problem, but could not

find a means to mitigate the problem.

We could not find a study which used GPUs to implement a Decision Tree.

The above two implementations are those that came closest to Decision Trees

implemented on GPUs. To the best of our knowledge, this is the first study that

uses a Bitmap based implementation on GPUs to speed up Decision Trees.

In this chapter, we reviewed previous work done on Data Mining Algorithms

implemented using Bitmaps and GPUs. Since using Bitmaps is a main compo-

nent of our study, we gave prominence to Bitmap based frameworks. One of the

important design decision proposed in previous studies is minimizing data trans-

fers between CPU and GPU. And in couple of studies authors have highlighted

the importance of using GPUs for regular processing and leaving more complex

processing to CPU. We have incorporate these techniques while implementing

our framework.

13

Chapter 3

METHODOLOGY

This section mainly describes the design and implementation of our framework.

First we give a high level overview about the framework, elaborating different

layers and core components. Then we explain about the Bitmap representations

we use in the framework which are used in Data Storage layer. We move onto

describe about core processing algorithms, which runs on the Bitmap Data Struc-

ture and perform some sort of a counting operation. These algorithms provide

a basis for higher level algorithms. We discuss in-depth about the two Bitmap

variants supported by the framework, Bitmaps and Bit-Slices, highlighting each

area they can be optimally used in. We also talk about the two algorithms im-

plemented using the framework, Naïve Bayes and Decision tree, detailing about

types of processing needed for each algorithm and showing how our framework

provides those. Then we move onto discuss how batching is implemented and

how it reduces running time of algorithms.

3.1 Architecture

Framework can be logically separated into three main layers, Data Management

Layer, Core Processing Layer and Algorithm Layer. Data Management Layer

is backed by a Data Structure which is based on Bit-Slices (a Bitmap variant).

Framework is capable of switching between both Bitmaps and Bit-Slices, but by

default, Data will be kept in Bit-Slices, since Bit-Slices are capable of represent-

ing both numerical and categorical attribute values. Data Management layer is

responsible for converting a raw Data set to the underlying representation. This

layer also provides methods to transfer data between host and the device.

The next layer, Core Processing Layer is the one that directly interacts with

the Data Structure and give the result for a query. When data is represented

with Bitmaps, applying filters and searching for data elements needs Bitmap ma-

14

nipulation. We will cover some details in a latter section on how different this

processing is from normal element wise processing. Due to these differences, ob-

taining a count with a Bitmap structure is not straightforward. This is why we

are providing another Layer which performs the Bitmap processing and presents

a simpler interface to Algorithm implementer. This layer provides a set of Core

Algorithms, which would run on the GPU and perform certain high level oper-

ations. ElementCount, Co-occuranceCount, RangeCount are some of the algo-

rithms provided in this layer. ElementCount would return the count of a given

element. Co-occuranceCount would count the co-occurrence of two numbers in

two columns. And RangeCount would perform a range query and return the

number of records satisfying the condition.

The final Layer is the Data Mining layer, where high level Algorithms are

implemented. These algorithms would use counting core operations implemented

in previous layer to query the Data set and obtain results needed to build the

model. In our approach the main separation is between the part that queries data

and the part that builds the model. Usually, a Data Mining algorithm would

have to perform different types of processing like recursions, tree traversals while

building a model. And sometimes, frequent memory accesses are needed while

sharing states across different stages. For these types of processing CPUs would

suit more, since instruction pipelines and caches in CPUs are better tailored to

handle these scenarios. We are using GPUs only for Bitmap manipulation which

is a SIMD operation, for which GPUs are good at.

At the beginning of an algorithm execution, the entire Data set gets copied

onto the Device memory. Then the algorithm would run on the CPU and at

points where counts are needed, kernel functions get invoked. Since GPU is only

transferring result of a computation, there would not be any major data transfers

from GPU to CPU. For all algorithms, Bitmap intersection and counting will be

performed by GPU, while CPU maintains the counts and perform other execution

paths.

15

3.2 Bit-Slice And Bitmap Representations

Framework uses two representations to encode data which are explained in detail

in the following sections. Before converting to either format, data is first arranged

into a column-major format.

The representations we refer by the terms Bit-Slices and Bitmaps are widely

known index schemes available in literature. For the purpose of our work, rather

than using as index schemes we are using those to store underlying data.

The bitmap representation is similar to Value-List indices proposed in [19]. If

Data set 𝐷 can be represented as a collection of Attributes {𝐴1, 𝐴2, 𝐴3, . . . , 𝐴n}

where each Attribute has | 𝑅 | number of elements and attribute cardinal-

ities or the number of distinct values in each attribute can be expressed as

{𝐶1, 𝐶2, 𝐶3, . . . , 𝐶n}, then we can define bitmap and bit slice representations

as below.

The Bitmap representation is a Set 𝐵 {𝐵1, 𝐵2, 𝐵3, . . . , 𝐵n} where 𝐵i is the

set of Bitmaps corresponding to Attribute 𝐴i. 𝐵i can be expressed by a set of

Bitmaps {𝑏i,1, 𝑏i,2, 𝑏i,3, . . . , 𝑏i,m} where 𝑏i,j is a vector of bits consisting of either

ones or zeros and 𝑚 = 𝐶 i. Size of each Bitmap is equal to the number of records

in the Data set or | 𝑏i,j |=| 𝑅 |. Assuming that distinct values in 𝐴i can be

expressed by the set {𝑎i,1, 𝑎i,2, 𝑎i,3, . . . , 𝑎i,m}, then 𝑘th bit in 𝑏i,j is set to one only

if 𝑘th value in 𝐴1 is equal to 𝑎i,j. This way 𝑘th value will be set to 1 only in one

bitmap. Loosely defining, 𝑏i,j gives the locations 𝑎i,j is appearing in Data set. Fig.

3.1 gives a graphical illustration of the Bitmap representation.

Bit-Slice representation of Data set 𝐷 can be defined by, making slight mod-

ification to the previous. Assuming attribute 𝐴i can be represented as a binary

number with 𝑁 + 𝑙 bits, the Bit-Slice representation of 𝐴i is an ordered list of

bitmaps 𝑏i,N, 𝑏i,N-1, . . . , 𝑏i,1, 𝑏i,0 where these bitmaps are called the Bit-slices. If

𝐴i[𝑘] denotes, 𝑘th element in Attribute 𝐴i and the bit for row k in Bit-Slice 𝑏i,j

16

1
1
0
1
0
1
1
1
..
1
1

A1

B1 B2

1
0
1
1
1
1
0
0
..
1
1

1
1
1
0
1
1
0
1
..
0
1

B3

Ai

Bi

...

1
1
0
1
0
1
1
1
..
1
1

An

B1 Bi

...

1
0
1
1
1
0
1
0
..
1
0

Bn

Dataset

Figure 3.1: Data set represented using Bitmaps.

1
0
0
1
1
1
1
1
..
1
1

A1

22 21

0
0
1
1
1
1
0
0
..
1
1

1
1
1
0
1
1
0
1
..
0
1

20

Ai

2i

...

An

1
0
0
1
0
1
0
1
..
1
1

2n 2i

...

0
1
1
1
1
0
1
0
..
1
0

20

Dataset

Figure 3.2: Data set represented using Bit-Slices.

by 𝑏i,j[𝑘] then the values for 𝑏i,j[𝑘] are chosen so that

𝐴i[𝑘] =
𝑁∑︁
𝑖=1

𝑏i,j[𝑘]× 2𝑖 (3.1)

Note that we determine 𝑁 in advance so that the highest-order Bit-Slice

𝑏i,N is non-empty. Usually N is selected so that 𝑁 = 𝑙𝑜𝑔2(𝑚𝑎𝑥(𝐴i)). Bit-Slice

representation of the Data set D is the set 𝐵 {𝐵1, 𝐵2, 𝐵3, . . . , 𝐵n} where 𝐵i is

the Bit-Slice representation of Attribute 𝐴i. Fig. 3.2 illustrates the Data sets

represented as Bit-Slices. Note that all the values in column 𝐴1 is represented by

the three Bit-Slices.

17

In the framework, by default Data is represented in Bit-Slices, for its ability

to represent data with a smaller volume. Each representation can be switched to

the other without referring to the original Data set.

Even we define a single Bitmap as a vector of bits, when implementing it, bits

are grouped into chunks of 64 and is usually stored as an array of ulong or ints.

Then Bitmap intersection would reduce into performing bitwise AND between

two ulong arrays.

In this thesis we might use the term Bitmap in different contexts. First we

use it to refer to the Bitmap representation, which can be used for Categorical

Data sets. We also use it to refer to a single array of ulong literals that makes

up an individual entity (or a Bitmap). When we talk about existential Bitmap

it is in the latter sense we use the term. The Bit-Slice representation consists

of a collection of Bit-Slices. And sometimes we use the term Bitmap instead of

Bit-Slice since its more natural to use.

3.3 Processing Bit-Slices on a CPU

To understand how we can perform search and count operations with Bit-Slices

we are first going to show how it is done on a CPU environment. Once we have

an idea how processing is done, it will be easier to visualise how it happens on

the GPU.

3.3.1 Counting a single element with Bit-Slices

Doing operations with Bitmap representation is straightforward since Bitmaps are

created for each category and obtaining count with Bitmap only needs intersecting

with another Bitmap. But processing Bit-Slices is not as simple, since it encodes

a range of numbers. Operations needed to select a single number from a column

encoded in Bit-Slices is shown in Algorithm 4.2 [19]. But to illustrate this clearly

we are presenting the following simple example. Assume that we have a Data set

consisted of a single column, ItemNo as depicted in figure 3.3. By arranging all

the elements of the column into a single array we form the columnar (or column

18

TID ItemNo

1 23

2 17

3 09

4 17

5 15

6 30

ItemNo

10111

10001

01001

10001

01111

11110

1

1

0

1

0

1

0

0

1

0

1

1

1

0

0

0

1

1

1

0

0

0

1

1

1

1

1

1

1

0

ItemNo

24 23 22 21 20

Figure 3.3: Converting a single column to Bit-Slices.

wise) representation of the same Data set. Now to convert this into it’s Bit-Slice

representation we first get the binary representation of all the elements. Then

we take all the bits falling under a particular position (let’s say 0th position) and

call it a single Bit-Slice.

The next figure 3.4 shows how an element is actually looked up in the Data

set. Let’s say that we need to select number 17 from the column. We would not

be able to iterate element by element because now the data is represented in a

different format. Instead, what we do is we formulate a series of operations to

be performed on Bit-Slices such that once they are applied, the resulting Bitmap

only have the rows with desired number set to 1. For this example, the selected

number is 17 which has its binary representation as 10001. The sequence of

operation that would only select this particular number is 1& !0& !0& !0& 1.

Once this sequence is applied we get a resulting Bit-Slice, which have particular

locations where 17 was in, set to 1. By counting 1s in this Bitmap we get the

count of 17s.

3.3.2 Counting co-occurrence of two elements

Co-occurrence counting is a frequently used operation since this is used when pop-

ulating contingency tables. While implementing Both Naïve Bayes and Decision

Tree we used a contingency table to determine probabilities and InfoGains.

19

Count 17

Count
10001

1 & !0 & !0 & !0 & 1
 = 1

1 !0 !0 !0 1

0

1

0

1

0

0

Result

1

1

0

1

0

1

0

0

1

0

1

1

1

0

0

0

1

1

1

0

0

0

1

1

1

1

1

1

1

0

ItemNo

24 23 22 21 20

1

1

0

1

0

1

24

1

1

0

1

0

0

23

0

1

1

1

0

0

22

0

1

1

1

0

0

21

1

1

1

1

1

0

20

Figure 3.4: Counting occurrences of a number with a Bit-Slice column.

ID ItemNo Size

1 23 5

2 17 7

3 09 7

4 17 4

5 15 6

6 30 4

1

1

0

1

0

1

0

0

1

0

1

1

1

0

0

0

1

1

1

0

0

0

1

1

1

1

1

1

1

0

ItemNo

24 23 22 21 20

1

1

1

1

1

1

0

1

1

0

1

0

1

1

1

0

0

0

Size

22 21 20

BitSlices

Figure 3.5: Converting two columns to Bit-Slice representation.

To illustrate this, we can use the same example we used earlier with a minor

modification. We are going to add another column Size to the same Data set.

With this we can generate two Bit-Slice columns as shown in 3.5.

We are going to find the count of rows satisfying the condition ItemNo=17 &

Size=7. As depicted in the Figure 3.6 we are going to generate a Bitmap from

each Bit-Slice column by doing a single element match and then intersect the two

resulting Bitmaps to get the final result.

The use of two Bitmaps was shown to help with visualising operation easily.

Algorithm 1, shows how this is actually done.

Here we invoke the procedure Co-OccurrenceCount, passing Data set repre-

20

1
1
0
1
0
1

0
0
1
0
1
1

1
0
0
0
1
1

1
0
0
0
1
1

1
1
1
1
1
0

ItemNo

1
1
1
1
1
1

0
1
1
0
1
0

1
1
1
0
0
0

Size
BitSlices

Count
ItemNo = 17

&
Size = 7

1
1
0
1
0
1

1
1
0
1
0
0

0
1
1
1
0
0

0
1
1
1
0
0

1
1
1
1
1
0

1 & !0 & !0 & !0 & 1

1
1
1
1
1
1

0
1
1
0
1
0

1
1
1
0
0
0

1 & 1 & 1

0
1
0
1
0
0

R1

0
1
1
0
0
0

R2

0
1
0
1
0
0

R1

0
1
1
0
0
0

R2

&
0
1
0
0
0
0

24 23 22 21 20 22 21 20 24 23 22 21 20 22 21 20

Figure 3.6: Counting co-occurrences with Bit-Slices.

sented in Bit-Slices as an argument. We also pass 𝑣𝑎𝑙1 which is the value that

needs to be searched from the first column, 𝑖𝑛𝑑𝑒𝑥1 which indicates the index of

the first column. 𝑣𝑎𝑙2 and 𝑖𝑛𝑑𝑒𝑥2 bears similar meanings for the second column.

In lines 2-3 we assign the columns we are going to process to two variables 𝑐𝑜𝑙1

and 𝑐𝑜𝑙2. Contents of these variables can be thought of as a two dimensional

vector where the first dimension selects the Bit-Slice by the index and the second

dimension selects the chunk of bits (the 𝑢𝑙𝑜𝑛𝑔 value which groups a chunk of 64).

Then we initialise a temporary array (of 𝑢𝑙𝑜𝑛𝑔s) which would hold the result of

the intersection. Length of this would be equal to the length of any Bit-Slice.

We also initialise two other variables to hold number of bits of each value we are

searching, which will be used while iterating through Bit-Slices.

In the block from 8-14, the first Bit-Slice column is looked up. We use left

shift operator in line 9, to determine whether a particular bit is set or not. If 𝑘th

bit is 1 for 𝑣𝑎𝑙1 then 𝑣𝑎𝑙1& (1 << 𝑘) would evaluate to true. It is based on this

values we determine whether to do a simple intersection or an intersection with

a negation. The inner loop from 10-11, corresponds to iterating through a Bit-

Slice while performing the intersection and writing the result to the temporary

array. In a similar way we do the lookup for 𝑣𝑎𝑙2 in second column. Note that

without initialising a second variable to store the result, we are using the same

temp variable defined in line 4.

21

Algorithm 1 Algorithm for Counting Co-Occurrences
1: procedure Co-OccurrenceCount(𝐵𝑖𝑡𝑆𝑙𝑖𝑐𝑒𝑠, 𝑣𝑎𝑙1, 𝑖𝑛𝑑𝑒𝑥1, 𝑣𝑎𝑙2, 𝑖𝑛𝑑𝑒𝑥2)
2: 𝑐𝑜𝑙1← 𝐵𝑖𝑡𝑆𝑙𝑖𝑐𝑒𝑠[𝑖𝑛𝑑𝑒𝑥1]
3: 𝑐𝑜𝑙2← 𝐵𝑖𝑡𝑆𝑙𝑖𝑐𝑒𝑠[𝑖𝑛𝑑𝑒𝑥2]
4: 𝑡𝑒𝑚𝑝← 𝑢𝑙𝑜𝑛𝑔[length(col1[0])]
5: bitlength1← log2(val1)
6: bitlength2← log2(val2)
7: sum← 0
8: for 𝑘 ← 0 to bitlength1− 1 do ◁ Matching first Element
9: if val1&(1 << 𝑘) then

10: for 𝑖← 0 to length(col1[0])− 1 do
11: 𝑡𝑒𝑚𝑝[𝑖]← 𝑡𝑒𝑚𝑝[𝑖] & 𝑐𝑜𝑙1[𝑘][𝑖]

12: else
13: for 𝑖← 0 to length(col1[0])− 1 do
14: 𝑡𝑒𝑚𝑝[𝑖]← 𝑡𝑒𝑚𝑝[𝑖] & !𝑐𝑜𝑙1[𝑘][𝑖]

15: for 𝑘 ← 0 to bitlength2− 1 do ◁ Matching second Element
16: if val2 & (1 << 𝑘) then
17: for 𝑖← 0 to length(col2[0])− 1 do
18: 𝑡𝑒𝑚𝑝[𝑖]← 𝑡𝑒𝑚𝑝[𝑖] & 𝑐𝑜𝑙2[𝑘][𝑖]

19: else
20: for 𝑖← 0 to length(col2[0])− 1 do
21: 𝑡𝑒𝑚𝑝[𝑖]← 𝑡𝑒𝑚𝑝[𝑖] & !𝑐𝑜𝑙2[𝑘][𝑖]

22: for 𝑘 ← 0 to length(temp)− 1 do ◁ Counting and summing up
23: 𝑠𝑢𝑚← 𝑠𝑢𝑚+ popcount(𝑡𝑒𝑚𝑝[𝑘])

return 𝑠𝑢𝑚

22

By the beginning of line 22, we have gone through both the columns and have

produced a single resulting Bitmap containing result of both the intersections.

From line 22-23 we iterate through this resulting Bitmap to do the count of 1s.

We are using the population count instruction (𝑝𝑜𝑝𝑐𝑜𝑢𝑛𝑡) which returns the no

of 1s in a particular 𝑢𝑙𝑜𝑛𝑔 , which is supported in most CPUs and GPUs. Other

option is to use a lookup table which is much slow compared to the approach we

are using.

3.4 Processing Bitmaps And Bit-Slices on GPU

Since we already know how processing happens in CPU, this section will explain

how the processing happens on the GPU.

The basic unit in either of these representations is a Bitmap, which is kept as

ulong vector. Result of an intersection produces another Bitmap, count of 1 of

which can be obtained using popcount instruction available in CUDA. Since both

Bitmaps and BitSlices are similar in representations, we will explain in detail

about Bitmap processing and then briefly discuss about Bit-Slices.

3.4.1 Processing Bitmaps on GPU

With the Bitmap representation each attribute is a collection of Bitmaps, so

counting co-occurrence between unique values in two attributes would involve

intersecting and counting Bitmaps.

In sequential addressing reduction, each GPU core would work on the same

intersection and count operation, regardless of the GPU multiprocessor they be-

long to. Each thread is in charge of an interleaved portion of the Bitmap, in

such a way that threads having consecutive indexes work on consecutive parts

of the Bitmap. Since these Bitmaps are vectors of ulongs, each thread processes

a contiguous chunk of 64 bits, separated by a fixed stride. Usually this stride

is taken as the multiplication number of thread blocks and threads per blocks,

which are decided at kernel launch time. Each thread would read two Bitmaps

do the intersection and then the count operation (popcount) and write result to

23

n1 n2

n1+n2

Intersect &
count

summation

10
11

00
10

1.
..1

10
11

00
10

1.
..1

10
11

00
10

1.
..1

10
11

00
10

1.
..1

10
11

00
10

1.
..1

10
11

00
10

1.
..1

10
11

00
10

1.
..1

10
11

00
10

1.
..1

10
11

00
10

1.
..1

10
11

00
10

1.
..1

...

10
11

00
10

1.
..1

10
11

00
10

1.
..1

10
11

00
10

1.
..1

10
11

00
10

1.
..1

10
11

00
10

1.
..1

10
11

00
10

1.
..1

10
11

00
10

1.
..1

10
11

00
10

1.
..1

B
itm

ap
 2

10
11

00
10

1.
..1

10
11

00
10

1.
..1

10
11

00
10

1.
..1

10
11

00
10

1.
..1

10
11

00
10

1.
..1

10
11

00
10

1.
..1

10
11

00
10

1.
..1

10
11

00
10

1.
..1

10
11

00
10

1.
..1

10
11

00
10

1.
..1

...

10
11

00
10

1.
..1

10
11

00
10

1.
..1

10
11

00
10

1.
..1

10
11

00
10

1.
..1

10
11

00
10

1.
..1

10
11

00
10

1.
..1

10
11

00
10

1.
..1

10
11

00
10

1.
..1

B
itm

ap
 1

& & & & & & & & & & & &

Cycle 2

& & & &

Block 1 Block 2

Cycle 1

Figure 3.7: Bitmap intersection & counting on GPU.

its shared memory, through which we get a local aggregation of the counts by

the block. At the end of its execution, each block would write results for local

aggregation to a global array, which can be either reduced by copying to the Host

or invoking a second kernel which only performs a simple reduction. The kernel

would only write to the global memory at the time of finishing kernel invocation,

and at other times it would only do reads. When doing reads, consecutive threads

will be read from adjacent memory locations so the accesses are coalesced. And

when writing to shared memory, a sequential addressing method is followed to

avoid bank conflicts.

In Fig. 3.7 we provide a visualisation of how Bitmap intersection and counting

happens on the GPU. Bitmap 1 and Bitmap 2 are two 𝑢𝑙𝑜𝑛𝑔 arrays residing in

main memory of the GPU. In 𝐶𝑦𝑐𝑙𝑒 1 each block will be processing the set of

elements located to the left of the Bitmaps. 𝐵𝑙𝑜𝑐𝑘 1 will be processing elements

demarcated by broken lines while 𝐵𝑙𝑜𝑐𝑘 2 will be processing elements with dotted

lines. Each thread in the block will pick an index and read two elements located

24

at that position from two Bitmaps. Intersection and counting would happen

in each thread and would get aggregated by the block level when writing to

shared memory. At the end of 𝐶𝑦𝑐𝑙𝑒 1, 𝐵𝑙𝑜𝑐𝑘 1 will write the aggregation of 4

elements located to the very left of the Bitmap and Block 2 will similarly write

down aggregation of the next 4. In 𝐶𝑦𝑐𝑙𝑒 2, both the blocks will pick a different

portion of the same Bitmaps. 𝐵𝑙𝑜𝑐𝑘 2 will be picking the last 4 elements to the

right, the ones marked with dotted lines and 𝐵𝑙𝑜𝑐𝑘 1 will pick next 4 elements

from the end marked with broken lines. The value 𝑛1 provided by 𝐵𝑙𝑜𝑐𝑘 1 at the

end of 𝐶𝑦𝑐𝑙𝑒 2 is the aggregation of all elements processed by 𝐵𝑙𝑜𝑐𝑘 1. Similarly

𝑛2 is the aggregation of all elements processed by 𝐵𝑙𝑜𝑐𝑘 2. If there are 𝑛 blocks,

then an array of 𝑛 will be written to Global memory, each with the aggregation

of all elements processed by each block. Summing up this array would give the

result for the entire Bitmap. This is usually done by running a summing kernel

providing the array with partial sums as the input.

The Algorithm 2 shows how the kernel performs Bitmap intersection. Here

𝑐𝑜𝑙1 and 𝑐𝑜𝑙2 are the respective columns (attributes) represented in Bitmaps

needed for the intersection. Each column can be thought of as an array of

Bitmaps. Since we are only representing categorical data with Bitmaps, a single

category value would have a unique Bitmap. 𝑖𝑛𝑑𝑒𝑥1 and 𝑖𝑛𝑑𝑒𝑥2 are the indices of

the first and second category values respectively. We also pass the 𝑙𝑒𝑛𝑔𝑡ℎ which

gives the number of 𝑢𝑙𝑜𝑛𝑔 literals in a Bitmap. We first initialise internal state

variables by getting Block and Thread configurations. The variables threadIdx

and blockIdx are set by CUDA environment based on parameters we set while

invoking the kernel. Since this kernel is invoked by each thread, each thread needs

to select a non-overlapping portion of the Bitmap. That is why the variable i is

determined using 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥 and 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. With Bitmaps processing is simple.

Once we initialize variables properly, we do a Bitmap intersection in line 9. A

single thread may work on multiple portions in different iterations. To enable

this we keep increasing i by the size of the Grid (i.e the number of blocks). We

have omitted certain optimisations for the sake of clarity. Even though we are

only showing one intersection here, in actual kernel, there are two. Also the index

25

resolution in Bitmap array happens in a different way. We have also omitted the

part which performs block-wise aggregation.

Algorithm 2 BitmapCo-OccurrenceCountGPU
1: procedure BitmapCo-OccurrenceCountGPU(𝑐𝑜𝑙1, 𝑐𝑜𝑙2, 𝑙𝑒𝑛𝑔𝑡ℎ, 𝑖𝑛𝑑𝑒𝑥1,

index2,output)
2: tid← 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥.𝑥
3: i← 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥.𝑥× 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒+ 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥.𝑥
4: gridSize← 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒× 𝑔𝑟𝑖𝑑𝐷𝑖𝑚.𝑥
5: 𝑠𝑑𝑎𝑡𝑎← initialize shared memory
6: mySum← 0
7: bitwise← 0
8: while i < 𝑙𝑒𝑛𝑔𝑡ℎ do
9: bitwise← 𝑐𝑜𝑙1[𝑖𝑛𝑑𝑒𝑥1][i] & 𝑐𝑜𝑙2[𝑖𝑛𝑑𝑒𝑥2][i]

10: mySum← mySum + __𝑝𝑜𝑝𝑐𝑙𝑙(bitwise)
11: i← i + gridSize
12: 𝑠𝑑𝑎𝑡𝑎[tid]← mySum
13: . . . ◁ Omitted reduction steps for clarity
14: if tid == 0 then ◁ Only one thread will write the final value to Global

Memory
15: 𝑜𝑢𝑡𝑝𝑢𝑡[𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥.𝑥]← mySum

3.4.2 Bit-Slice Processing on GPU

Main difference between Bitmap and Bit-Slice manipulation is that in Bit-Slices

the entire set of Bitmaps belonging to the two attributes need to be loaded as

opposed to reading the two particular Bitmaps.

Algorithm 3 show the Bit-Slice intersecting kernel running on GPU. Apart

from couple of places this is very much similar to the CPU algorithm. This is

different from CPU algorithm since there we pass the entire Data set and the two

column indices, as opposed to passing the exact columns that needs to be pro-

cessed. Additionally, we pass the number of Bitmaps in each column (indicated

by 𝑐𝑜𝑙1_𝑏𝑖𝑡𝑚𝑎𝑝𝑠& 𝑐𝑜𝑙2_𝑏𝑖𝑡𝑚𝑎𝑝𝑠) and a pointer to output array residing in the

Global Memory. Similar to 2, 𝑐𝑜𝑙1 and 𝑐𝑜𝑙2 are columns having all the Bit-Slices

belonging to that column. Bit-Slice Intersection looks a bit complex compared

to Bitmap Kernel, since there is loop running to select the number. In Bitmap

Kernel we did not need to explicitly pass the category values, but for Bit-Slices,

26

Algorithm 3 Bit-SliceCo-OccurrenceCountGPU
1: procedure Bit-SliceCo-OccurrenceCountGPU(𝑐𝑜𝑙1, 𝑐𝑜𝑙2, 𝑙𝑒𝑛𝑔𝑡ℎ, 𝑣𝑎𝑙1, 𝑣𝑎𝑙2

, col1_bitmaps,col2_bitmaps,output)
2: tid← 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥.𝑥
3: i← 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥.𝑥× 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒+ 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥.𝑥
4: gridSize← 𝑏𝑙𝑜𝑐𝑘𝑆𝑖𝑧𝑒× 𝑔𝑟𝑖𝑑𝐷𝑖𝑚.𝑥
5: 𝑠𝑑𝑎𝑡𝑎← initialize shared memory
6: mySum← 0
7: bitwise← 0
8: while i < 𝑙𝑒𝑛𝑔𝑡ℎ do
9: bitwise← 0

10: for 𝑘 ← 0 to col1_bitmaps− 1 do
11: if val1& (1 « k) > then
12: bitwise← bitwise& 𝑐𝑜𝑙1[𝑘][𝑖]
13: else
14: bitwise← bitwise& !𝑐𝑜𝑙1[𝑘][𝑖]

15: for 𝑘 ← 0 to col2_bitmaps− 1 do
16: if val2& (1 « k) > then
17: bitwise← bitwise& 𝑐𝑜𝑙2[𝑘][𝑖]
18: else
19: bitwise← bitwise& !𝑐𝑜𝑙2[𝑘][𝑖]

20: i← i + gridSize
21: mySum← mySum + __𝑝𝑜𝑝𝑐𝑙𝑙(bitwise)
22: 𝑠𝑑𝑎𝑡𝑎[tid]← mySum
23: . . .
24: if tid == 0 then
25: 𝑜𝑢𝑡𝑝𝑢𝑡[𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥.𝑥]← mySum

27

101100101...1

101100101...1

101100101...1

101100101...1

101100101...1

101100101...1

B
its

lic
e

1...
&

101100101...1

101100101...1

101100101...1

101100101...1

101100101...1

101100101...1
&

...

...

101100101...1

101100101...1

101100101...1
&

22
21

20

& & & &

&

Cycle 1 - Iteration 1

n1 n2

B
its

lic
e

2101100101...1

101100101...1 101100101...1

101100101...1...
&

101100101...1

101100101...1 101100101...1

101100101...1
&

...

101100101...1

101100101...1
&

21
20

&

Intersect &
count

Cycle 2 - Iteration 1

Cycle 1 - Iteration 2 Cycle 2 - Iteration 2

Block 1 Block 2

Figure 3.8: Bit-Slice intersection & counting on GPU.

we need since it is based on those values intersection is done. This is graphically

illustrated in 3.8.

Similar to Bitmaps, once the intersecting and counting is done, a block level

reduction happens, which is followed by a global reduction. The only noticeable

difference between the two representations is that, in Bitmap representation a

Bitmap is readily available for an attribute value, but in Bit-Slices it will be

generated by the kernel as computation happens.

3.4.3 Batching operations

Usually arithmetic intensity of a Bitmap intersection is low. To produce intersec-

tion of two Bitmaps, two global reads have to be made. This makes the kernel, a

bandwidth sensitive one since a larger proportion of time is spent in transferring

Bitmaps from global memory. With batching we will be reading four Bitmaps to

produce four resulting Bitmaps. So four co-occurrences can be counted with this

approach.

28

Recall that in Bitmap intersection once the 1-count is done, it is aggregated

in block level which is followed by a global reduction. In non-batched execution,

1-count is held by an integer. However with a single integer we can only hold the

result of a single co-occurrence. So to accommodate multiple patterns we use int4

literals. Local and global reductions would happen the same way it happened for

a normal int array. However before transferring results to host’s side they need

to be converted into proper integers.

Even we are only referring to co-occurrence count, batching is not limited to

that operation. It is equally applicable to the other two operations.

3.5 Algorithm Execution

This section explains how the two algorithms were implemented on our frame-

work. We first go through the types of processing needed by each algorithm.

Then we show how we can convert those operations to counting operations and

how those counts can be obtained using our framework.

3.5.1 Implementing Naïve Bayes on framework

Bayes theorem states that the relationship between the probability of Hypothesis

before getting the evidence 𝑃 (𝐻) and the probability of the hypothesis after

getting the evidence 𝑃 (𝐻 | 𝐸) is :

𝑃 (𝐻 | 𝐸) =
𝑃 (𝐸 | 𝐻) 𝑃 (𝐻)

𝑃 (𝐸)
(3.2)

Naïve Bayes algorithm is based on the above theorem that calculates the proba-

bility of a record 𝑟t to be classified as 𝑐i, based on probability of 𝑐i occurring in

the Data set and and the likelihood of data 𝑟t occurring with 𝑐i. More formally,

if 𝑃 (𝑐i | 𝑟t) is the probability that a record 𝑟t (𝑎1, 𝑎2, . . . , 𝑎n) belongs to class 𝑐i ,

then using Bayes Theorem probability is calculated as:

𝑃 (𝑐i | 𝑟t) =
𝑃 (𝑟t | 𝑐i) 𝑃 (𝑐i)

𝑃 (𝑟t)
(3.3)

29

Since the cost of calculating 𝑃 (𝑐i | 𝑟t) increases as the possible vectors 𝑟t increase,

the Naïve-Bayes algorithm simplifies calculation by assuming that the occurrence

of all attribute values are independent. With this each attribute value 𝑎j can

be calculated independently from the others. Incorporating this Assumption,

𝑃 (𝑐i | 𝑟t) can be re-written as:

𝑃 (𝑐i | 𝑟t) =

𝑃 (𝑐i)
𝑛∏︀

𝑗=1

𝑃 (𝑎j | 𝑐i)

𝑃 (𝑟t)
(3.4)

Assuming a multinomial distribution, 𝑃 (𝑎j | 𝑐i) can be calculated by Eq. 3.5,

where 𝑁(𝑎j | 𝑐i) is the number of times, attribute 𝑎j is co-occurring with class

value 𝑐i.

𝑃 (𝑎j | 𝑐i) =
𝑁(𝑎j | 𝑐i)

𝑁(𝑐i)
(3.5)

Now thinking of a categorical Data set which is arranged into Bitmaps, where

each category value is represented by a single Bitmap, 𝑁(𝑐i) will be equivalent

to taking count of the Bitmap that represent 𝑐i. Similarly, 𝑁(𝑎j | 𝑐i) will be

equivalent to intersecting bitmaps representing 𝑎j and 𝑐i and then taking the

count. To find the most probable class given a data point 𝑟t, we need to find the

maximum of the multiplication between probability of 𝑟t given 𝑐i and the prior

probability of 𝑐i. ̂︀𝑐 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑐i∈𝐶

𝑃 (𝑐i) 𝑃 (𝑟t | 𝑐i) (3.6)

If we have the counts for co-occurrence between each attribute value with class

attribute values, and count of each attribute value separately, we can calculate the

above probabilities and do the classification. Basically, if the contingency table

for the Data set with class attribute can be computed, we can easily classify

unseen instances.

3.5.2 Implementing Naïve Bayes

To make a fair basis for comparison, we used the implementation provided by

Weka [20]. Additionally, Weka implements all Algorithms on a common data

30

storage, which closely aligns with our requirement. The algorithm starts by

initializing a two-dimensional matrix at hosts’ memory space, which is a portion

of the complete contingency table. The contingency table is built in several

iterations, so in a given iteration, counts associated with a selected attribute

with class attribute is obtained. At the beginning of the counting phase Data set

is transferred to main memory of Device, and counting kernels are invoked. The

2D Matrix has cells equal to the 𝑎𝑡𝑡_𝑣𝑎𝑙𝑢𝑒𝑠 × 𝑐𝑙𝑎𝑠𝑠_𝑣𝑎𝑙𝑢𝑒𝑠, where 𝑎𝑡𝑡_𝑣𝑎𝑙𝑢𝑒𝑠

and 𝑐𝑙𝑎𝑠𝑠_𝑣𝑎𝑙𝑢𝑒𝑠 represent number of distinct values of the test attribute and

class attribute respectively. In non-batched mode, each kernel invocation counts

a single pattern requiring that many invocations. At the end of each kernel

invocation, a single cell in the matrix gets filled. The batched mode can count

four patterns at once, so depending on the Data set, a minimum of one fourth of

the invocations will happen.

3.5.3 Implementing Decision Trees on framework

A Decision Tree is a classifier that partitions data recursively into groups or

classes until each partition consists entirely or dominantly of instances from one

class.

Usually there are two distinct phases, the tree building phase where tree is

grown by repeatedly partitioning the training set and tree pruning where some

branches are eliminated to avoid over fitting. During the tree building phase,

different algorithms are used to select the split point, and in C4.5 usually Infor-

mation Gain ratio is used.

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑡) = −
𝑘∑︁

𝑗=1

𝑝(𝑗 | 𝑡) log 𝑝(𝑗 | 𝑡) (3.7)

Entropy at node 𝑡 is given by 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑡) where 𝑝(𝑗 | 𝑡) is the relative fre-

quency of class 𝑗 at node 𝑡 and 𝑘 is the number of classes. If 𝑛t records are

available at node 𝑡 and 𝑛j,t is the number of records having 𝑗 as the class at 𝑡,

31

then 𝑝(𝑗 | 𝑡) = 𝑛j,t
𝑛t

. Similarly Information gain at node t can be defined as;

𝐺𝑎𝑖𝑛(𝑡) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑡)−
𝑘∑︁

𝑗=1

𝑛j,t

𝑛t
× 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑗) (3.8)

Where Parent node 𝑡 with 𝑛t records is split into 𝑘 partitions, and 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑗)is

the entropy at split 𝑗. With this we can define 𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜 at 𝑡 as;

𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜(𝑡)split =
𝐺𝑎𝑖𝑛(𝑡)

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜(𝑡)
(3.9)

Where;

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜(𝑡) = −
𝑘∑︁

𝑖=1

𝑛i,t

𝑛t
log

𝑛i,t

𝑛t
(3.10)

Assuming a categorical data set, where Attribute 𝐴 has values 𝑎1, 𝑎2, 𝑎3, . . . , 𝑎k,

then 𝑛i,t is the number of records having attribute 𝑎i as the attribute value in the

partition. 𝑛t is the number of total samples at node 𝑡.

3.5.4 Building Decision Trees with Bitmaps

We will first describe how Decision Trees can be built with Bitmaps, and then

explain how it can be ported to a GPU. The version that entirely runs on the

CPU is similar to what is described in [21].

For the ease of understanding it, let’s assume we are building tree from the

root level and we have a Data set which have 𝐴1, 𝐴2 as the attributes and 𝐶 as

the class attribute. Cardinality of the attributes are 𝑘,𝑙 and 𝑚. Figure 3.9

To determine the split we would have to calculate information gain. In order

to calculate info gain, we need entropy at the root level, and entropy obtained

after splitting by each attribute. Entropy for the node can be obtained by simply

doing a 1-count on Bitmaps representing each class value. To compute the en-

tropy after splitting by an attribute, Bitmap belonging to each class value needs

to be intersected with Bitmap for each attribute value. Simply by getting the

contingency table between a class attribute and a test attribute, we can compute

InfoGain.

32

21

1
0
1
0
1
1

0
1
0
1
0
0

C

Dataset

c2

1
1
0
1
0
1

0
0
1
0
1
0

A1

1
0
1
0
1
0

0
1
0
1
0
1

A2
a b dc c1

1
1
1
1
1
1

e

Split By A2

1
0
1
0
1
0

e

1
0
1
0
1
1

0
1
0
1
0
0

C

Dataset

c2

1
1
0
1
0
1

0
0
1
0
1
0

a c1b

A1

0
1
0
1
0
1

e

1
0
1
0
1
1

0
1
0
1
0
0

C

Dataset

c2

1
1
0
1
0
1

0
0
1
0
1
0

a c1b

A1

A2 = c A2 = d

Figure 3.9: Building Decision Trees with Bitmaps.

We would additionally need SplitInfo to calculate GainRatio. And SplitInfo

can be calculated by getting count of the attribute values.

Even it may appear that computing GainRatio at other partitions need more

work, with the help of a simple Bitmap intersection it can be performed relatively

easily. Once the the split attribute is decided, we can use the Bitmaps of the split

attribute to get counts in partitions.

To better understand this, let’s go through the flow illustrated in 3.9. As

shown in the diagram, each attribute have two distinct values where each can be

shown by a unique Bitmap. Bitmap shown by 𝑒 is the existential Bitmap which

keeps the presence of a row. This is needed for determining identity of an element.

Now the attribute to Split is set as 𝐴2. Now we would have to create two splits

33

using the Bitmaps of 𝐴2. What we do is, we intersect the existential Bitmap

of Data set with Bitmaps for each Attribute value and create a set of partition-

wise Bitmaps. When calculating Entropy for the partition by 𝑐 (left partition),

resulting Bitmaps (the ones generated by intersecting 𝐴1’s Bitmap with 𝑐1 and

𝑐2) should be further intersected with partition Bitmap before obtaining count.

This way, partitions can be created up to any level without changing the original

Data set.

3.5.5 Running Decision Trees on GPU

At the beginning of the algorithm, the entire data set will be copied to GPU.

But a copy of the Data set will be stored in CPU since it will be referred when

partitioning data and creating the split.

The main difference between the CPU and GPU versions is in the places

where main computation happens. Taking a similar approach to Naïve Bayes,

in this algorithm also, a two dimensional matrix gets initialised. At the point of

evaluating a split, this matrix will be transferred to Device memory, and counting

kernels will get invoked. In Naïve Bayes, counting only occurs one time. But in

Decision Tree counting phase repeats multiple times. Based on the populated

contingency table, the Gain Ratio will be calculated and splitting attribute will

be determined. To indicate each partition, a new existential Bitmap is created

and added as a reference to an Instance (an instance of a class) of the Data set.

Since the tree is grown in a Depth first fashion, the partition corresponding to the

first attribute value will be used to perform the next series of kernel invocations.

But now since the counts are to be obtained using a subset of data, the existential

bitmaps will be transferred to the GPU. The kernels would use this existential

Bitmap while producing partition-wise counts. Once the contingency table for a

partition is filled, all existential bitmap will be removed from the device, but the

original Data set would remain until all computations are done.

The same batching modes proposed for Naïve Bayes can be straightaway

applied for Decision Trees. Different from Naïve Bayes, for Decision trees, an

34

existential Bitmap needs to be transferred to memory when obtaining counts for

a partition. This frequent data transfer becomes a significant overhead when

branching factor increases or when tree grows to many levels. One way to deal

with this would be to cache the existential Bitmaps, but which too would exhaust

Device memory very quickly if the tree becomes very large. Due to this limitation,

speed ups obtained for Decision Trees were modest and improvements were only

visible when Data sets were large.

We have only explained about building Tree with Bitmaps, since the approach

with Bit Slice is quite similar Bitmap approach. The only noticeable difference

between the two representations is that, with Bitmaps the only computing hap-

pening is intersection, while in Bit Slices additional processing needing to happen

to generate the Bitmap.

In this chapter we explained in detail about the data structures we have used,

architecture of the framework and how algorithms are implemented. We took

a digression into explain about Bit-Slice processing, since it is fundamental in

understanding the novelty of the framework.

35

Chapter 4

EXPERIMENTAL RESULTS

This section presents the experiments we carried on the framework and results

we obtained. Since our main goal was to improve running time of Algorithms, in

all experiments execution time was measured as the metric.

Since our primary target is to measure performance gain obtained by Bitmap

and Bit-Slice variants on GPUs, results are compared with CPU variants which

use those representations. While implementing algorithms, we have been careful

only to change the parts where computations are done, since it is the only way

to ensure that a fair environment is provided. If we would have compared our

results with a different implementation, it would have been with GPUMiner. But

since GPUMiner does not support the exact two algorithms we implemented, we

could only do the comparison with CPU variants.

At the core of the framework we have several algorithms which process Bitmaps

and produce a count, among which Co-OccurrenceCount is the most prominent

one. First we present results for Co-OccurrenceCount under different conditions,

to prove that the core operation is fast for a variety of conditions. Then we move

onto talk about high-level algorithms.

While implementing algorithms, we used the implementation provided by

Weka as a reference. The original Weka was written in java. But since our kernels

were written in CUDA, we used the C++ port which was available at [22]. For

a single algorithm there would be several implementations. A CPU implementa-

tion which uses, Weka’s in built data structure. Two other CPU implementations

which are written using Bitmaps and Bit-Slices. Two GPU implementations

which would use Bit-Slices and Bitmaps but would operate in non-batched mode

and two implementations which uses Bit-Slices and Bitmaps with batched oper-

ations (on GPU). For Naiv̈e Bayes, we also implemented an additional version

which uses a simple columnar structure. All these algorithms would have a part

36

where a count matrix or a contingency table is populated. Between different

implementations only part that differs is the part that calculate the contingency

table. In GPU implementations, actual computation happen on the GPU and a

complete contingency table would be transferred back to CPU.

Accuracy of the algorithms were measured with two approaches.

• By Comparing accuracy of the models built.

• By directly comparing model parameters.

To make sure that each implementation is building the same model, we compare

model parameters. To ensure that different iterations of the same implementation

creates same model across iterations, we compare accuracy.

4.0.1 Data Sets

For experiments with core algorithms, we are using synthetic Data Sets generated

by imputing different properties. For evaluating main High-level algorithms we

used Real-world Data Sets available in UCI machine learning repository [23]. To

test whether our implementation scales well with increasing volumes, we test our

Algorithms by increasing both the number of instances and attributes. By using

Data Sets with different attributes we achieve both Attribute-wise and instance-

wise scaling.

• USCensus - This is a Categorical Data Set with 68 attributes and two

million rows. This is created based on a survey done 1990, and this Data

Set has been used for Clustering tasks. Available at [24]

• PokerHand - This Data Set available at [25] contains 11 attributes and 1

million instances. This Data Set consists of both Categorical and Integer

data, but we are treating all instances as Categorical. Data Set has been

used in Classification tasks.

• KDDCup99 - This Data Set with 42 attributes and four million rows, is

based on a variety of intrusions simulated in a military network environ-

ment. Data Set contains Categorical and Numeric data. While using for our

37

experiments we had to convert Numeric columns to Categorical by splitting

those to ranges. This is hosted at [26] and has been used in Clustering and

Classification Algorithms.

4.0.2 Experimental setup

All experiments were performed on a computer with Intel Core 17-2600 CPU at

3,40GHz, with HyperThreading, 16GB of main memory, and equipped with a

GeForce GTX480 graphics card. The GPU consists of 15 SIMD multi-processors,

each of which has 32 cores running at 1.4 GHZ. The GPU memory is 1.5 GB with

the peak bandwidth of 177 GB/sec.

4.0.3 Results for Co-OccurrenceCount

These were actually a set of preliminary experiments we performed to check if the

particular operation is fast enough on GPUs. Since all other high level algorithms

are using this step as a building block, we first needed to get an idea how much

gain we can get on the individual operation. For this experiment we used a Data

Set with only two columns, each with a cardinality of 16. In total there were 256

patterns. Results of the first experiment is shown in Fig. 4.1. Actually the three

figures, 4.1, 4.2 and 4.3 depict the results of the same experiment. The plots were

created in three segments as the results cannot be shown in the same plot due to

the variations in results.

Fig. 4.1 show the scaling characteristics of CPU algorithms. Here we are

comparing CPU variants of Bit-Slice and Bitmap algorithms with Standard-CPU.

Note that the two variants do show an improvement since those structures are

space efficient and consume less space than the normal Row-wise representation.

In Fig. 4.2 the same two Bit-Slice and Bitmap graphs are shown again to

make a reference to the CPU variants. The comparison between CPU and GPU

variants of the same Algorithm shows the magnitude of speed up offered by GPU.

Comparison between GPU variants are shown in 4.3, where the difference between

Batched and non-Batched implementations are highlighted.

38

1,000,000 2,000,000 4,000,000 8,000,000 16,000,000

1

2

3

4

5

·106

2
.1
1
·1

0
5

4
.5
2
·1

0
5

9
.0
9
·1

0
5

1
.9
5
·1

0
6

4
.3

·1
0
6

4
5
,8
7
8
.2

9
6
,1
7
8
.7
5

1
.8
8
·1

0
5

4
.7
8
·1

0
5

1
·1

0
6

2
2
,3
7
4
.2

4
7
,8
8
0
.2

9
6
,9
2
8
.6

1
.9
4
·1

0
5

4
.0
6
·1

0
5

No. of instances

R
u
n
n
in
g
T
im

e(
µs
)

Standard-CPU BitSlices-CPU Bitmaps-CPU

1Figure 4.1: Execution time vs no. of instances - CPU Algorithms

1,000,000 2,000,000 4,000,000 8,000,000 16,000,000

0.2

0.4

0.6

0.8

1

1.2

·106

4
5
,8
7
8
.2

9
6
,1
7
8
.7
5

1
.8
8
·1

0
5

4
.7
8
·1

0
5

1
·1

0
6

2
2
,3
7
4
.2

4
7
,8
8
0
.2

9
6
,9
2
8
.6

1
.9
4
·1

0
5

4
.0
6
·1

0
5

6
,7
7
3
.8

9
,8
6
5
.8

1
4
,1
0
3

2
2
,0
4
1
.2

3
6
,5
2
0
.8

4
,2
3
7
.2
5

4
,7
5
5
.6

6
,6
6
2

9
,1
7
8
.8

1
3
,4
3
4
.2

No. of instances

R
u
n
n
in
g
T
im

e(
µs
)

BitSlices-CPU Bitmaps-CPU BitSlices-GPU Bitmaps-GPU

2Figure 4.2: Execution time vs no. of instances - CPU and GPU Algorithms

Fig. 4.4 shows how GPU variants behave as number of co-occurrences are

increased. We used a Data Set with 16 million elements while changing the

cardinality of the two columns. According to the graph, Batched Bitmap variants

scales better as patterns are increased.

4.0.4 Running time for Naïve Bayes

The goal of following tests is to assess performance of two Naïve Bayes implemen-

tations for GPU, with respect to CPU implementations. We mainly performed

39

1,000,000 2,000,000 4,000,000 8,000,000 16,000,000

1

2

3

4

·104

6
,7
7
3
.8

9
,8
6
5
.8 1
4
,1
0
3

2
2
,0
4
1
.2

3
6
,5
2
0
.8

1
,7
7
5
.6

2
,8
0
1
.2

3
,8
3
8
.2

6
,0
1
6
.8 9
,9
5
5
.4

4
,2
3
7
.2
5

4
,7
5
5
.6

6
,6
6
2 9
,1
7
8
.8 1
3
,4
3
4
.2

1
,3
3
8
.8

1
,7
8
3

2
,3
8
2

3
,5
7
4
.6

5
,2
1
0
.8

No. of instances

R
u
n
n
in
g
T
im

e(
µs
)

BitSlices-GPU BitSlices-GPU Batched Bitmaps-GPU Bitmaps-GPU Batched

3Figure 4.3: Execution time vs no. of instances - GPU Algorithms

8 16 32 64 128 256

1

2

3

4

·104

7
6
6
.8

1
,5
8
5
.8

3
,4
1
5
.2 7
,5
0
4
.2

1
6
,6
0
8
.2

3
6
,5
1
2
.4

3
2
7
.6

5
6
5
.4

1
,0
8
8
.8

2
,2
2
3 4
,6
6
6
.2

9
,9
6
5
.6

6
0
7

1
,0
2
6
.4

1
,8
7
2
.4

3
,5
5
6
.8 6
,8
4
2
.4

1
3
,4
7
1
.6

3
5
1
.4

5
0
8
.6

8
4
4
.2

1
,4
7
9

2
,7
2
2
.6

5
,2
2
5
.2

No. of Co-Occurances

S
p
ee
d
u
p

BitSlices-GPU BitSlices-GPU Batched Bitmaps-GPU Bitmaps-GPU Batched

4Figure 4.4: Execution time vs no. of Patterns

the test by using different Data Sets and recording execution time of each variant.

For the experiments we used 7 different implementations which are summarized

in Table 4.1.

In Fig. 4.5 we show the comparison with different Data Sets, according to

which we can see a clear difference between CPU and GPU variants. Here we

have directly compared CPU implementation with Batched-GPU variants, be-

cause that would give the maximum difference. While measuring time, we only

measured the time taken to build the model. Transfer times were excluded be-

cause a transfer would be done only once for multiple executions and can be

40

Table 4.1: Different implementations and their descriptions.

Algorithm Description
Standard-CPU Unmodified implementation provided by Weka.

Bit-Slice-CPU Algorithm that uses Bit-Slices, which runs on the
CPU.

Bitmap-CPU An implementation running on CPU using a Bitmap
representation.

Bit-Slices GPU The variant using Bit-Slices, which runs on GPU.
Bit-Slices GPU
Batched

The same variant as above, which performs opera-
tions in batches.

Bitmap GPU An implementation running on GPU which uses
Bitmaps.

Bitmap GPU
Batched

The bitmap variant running on GPU running opera-
tions in batches.

USCensus PokerHand KDDCUP

1

2

3

4

5

·106

2
.0
6
·1

0
6

2
.8
7
·1

0
5

2
.9
2
·1

0
6

6
.7
1
·1

0
5

2
.1
5
·1

0
5

4
.2
6
·1

0
6

2
3
,3
4
8
.4

7
,6
2
4
.2

1
.3

·1
0
5

4
.8
2
·1

0
5

1
.3
9
·1

0
5

1
.0
8
·1

0
6

2
3
,3
8
6
.8

6
,0
0
0
.8

7
2
,3
5
8
.4

R
u
n
n
in
g
T
im

e(
µs
)

Standard-CPU BitSlices-CPU BitSlices-GPU Batched Bitmaps-CPU Bitmaps-GPU Batched

1Figure 4.5: Execution times with Different Data sets Results for Naïve Bayes.

considered as a one time operation. And as larger Data Sets are used, transfer

time accounts for the larger proportion of time, which hides the speedup obtained

by GPU. The graphs show an average time which is an average of six iterations.

In the Standard-CPU variant, data is held in a row-wise structure and it does

not perform any encoding. Both in Bit-Slice and Bitmap representations, a re-

duction in Data Volume can be observed since the size of the column depends

on cardinality of the attributes. Reason for providing CPU variants for Bitmap

and Bit-Slice versions is to isolate this impact. When comparing CPU variant

with the GPU variant we can eliminate the boost given by specific characteristics

41

USCensus PokerHand KDDCUP

0.5

1

1.5

2

2.5

3

·105

5
2
,3
9
7

1
5
,5
0
6
.4

2
.5
4
·1

0
5

2
3
,3
4
8
.4

7
,6
2
4
.2

1
.3

·1
0
5

4
0
,9
3
6
.2

1
5
,3
3
0

1
.9
8
·1

0
5

2
3
,3
8
6
.8

6
,0
0
0
.8

7
2
,3
5
8
.4R

u
n
n
in
g
T
im

e(
µs
)

BitSlices-GPU BitSlices-GPU Batched Bitmaps-GPU Bitmaps-GPU Batched

2Figure 4.6: Executions on GPU with the three Data Sets.

of the representation and focus on speed up solely given by parallel processing.

The two Data Sets USCensus and PokerHand exhibit a similar pattern where

Standard-CPU takes the longest time. In KDDCUP, Bit-Slices-CPU accounts

for the slowest execution. While investigating on this what we found was that,

column cardinality of this Data Set was higher compared to the other two, and

now algorithm needs to run more iterations to populate the contingency table.

Batched execution is resilient to this, since iterations do not linearly increase as

cardinality increases.

When obtaining time for GPU based algorithms, initial result was omitted as

it usually takes an abnormally longer time since it also includes the time to load

CUDA drivers into runtime and do platform specific operations.

Fig. 4.6 shows a clear comparison between GPU variants. It shows running

time for the same Bit-Slice and Bitmap implementations, but additionally it also

shows results for non-batched mode. For USCensus and PokerHand Data Sets,

there is a noticeable difference between the two non-batched variants. Bitmap

algorithm runs faster than the Bit-Slice one. But for the same Data Sets, there is

very little difference between batched variants. While looking into the Data Sets

we found that, in both, there are many attributes with a cardinality less than

4. In the non-batched mode, Bitmap based algorithm would read two bitmaps

42

USCensus PokerHand KDDCUP

20

40

60

80

100

3
9
.4
1

1
8
.5
4

1
1
.5
1

8
8
.4
3

3
7
.7

2
2
.5
2

5
0
.4
4

1
8
.7
5

1
4
.7
7

8
8
.2
9

4
7
.9

4
0
.3
9

S
p
ee
d
u
p

BitSlices-GPU BitSlices-GPU Batched Bitmaps-GPU Bitmaps-GPU Batched

3Figure 4.7: Speedup over Standard-CPU on different Data Sets.

to produce result of a single intersection, but to produce the result for the same

intersection, Bit-Slice algorithm would read 4 Bit-Slices. In batched mode, both

the variants will be reading 4 Bitmaps to produce 4 results. Since memory trans-

fers are more uniform in batched mode, Bit-Slice and Bitmap algorithms run

equally fast. For KDDCup, the case is different, because most of its attributes

were numerical and while converting to categorical attributes, purposefully the

ranges were split to have many different categories. However for KDDCUP, we

get Batched Bitmap version running nearly two times fast as the Batched Bit-

Slice variant. This gives an indication that, for processing Data Sets with higher

cardinalities Bitmap variant suites better, but again this needs to be confirmed

through careful analysis, since Bitmaps have a tendency to increase volume as

cardinality increases, which again can bring down performance. However, since

these variants can be easily switched, we have provided the option to select the

most appropriate representation based on the characteristics of the Data Set.

In all cases, there is a clear difference between batched and non-batched vari-

ants. A batched variant reports nearly the half the execution time of the non-

batched counterpart. In some cases, Bitmap based algorithms have performed

better than Bit-Slice based ones, which is due to the latter having to read more

bits to produce the same result.

43

131,000 262,000 524,000 1,050,000 2,000,000

20

40

60

80

100

3
.0
6

3
.0
3

3
.0
7

3
.0
8

3
.0
8

4
.2
5 8
.3
5

1
7
.7
1

3
1
.0
5 3
9
.4
1

6
.6
9 1
3
.3
8

3
1
.7
4

5
0
.8
1

8
8
.4
3

4
.2
5 8
.3
5

1
6
.8
7

3
9
.8
7

5
0
.4
4

8
.4
3 1
3
.6
5

3
0
.6

5
6
.7
9

8
8
.2
9

No. of instances

S
p
ee
d
u
p

BitSlices-CPU BitSlices-GPU BitSlices-GPU Batched Bitmaps-GPU Bitmaps-GPU Batched

6Figure 4.8: Naïve Bayes speedup vs instance count

Fig. 4.7 Shows Speedups obtained against Standard-CPU execution. For

USCensus Data Set, the maximum speed up is nearly 80.

We also wanted to see how speed up changes as the data volume increases

which is depicted in Fig. 4.8. We measured running time for each variant as we

changed the instance count. To obtain the speed up we used running time of

Standard-CPU variant as the reference point. In this experiment we only used

USCensus Data Set. Bit-Slice-CPU variant was plotted to show the differences

between CPU and GPU variants. Unlike the GPU variants, Bit-Slice-CPU is

showing a constant speed up across all Data Set sizes. Another interesting prop-

erty we can see is that, even though there is a noticeable difference between

Bit-Slice and Bitmap GPU variants, the Batched counterparts show essentially

similar speed ups. This can be due to the characteristics of the particular Data

Set, but again this suggests that when using Batched mode Bit-Slices can used

as a generic representation hence it performs equally well as Bitmaps.

4.0.5 Results for Decision Trees

Fig. 4.9 shows the results for Decision Tree algorithm. Same evaluation and

preparation steps followed for Naïve Bayes were used while running the experi-

ments and verifying model accuracy. However, we did not execute non-batched

44

USCensus PokerHand KDDCUP

0.5

1

1.5

2

2.5

3

3.5

4

·107

3
.1

·1
0
7

1
.4
5
·1

0
6

1
.7
1
·1

0
7

5
.5
2
·1

0
6

3
.9
5
·1

0
5

1
.3
7
·1

0
7

1
.7
8
·1

0
6

2
.4

·1
0
5 4
.1
8
·1

0
6

2
.5
5
·1

0
6

1
.6
4
·1

0
5 5
.8
5
·1

0
6

1
.5
6
·1

0
6

1
.1
2
·1

0
5

3
.1
2
·1

0
6

R
u
n
n
in
g
T
im

e(
µs
)

Standard-CPU BitSlices-CPU BitSlices-GPU Batched Bitmaps-CPU Bitmaps-GPU Batched

4Figure 4.9: Execution times for Decision Tree with Different Data Sets

modes for Decision Trees, since batched modes themselves were not giving a con-

siderable speed up. There is a main difference between Naïve Bayes and this,

which is counting phase occurring multiple times for this algorithm. Each new

counting happens on a different partition and to filter counts by the partitions

we have to maintain an existential Bitmap. With the approach we are following,

these get generated on the host and then get copied over to Device. Each time

a new partition is to be processed, this existential bitmap gets transferred from

host to device, which becomes the main bottleneck in achieving higher speed ups.

Still the GPU variants finish faster than CPU ones, but the speedups are small.

Fig. 4.10 shows speed ups reported against Standard-CPU variant. Since we

only implemented batched variant on GPU, we are only showing speedup against

two algorithms.

In this chapter we discussed about the experiments we performed and the

results obtained. Through our experiments, we show that the techniques we use,

speeds up algorithm executions by a significant factor. Going by the previous

studies, we show results with multiple Datasets. We also show that our GPU

algorithms scales better in terms of data volume and number of patterns.

45

USCensus PokerHand KDDCUP

6

8

10

12

14

16

18

20

22

24

1
7
.4
1

6
.0
6

4
.0
9

1
9
.9
1

1
2
.9
6

5
.4
9

S
p
ee
d
u
p

BitSlices-GPU Batched Bitmaps-GPU Batched

5Figure 4.10: Speedup over Standard-CPU on different Data Sets.

46

Chapter 5

CONCLUSIONS AND RECOMMENDATIONS

According to the experiment results we showed in the previous section, we have

been able to achieve a speed up over 75 for Naïve Bayes and speed up over 12 for

Decision Trees. This is by keeping a uniform Data store and without implement-

ing algorithm specific structures. Through these experiments we show that if a

Data Mining algorithm can be expressed as a series of counting operations done

on a Bitmap Data Structure, then those can be implemented on our framework to

obtain a good speed up. Even though we have been mainly talking about counting

operation, it is not the only operation we can speed up with Bitmap structures.

Columnar operations such as RangeCount, Sum, Squared Sum are some other

operations which can be implemented and sped up with Bitmap processing.

Our broader intention was to extend Bitmap processing which currently is

mostly used in Frequent Itemset Mining. By,

• Implementing a Columnar Data Store based on Bitmaps

• Providing a set of GPU Kernels to manipulate the Data Store

• Implementing two Data Mining Algorithms

we have shown that algorithms which can be expressed in counting (more gen-

erally columnar) operations can be executed on a Bitmap based framework.

Since the framework combines Parallel processing with the advantages offered

by Bitmaps, we have shown that significant speed ups can be obtained by imple-

menting algorithms on this framework.

For the current scope of work, we only considered nominal attributes and

integers. But in order to support a wider variety of Applications we need the

framework to support numerical attributes as well. This can be done as a future

work.

47

Further, there are different ways of optimising core Bitmap operations. Using

Streams, changing task allocation and using vectorised Data Types for storing

data are few approaches we can take. Another aspect we need to improve is

limiting Bitmap transfers in Algorithms like Decision Trees.

Through this study we have shown how Counting based Algorithms can be

fitted into a common Bitmap based framework. We believe that the work covered

in this study would provide a ground work for building a Generic Bitmap based

Data Mining framework.

48

References

[1] Data Mining: Practical Machine Learning Tools and Techniques. Morgan

Kaufmann Series in Data Management Systems. Morgan Kaufmann, 3 edi-

tion, 2011.

[2] Bernard Marr. How much data do we create every day? the mind-blowing

stats everyone should read. url: https://www.forbes.com/sites/

bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-

the-mind-blowing-stats-everyone-should-read/#5e3bdedf60ba, 2018.

Online; Accessed 16 March 2019.

[3] Apache hadoop. url: https://hadoop.apache.org/, 2018. Online; Ac-

cessed 16 March 2019.

[4] Apache spark™- unified analytics engine for big data. url: https://spark.

apache.org/, 2018. Online; Accessed 16 March 2019.

[5] A. Gainaru and E. Slusanschi. Framework for mapping data mining ap-

plications on gpus. In 2011 10th International Symposium on Parallel and

Distributed Computing, pages 71–78, July 2011.

[6] Wenbin Fang, Ka Keung Lau, Mian Lu, Xiangye Xiao, Chi Kit Lam,

Philip Yang Yang, Bingsheng He, Qiong Luo, Pedro V. S, and Ke Yang.

Parallel data mining on graphics processors. Technical report, 2008.

[7] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer,

and Kevin Skadron. A performance study of general-purpose applications on

graphics processors using cuda. Journal of Parallel and Distributed Comput-

ing, 68(10):1370 – 1380, 2008. General-Purpose Processing using Graphics

Processing Units.

49

https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/#5e3bdedf60ba
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/#5e3bdedf60ba
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/#5e3bdedf60ba
https://hadoop.apache.org/
https://spark.apache.org/
https://spark.apache.org/

[8] C. Silvestri and S. Orlando. gpudci: Exploiting gpus in frequent itemset

mining. In 2012 20th Euromicro International Conference on Parallel, Dis-

tributed and Network-based Processing, pages 416–425, Feb 2012.

[9] Kang-Wook Chon, Sang-Hyun Hwang, and Min-Soo Kim. Gminer: A fast

gpu-based frequent itemset mining method for large-scale data. Information

Sciences, 439-440:19 – 38, 2018.

[10] Wenbin Fang, Mian Lu, Xiangye Xiao, Bingsheng He, and Qiong Luo. Fre-

quent itemset mining on graphics processors. In Proceedings of the Fifth

International Workshop on Data Management on New Hardware, DaMoN

’09, pages 34–42, New York, NY, USA, 2009. ACM.

[11] Ferenc Bodon. A trie-based apriori implementation for mining frequent item

sequences. In Proceedings of the 1st International Workshop on Open Source

Data Mining: Frequent Pattern Mining Implementations, OSDM ’05, pages

56–65, New York, NY, USA, 2005. ACM.

[12] Christian Böhm, Robert Noll, Claudia Plant, Bianca Wackersreuther, and

Andrew Zherdin. Data Mining Using Graphics Processing Units, pages 63–

90. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[13] Liheng Jian, Cheng Wang, Ying Liu, Shenshen Liang, Weidong Yi, and

Yong Shi. Parallel data mining techniques on graphics processing unit with

compute unified device architecture (cuda). J. Supercomput., 64(3):942–967,

June 2013.

[14] M. Harris. Optimizing parallel reduction in cuda. url: https://developer.

download.nvidia.com/assets/cuda/files/reduction.pdf, 4 2016. On-

line; Accessed 16-Feb-2019.

[15] G. Andrade, F. Viegas, G. S. Ramos, J. Almeida, L. Rocha, M. GonÃğalves,

and R. Ferreira. Gpu-nb: A fast cuda-based implementation of naÃŕve bayes.

In 2013 25th International Symposium on Computer Architecture and High

Performance Computing, pages 168–175, Oct 2013.

50

https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf

[16] John C. Shafer, Rakesh Agrawal, and Manish Mehta. Sprint: A scalable

parallel classifier for data mining. In Proceedings of the 22th International

Conference on Very Large Data Bases, VLDB ’96, pages 544–555, San Fran-

cisco, CA, USA, 1996. Morgan Kaufmann Publishers Inc.

[17] Manish Mehta, Rakesh Agrawal, and Jorma Rissanen. Sliq: A fast scalable

classifier for data mining. In Peter Apers, Mokrane Bouzeghoub, and Georges

Gardarin, editors, Advances in Database Technology — EDBT ’96, pages 18–

32, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.

[18] Yisheng Liao, Alex Rubinsteyn, Russell Power, and Jinyang Li. Learning

random forests on the gpu. 12 2013.

[19] Patrick O’Neil and Dallan Quass. Improved query performance with variant

indexes. In Proceedings of the 1997 ACM SIGMOD International Conference

on Management of Data, SIGMOD ’97, pages 38–49, New York, NY, USA,

1997. ACM.

[20] Ian H. Witten, Eibe Frank, and Mark A. Hall. Data Mining: Practical

Machine Learning Tools and Techniques. Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA, 3rd edition, 2011.

[21] Cécile Favre and Fadila Bentayeb. Bitmap index-based decision trees. In Pro-

ceedings of the 15th International Conference on Foundations of Intelligent

Systems, ISMIS’05, pages 65–73, Berlin, Heidelberg, 2005. Springer-Verlag.

[22] Weka-c++. url: https://sourceforge.net/p/wekacpp/, 2007. Online;

Accessed 16 March 2019.

[23] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[24] Us census data (1990) data set. url: https://archive.ics.uci.edu/ml/

datasets/US+Census+Data+(1990), 1990. Online; Accessed 16 March 2019.

[25] Poker hand data set. url: https://archive.ics.uci.edu/ml/datasets/

Poker+Hand, 1990. Online; Accessed 16 March 2019.

51

https://sourceforge.net/p/wekacpp/
https://archive.ics.uci.edu/ml/datasets/US+Census+Data+(1990)
https://archive.ics.uci.edu/ml/datasets/US+Census+Data+(1990)
https://archive.ics.uci.edu/ml/datasets/Poker+Hand
https://archive.ics.uci.edu/ml/datasets/Poker+Hand

[26] Kdd cup (1999). kdd cup 99 intrusion detection datasets. url: http:

//kdd.ics.uci.edu/databases/kddcup99/kddcup99.html, 1999. Online;

Accessed 16 March 2019.

52

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

	Declaration of the Candidate & Supervisor
	Acknowledgement
	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	Table of Contents
	Introduction
	Data Mining on GPUs
	Using Bitmap techniques for Data Mining
	Problem Statement
	Our Solution
	Contributions
	Organization

	Literature Survey
	Using GPUs for General purpose computing
	Parallel Data Mining Algorithms that uses Bitmaps
	Two FIM implementations with Bitmaps
	gpuDCI
	GMiner

	GPU Frameworks for Data Mining Applications
	GPUMiner
	Index Structure for Similarity Joins
	Framework for Mapping Data Mining Applications on GPUs
	Three techniques to improve Data Mining algorithms

	GPU Implementations for Naïve Bayes and Decision Trees

	Methodology
	Architecture
	Bit-Slice And Bitmap Representations
	Processing Bit-Slices on a CPU
	Counting a single element with Bit-Slices
	Counting co-occurrence of two elements

	Processing Bitmaps And Bit-Slices on GPU
	Processing Bitmaps on GPU
	Bit-Slice Processing on GPU
	Batching operations

	Algorithm Execution
	Implementing Naïve Bayes on framework
	Implementing Naïve Bayes
	Implementing Decision Trees on framework
	Building Decision Trees with Bitmaps
	Running Decision Trees on GPU

	Experimental Results
	Data Sets
	Experimental setup
	Results for Co-OccurrenceCount
	Running time for Naïve Bayes
	Results for Decision Trees

	Conclusions and Recommendations
	References

