A STUDY ON APPLICABLE DELAY ANALYSIS TECHNIQUES OF THE BUILDING CONSTRUCTION INDUSTRY

IN SRI LANKA

MASTER OF SCIENCE IN CONSTRUCTION PROJECT MANAGEMENT

Lakmal Gamage Department of Civil Engineering University of Moratuwa August 2019

A STUDY ON APPLICABLE DELAY ANALYSIS TECHNIQUES OF THE BUILDING CONSTRUCTION INDUSTRY IN SRI LANKA

BY

Lakmal Gamage

Supervised by

Dr. Chandana Siriwardana

"The dissertation was submitted to the Department of Civil Engineering of the University of Moratuwa in partial fulfilment of the requirements for the Master of Science in Construction Project Management"

> Department of Civil Engineering University of Moratuwa Sri Lanka August 2019

DECLARATION

I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any university to the best of my knowledge and believe it does not contain any material previously published, written or orally communicated by another person or myself except where due reference is made in the text. I also hereby give consent for my dissertation, if accepted, to be made available for photocopying and for inter library loans, and for the title and summary to be available to outside organizations.

.....

Signature of Candidate

Date

The above particulars are correct, to the best of my knowledge.

•••••

Date

Signature of Supervisor

ii

ACKNOWLEDGEMENT

This dissertation would not have been possible without the guidance and the help of several individuals who in one way or another contributed and extended their valuable assistance in the preparation and completion of this research.

First and foremost, I would like to express my sincere gratitude to Dr. Chandana Siriwardana, Senior Lecturer of the Department of Civil Engineering, University of Moratuwa for his guidance and support throughout this research. His knowledge and experience were the source of inspiration to make this thesis a reality. I would also like to especially thank my family for letting me occupied with the many of works required to conduct this research.

I extend my thankfulness to the M.Sc. Course Coordinators Prof. Asoka Perera, My initial research supervisor Prof. N. D. Gunawardana and Dr. Lesly Ekanayake for their support and guidance provided all the way through the programme. I would also like to extend my gratitude to all the academic and nonacademic staff from the Department of Civil Engineering, University of Moratuwa for their guidance and support in completing the studies.

In addition, I thank all the participants of this research and my batch mates for providing their valuable support in making the research a reality.

DEDICATION

Dedicated

To my beloved parents,

wife & kids

TABLE OF CONTENTS

Page

Front page	i
Declaration	ii
Aknowledgment	iii
Dedication	iv
Table of Contents	V
List of Tables	viii
List of Figures	ix
Abbreviations	х
Abstract	xi

CHAPTER 1

INTRODUCTION	1
1.1. Background	1
1.2. Aim	2
1.3. Objectives	3
1.4. Scope and Limitation	3
1.5. Structure of the report	3

CHAPTER 2

LITERAT	URE REVIEW	5
2.1 Introdu	ction	5
2.2 Constru	action Delays	5
2.2.1	Clarification of delay events	6
2.2.2	Type of delay	7
2.3 Delay A	Analysis Techniques	8
2.3.1	As-Planned versus As-built method	9
2.3.2	Impacted As-planned	10
2.3.3	Time impact analysis	11
2.3.4	Collapsed As-built	13
2.3.5	Use of CPM techniques	14
2.4 Elemen	ts of time extension claim	15

2.5 Accepted guideline for delay analysis	18
2.6 Previous Studies	18
2.7 Conclusion	24

CHAPTER 3

METHODOLOGY	25
3.1 Introduction	25
3.2 Survey Method	27
3.3 Data Collection Method	28
3.4 Questionnaire Design	31

CHAPTER 4

ANALYS	ANALYSIS AND DISCUSSION OF RESULTS	
4.1 Introduction		36
4.2 Pilot S	tudy	36
4.3 Questi	onnaire Survey	38
4.4 Analys	sis of Survey Results	39
4.4.1	Frequency of the Extension of time claims	40
4.4.2	Main Reasons for Rejection of Extension of Time claims	41
4.4.3	Analysis of Extension of Time Claim Practices	42
4.4.4	Analysis of Resources Level for Preparation of EOT Claims	43
4.4.5	Analysis of Application of Delay Analysis Techniques	44
4.4.6	Analysis of Main Barriers for proper EOT Claiming Practices	45
4.4.7	Utilization of Construction Programmes for the EOT claims	46
4.4.8	Practice of the Construction Programmes	47
4.4.9	Record keeping at site	48
4.5 Genera	al Findings from the Interviewees	49

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS	51
5.1 Construction Programmes	52
5.2 Record keeping at site	52

5.3 Awareness of Delay Analysis Techniques	53
5.4 Selecting a most applicable Delay Analysis Technique	54
REFERENCES	55
APPENDIXES	57
Appendix - A	

Appendix - B

LIST OF TABLES

Table 2.1:	Definitions to delay	5
Table 2.2:	Strength and Weaknesses of the as-planned versus	
	As-built technique	10
Table 2.3:	Strengths and Weaknesses of the IAP technique	11
Table 2.4:	Strengths and Weaknesses of the TIA technique	12
Table 2.5:	Strengths and Weaknesses of the CAB technique	14
Table 2.6:	Summary of Previous studies	23
Table 3.1:	Composition of the Sample	28
Table 4.1:	Response Rate	39
Table 4.2:	Frequency of Extension of Time Claims	40
Table 4.3:	Main Reasons for Rejection of Extension of Time Claims	41
Table 4.4:	Submission of Extension of Time Claims	42
Table 4.5:	Preparation of Extension of Time Claims	43
Table 4.6:	Application of Delay Analysis Techniques	44
Table 4.7:	Main Barriers for proper EOT Claiming Practices	45
Table 4.8:	Use of Construction Programmes for the EOT claims	46
Table 4.9:	Practice of the Construction Programmes	47
Table 4.10:	Priority list of Records	48
Table 4.11:	Ranking of EOT Rejection Factors	50
Table 4.12:	Ranking of Main Barriers for the proper EOT claims	50

LIST OF FIGURES

Figure 3.1:	Structure of the Methodology	26
Figure 3.2:	Interviewed Experts	30
Figure 4.1:	Sample Distribution	39
Figure 4.2:	Frequency of Extension of Time Claims	40
Figure 4.3:	Main Reasons for Rejection of Extension of Time Claims	41
Figure 4.4:	Submission of Extension of Time Claims	42
Figure 4.5:	Preparation of Extension of Time Claims	43
Figure 4.6:	Application of Delay Analysis Techniques	44
Figure 4.7:	Main Barriers for proper EOT Claim	45
Figure 4.8:	Use of Construction Programmes for the EOT claims	46
Figure 4.9:	Practice of the Construction Programmes	47

ABBREVIATIONS

EOT	: Extension of Time
LD	: Liquidated Damages
SCL	: Society of Construction Law
PMBOK	: Project Management Body of Knowledge
US	: United State
TIA	: Time Impact Analysis
IPA	: Impact As-Planned
CAB	: Collapsed As-Built
СРМ	: Critical Path Method
FIDIC	: Fedaration International Des Ingenieurs-Conseils

ABSTRACT

The construction industry in Sri Lanka are being implemented various standards to complete the projects in time to achieve satisfaction of stakeholders and to face the competitiveness over getting contracts in order to ensure their business sustainability. The successful completion of a project to an intended in time is not easy. Failure to complete the works is a breach of contract and normal remedy for breach is claim for damages. Extension of Time due to construction delays being a popular topic among researchers and many researches have been carried out covering different aspects of delays. However, the completion of project on time is somewhat unusual in the field of construction in Sri Lanka when considering complexity of civil engineering contracts and the tendencies for delays to occur.

This research makes a contribution by providing insights on the current status of project delay analysis practices and proposing ways as to how extension of time claim could be effectively analyze by the applicable techniques in Sri Lankan construction industry. The findings of the study disclose that the construction professionals in Sri Lanka are not conscious enough of the available sophisticated techniques for delay analysis. It is also established that the cost incurred for implementing proper delay analysis techniques, poor awareness about delay analysis techniques among construction professionals, unavailability of adequate records to adapt a proper analysis techniques and lack of experts in their project or organization are the major barriers for submitting proper extension of time claim.

Under this background recommendation were developed to improve an effective construction programme, a good record keeping at site level and awareness of delay analysis techniques to prepare for proper time extension claims.