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ABSTRACT

Spatio Temporal Forecasting of Dengue Outbreaks using Machine Learning

Dengue is one of the most critical public health concerns in Sri Lanka which imposes

a severe economic and welfare burden on the nation annually. Prior work has shown

that there are multiple factors that contribute to propagation of dengue, including

sociological factors such as human mobility. Therefore, it is a non-trivial task to

model the propagation of this disease accurately at a regional level. However, accurate

quantitative modeling approaches that can predict dengue incidence for a public health

administrative division would be invaluable in allocating valuable public health resources

and preventing sudden disease outbreaks.

In this study, we make use of large-scale pseudonymized call detail records of

approximately 10 million mobile phone subscribers to derive human mobility patterns

that can contribute towards disease propagation. We develop 3 distinct proxy indicators

for human mobility based on different assumptions and evaluate the suitability of each

indicator to accurately model the disease transmission dynamics of dengue. Using the

proxy measures developed by us, we go on to show that human mobility has a significant

impact on the disease incidence at a regional level, even if the disease is already endemic

to a given region.

Combining these proxy mobility indicators with other climatic factors that is known

to affect dengue incidence, we build multiple predictive models using different machine

learning methods to predict dengue incidence 2 weeks ahead of time for a given MOH

division. By introducing an automated input feature selection method based on genetic

algorithms, we show that we are able to improve the predictive accuracy of our models

significantly, with predictive models based on XGBoost yielding the best performance,

with an R2 of 0.935 and RMSE of 7.688.

Keywords: disease outbreak forecasting; human mobility models; mobile network big

data; machine learning applications;
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Chapter 1

INTRODUCTION

Dengue fever is a mosquito-borne tropical infectious disease that is caused by the

dengue virus, a positive-strand RNA virus of the family Flaviviridae and genus

Flavivirus [1]. There are four main serotypes of the virus identified as DENV

1-4, while a fifth serotype was also reported in October of 2013 [2]. Dengue fever

is spread by the day biting Aedes mosquito species. It is mostly observed in

tropical as well as sub-tropical regions of the world, and reported to be endemic

in over 100 countries. An estimated 390 million dengue infections occur each year

across the world, out of which 96 million infections show symptoms of apparent

manifestation [3]. In Sri Lanka, the focus region of our study, 55,150 dengue cases

were officially reported in 2016, the highest ever number of cases recorded for the

country at that time. However, in 2017, this number was eclipsed by a reported

186,101 cases, with severe dengue outbreaks in multiple regions of the country.

This highlights the need for possible forewarnings to contain sudden outbreaks

and effective utilization of limited public health resources as part of coordinated

effort to execute dengue prevention measures at a national scale.

In addition to the mortality and morbidity caused by dengue fever, it is

important to take the burden to the economy due to the prevalence of this disease

as well. While early detection and access to proper medical care can reduce the

rate of mortality for dengue to below 1%, there is a significant economic burden

from the morbidity caused by dengue. Stanaway et al. estimates 1.14 million

(95% confidence interval - 0.73 million - 1.98 million) disability-adjusted life years

(DALYs) were lost in 2013 globally due to mortality and morbidity from dengue

[4]. In the city of Colombo itself in Sri Lanka, the burden on the national health

care system for preventive measures alone was approximately 1 million US dollars

(US$ 971,360) for year 2012 [5].

In such a context, spatio-temporal forecasting of dengue outbreaks at a national
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or even regional level would be of significant value to the ongoing efforts to

control and prevent dengue outbreaks. Key among that would be the ability

for authorities to react before the actual occurrence of an outbreak to execute

targeted preventive measures that can potentially preempt a regional outbreak

of dengue incidence.

1.1 Problem

Forecasting the propagation of vector-borne infectious diseases at a regional level

has been done in prior studies by using multiple approaches. Purely mathematical

models as well as models that incorporate statistical and machine learning techniques

have yielded mixed results when it comes to modeling propagation of dengue

outbreaks across regions [6, 7, 8]. With the increased availability of ubiquitous

large-scale heterogeneous data sources and the tools to process such massive

volumes of data, there is huge potential in combining these heterogeneous data

sources to build more accurate predictive models. Mobile network big data

(MNBD) is one such ubiquitous data source that can be used to model human

mobility patterns. However, there are multiple research questions that need to be

explored in the domains of large-scale data processing, data fusion, and applied

machine learning when combining such datasets with traditional data sources

such as survey data, official government statistics and aggregated census data.

Multiple studies make use of mobile network big data to model human mobility

[9, 10, 11] at population-scale within different application domains. Several

studies explore the applicability of mobile network big data for modeling propagation

of infectious diseases as well [12, 13, 14, 15]. However, to the best of our knowledge,

there does not exist any previous work that derives proxy indicators for human

mobility that can be directly associated with a regional administrative district,

thus enabling fusion with longitudinal data associated with other risk factors

such as previous disease incidence, rainfall, temperature and total population.

Additionally, even though there exists work that shows the impact of human

mobility in propagating dengue to non-endemic regions, we could not find any
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work that quantified the impact of human mobility on regions where dengue

is endemic. Lastly, most of the work that forecast dengue outbreaks using

machine learning does not provide a comparison of model accuracy between

multiple machine learning methods, which would be of significant value to any

future researcher needing to decide which machine learning method to utilize

when developing forecasting models for infectious disease propagation. Our study

focuses on addressing those 3 key questions mentioned above.

1.2 Proposed Solution

We propose methodologies to derive 3 proxy indicators for human mobility,

that can be derived using mobile network big data and assigned to a regional

administrative district. Some of the human mobility models proposed in our work

have a specific focus on disease transmission characteristics of dengue, which we

believe would result in higher predictive accuracy for disease incidence forecasting.

We further go on to explore the question of whether human mobility has an

impact on propagation of vector-borne infectious diseases such as dengue, even in

regions where dengue is endemic. In addition to that, we build multiple machine

learning models to predict dengue incidence in several regions of Sri Lanka for

2014 and provide a comparison of model accuracy for different machine learning

methods and different input features. We go on to select the best performing

model based on this comparative analysis and discuss further steps that need

to be implemented in order for this model to be generalized to forecast other

infectious diseases as well.

1.3 Contributions

We make the following contributions in this thesis:

• Provide the methodology to obtain several proxy indicators for human

mobility that can be derived from processing population-wide longitudinal

mobile phone call detail records (CDRs), and provide the resultant mobility

proxy values for each medical administrative division of Sri Lanka
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• Propose a methodology to explore and quantify the impact of human mobility

on dengue propagation

• Provide results that establish the relationship between human mobility and

dengue incidence in a Sri Lankan context where dengue is endemic to most

regions of Sri Lanka

• Compare predictive accuracy between different machine learning methods

on forecasting dengue outbreaks for selected administrative districts of Sri

Lanka

1.4 Organization

The rest of this document is organized as follows. Chapter 2 presents summarizes

past and contemporary work in multiple domains that relate to our work and

details the insights we have drawn from each of these studies. Chapter 3 describes

the data set used in detail and the pre-processing techniques applied to each of

these data sources. In chapter 4, we describe the data driven models formulated

by us for understanding the impact of human mobility on propagation of dengue,

and present the formal definitions for each of these models. Chapter 5 describes

the methodology for developing the forecasting models. Chapters 6, 7 present

the results and discuss them in detail respectively. Finally, chapter 8 presents the

conclusion of our research while chapter 9 discusses future directions that can be

explored based on this research.
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Chapter 2

LITERATURE SURVEY

In this chapter, we look at prior work done in the area of forecasting the propagation

of infectious diseases. First of all, we look at literature on risk factors associated

with transmission and propagation of dengue fever. Then we go on to look at

work that has used human mobility models for modeling disease propagation

characteristics. Finally, we examine prior research studies that predict infectious

disease outbreaks using statistical modeling approaches as well as machine learning

based approaches.

2.1 Factors affecting propagation of dengue

Dengue is a virus that is transmitted to humans mostly by the day biting Aedes

aegypti and Aedes albopictus mosquito species [16, 17]. The distribution of these

vector populations have been directly linked to the disease from multiple studies

ranging back to the post world war II period [18, 19]. In light of these studies, a

global study done in 2015 [20] which attempts to map the global distribution of

these two mosquito species using reported samples and temperature constraints is

of significant importance when attempting to model the spread of these globally.

Many studies discuss in detail the relationship between weather related parameters

and dengue incidence [21, 22, 23]. In addition to the weather parameters, sociological

features such as human movement patterns [14], availability of potential mosquito

breeding sites, population density can also contribute towards propagation of

dengue outbreaks.

2.1.1 Weather related features

Multiple studies have shown that various weather related parameters affect the

dengue transmission risk factors such as the size of the vector population, incubation

period of the virus, and the biting rate of the mosquitoes. In a study done by Yang
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et al. in 2009, a series of temperature-controlled experiments were conducted to

assess the effects of temperature on the population of Aedes aegypti [24]. In

their model, they assessed different entomological parameters that would affect

the population size for different temperatures and model Q0, the basic offspring

number as a function of temperature.A 2014 study by Liu-Helmerssion et al.

document how the vectorial capacity of Ae. aegypti species change according

to the variation in temperature, and go on to map the epidemic potential for

dengue based on these findings [25]. Similarly, another study done in 2014 on

temperature constraints on the persistence of the main vectors Ae. aegypti and

Ae. albopictus show that temperature affects the length of the first gonotrophic

cycle of both mosquito species, and the oviposition suitability. It also shows that

the temperature affects the introduction suitability and the persistence suitability

of the disease in the two mosquito species at different rates. Interestingly, this

study highlights that Ae. albopictus, considered to be a secondary vector species

when compared to Ae. aegypti, can be much more resilient to changes in temperature

and have a higher vectorial capacity [26].

In addition to the temperature factor, there are multiple weather related

parameters that contribute towards a regional outbreak of dengue. A systematic

review of climatic factors that affect dengue incidence find that most studies

cite temperature, rainfall and relative humidity as critical factors for dengue

propagation [27]. It also highlights the importance of having long term climate

data as well as socio ecological data, and integrating different quantitative modeling

approaches with interdisciplinary research collaborations to advance the spatio

temporal modeling of dengue propagation. A study done in Singapore[21] demonstrates

that weekly mean temperature and cumulative precipitation at a time lag of 5-16

and 5-20 weeks respectively increases linearly with dengue incidence. Hu et al.

showed for a study done in Australia that a change in the amount of rainfall, in

conjunction with other climatic factors resulted in a change in dengue incidence

[28]. Another study made use of genetic algorithms to automatically derive the

best features that can predict dengue incidence after decomposing each input

feature into multiple terms using wavelet transforms [29]. The results indicated
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that cloudiness, maximum temperature, minimum temperature, humidity(max,

mean, and min), and rainfall intensity were contributing factors for dengue incidence.

Interestingly, mean temperature, a weather parameter that has figured significantly

in other studies [30, 23], was not selected as a significant input feature. At the

same time, several other contemporary studies conducted in Guadeloupe, French

West Indies[31] and in Singapore[32] show temperature effects to have a higher

influence on the dengue disease incidence rate when compared to rainfall.

In Sri Lanka, which is the focus of our study, prior work has highlighted the

relationship between dengue incidence and climate factors. A study in 2013 that

analyses the effect of climatic factors using timeseries data for 3 districts does

not find any strong correlations between dengue incidence and average maximum

temperature or total rainfall [22]. Another study done in 2016 for Kalutara

district finds that there is a strong association for rainfall at different time lags

and El Nino Southern Oscillation with dengue incidence [33].

2.1.2 Human Mobility

A study done by L.E. Muir and B.H. Kay in 1998 on Aedes aegypti report a

maximum dispersal of 160m [34] for this mosquito species while a much older

study in 1958 [35] cites 1150m. However, in general most of the work report that

a majority of Ae. aegypti mosquitoes disperse less than 80m [34]. A related study

done in Brazil by Honorio et al. [36] report a maximum dispersal range of 800m

for both Ae. aegypti as well as Ae. albopictus, another Aedes mosquito species

that can potentially transmit the dengue virus. Due to the limited spatial range

of the mosquito vectors of dengue, the propagation of the disease across large

regions is believed to be due to movement of infected humans. This has been

confirmed by several experimental studies as well [37, 12, 14].

2.2 Modeling Human Mobility

Modeling human mobility for the purpose of understanding disease transmission

dynamics has been done using various survey based, mathematical, computational
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and hybrid approaches [12, 6, 14]. Traditional survey data has been instrumental

in modeling human movement patterns in multiple domains such as transportation,

disease transmission, migration and related domains in sociology. However, with

the availability of other forms of large-scale heterogenous data sources such mobile

phone CDRs, and the tools and computational power to process such forms of

data, it has been found that combining such data with survey based data can

yield to more accurate, granular insights that had hitherto not being possible

[12, 13].

Widely used mobility models such as gravity model[38], radiation model,

disease transmission dynamics based SEIR, SIR [6] models, as well as more

customized models[39] have been used in multiple studies to describe human

movement patterns for the purpose of understanding the propagation of infectious

diseases. A study conducted by Brockmann [37] on how a pre-identified set

of dollar bills were circulated across the world is one of the first large-scale

experiments that attempted to track human movement patterns at global scale.

Using mobile phone CDRs to model human movement patterns had become

feasible with the advances in large-scale data processing techniques as well as

availability of increased computational power for academic purposes. A research

study done by Gonzalez et al. [40] is one of the earliest examples of using CDRs

to track the trajectory of individual users. Research done by Isaacman et al.

make use of CDRs to compare mobility patterns of users in different cities in [41].

The work of Isaacman and colleagues on identifying important places of users [9]

describes one of the key algorithms that has been used in much of the subsequent

work to identify home and work locations of a mobile phone subscriber. However,

the pioneering body of work done by Wesolowski et al. [42, 13, 14] has been the

most influential in understanding human mobility using pseudonymized mobile

phone CDRs in the context of infectious disease propagation. Similar studies

done by Bengtsson et al. [15] and Finger et al. [43] also make use of mobile

phone data to disease dynamics of infectious diseases.
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2.3 Disease Outbreak Forecasting

Modeling disease transmission dynamics to forecast the propagation of an infectious

disease, is an open problem that had been of significant interest to researchers and

practitioners in the health care industry for decades. Mathematical, statistical

models that were developed initially have been advanced and extended with the

availability of computational techniques to estimate parameters of these models.

In the case of dengue, there is a large body of work that describes numerous

mathematical, statistical, computational as well as hybrid techniques that had

been used to model and forecast the propagation of this disease.

2.3.1 Mathematical Models

Many studies [44, 45, 46] that model dengue propagation dynamics make use of

the SEIR-SEI model which is a variant of the SIR model, for which the early

work was done by Kermack and McKendrick [47]. The meta population model

introduced by Sarzynska et al. in 2013 [6] use ordinary differential equations

to model the population changes of each compartment in SEIR-SEI model. The

SEIR-SEI model divides the host and vector population to different compartments.

Each host in the population is considered to fall into one of the four categories:

susceptible (S), exposed (E), infected (I) or recovered (R). A vector is considered

to be in one of susceptible (S), exposed (E), or infected (I) states. The recovered

state is not considered for the vector since it is assumed that during the very

short life cycle of vectors such as mosquitoes, there is not enough time for a

vector to recover from the infection before it reaches the end of its life cycle. This

study further goes on to consider gravitation and radiation models of mobility to

model human movement patterns which is incorporated into the overall disease

propagation model. Other SIR based models have been developed further in

works such as [48] and [7]. The study in [7] is significant due to the fact that

it proposes a compartmental model that also considers secondary infections for

dengue. However, even though the theoretical model is proposed and justified in

this work, we could not find any work that had evaluated experimental results to
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validate whether the model is applicable in practical settings.

Apart from the compartmental SEIR models, many studies have used time

series based analysis for forecasting dengue outbreaks as well. Hii et al. has

conducted multiple studies that analyse dengue incidence as a time series to

forecast dengue outbreaks in Singapore[21, 30, 49]. This body work uses time

series Poisson regression to predict dengue incidence and also breaks down the

time series data into its seasonal, periodic and residual components to model

dengue. Auto-regressive Integrated Moving Average (ARIMA) models have also

been used in multiple studies [50, 51] as well as wavelet based approaches [52, 53].

2.3.2 Machine Learning Models

In addition to using purely statistical methods to predict dengue outbreaks,

recent studies have increasingly made use of hybrid computational approaches

that aid those statistical methods as well as machine learning models. If you

consider machine learning based approaches, techniques such as Neural Networks

(NN), Support Vector Machines (SVM) and Random Forests (RF) have been

used extensively. A study done in 2008 pre-processed dengue incidence data to

derive an entropy value, which was then used to train a neural network instead

of directly feeding the number of dengue cases to the model [54]. The model was

trained to predict whether a given week should be considered as an outbreak of

dengue hemorrhagic fever (DHF) or not. It was able to achieve an accuracy of

86% using this entropy based technique. Another study done in Singapore also

used Neural Networks to perform a regression where the number of dengue cases

were predicted, which achieved a correlation of 0.91 and an RMS error of 50.7 [8].

SVM based models were also used to predict dengue outbreaks in many studies

with good results. [55] compares a neural networks based approach against a

Least Squares - Support Vector Machine (LS-SVM) based approach, using dengue

incidence data for Malayasia, to show that LS-SVM gives a higher accuracy of

87% when compared to the 66% level of accuracy given by the neural networks

[55]. A more advanced support vector regression based approach broke down

10



the time series dengue incidence data using wavelet decomposition and used a

genetic algorithm (GA) based approach to predict the exact number of dengue

cases that will be reported [29]. Support vector machines have been widely used

in prediction of other infectious diseases as well [56, 57].

A more recent study done in Pakistan had made use of random forests to

predict dengue incidence [58]. One interesting feature of this study is that the

authors have used the awareness level as also an input feature to the model.

Awareness of the diseases, and awareness of best practices to prevent occurrence

of mosquito breeding sites by the community would arguably one of the important

features that can affect the spread of a disease such as dengue. However, we were

not able to find any other studies that included awareness as an input for training

the predictive model apart from this study.

A multitude of other machine learning techniques, as well as hybrid approaches

have been used to predict dengue incidence in many research studies. In addition

to the techniques described above, LASSO regression [59], models based on

cellular automata [60, 45], agent based modeling techniques [61], process based

models [23], fuzzy association rule mining [62] have been used to predict spatial

spread of dengue and other infectious diseases. However, it should be noted that

we could not find studies that compared between many techniques to establish

the suitability of a given technique for this particular problem.

2.4 Summary

Multiple studies have already focused on predicting dengue outbreaks using machine

learning and mathematical modeling, with varied levels of success. A careful

review of contemporary studies indicate that the transmission dynamics of a

complex disease such as dengue is highly dependent on the context, where a

multitude of factors related to seasonal weather patterns, the level of urbanisation,

human movement patterns and other sociological behaviours play a critical role.

As such, in order to determine which modeling techniques work best for a tropical

region where dengue is already endemic such as Sri Lanka, a comparison between
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different approaches for the same data set is needed.

Previous studies had made use of ubuiquitous secondary data sources such

as CDRs to model human movement which in turn was used to model disease

propagation. However, it is difficult to abstract these techniques to derive mobility

information that can be used as an input data set for any computational modeling

approach. Additionally, whether human mobility is a significant factor for propagating

dengue in an already endemic environment is a question that had not been

answered in domain literature to the best of our knowledge.

The methodology for our study, explained in detail in the next three chapters,

was focused mainly on addressing the gaps in literature identified above, and

developing an efficient computational approach to model spatio-temporal propagation

of dengue outbreaks accurately.
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Chapter 3

DATA COLLECTION AND PRE-PROCESSING

Our work focused on predicting dengue outbreaks for selected Medical Officer of

Health (MOH) divisions, which are administrative districts demarcated by the

Ministry of Health. In order to develop the predictive models, we first needed to

identify potential data sources that could be used as input for our models. Based

on our literature survey, the following sources were identified for data collection

and pre-processing.

• Weekly past dengue incidence data, reported for each MOH division

• Estimated population of each MOH division

• Pseudonmyized mobile phone CDRs

• Daily temperature measurements

• Daily rainfall measurements

• Vegetation cover

Different pre-processing techniques were used to clean and normalize the above

data sources. A short description of the pre-processing steps undertaken as well

as the nature of the data source itself is provided in the remainder of this chapter.

3.1 Dengue Incidence Data and Information on MOH Divisions

The number of confirmed dengue cases reported for each MOH division for each

week was obtained from the Epidemiology Unit, Ministry of Health [63] for 3 years

from 2012 to 2014. We were also able to obtain the 2014 population estimates for

each MOH division, as well as the digital shapefile that denoted the demarcation

boundaries for each MOH division.
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Table 3.1: Structure of a Call Detail Record

Caller Party ID Called Party ID Cell ID Call Time Call Duration
A24BC1571X B321SG141X 3134 13-04-2013 17:42:14 00:03:35

3.2 Pseudonymized Mobile Phone Call Detail Records

Pseudonymized mobile phone call detail records were obtained for a period spanning

more than 1 year from mobile network operators in the period of 2012-2013 for the

entire country. The mobile network operators assigned a unique identifier to each

mobile subscriber replacing his/her actual phone number in the entire dataset,

before the CDR data was shared with the researchers. The basic structure of a

call detail record that was available for this study is given in table 3.1.

Daily CDRs of voice calls for almost 10 million mobile phone subscribers were

analyzed to obtain the proxy indicators for mobility models described in chapter

4. The CDR dataset was filtered to get exactly 52 weeks of data from the entire

time-period for which data was available.

3.3 Temperature and Rainfall Measurements

Initially, we obtained weather data for a single year from the Department of

Meteorology, Sri Lanka for 112 weather stations for the year 2014 [64]. However,

it was decided not to use this dataset due to data quality issues. We also

explored the weather data sets available under the dark sky service which provides

historical weather data for any location [65]. However, we decided not to use that

as a source due to the unavailability of the methodology through which the data

was obtained.

Ultimately, weather data was obtained from the National Oceanic and Atmosperic

Administration (NOAA) Integreated Surface Database (ISD) [66] for 22 weather

stations across Sri Lanka. In general, weather data was reported on a daily

basis, while some measurements such as precipitation was reported in 12-hourly,

6-hourly or hourly intervals. This data was grouped according to the week

of the year, and converted to weekly aggregate measurements to obtain mean
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temperature, maximum temperature, minimum temperature and total precipitation

for each week.

3.4 Vegetation cover

Data regarding the vegetation indices were derived using remote-sensing data

available from the Moderate Resolution Imaging Spectroradiometer (MODIS)

satellite. We used the MOD13Q1[67] data product, which has data available at

spatial resolutions of 250m,500m,1km and 0.05 degrees. The temporal resolution

would vary according to the orbit of the satellite and was not available at a

granularity of 1 week. Due to the variations in temporal granularity, we derived

a composite value for the greenness of a particular spatial area for a 16-day period.

For the resolution used by us to derive the vegetation index, each pixel represents

a 250m x 500m (125,000 m2) area. The Normalized Difference Vegetation Index

(NDVI) value, which is an indicator of the amount of chlorophyll present for a

given resolution, was directly reported in the MOD13Q1 dataset. The 16-day

composite NDVI value obtained for each pixel was averaged across all the pixels

belonging to a particular MOH division to obtain the mean NDVI value for a

particular MOH division. We used the 16-day based mean NDVI value for a given

MOH division to assign weekly mean NDVI values, based on the assumption that

the NDVI value does not change significantly during a 2-week period.

3.5 Imputation of missing values

The identified input features had data available for different time-periods and

regions. Also, since we were considering time-series data, we used measured

input values for previous weeks or lagged values as well. For certain datasets,

the lagged values were not available. Due to these reasons, there were missing

values for some of the data points. After carefully reviewing the availability of

data and the quality of the data available, we decided to restrict our study to 20

MOH divisions where the weather data was also available. Even after applying

these restrictions, there were multiple missing data points which were imputed.
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For imputation of missing input values, we used the Multivariate Imputation

via Chained Equations (MICE) package available for R, where Predictive Mean

Matching (PMM) was used the imputation methodology [68].

3.6 Summary

The heterogenous nature of the different input data sources required significant

data processing and cleaning to be transformed to be compatible as input for

various computational models. The final cleaned data product had weekly dengue

incidence data, population of the MOH division, 4 weather parameters (maximum

temperature, minimum temperature, mean temperature, and total rainfall), and

mean NDVI values in addition to the 6 mobility measurements yielded by the

pseudonymized CDR data. All the easurements that were used as input features,

except for population, were lagged up to 12 weeks, yielding 167 variables spanning

for 3 years as the complete cleaned dataset. The process of deriving mobility

measurements using CDRs, the motivation and assumptions behind each mobility

model and the processing techniques are described in detail in the next chapter.
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Chapter 4

HUMAN MOBILITY MODELS

We derive multiple proxy indicators for human movement patterns and mobility

related risk, where some of our models consider specific dengue transmission

characteristics as well. All models, except for the 2 trip based models, consider

the location where a subscriber’s home or work place is situated. We came up with

6 mobility models based on 3 conceptual approaches to model human movement

patterns. Some of the models are extensions of similar work encountered in

literature and make use of the same assumptions, while others have been based

on our own intuition. In all of our models, it must be noted that we assume the

behavior of the mobile phone subscribers in our data set to be representative of

the entire population.

The 3 conceptual modeling approaches are based on the following high level

observations: (a) If a subscriber spends more time at a given region, he/she is

more likely to propagate or contract the disease from that region (b) The number

of people coming in and out of a given region would influence the risk of a region

having an outbreak (c) Risk of exposure would vary according to the time of day

and place where a subscriber spends his/her time.

4.1 Identifying Home and Work Locations

The BTS corresponding to the home and work location of a subscriber was

identified by considering the tower that appeared on most number of days during

a night time or day time, given a particular subscribers CDRs. We used the

methodology developed by Lokanathan et al. [69] to derive the home and work

location. Time between 1000 to 1500 hours was considered to identify tower

location that corresponded to work, while the time between 2100 and 0500 hours

was considered to identify the tower location corresponding to a subscriber’s

home location. The home or work MOH division was selected by considering
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MOH division on which the home/work BTS was located.

4.2 Probabilistic Mobility Model

We developed our initial mobility model based on the assumption that the amount

of time a particular subscriber spends in a particular region is proportional to

the number of calls he/she had made or received within that given region. This

assumption, while quite generic, was used by researchers previously to highlight

the role of human mobility in spreading of the disease in the 2005 cholera outbreak

in Senegal [43]. We believe that based on the results of that study, we are justified

in using that same assumption to develop a mobility model that assigns a mobility

value to each subscriber based on the probability he/she might be found within

a particular region for a given week. We go on to define two mobility values that

are assigned to each coverage area of BTS based on this model - visitation based

probabilistic mobility and exploration based probabilistic mobility. The formal

definition of these two mobility indicators has been described below.

4.2.1 Formal Definition - Visitation Based Probabilistic Mobility

Let us define B - Set of all BTS coverage areas, S - Set of all mobile phone

subscribers under consideration. Then, we define,

cdr(bi, sj, wk) = Number of CDRs in BTS bi, for subscriber sj,

during week wk, ∀bi ∈ B, ∀sj ∈ S

Visitation based mobility of subscriber sj at BTS bi, at week wk

∀bi ∈ B, ∀sj ∈ S : visitation_mob(bi, sj, wk) =
cdr(bi, sj, wk)∑B

i
cdr(bi, sj, wk)

(4.1)
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Visitation based mobility for BTS bi, at week wk

∀bi ∈ B : visitation_mob(bi, wk) =

∑N

j
visitation_mob(bi, sj, wk)

|N |
(4.2)

where N = {sj ∈ S | home(sj) 6= bi, cdr(bi, sj, wk) > 0}

4.2.2 Formal Definition - Exploration Based Probabilistic Mobility

Similar to above, let us define B - Set of all BTS coverage areas, S - Set of

all mobile phone subscribers under consideration. We define the other terms as

follows.

outside_cdr(sj, wk) =
∑T

i
cdr(bi, sj, wk)

∀sj ∈ S, ∀bi ∈ T, where T = {bi ∈ B | bi 6= home(sj)}

Exploration based mobility of subscriber sj at BTS bi, at week wk

∀sj ∈ S : exploration_mob(sj, wk) =
outside_cdr(sj, wk)∑B

i
cdr(bi, sj, wk)

(4.3)

Exploration based mobility for BTS bi, at week wk

∀bi ∈ B : exploration_mob(bi, wk) =

∑Q

j
exploration_mob(sj, wk)

|Q|
(4.4)

where Q = {sj ∈ S | home(sj) = bi}
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Figure 4-1: Mapping of BTS b(i) (bi) to MOH m(j) (mj)

4.2.3 Mapping Probabilistic Mobility Indicators to MOH divisions

In order to map a mobility value that was derived for a BTS tower coverage area

to an MOH division, we use the following definition.

Consider BTS bi and MOH mj overlaps as in figure 4-1. Then,

Abi = V oronoi cell based coverage area of BTS bi,

Amj
= Area of MOH mj,

Abi∩Amj
= Area of overlap between BTS bi and MOH mj,

xi = Per person mobility value for BTS bi,

xj = Per person mobility value for MOH mj

We define an MOH based overlap ratio, RMij
as follows:

RMij
=
Abi∩Amj

Amj

(4.5)

Then, per person mobility value for MOH mj, denoted by xj is:

xj =
∑N

i
xi ×RMij

=
∑N

i
xi ×

Abi∩Amj

Amj

(4.6)
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4.3 Trip Based Mobility Model

For comparison, we utilized a mobility model that was based on the number of

trips by a mobile phone subscriber from one BTS coverage area to another. A

trip is defined as a consecutive pair of call detail records for a given subscriber

where the corresponding BTS tower ID is different. We also impose an upper

bound of 1 day and a lower bound of 10 minutes for the trip. An upper bound

was introduced so that a trip can be time bound to avoid noise that might get

introduced if trips overlapping multiple weeks are considered for the model. The

lower bound was decided based on similar thresholds that were introduced in

previous studies [70].

4.3.1 Formal Definition - Trip Mobility

Let us define M - Set of all MOH, S - Set of all subscribers of the network. Then

we define,

trips(sj, bp, bq, wk) = Number of trips by subscriber sj from bp to bq,

during week wk, ∀ bp, bq ∈ B | b 6= q, ∀ sj ∈ S

We define Rv as the set of subscribers residing in coverage area of BTS bv.

We denote Per Person Trip Mobility for BTS bv from BTS bp to BTS bq during

week wk as ppt(v, bp, bq, wk). Then,

pptm(v, bp, bq, wk) =

∑Rv

j
trips(sj, bp, bq, wk)

|Rv|

Per Person Trip Mobility from BTS bp to BTS bq during week wk will be,

∀bp, bq ∈ B, ∀sj ∈ S : pptm(bp, bq, wk) =
∑B

v
pptm(v, bp, bq, wk) (4.7)
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4.3.2 Mapping Trip Mobility Indicators to MOH Divisions

Mapping mobility values derived for a BTS coverage area was estimated for an

MOH division using the following formula.

Consider that a trip originates from coverage area of BTS bp, which overlaps

MOH mi, and destination lies in coverage area of BTS bq, which overlaps MOH

mj. Then using the definition 4.5 above,

pptm(mi,mj, wk) =
∑B

p

∑B

q
pptm(bp, bq, wk)×RMpi

×RMqj
(4.8)

4.3.3 Normalized MOH based trip mobility

By using the per person trip mobility value define in equation 4.8 above, we derive

Normalized Outgoing Trip Mobility and Normalized Incoming Trip Mobility as

follows:

For a given MOH mi, normalized outgoing trip mobility is defined as,

∀mi ∈M : trip_mob_out(mi, wk) =
∑M

j
pptm(mi,mj, wk) (4.9)

Similarly, for a given MOH mj, normalized incoming trip mobility is defined

as,

∀mj ∈M : trip_mob_in(mj, wk) =
∑M

i
pptm(mi,mj, wk) (4.10)

4.4 Mobility based Risk Model

We also developed a third model to derive a risk score based on CDR data that

takes into account the location and the time of day of a particular subscriber.

The motivation behind giving different risk scores based on location and time

of day is due to the fact that Aedes aegypti, the primary vector for dengue, is

a day biting mosquito, and the risk of getting bitten by an infected mosquito

would depend on the time of day and the location. Based on the observation of

a mobile phone subscriber at a particular location, inferred by the BTS location
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of a single call detail record, we assign the following risk scores for each location

and time band. A more theoretical approach to modeling risk has been discussed

in a study done by Stoddard et. al in 2009 [71]. However, their model is not

validated against actual data and is discussed by considering an example. Some

of the entomological parameters needed for these models such as biting rate of

mosquitoes for a given site, the proportion of vectors at a given site etc. will be

difficult to estimate at a national scale in practice.

Table 4.1: Risk score based on time band and location type

Location Type Time Band Risk Score

Home
06:00 - 09:00 0.5
17:00 - 19:00 0.5

Other 0.3

Work
06:00 - 09:00 0.7
17:00 - 19:00 0.7

Other 0.4

Other
06:00 - 09:00 0.8
17:00 - 19:00 0.8

Other 0.6

The time bands are selected based on the fact that Aedes aegypti mosquito

vector is mostly active just after sunrise, and just before sunset [72]. Using these

initial risk scores, we derived two risk indicators representing a single MOH.

Formal definition for these two risk indicators is described below.

4.4.1 Formal Definition - Mobility based Risk

Let us define M - Set of all MOH, S - Set of all subscribers of the network, C -

Set of all CDRs, L - Set of all location types. T - Set of all time bands. Then we

define,

cp(l, t, sj, bi, wk) = A call detail record at location type l,

within time band t, of subscriber sj, atBTS bi,

during week wk, ∀l ∈ L,∀t ∈ T,∀ bi ∈ B, ∀ sj ∈ S

Then we define risk as risk(sj, wk) for a given subscriber sj, and the presence
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of a subscriber in BTS bi as presence(sj, bi, wk), during week wk as follows:

risk(sj, wk) =

∑Cj

p
risk(cp(l, t, sj, bi, wk))

|Cj|

where cp ∈ Cj ⊂ C|subscriber(cp) = sj

presence(sj, bi, wk) =

∑Cji

p
cp

|Cj|

where cp ∈ Cji ⊂ C|subscriber(cp) = sj & bts(cp) = bi

We additionally denote by Sik as the set of subscribers seen in BTS bi, during

week wk. Then we go on to define two risk indicators based on the above

formulations. Direct risk score, denoted by direct_risk(bi, wk), is derived by

only considering the average risk scores of each subscriber that visited a given

BTS coverage area. Risk score based on the percentage of the presence of a

subscriber, percent_risk(bi, wk), considers the fraction of presence of a user as

well as his/her risk score for the week wk.

∀ bi ∈ B direct_risk(bi, wk) =

∑Sik

j
risk(sj, wk)

|Sik|
(4.11)

∀ bi ∈ B percent_risk(bi, wk) =

∑Sik

j
risk(sj, wk)× presence(sj, bi, wk)

|Sik|
(4.12)

4.4.2 Mapping Risk Scores to MOH divisions

In order to map risk scores to MOH division, equation 4.6 described in sub section

4.2.3 above is used.
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4.5 Summary

The 6 mobility models were developed based on 3 different conceptual approaches

because we wanted to experiment and understand which assumptions provide

the best results for our models. In order to process such large volumes of

data, we used a cluster of 10 machines based on commodity PCs to run Apache

Hadoop and Spark, where an offline processing job using Apache Spark was run

to perform the necessary aggregations for each model. After the output from the

processing of CDRs was available, validations and experimental visualizations

were performed to verify the accuracy of the resultant mobility proxy indicators.

The mobility data, combined with other weather parameters were used to build

the final prediction models. Our approach to develop those predictive models is

described in detail in the next chapter.
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Chapter 5

DEVELOPING FORECASTING MODELS

Since prior literature did not conclusively point towards a single computational

technique to model spatio-temporal dengue propagation, and one of our research

objectives was to identify which techniques work best in this context, our methodology

conisted of multiple experimental steps before the final models were trained.

Model performance was measured using both RMSE and R2 with more weight

given to improving R2 since it accounts for the variance of the data. Initial

exploration of the data set was limited to 6 MOH divisions where normalization

and transformation techniques were applied to determine whether such transformations

increased predictive accuracy. The machine learning methods used for the final

round of training was determined based on the initial exploration performance.

In addition to that, correlation between variables was measured using multiple

techniques due to the fact that we wanted to capture non-linear relationships

between variables as well. The initial traning of the machine learning models

were done by feeding all available input variables, which affected the performance

of some techniques such as neural networks. The genetic algorithm based feature

selection was introduced later on which significantly improved the performance

across all models.

5.1 Exploring the data set

We initially selected 6 MOH divisions and built preliminary models using data

for that 6 MOH divisions. The MOH divisions were Nuwara Eliya, Galle, Kandy,

Anuradhapura, Kurunegala and Moratuwa. In that phase, data from 2012 and

2013 were used as training data, but excluding the data for year 2013 from

Moratuwa MOH division. Data from 2013 for Moratuwa MOH was used as

the test set for the exploratory analysis conducted. For exploration, we utilized

generalized linear modeling techniques to build predictive models after applying
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various pre-processing steps such as log scaling, normalized response variables,

using principal components of the predictors instead of using the predictors

themselves. We also trained predictive models using the four machine learning

techniques that were eventually used (neural networks, support vector regression,

random forests and XGBoost), without the genetic algorithm based optimization.

Hyper parameter tuning was done using different R packages available. For neural

networks, hyper parameter tuning was done using the caret[73] package, while in-

built tooling of the e1071 R package was used for tuning support vector regression

models. For random forests and XGBoost, parameter tuning was done manually.

5.2 Correlation Analysis

Prior to training the final machine learning based models, we measured the

correlation between different input features and the dengue incidence by using

the pre-processed data. Pearson’s correlation[74] measurement was used initially,

which can verify the existence of a linear relationship between two given variables.

However, this correlation metric is unable to capture non-linear relationships.

Therefore, we made use of other correlation measures as well. For this purpose, we

used distance correlation [75] and mutual information measure between variables

[76].

5.3 Input data for the model

After initial data exploration, we separated the available data set of 3,120 data

points for 20 MOH divisions spanning years 2012-2014 into two separate sub sets:

a training data set and a test data set. We did not make use of a validation data

set due to the limited number of data points available for training. For 5 MOH

divisions, namely Colombo-MC, Galle, Kandy, Jaffna and Haputale, the data for

the entire year of 2014 was considered as test data set. All remaining 2,860 data

points were used for training. We did not consider the value of each input variable

for a given week and for the week before that. Only the input feature values 2

to 12 weeks before was considered so that the model is forecasting 2 weeks ahead
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using the current data.

In the Sri Lankan context, dengue outbreaks within the Colombo municipal

council is of significant interest due to the fact that highest dengue incidence is

reported each year from this MOH division. It is also the commercial capital

of Sri Lanka and acts as a hub for human mobility. Therefore we wanted to

see whether our models could accurately predict dengue incidence for a critical

administrative region such as Colombo-MC. For this reason, model performance

metrics for Colombo-MC was calculated separately for each machine learning

method.

5.4 Measuring performance of the model

After getting the predicted dengue incidence values using the trained models and

comparing the against the actual values that were reported, we used two separate

metrics to estimate the performance of each model. Only predictions for the test

data set were used to calculate the model performance. The two metrics used

were Root Mean Squared Error (RMSE), which gives you an idea about how much

your model deviates from the actual value on average, and R2, the co-efficient

of determination. The following standard formulas were used to calculate RMSE

and R2 measures.

RMSE =

√ ∑n

i=1
(yi − ŷi)2

n
(5.1)

yi = ithobservation of the response variable

ŷi = ithprediction of the response variable

R2 = 1−

∑n

i=1
(yi − ŷi)2∑n

i=1
(yi − ȳ)2

(5.2)
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ȳ = Mean of response variable

5.5 Genetic Algorithm based optimization

In order to select features that are most relevant for a model, we developed a

genetic algorithm (GA) based approach. A similar approach was described by

Wu et al. [29] for a study conducted in Singapore. However, the approach

used for our study had some key differences from the approach described in that

study. First of all, a cross validation approach was used in [29] to determine

which features were used as input for the final model. In our approach, the

selection of the features is based on the best models of a certain generation,

which would be carried to the next generation automatically. Additionally, in

[29], the feature selection was not constrained to have mandatory inclusion of

features derived from a given data source. Therefore, there was a possibility for

all derivative features of a particular data sources to be entirely excluded from

the model, while the derivative features of another data source might be included

in its entirety. Additionally, since we derive multiple time lagged features from a

single data sources, there is a possibility for these derived features from the same

data source to have significant auto correlation. Therefore, we constrained the

feature selection process such that only a configurable minimum and maximum

amount of features from a given data source is allowed.

We used the GA package available for R [77] and used binary chromosome

based GA for feature selection. Custom R functions were written to evaluate

the fitness of each model and constraining of the maximum number of features

were done by overriding the default crossover function. We also made use of the

parallel GA feature and used a cluster of machines running in parallel to speed

up the training process. The configuration parameters for the genetic algorithm

is summarized in table 5.1.
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Table 5.1: Parameters for the genetic algorithm

Parameter Value
Population size 100
Maximum iterations 50
Crossover Probability 0.8
Mutation Probability 0.1
Elitism 5
Parallel back-end PSOCK
Number of worker machines 8
Number of cores per worker 6

5.6 Machine Learning Methods

We evaluate several machine learning techniques to predict dengue outbreaks for

a given MOH division. The techniques we used and the reason for selecting each

different technique is described below briefly.

5.6.1 Neural Networks

We selected neural networks as one of the techniques to be evaluated because of

its popularity in literature, which makes it ideal to be used for comparing our

work against similar contemporary studies. We use the R package ’neuralnet’[78]

and trained with time lagged input features after pre-processing was done as

described in chapter 3. We experimented with different algorithms, activation

functions, error functions and different architectures with multiple hidden layers

of neurons. Based on experimental results and manual tuning of parameters, the

neural network for the final results used sum of squared errors (SSE) as its error

function, a threshold of 0.01 in the difference in error to stop training iterations.

Resilient back propagation with weighted backtracking was used as the algorithm

for adjusting weights. Activation function used was a logistic function.

5.6.2 Support Vector Machines

Support vector machines were also selected since it was had performed quite well

in disease outbreak prediction according to multiple studies [29, 55, 57]. In broad

terms, support vector machines consider a data point to lie in n-dimensional
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space and attempts to find the maximum margin hyperplane that classifies the

data according to the class labels. The theory behind support vector machines

was developed by Cortes and Vapnik in early 1990s [79]. For our work, we use

support vector regression (SVR), which was developed on the same theoretical

basis as the classification algorithm [80].

We used the ’e1071’ package in R [81] to train our models and initial hyper

parameter tuning was done using the ’caret’ package [73]. For the final SVR

model, we use a radial basis function kernel, with ν-regression and a cost of 3,

where the ν value is set to 0.35, γ value of 0.004. 4-fold cross validation was used

when training the model.

5.6.3 Random Forests

We used random forests [82] also as a method to develop forecasting models

because of its suitability for a wide-ranging set of problems in machine learning,

as well as the fact that its decision tree based methodology provides information

on which input variables contributed most for the output generated by the model.

The ’randomForest’ package in R [83] was used with the number of trees being

set to 120 after experimenting with different values.

5.6.4 XGBoost

XGBoost is a distributed gradient boosting technique that was developed by

Chen and Guestrin [84] and initially released in 2014. It has gained significant

popularity in machine learning platforms such as Kaggle due to the fact that it

has performed better than other well known machine learning algorithms []. We

selected XGBoost as one of the machine learning methods to be evaluated because

of it was giving better results than the above mentioned algorithms in multiple

domains and the time required to train models using XGBoost was comparatively

less when compared to a method such as neural networks. The R implementation

in [85] was used with linear regression as the objective function. Step size η was

set at 0.05 with the maximum depth of a tree limited to 4. 4-fold cross-validation
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was used to train the models with maximum number of rounds set at 10,000.

5.7 Summary

We took careful consideration to ensure that a same amount of effort was expended

when tuning each of the different machine learning techniques so as not to give

any unfair advantage to any single technique. After final tuning parameters

were determined, the genetic algorithm based selection and optimization was

scripted and run automatically without any intervention on an Intel Xeon Quad

Core E5-1603 CPU at 2.8 GHz, with 64 GB of RAM. The model performance

for each machine learning method was recorded along with the model itself for

further comparison and evaluation. The accuracy of the prediction results and

the analysis of the results is presented in chapters 6 and 7.
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Chapter 6

RESULTS

In this chapter, we present results for all the experiments and evaluations described

in chapters 3, 4, and 5. First of all, we present the visualizations from the mobility

models, which we use to intuitively verify whether the underlying assumptions

hold for this dataset. Then we go on to describe the results on correlation

analysis to show that there is high correlation between human mobility and

dengue incidence. Finally, we present the model performance for each machine

learning technique. We also present the accuracy of predictions when considering

only Colombo-MC MOH division, since Colombo is an outlier for our model due

to its high disease incidence, and it is also a critical commercial and administrative

hub through which dengue can propagate to the rest of the country quite easily.

6.1 Mobility Models

Mobility indicator values for each mobility model were visualized both temporally

as well as spatially to verify that the results conformed to patterns observed

in previous studies [86, 87, 69]. For temporal visualization of results, 4 MOH

divisions were considered: Colombo-MC, Kandy, Galle and Jaffna. For spatial

visualization, mobility data for the 32nd week was selected, which falls in the

beginning of August, which is approximately 2-3 months before a peak in dengue

incidence observed that year.

For all of the derived mobility based models, we could see a significant decrease

in mobility during week 14 to 16. This coincides with the traditional Sinhalese

and Tamil new year celebrated in Sri Lanka, where it is customary for people to

return to their ancestral homes to participate in the traditional celebrations.

In the probabilistic models described in section 4.2, the reduced mobility is

evident for all 4 MOH divisions that were considered. However, it is interesting

to note that for the visitation based model, which was based on the number
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Figure 6-1: Visitation based probabilistic mobility for 4 MOH divisions

of people residing in other MOH divisions visiting a given MOH, there is a

significant drop in mobility during Week 14-16 for Colombo-MC (Fig. 6-1), while

for the exploration based model, which was based on residents of a particular

MOH visiting other MOH divisions, there is an increase in mobility in week

16 in Colombo (Fig. 6-2. This confirms the expected pattern where people

are moving out of Colombo, the urbanized commercial capital in Sri Lanka. It

is noteworthy that even with the simplistic assumptions used to model human

movement patterns in this case, our data driven models were able to capture this

large-scale mobility dynamics quite well. In Fig. 6-1, we can also see an increase

in visitation based mobility in Kandy during the weeks 31 and 32, which coincides

with an international sporting event held during the same period.

When probabilistic mobility models are visualized for a single week for the

entire country, we are able to observe significantly higher levels of mobility in

urban regions such as Colombo and Kandy. Both exploration and visitation

based models show a similar spread in intensity for the given week (See Figs.

6-3a, 6-3b).
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Figure 6-2: Exploration based probabilistic mobility for 4 MOH divisions

(a) Visitation based (b) Exploration based

Figure 6-3: Normalized probabilistic mobility - Week 32
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Figure 6-4: Trip based outward mobility for 4 MOH divisions

For trip based mobility, we visualize after getting the natural logarithm of the

reported value. The significant decrease in mobility for week 16 is quite evident

in this model as well (Figs. 6-4, 6-5). However, this model does not seem to

capture the increase in presence at Kandy during week 31-32. However, it shows

an increasing amount of mobility towards week 32-34 with a peak in week 34.

Week 32-34 coincide with the Kandy Perehara, another traditional festival that

is held in the month of August. Interestingly, the pattern for outward trips and

inward trips is very much similar temporally (Figs. 6-5, 6-4) as well as spatially

(Figs. 6-6a, 6-6b).

In the mobility based risk models as well, we see the decrease in mobility

during the traditional new year period. Once again, we can see that both the

models have similar values both temporally and spatially (See Figs. 6-7, 6-8,

6-9a, 6-9b)
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Figure 6-5: Trip based inward mobility for 4 MOH divisions

(a) Outward trips (b) Inward trips

Figure 6-6: Normalized log scaled trip mobility - Week 32
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Figure 6-7: Mobility based total direct risk (log scale) for 4 MOH divisions
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Figure 6-8: Mobility based total percent risk (log scale) for 4 MOH divisions
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(a) Direct risk (b) Percent risk

Figure 6-9: Log scaled mobility based total risk - Week 32

6.2 Correlation Analysis

Pre-processed data for 20 MOH divisions was used to measure correlation between

variables. Initially, no time-lagged features were considered and correlation between

all variables was visualized. We could observe high correlation between different

mobility features, as well as between related weather features such as mean

temperature, min. temperature and max.temperature (Fig. 6-10.)

Since we are mainly interested in the correlation between dengue incidence for

a given week against all the input features that can be used in building a model,

correlation of a all possible input features (including time-lagged features) with

dengue incidence was measured. We calculated Pearson’s correlation, distance

correlation and mutual information estimate for 133 potential predictor variables,

which included multiple time-lagged features for the same data source as well.

The highest correlated value from each separate input data source, as well as the

time-lag in weeks for which the correlation value was reported against is presented

in table 6.1 for all the 3 methods of correlation.

Pearson’s correlation measured against dengue incidence did not show any
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Table 6.1: Highest correlation with dengue incidence for each input data source
using multiple methods of correlation

Input data source

Pearson’s
Correlation

Distance
Correlation

Mutual
Information

Time
lag

Abs.
Value

Time
lag Value Time

lag Value

Past Dengue
Incidence 2 0.889 2 0.880 2 0.443

Population N/A 0.769 N/A 0.727 N/A 0.341

Visitation Based
Probabilistic Mobility 11 0.311 12 0.415 11 0.237

Exploration Based
Proabilistic Mobility 4 0.216 4 0.274 4 0.140

Outward Trip
Mobility 9 0.061 11 0.213 2 0.148

Inward Trip Mobility 9 0.059 12 0.212 3 0.145

Mobility Based Direct
Risk 6 0.130 12 0.182 8 0.120

Mobility Based
Percent Risk 11 0.345 12 0.405 11 0.228

Mean NDVI 12 0.371 12 0.382 11 0.118

Mean Temperature 12 0.124 12 0.191 10 0.108

Maximum
Temperature 12 0.058 4 0.187 6 0.115

Minimum
Temperature 12 0.141 10 0.176 10 0.079

Total Precipitation 8 0.131 8 0.176 6 0.037
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Figure 6-10: Pearson’s correlation between variables (without time-lagged data)

features with high correlation except for the past dengue incidence. However, for

distance correlation and mutual information estimate, derived mobility indicators

showed significant correlation (Fig. 6-11).

6.3 Predictive Models

The results from training the data using the four machine learning techniques is

summarized in table 6.2. From those results, XGBoost is the machine learning

method with best performance, providing an overall RMSE value of 7.688 and

an R2 of 0.935. Performance of neural network models was significantly lower.

But SVM and random forests had comparable performance when compared to

the best performing XGBoost method.

For Colombo-MC, the RMSE and R2 values were calculated separately and

reported for each machine learning method. The results are presented in Table

6.3. Even for a single MOH division, we see that the best performing model is

generated by XGBoost when the risk based mobility model is being used.
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Table 6.2: Model Performance for 20 MOH divisions (GA - Genetic Algorithms,
NFC - Without feature classes, FC - With feature classes)

Machine
Learning
Method

Mobility
Model

Without GA GA NFC GA FC

RMSE R2 RMSE R2 RMSE R2

Support
Vector

Regression

N/A 10.034 0.889 8.961 0.911 9.037 0.91

Probabilistic 10.082 0.888 9.061 0.909 9.044 0.91

Trip based 10.161 0.886 9.074 0.909 9.076 0.909

Risk based 10.078 0.888 9.050 0.909 9.018 0.91

All 10.223 0.884 8.969 0.911 9.009 0.91

Random
Forests

N/A 10.553 0.877 9.808 0.894 9.738 0.895

Probabilistic 10.153 0.886 10.452 0.879 10.486 0.878

Trip based 10.570 0.876 9.927 0.891 9.729 0.895

Risk based 10.060 0.888 9.582 0.898 9.966 0.890

All 10.658 0.874 10.472 0.879 10.114 0.887

XGBoost

N/A 10.077 0.888 8.035 0.929 8.153 0.926

Probabilistic 10.102 0.887 8.158 0.926 8.06 0.928

Trip based 9.977 0.89 8.089 0.928 7.791 0.933

Risk based 9.678 0.896 7.910 0.931 7.688 0.935

All 9.980 0.89 7.956 0.93 8.079 0.928

Neural
Networks

N/A 33.006 -0.205 13.203 0.807 12.838 0.818

Probabilistic 33.897 -0.271 14.153 0.778 17.214 0.672

Trip based 33.959 -0.276 11.667 0.849 12.227 0.835

Risk based 34.772 -0.338 15.373 0.739 13.808 0.789

All 32.513 -0.169 12.816 0.818 13.245 0.806
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Table 6.3: Model Performance for Colombo-MC MOH division (GA - Genetic
Algorithms, NFC - Without feature classes, FC - With feature classes)

Machine
Learning
Method

Mobility
Model

Without GA GA NFC GA FC

RMSE R2 RMSE R2 RMSE R2

Support
Vector

Regression

N/A 20.677 0.559 18.193 0.659 18.355 0.653

Probabilistic 20.798 0.554 18.518 0.647 18.24 0.657

Trip based 20.914 0.549 18.206 0.658 18.49 0.648

Risk based 20.813 0.554 18.455 0.649 18.148 0.661

All 21.002 0.546 18.234 0.657 18.214 0.658

Random
Forests

N/A 21.997 0.501 19.956 0.59 19.841 0.594

Probabilistic 20.944 0.548 21.393 0.528 21.437 0.526

Trip based 21.817 0.510 20.002 0.588 19.562 0.606

Risk based 20.491 0.567 19.159 0.622 20.136 0.582

All 21.848 0.508 21.375 0.529 20.335 0.574

XGBoost

N/A 20.724 0.557 15.458 0.754 15.800 0.743

Probabilistic 20.456 0.569 15.467 0.754 15.147 0.764

Trip based 20.403 0.571 15.224 0.761 14.518 0.783

Risk based 19.217 0.619 14.995 0.768 14.241 0.791

All 19.914 0.591 14.781 0.775 14.903 0.771

Neural
Networks

N/A 72.832 -4.466 27.293 0.233 25.509 0.33

Probabilistic 74.476 -4.715 27.579 0.216 33.193 -0.135

Trip based 74.907 -4.782 23.983 0.407 25.872 0.31

Risk based 33.791 -0.177 30.989 0.010 26.918 0.253

All 71.623 -4.286 26.435 0.280 27.671 0.211
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Figure 6-11: Correlation against dengue incidence using different methods

The predicted dengue incidence vs actual dengue incidence is visualized in

Fig. 6-12, which shows that the prediction curve is able to detect the changes in

the trend and closely follows the actual epidemic curve.

6.4 Summary

The results presented in this chapter demonstrate that the mobility models derived

using CDRs are able to reflect the fluctuation in mobility patterns due to regional

events (e.g. international sport events, traditional festivals) as well as national

events (e.g. national festivals, holidays). The spatial visualization of these

models demonstrate that the indicative values derived from our models are able to

capture the regional hotspots where risk of dengue transmission is highest. In the

correlation analysis, we see that mobility of the previous weeks is highly correlated

with dengue incidence, while it is more pronounced in distance correlation and

mutual information measures. The machine learning models were trained with

and without mobility as an input because we needed to determine the impact

of mobility in the accuracy of our results. The results show that introducing
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Figure 6-12: Dengue Incidence - Predicted vs Actual for year 2014 - Colombo
MC

mobility provides an increase in accuracy, even though the increase is marginal in

some cases. It is also interesting to note that the introduction of GA based feature

selection significantly improved the prediction accuracy, while the introduction of

feature classes while using GA based feature selection provided a further marginal

improvement. Possible reasons behind these observations, as well as further

interpretation of these results is discussed in the next chapter.
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Chapter 7

DISCUSSION

This chapter attempts to highlight some of the challenges encountered in building

these models for our study. Then we go on to interpret the results obtained from

our mobility models and attempt to engage in a nuanced discussion regarding the

possibility of using ubiquitous data sources such as CDRs to help disease outbreak

prediction. After that, we discuss on the different performance levels obtained by

different machine learning models, after which, we go on to detail the motivation

and reasoning behind some of the optimizations introduced in our methodology.

We also argue that there are 3 main contributions that are delivered as outcomes

of this study. The first of them is the use of large-scale data processing techniques

to develop CDR based multiple regional mobility measures that can be directly as

an input for machine learning and statistical models. We also attempt to answer

the question on whether human mobility has an impact on propagation of dengue

in endemic regions. Finally, our study provides a comparison of performance for

multiple machine learning methods for the same dataset, which we hope will aid

in deciding which techniques are most suitable to be used for future research

studies in a similar context.

7.1 Data collection and pre-processing

One of the biggest challenges for our study was in collecting data from multiple

heterogenous data sources and transforming those datasets to a compatible format.

Availability of weather data that covers a larger region would have allowed us

to train using more data points, which in turn would have resulted in more

robust prediction models. Another source of data that could have been used is

remote sensing data, which can then be used to derive weather data. However,

freely available existing data products need further processing that would require

significant additional effort beyond the scope of our study. New research that
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develop comprehensive methodologies to process such remote sensor data can

alleviate this concern making such high resolution weather data available for

future studies.

Vector surveillance data, and vector population data are other useful data

sources that were difficult to obtain in a Sri Lankan context. Additionally, up

to date and granular socio economic data sets would have also been useful as

potential input features if it was made available publicly for academic purposes

in Sri Lanka.

7.2 Mobility Models

Our study introduces 6 mobility models (3 main approaches with 2 sub models

for each approach) that can be used as an input feature for any machine learning

model that predicts propagation of infectious disease outbreaks. Each model has

different assumptions which would affect its performance.

The probabilistic mobility models, while having a broad assumption of the

amount of time spent by a subscriber at a given location being proportional to

the number of calls initiated or recieved at that location, has performed relatively

well when considering the results of predictive models and correlation analysis.

In fact, visitation based probabilitic mobility has the highest distance correlation

and mutual information score against dengue incidence, suggesting that people

visiting a given region and spending more time in the preceding months can affect

dengue incidence. Similarly, risk based mobility models also have high correlation,

where as trip based mobility do not show significant correlation.

There can be multiple reasons for the trip based mobility models having only

weak correlation with dengue incidence. In our model, a trip is simply defined as

a change in tower location between two consecutive CDRs. This definition can

capture locations that a subscriber might have only passed through, which ideally

should not be taken into consideration when assessing risk of disease transmission.

It might also indicate that the time spent by a visitor or the time band during

which the visit happened contributes more towards the risk of transmission rather
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Table 7.1: t-test on improvement of predictive accuracy due to mobility (X = set
of error terms with mobility, Y = set of error terms without mobility)

t-value Degrees of freedom p-value 95% confidence interval Mean of X Mean of Y
-2.001 14379 0.0454 -0.6605 to -0.0068 5.624 5.9577

than the act of simply visiting a given location.

From the results, we can also see that there is not much of a difference in the

predictive accuracy when comparing the risk based model vs the probabilistic

model. This might be due to the fact that we failed to pick the optimal values

for the time bands and the weights assigned to the different time bands since

this was done only using our intuition. However, the fact that the probabilistic

models also performed comparatively as well as the risk based models suggest

that complex models do not necessarily translate into better predictive accuracy.

However, the highest predictive accuracy was observed when risk based mobility

was used, making it the best model that captures risk of disease transmission due

to mobility.

7.3 Impact of mobility on predictive accuracy

The results suggest a consistent improvement in RMSE and R2 values when

mobility is introduced into the model. However, this improvement is not very

pronounced. This might be due to the fact that dengue is endemic in most

regions of Sri Lanka, and human mobility is not the primary factor in introducing

dengue to a given region. However, the consistent improvement in accuracy when

mobility was introduced, as well as the comparatively high correlation observed

between dengue incidence and various mobility measures, suggest that mobility

does contribute to dengue incidence even in an endemic setting. In order to

determine whether the impact on the predictive accuracy of disease incidence

was significant due to mobility, we ran Welch’s two sample t-test to measure the

p-value at a significane level of 0.05 for a two-sided hypothesis. The results of

this test are available in table 7.1.
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7.4 Comparison of machine learning methods

Out of the different machine learning methods we used to predict dengue incidence,

XGBoost provided the best RMSE and R2 values. It is interesting to note that

there was a distinctive difference in predictive performance when considering each

of the techniques in the final round of results. For the final results XGBoost had

R2 values in the range of 0.926 to 0.935, while SVR had a range of 0.909 to 0.91,

and random forests had a range between 0.878 to 0.895. However, this difference

in performance became apparent after the genetic algorithm based optimization

was applied. Before the optimization, the difference in performance was not that

pronounced, as evidenced by R2 measures of 0.887 to 0.896 for XGBoost, 0.884 to

0.889 for SVR, and 0.874 to 0.888 for RF. Under each of these conditions, neural

networks consistently provided poorer performance, and was not able to match

the performance of other 3 techniques even after the GA based optimization was

applied.

7.5 Genetic algorithm based optimization

The GA based feature selection technique that was based off prior work by Wu

et. al [29] provided significant improvement in predictive accuracy in all of our

models. We did several modifications to the original technique by optimizing R2

measure and RMSE measures simultaneously, introducing the concept of feature

classes to make sure that no feature is completely dropped out of the model, and

automating the process of training and selecting the final model without manually

selecting the features that appeared most frequently in multiple runs (as was the

case in the study by Wu et. al). Applying this technique yielded significant

improvements to model accuracy across all 4 machine learning methods.

7.6 Summary

The discussion above highlights multiple areas where our study could have benefited

from if certain data sources were made available. It also points to potential
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research directions that can help to bridge the gap in some of the data products

required to build more robust and large-scale forecasting models. However, using

the available data products, we were able to demonstrate that accurate predictive

models can be developed while also contributing to multiple application areas

that cut across several academic disciplines. Mainly, our study demonstrates the

feasibility of using large-scale ubiquitous datasets to model human mobility at

regional level for disease outbreak predictions. Our results also indicate that

human mobility has a significant impact on dengue propagation, even in an

endemic setting. Finally, the results provide a comparison between machine

learning methods for predicting infectious disease outbreaks in Sri Lanka. Using

the points raised in this discussion, the main conclusions of this study are detailed

in Chapter 8.
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Chapter 8

CONCLUSION

Our models are able to forecast weekly number of dengue incidence 2 weeks ahead

of time, with very good accuracy (RMSE - 7.688, R2 - 0.935) for the selected MOH

divisions. This shows that the methodology established in this work is feasible

and can be applied practically. Additionally, we explored 3 models of human

mobility, derived using pseudonymized CDRs and demonstrated the feasibility of

such novel sources of data in improving the accuracy of disease forecasting models.

We also showed that the inclusion of human mobility improved the accuracy of

the models significantly (p-value = 0.0454, 0.95 % confidence interval), suggesting

that human mobility has an impact on dengue incidence, even when the disease

is already endemic to a specific region.

Out of the different mobility models and machine learning methods utilized,

our study shows that the risk based mobility model developed by us performs

best, and XGBoost has the best accuracy for our dataset. The study was done

using 3 years of worth of dengue incidence data and other data sources were fused

with modifications as necessary, depending on the time span for which the data

was available. With more recent disease incidence data and CDR data covering

a larger timespan, we should be able to increase the predictive accuracy and get

good results at an individual MOH level. For this, a partnership with relevant

government health agencies and research organizations should be established to

utilize this work practically. Such a partnership would provide an opportunity for

public health officials to provide details on how the output of our models should

be structured and also allow them to give input on weighting of risk scores, which

can ultimately result in a near real time system that provides risk of dengue

outbreaks at national scale.
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Chapter 9

FUTURE WORK

There are several aspects that could have been explored to further improve

the accuracy of our predictions. Our study did not consider any deep learning

techniques, which might have provided better predictions. However, the disease

incidence data, CDRs and weather data was available only for a limited timespan,

limiting the applicability of deep learning techniques, which in general need larger

datasets. If a data sharing partnership could be established between data owners

and research insitutes, with the availability of more data, deep learning would

definitely be a viable option and a valuable future research direction.

Additionally, an optimization technique such as genetic algorithms or other

auto tuning methods can be used to set the hyperparameters. The training time

for each of these models would increase if such an approach is adapted, but

would be expected to yield better results. Another research direction that can be

explored is in determining the optimal weights to be assigned to different time-

bands when assigning risk scores for the mobility models. These risk scores can

be optimally assigned by performing a sensitivity analysis to determine which

weights yield an aggregate risk measure for a given MOH division that correlates

best with its dengue incidence history.
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