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Abstract

Most of the countries in the world are facing the problems of aging population and
disabilities among the population. Among different problems faced by these individuals,
self feeding can be identified as an important aspect that should get more attention
from the research community. In addition, self feeding reflects the interdependency of
an individual and thus relate to their mental health. Taking care of these individuals
using care takers is becoming more and more difficult due to diminishing workforce
for such tasks. Therefore assistive robotic technologies play a major role in providing
feeding solutions to these individuals with disabilities. Meal assistance robot is a device
designed to assist the individuals in need with self feeding.

The research work of this thesis is focused on developing an EEG signal based Brain
Machine Interface for a meal assistance robot. Meal assistance robot is capable of
handling solid food items using the spoon mounted on the end effector. Identifying
user’s food selection is carried out using a Steady State Visually Evoked Potential
based Brain Machine Interface where 3 LED matrices flicking at 6Hz, 7Hz and 8Hz are
used to generate the stimulations in the brain. User has to gaze at a LED panel to
activate the motion path of the robot which will feed the solid food from the container
associated with the gazed LED panel. System is incorporated with a visual servoing
algorithm to identify the user’s mouth position and adapt the food feeding location
according the mouth location. Further, Mouth open/close status detection system is
developed to measure the user’s willingness to intake the food. The developed meal
assistance robot is experimentally validated using 15 subjects in different experiments.

After detailing the research methods carried out, discussion of the results obtain are
presented at the end of the thesis with limitations of the research and possible future
improvements.

Keywords-Meal Assistance Robot, SSVEP, visual servoing, EEG

ii



DEDICATION

This dissertation is dedicated to my parents, to whom i can trace my every

success to.



ACKNOWLEDGMENTS

First and foremost I offer my sincerest gratitude to my supervisor, Dr Thilina

Lalitharatne, who has given me the opportunity to follow my MSc in University

of Moratuwa and who supported me throughout my thesis with his patience and

knowledge whilst allowing me the room to work in my own way. I attribute the

level of my Masters degree to his encouragement and effort and without him this

thesis, too, would not have been completed or written. One simply could not

wish for a better or friendlier supervisor.

Besides my supervisor, I would like to thank the rest of my progress review

committee: Prof. Ruwan Gopura, Dr. Anjula De Silva, and Dr.Damith Chathu-

ranga, for their insightful comments and encouragement, but also for the hard

question which encouraged me to widen my research from various perspectives.My

sincere thanks also goes to Assistant Professor Chinthaka Premachandra for of-

fering me a summer internship opportunity at Shibaura Institute of Technology,

Japan and leading me working on diverse exciting projects.

Special gratitude must be given to my lab members in Bionics Laboratory, De-

partment of Mechanical Engineering Dr. Kanishka Madusanka, Achintha Mihi-

ran, Isuru Ruhunage, Sanka Chandrasiri, Achintha Iroshan, Thilina Weerakkody,

and Dinesh Kumara for their support towards me in participating for experiments

as subjects. Futher, I would like to thank my final year research group member

Isira Naotunna for initiating this research with me. Also I would like to thank

Dr. Viraj Muthugala for his helpful insights on the research. Finally, I thank my

parents for supporting me throughout all my studies at University.

iv



TABLE OF CONTENTS

Declaration i

Abstract ii

Dedication iii

Acknowledgments iv

Table of Contents viii

List of Figures xi

List of Tables xii

Abbreviations 1

1 Introduction 3

1.0.1 Contributions of the Thesis . . . . . . . . . . . . . . . . . 6

1.0.2 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature Review 9

v



2.1 Mechanical design of meal assistance robots. . . . . . . . . . . . . 11

2.1.1 Feeding methods . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Food storage method . . . . . . . . . . . . . . . . . . . . . 13

2.1.3 Actuation methods used in meal assistance robots . . . . . 15

2.1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Controlling methods of meal assistance robot. . . . . . . . . . . . 17

2.2.1 User input identification methods used in meal assistance

robots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Hardware control of the meal assistance robots. . . . . . . 20

2.2.3 Emerging technologies in meal assistance robots. . . . . . 21

2.2.4 Use of Brain Machine Interfacing as a control signal. . . . 22

2.2.5 Event-related potentials (ERPs) . . . . . . . . . . . . . . . 24

2.2.6 Sensorimotor rhythms (SMR) . . . . . . . . . . . . . . . . 25

2.2.7 Steady State Visually Evoked Potential (SSVEP) . . . . . 27

2.2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Overview and hardware design of the proposed meal assistance

robot 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Overview of the proposed meal assistance robot . . . . . . . . . . 29

3.3 Mechanical design and controlling of the 4DOF meal assistance robot 33

vi



3.3.1 Mechanism and Mechanical Design . . . . . . . . . . . . . 34

3.3.2 Kinematic analysis of the meal assistance robot . . . . . . 36

3.3.3 Controlling of the meal assistance robot . . . . . . . . . . 41

3.3.4 Electrical component connections . . . . . . . . . . . . . . 42

4 Development of user intention detection method using EEG:SSVEP

based BMI 44

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Selection of the stimulation frequency . . . . . . . . . . . . . . . . 45

4.3 Visual stimuli generation . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Acquisition of EEG signals. . . . . . . . . . . . . . . . . . . . . . 47

4.5 Preprocessing of acquired raw signals . . . . . . . . . . . . . . . . 52

4.6 Feature extraction and classification of SSVEP signal . . . . . . . 54

4.6.1 Fast Fourier Transformation based SSVEP classification . 54

4.6.2 Canonical correlation based SSVEP classification . . . . . 55

5 Vision based mouth position identification and mouth open/close

identification 59

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Automatic mouth position identification and tracking . . . . . . . 59

5.3 User mouth open/close detection . . . . . . . . . . . . . . . . . . 63

vii



6 Experiments, results and discussion. 65

6.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7 Conclusion and Future Work 80

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A First Appendix 83

A.1 Forward kinematics equations . . . . . . . . . . . . . . . . . . . . 83

A.2 Inverse kinematics equations . . . . . . . . . . . . . . . . . . . . . 84

List of Publications 85

Bibliography 94

viii



LIST OF FIGURES

1.1 World population projection for the period up to 2050 [1]. . . . . 4

2.1 Tube feeding and spoon feeding method . . . . . . . . . . . . . . 12

2.2 Spoon approaching modes . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Foods storage methods used in meal assitance robots . . . . . . . 14

2.4 Different input signals used in meal assistance robots . . . . . . . 17

2.5 Implanted electrodes over the motor cortex . . . . . . . . . . . . . 22

2.6 Use of non invasive BMI to control a wheelchair . . . . . . . . . . 23

2.7 P300 wave. Figure from [2] . . . . . . . . . . . . . . . . . . . . . . 25

2.8 (a) Motor cortex. (b) Visual cortex . . . . . . . . . . . . . . . . . 26

3.1 Hardware system overview of the meal assistance robot . . . . . . 30

3.2 Camera mounted of the end effector of the meal assistance robot . 31

3.3 Overall control algorithm of the system . . . . . . . . . . . . . . . 32

3.4 3D illustration of the meal assistance robot’s path . . . . . . . . . 33

3.5 Design of the meal assistance robot . . . . . . . . . . . . . . . . . 34

3.6 Main components used in the fabrication process . . . . . . . . . 35

ix



3.7 Workspace of the designed meal assistance robot . . . . . . . . . . 36

3.8 Quadrant design of the food storage method. . . . . . . . . . . . . 36

3.9 Kinamatic analysis of the 4DOF robot arm . . . . . . . . . . . . . 37

3.10 Forward kinematics analysis- figure 1 . . . . . . . . . . . . . . . . 38

3.11 Forward kinematics analysis- figure 2 . . . . . . . . . . . . . . . . 39

3.12 Inverse kinematics analysis- figure 1 . . . . . . . . . . . . . . . . . 39

3.13 Inverse kinematics analysis- figure 2 . . . . . . . . . . . . . . . . . 40

3.14 Feeder robot control algorithm . . . . . . . . . . . . . . . . . . . . 41

3.15 Connection diagram of electrical components . . . . . . . . . . . . 43

4.1 Section 1 of the main control algorithm . . . . . . . . . . . . . . . 45

4.2 FFT analysis of Subh=ject A and B during resting state . . . . . 46

4.3 LED Panel connection diagram . . . . . . . . . . . . . . . . . . . 47

4.4 3mm Diameter 8 x 8 LED Matrix . . . . . . . . . . . . . . . . . . 48

4.5 OpenBCI EEG acquisition system . . . . . . . . . . . . . . . . . . 49

4.6 Electrode locations used according to 10/10 system . . . . . . . . 50

4.7 Ten20 electrode paste on gold cup electrodes . . . . . . . . . . . . 51

4.8 Goldcup Electrodes attached to a user’s scalp using the EasyCap

placement cap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.9 Data preprocessing algorithm . . . . . . . . . . . . . . . . . . . . 52

4.10 Use of Moving window in data processing . . . . . . . . . . . . . . 53

x



4.11 6Hz classification instance . . . . . . . . . . . . . . . . . . . . . . 54

4.12 Overview of CCA based classification . . . . . . . . . . . . . . . . 56

4.13 CCA correlation values for user gazing. . . . . . . . . . . . . . . 57

5.1 Section 2 and 3 of the main control algorithm . . . . . . . . . . . 60

5.2 Notations and motion directions of meal assistance robot designed

in the proposed camera based automatic mouth position tacking

method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Identification of user mouth open/close status . . . . . . . . . . . 64

6.1 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2 Steps followed in one feeding cycle . . . . . . . . . . . . . . . . . . 66

6.3 Feedback form given to the experiment participants . . . . . . . . 67

6.4 FFT plots of 6,7 and 8Hz visual stimulus for the subject CJ . . . 68

6.5 Canonical Correlation values of 6, 7 and 8Hz stimuli . . . . . . . . 69

6.6 Confusion matrices for each subject. . . . . . . . . . . . . . . . . 72

6.7 Average classification times for each subject at each frequency . . 73

6.8 Mean and standard deviation of the classification time taken by

each subject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.9 Image sequence of mouth position tracking process . . . . . . . . 75

6.10 Results from the feedback form . . . . . . . . . . . . . . . . . . . 76

xi



LIST OF TABLES

2.1 Overview of meal assistance robots . . . . . . . . . . . . . . . . . 10

2.2 Control methods of existing meal assistance robots. . . . . . . . . 16

6.1 Accuracy and average classification time using FFT based classifi-

cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2 Accuracy and average classification time using CCA based classi-

fication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.3 Performance of the camera based mouth position tracking method

and mouth open/close detection method . . . . . . . . . . . . . . 74

xii



LIST OF ABBREVIATIONS

FFT Fast Fourior Transformation

CCA Canonical Correlation Analysis

ADL Activities of Daily Living

SSVEP Steady State Visually Evoked Potential

EEG Electroencephalography

FMRI Functional Magnetic Resonance Imaging

MRI Magnetic Resonance Imaging

DOF Degree of Freedom

SCI Spinal Cord Injury

TMR Targeted Muscle Reinnervation

ECoG Electrocorticography

EMG Electromyography

EOG Electrooculography

BMI Brain Machine Interface

fNIRS Functional Near-Infrared Spectroscopy

SSVEP Steady State Auditory Evoked Potential

ERP Event Related Potential

1



Chapter 1

INTRODUCTION

According to 2011 world bank’s report on disability, nearly one billion people

around the world is suffering from some form of disability. From that, 110 million

to 190 million people are suffering from significant disabilities [3]. Recent report

from institute on disability, University of New Hampshire [4] indicate a increase

in percentage of people with disabilities in the US population from 11.9% in

2010 to 12.8% in 2016. World Health Organization indicate that this situation is

more severe in 3rd world countries. Furthermore United Nations report on World

Population Ageing [1] predict that aged population will almost triple in next 35

years [Fig.1.1]. All of the statistics and predictions suggest that disabilities among

the population will be one of the major problems that needs to be addressed by

future generations.

Having a severe disability will limit a person’s ability to perform day today

activities and most importantly, Activities of Daily Living (ADL). These ADLs

include six basic activities, eating bathing, dressing, transferring, toileting and

continence. Depending on the level of disability, a person may not be able to

do one or more of these activities according to their will. That is when the

importance of assistive devices become prominent and a necessity for the well

being of people in need. Among many assisitive devices that are designed to cater

the needs of disabled people, meal assistance robots can be considered as a less

researched area. Even though there are few commercially available devices such

as meal budy [5], Obi [6] and bestic arm [7], they are unable to fulfill the needs

of people having severe disabilities. This is due to the controlling methods/ user
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Figure 1.1: World population projection for the period up to 2050 [1].

intention detection methods used by the feeder arms. Most of the feeder robots

use button operation as the main controller method and this require the user to

have some degree of limb function to operate the robot. But people with severe

disabilities have little or no limb functions to control the feeder robot according

to their will.

Furthermore, all most all of the meal assistance robots use fix point feeding

method. At the beginning device should be calibrated according to the user’s

height. Then, the device will feed the food to that fixed location continuously.

By using this method user need to be in the same location for the whole feeding

process and it will be uncomfortable for the user to stay at the same location

throughout the feeding process. This research was motivated by the need to

find possible solution to overcome those disadvantages of existing meal assistance

robots.

Moreover, brain signals can be identified as one of the potential control signals

that researches can incorporate in assistive devices. Human brain is the most

complex and mysterious organ in the human body and scientist are yet to discover

the full capabilities of it. Also no scientific method is yet been successfully able

to identify and explain the complex nature of the human brain. But brain is

among the interests of researches from Egyptian era. Lack of proper scientific
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techniques and technologies prevented anyone from properly understanding the

brain. With the introduction of the modern neuroscience, scientists are able to

accurately identify the basic functions of the brain. Invention of technologies

like Functional Magnetic Resonance Imaging (FMRI) and Magnetic Resonance

Imaging (MRI) helped to get more insight in to the brain.

Even though neuroscience was existed for centuries, controlling a robot using

thoughts was only limited to frictional arts. Even after the discovery of electrical

phenomena of the brain (Later named and electroencephalography or EEG) by

Hans Berger in 1927, it took nearly 100 years to successfully implement systems

that are controlled by human thoughts.

Electroencephalography (EEG) is the method that is used to record the electri-

cal activity of human brain. Today scientists use EEG signals to monitor human

brain as well as control robotic devices or software. Some of the applications

of EEG include control of assistive devices, monitoring mental conditions, brain

speller etc . In an ideal conditions EEG can be identified as the perfect signal

to be used in controlling applications such as assistive devices. But the current

brain technology is at it’s primary state and still unable to provide complex sig-

nals needed in complex control tasks. In the current stage researches are pursuing

the possibility of using EEG phenominas like Event Related Potential and Event

Related De/Synchronization. One of the prominent event related potential is

called Steady State Visually Evoked Potential (SSVEP).

This research intend to perceive the capability of using Steady State Visually

Evoked Potential (SSVEP) as a control signal to identify the user intention to

control a meal assistance robot. Additionally visual guidance of the meal assis-

tance robot is also researched in order to facilitate the feeding process. SSVEP is

the signal generated in the brain due to external visual stimuli. In this research

3 visual stimuli were used to select between 3 different solid food items.
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1.0.1 Contributions of the Thesis

Research work presented in this thesis addresses the process of development

and control of a meal assistance robot using Steady State Visually Evoked Poten-

tial signals. Furthermore, this thesis discuss the use of visual servoing techniques

to find and feed food according to the location of the user’s mouth. Major con-

tributions of this thesis can be outlined as follows:

� Design and fabricate a 4DOF meal assistance robot capable of handling

multiple food items. Meal assistance robot is a servo based robot and the

setup include 3 food bowls user to select from.

� Develop an effective user intention detection method based on EEG - SSVEP

signals using FFT and CCA to identify the required food selection of the

user.

� Develop a visual servoing method to identify the mouth locations of the

user and feed according to that location. In addition, a method capable

of identifying the willingness of the user to consume the food is proposed

considering the user’s mouth open/close conditions.

� Evaluation of the system using healthy subjects to validate the overall sys-

tem.

1.0.2 Thesis Overview

The thesis consists of seven other chapters to elaborately present the research

work carried out related to the topic. Contents of each chapter can be summarized

as below.

Chapter 2: Literature Review

This chapter discuss the design and control features of most of the existing meal

assistance robots in both commercial stage and research stage. Also it discuss
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the use of Electroencephalography (EEG) as a control signal to control the meal

assistance robot. Initially, literature on existing meal assistance robots are dis-

cussed under their mechanical design and controlling methods. Control methods

are discussed under different user intention identification methods and the hard-

ware controlling of the robot. Finally use on brain machine interface as a control

method is discussed. Brief summery of emerging technologies is discussed at the

end of the chapter.

Chapter 3: Overview of the proposed meal assistance robot and hard-

ware design of the 4DOF manipulator

Overall design and controlling of the proposed meal assistance robot is discussed

under the first section of this chapter. Experiment setup is discussed along with

the main control algorithm used to identify the user intention and control the

meal assistance robot. Second section of this chapter is allocated to discuss the

hardware design of the 4DOF manipulator used in the meal assistance robot.

Forward and inverse kinematics of the system is presented with derived solutions.

Then, controlling method used to control the meal assistance robot is discussed

in later sections.

Chapter 4: Development of user intention detection method using

EEG:SSVEP based BMI

Using Steady State Visually Evoked Potential to identify the user intention is

discussed in this chapter. Details related to stimuli generation, stimuli frequency

selection, EEG acquisition, Fast Fourier Transformation based classification, and

Canonical Correlation Analysis based classification are discussed in separate sub-

sections.

Chapter 5: Vision based mouth position identification and mouth

open/close detection

This chapter discuss the proposed vision based mouth position identification

and mouth open/close identification method. Use of a wide angle camera with

OpenCV based Haar classifier to identify the mouth within the image frame and

7



use of OpenCV based custom trained classifier to identify mouth opening is dis-

cussed in detail.

Chapter 6: Experiments, results and discussion

Experiments, results and discussion chapter of this thesis describe the experi-

mental procedures carried out to validate the system, results obtained using the

experiments and a discussion of the obtained results. Four separate set of experi-

ments are discussed to validate the FFT based classification method, CCA based

classification method, mouth tracking algorithm and mouth open/close status

detection algorithm. Further, data from user satisfaction survey is presented and

discussed in this chapter.

Chapter 7: Conclusion and future work

Final chapter of this thesis presents the conclusion of the research work carried out

in this thesis. Further, possible future improvements of the system is discussed

at the end of this chapter.
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Chapter 2

LITERATURE REVIEW

Self-feeding is one of the basic human activity and it’s among the ADLs in day

today life. Usually assistance of a caretaker is needed for the feeding of individuals

who are having severe disabilities such as spinal cord injury (SCI), quadriplegia

and limb disarticulations. But it is becoming more and more difficult to find

human workforce for caretaking. If the patient is not able to use adapted cutlery

and crockery, three different solutions can be found in the literature to solve the

problem of self-feeding. These are manually operated eating systems, electrically

operated eating systems and forearm supports and stabilizers. To use manually

operated eating systems and forearm supports patient need at least partial control

over their upper limbs. This is evident in forearm support systems like Multilink

dynamic arm [8] and manual meal assistance systems like Nelson eater [9]. Use

of these systems are not reliable and also it will affect the comfortability of the

patient. In light of these issues, focus has been given towards developing Electri-

cally powered meal assistance robots suitable for those individuals. This section

of the thesis is to review on meal assistance robots that have been proposed

and/or developed to date, and to identify important design features, advantages

and limitations of such systems. Overview of the meal assistance robots that

discussed in this section is listed in the Table 2.

Primary objective of a meal assistance robot is to assist or help in the self-

feeding process of a particular individual who do not have enough capacity to feed

himself/herself using his/her upper-limb. Even though there are no standardized

components of a meal assistance robot, a meal assistance robot basically consists

9



Feeder robot Country DOF
Research/

Commercial

My Spoon [10] Japan 5 Commercial

Bestic arm [7] Sweden 4 Commercial

Mealbuddy [5] Canada 4 Commercial

Winsford� Feeder system [11] USA 2 Commercial

Mealtime Partner [12] USA 2 Commercial

The VoiceBot [13] USA 4 Research

Assistive Robotic Arm by
University of the Ryukyus [14]

Japan 7 Research

Meal Support by
Shizuoka University [15]

Japan 5 Research

Chopstick-Equipped
Meal Assistance Robot [16]

Japan Research

Eye-Operated Meal Assistance Robot
by Yamaguchi university [17]

Japan 2 Research

ICRAFT [18] USA 4 Research

ASIBOT [19] Spain 5 Research

Meal Support system by
Saga University [20]

Japan 4 Research

JACO robot arm based meal assistance
systems [21]

Canada 6 Commercial

Hello Spoon [22] Mexico 4 Crowd funded

Handy 1 [23] USA * Research

Obi meal assitstance robot [6] USA 6 Commercial

Self-Feeding Assistive Robot by
Korea National Rehabilitation
Research Institute [24]

Korea 2 Research

* Handy -1 is a multipurpose robot which include plate washing, shaving and
teeth cleaning integrated in to the system.

Table 2.1: Overview of meal assistance robots

of a robot arm or feeding mechanism, control hardware to drive that robot or

mechanism, a command algorithm and sensors to capture the human motion

intension.

Meal assistance robots that have been developed up to date can be classi-
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fied simply in to research or commercial products as mentioned in the table 2.

When developing a meal assistance robot, it is necessary to concern about the

user intention identification method, safety and comfort of the user, range of the

robot arm, and speed of the operation. Otherwise meal assistance robots might

not be effective for patients who suffer serious disabilities. Different hardware

setups and control algorithms have been used in existing meal assistance robots

to achieve those required goals. Literature can be mainly categorized under the

topics of Mechanical design and intention detection system to better understand

the existing meal assistance systems.

2.1 Mechanical design of meal assistance robots.

Many different factors affect the mechanical design of meal assistance robots.

Food feeding method, food storage method, actuation method, control method

are some of the major factors to be considered. Assessment of these factors is

important in designing a meal assistance robot to achieve a user friendly and eco-

nomical design. This section will discuss in detail about the factors that needed

to be considered when designing a meal assistance robot and the implementation

of those factors in existing meal assistance robots.

2.1.1 Feeding methods

Among many different factors that should be considered when designing a

meal assistance robot, one of the main factors to consider is the feeding method.

Different types of feeding methods are used to feed different patients according to

their disability. Basically tube feeding and oral feeding are the mostly used feeding

methods for disabled patients. Tube feeding is a method of giving necessary

nutrition to the body as liquid form of nourishments. It contains the nutrients

needed on daily basis such as carbohydrates, proteins, fat, vitamins, minerals and

11



Figure 2.1: (a) Tube feeding (b) Spoon feeding

water. Food is delivered to the body using nasogastric tubes that goes from nose

to the stomach or to the small intestine. However, tube feeding method is used

for patients who have serious brain injuries and cannot control the muscles in

mouth voluntarily or who are unconscious due to the injury.

Oral feeding is the process of talking food by mouth. Generally conscious

patients always prefer oral feeding methods. However disabled patients need some

externally assisted feeding methods instead of their own hands. Spoon is the most

common external feeding device used in oral feeding methods. Also spoon based

feeding method is the mostly used method in existing feeder robots. Handy -

1 [23], Winsford feeder [11], meal buddy [5], My spoon [10], Neater eater [25],

Obi meal assistance system [6] and Mealtime partner [12] dining system are some

of the best examples for commercially produced meal assistance robots having

a spoon based feeding method. However, there are some feeder arms that were

designed to feed using other methods. Self-feeding assistive robot which was

designed by Korea National Rehabilitation Research Institute has both gripper

and spoon for the feeding purpose [24]. Meal assistance robot developed in Tokai

University, Japan [16] uses a chopsticks based feeder system. But spoon based

feeding method is the most convenient and effective one to be used with disabled

patients.
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Figure 2.2: Spoon approaching modes. (a) The sagittal plane on which a spoon
moves. (b), (c),(d), and (e) represent the top view of a spoon when a robot
approaches a user’s mouth. The red object means a spoon. (c), (d) and (e) are
more comfortable then (b) (adopted from [24])

Feeding mechanism of the spoon based feeding devices is critical in terms of

the safety and comfortability of the patient. When feeding, spoon should tilt to

the user’s mouth in order to unload the food on the spoon easily when the spoon

arm is positioned in the user’s mouth. Technically, the spoon should tilt to users

with disabilities. If the self-feeding robot does not have a tilting function, then

the user will struggle to eat the food on the spoon. On the other hand it is very

important to consider about the spoon moving path or trajectory planning of the

feeder robot arm, as it should be comfortable for the patient. Fig 2.2 illustrate

different methods of spoon approaches. If the spoon approaches from the side of

user’s mouth, then a user can feel safer. This is because those motions are similar

to most people’s motions when they actually eat foods [23,24].

2.1.2 Food storage method

Food storing is another important factor to be considered. This is because

proper storing method is required to avoid the wastage, improve the safety and

improve the efficiency of the feeder system. Most of the wastage in a feeder

arm occur during the collection of the food. Therefore, it is required to have
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Figure 2.3: Foods storing methods. (a) The foods tray with tracks [17]. (b)
Quadrant platform used in meal buddy [5].

proper storage method to avoid unnecessary wastage of foods. On the other

hand, storing arrangement should consist of a facility to store several foods. When

considering the existing meal assistance robots, different foods storing methods

have been used. As shown in Fig. 2.3 (b), the meal buddy was designed with

special platform which has a shape of quadrant [5]. In this method spoon should

be controlled to move to each and every dish for collect the foods. Using the

quadrant method it is possible to provide the user with different food items to

select. Because of this, most of existing feeder robots have the same method to

store foods. However, the meal assistive robot designed by Yamaguchi University

use different method for food collecting. This robot was made with food storing

tray which consist of five tracks and shutters as shown in Fig.2.3 (a). This

mechanism is used to push the foods on to the spoon through the track [17].

Even though this method is simple, when compared with other feeder arm designs

there are few drawbacks to be highlighted. Especially in this method there could

be considerable wastage of food since they are pushed on to the spoon from the

tracks. Other issue is the movement of the spoon through the sagittal plane of

the patient. As discussed in above it may feel uncomfortable for the patients.
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2.1.3 Actuation methods used in meal assistance robots

Actuation method is responsible of providing reliable motion outputs to the

meal assistance robot. It should be able to achieve smooth motions in order

to feed food without wastages due to spilling. Generally, different types of ac-

tuation methods are used to produce linear and rotational movements of robot

arms. Pneumatics, hydraulic and electrical actuators are the most commonly

used actuation methods in robotics. However, meal assistance robots can be cat-

egorized into special category since the whole system is used for assistive purpose

of disabled patients. Therefore, the pneumatic and hydraulics is not a suitable

actuation methods as pneumatic and hydraulics are typically used in industrial

purposes which needs high forces. Also hazardous nature of those methods limit

them from using in assistive robotics. Hence meal assistance robots are designed

with electrical actuation systems which provide more accurate and smooth con-

trolling [5–7, 10]. Since actuation should be done in a safe manner, the DC and

servo motors have mostly been used to control the feeder arm motions [26]. DC

motors also help to move the arm smoothly to avoid the unnecessary wastage of

the foods. The Handy1 [23], my spoon [10], neater eater [25] and other feeder

arms have been designed with DC motors. This shows the applicability of DC

motors for the feeder arms in meal assistance robots. However, the Meal buddy

is operated by using servo motors in each joint [5]. Even though servo motors

are not smooth as DC motors in operation, they have a competitive advantage

in cost and controlling. Table 2.2 lists the popular feeder arms with respective to

control method used.

2.1.4 Summary

From the table 2 it can be figured out that most of the existing meal assistance

robots in both the commercial and research stages have used robot arms having 4

degrees of freedom (DOF) or more. In those systems, a spoon is attached as the
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end effector and food is scooped, then fed to the user using the spoon. Most of the

systems were capable of handling solid food items while some were able to handle

liquid based food items as well. Each joint of the robot arm is controlled using

DC or servo motors. Geared motors are used to get smooth motions by reducing

the speed of the motors. Also most of the robot arms use a food storage system

similar to quadrant method [5] allowing the user to select from few different food

items.

Table 2.2: Control methods of existing meal assistance robots.
Feeder robot Input type Special remarks

My Spoon [10] Keyboard/joystick
Chin controlled
joystick

Bestic arm [7] Keyboard/joystick

Mealbuddy [5] Keyboard/joystick

Winsford�
Feeder system [11]

Keyboard/joystick
Joystick controlled
by head

Mealtime Partner [12] Keyboard/joystick

The VoiceBot [13] Voice commands
Nonverbal voice

command
Assistive
Robotic Arm by University
of the Ryukyus [14]

Keyboard/joystick
Vision system is used
to positioning

Meal support system by
Shizuoka University [15]

Keyboard/joystick
Laser Range Finder is used
to identify the food positions

Chopstick-Equipped
Meal Assistance Robot [16]

Hands
free pointing

Reflector is used to track
head moments and
ultimately the mouse pointer

Eye-Operated
Meal Assistance Robot by
Yamaguchi university [17]

Eye Interface

ICRAFT [18] Eye tracking Eye tracking interface

ASIBOT [19] Keyboard/joystick
Use of docking concept
for multiple uses

Hello Spoon [22] Keyboard/joystick

Handy 1 [23] Keyboard/joystick

Possible to achieve several
everyday functions
such as eating, cleaning teeth,
drinking and shaving
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Figure 2.4: Different input signals. (a) Head controlled joystick [10] (b) Joystick
(c) Voice control , (d) Sip and puff switch [27] (e) Electrocorticography, (f) Eye
tracking.

2.2 Controlling methods of meal assistance robot.

User intention detection and hardware control of the robot according to user

intention can be identified as the two main stages of controlling meal assistance

robots. User intention detection method will determine the user group of the meal

assistance robot. For instance, patients who are suffering spinal cord injuries will

not have the ability to control a button operated meal assistance robot. Other

methods of user intention identification should be implemented in such situations.

After identifying the correct intention, robot should be correctly controlled to

feed the food. While few different methods can be used to actuate the robot it is

important to identify a viable solution.

2.2.1 User input identification methods used in meal assistance robots.

There are many types of input signals such as joystick signals, sip and puff

switches, eye movement sensors (as shown in Fig. 2.4) that have been used for

controlling of meal assistance robots. Table 2.2 summarizes the widely used input
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signals and methods for controlling meal assistance robots.

Customized keyboard and joysticks are the main input method used in meal

assistance robots. Almost all the feeder arms have the ability to pre-program

the mouth positions and the bowl positions, keyboard or joystick is only used

to initiate the feeding motion and selecting food. These keyboard and joysticks

are fabricated according to the subject’s disability. Manus robot [28] developed

in 1996 uses different input methods like foot controlled keyboard, chin joystick

with sip and puff switches, and foot joystick to obtain user inputs. These input

methods are used by many commercial meal assistance robots as their control

method. My spoon feeder arm [10] uses the chin controlled joystick to allow

their users to control the meal assistance robot. Meal Buddy feeder arm [5] is

implementing the one button control method for the user input detection and it

will feed the food to the pre initialized position. Systems like Bestic Arm [7],

Winsford Feeder [11], Mealtime Partners Dining System [12], and JACO robot

arm [21], ASIBOT [19] also uses the keyboard and joystick input method. This

method is easy to incorporate with different patients according to their disability.

As an example if the patient has an upper limb disarticulation, a joystick can

be design to work operate from lower limbs. But in a case of SCI patients,

using a joystick is not possible when they have no control over their limbs. In

situations where patients having C4 or above level spinal cord injuries, using a

neck controlled joystick is also not a possibility.

Northeastern University has developed a 4 axis feeder arm [18] which is ca-

pable of working independently once it is configured initially. User is given the

opportunity to choose between three bowl positions, initiating and concluding of

the feeding process is done by displaying the related positions on a screen. IR

light is shined on the subject’s eyes and glow is reflected back to the camera, this

is used to track the eye moments when user is selecting an option using their eye.

Open source software called ITU Gazetracker is used to track the moments in

the eye. Also Meal-assistance robot developed by Yamaguchi University [17] has
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used an eye interface for controlling the arm and selecting the food items. In this

method there is a possibility that eye blinks and other moments in the eye might

affect the overall system. However, properly developed system which uses this

method will benefit the patient since the system can be operated with less effort.

Voice controlled method is another effective control method to be used by

patients with motor disabilities or amputations. The VoiceBot [13] has used a

non-verbal voice control method to obtain the control signals. User relies on

continuous sounds that can vary in pitch, vowel quality, or amplitude to provide

control of computer applications and ultimately the robot arm. Even though

it was difficult to find similar researches for meal assisting applications, there

are voice controlled robot arms designed to perform other tasks like medical

surgery [29], packing, and pick and place [30]. However, the major drawback

of the voice recognition when using for meal assistance robots is the fact that

user needs to operate the system while eating the food. Therefor nonverbal voice

recognition system might be more suitable for this method than a verbal voice

recognition system.

Another control method that can be used as a control input for disabled pa-

tients is the hand free pointing devices, which can be point out which food they

want and initiate the feeding action of the arm. Chopstick-equipped meal assis-

tance robot developed by the Tokai University [16] has used this concept to select

the food to be consumed by the user.

Biological signals are another type of signals that can be used as input signals

for meal assistance robots. However, Electromyography (EMG) based researches

are less because acquiring EMG from SCI patients is less affective with their

condition. EMG signal based robot arms can be designed to operate by patients

with upper limb disarticulation [31]. Also researches can be found on prostheses

that use targeted muscle reinnervation (TMR) [32] and few Electrocorticography

(ECOG) signal based prostheses [33, 34] which give the patient the capability of

handling most ADL tasks that requires upper limbs. Both ECOG and TMR has
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high technological requirements. Also high costs are involved when performing

surgical operations on patients to place an ECOG sensor array and to do the TMR

operations. Because of these reasons ECOG and TMR are not widely popular

among researches at this moment. Electrooculography (EOG) signals also can be

used to identify the user intention [35]. User’s eye ball movements and blinking

patterns are used to select food options and start the feeding process.

2.2.2 Hardware control of the meal assistance robots.

After identifying the user intention, food should be fed to user’s mouth effi-

ciently. Two main methods can be identified from the literature to achieve this.

Most common method used by all most all commercial meal assistance robots

is the fixed point feeding [5, 5–7]. In this method food is scooped and fed using

pre-determined motion paths. Because of this user should remain in the same

location during the feeding process. Otherwise spoon’s end location and mouth

location won’t be same and user won’t be able to get the food. At the beginning

of the feeding process, device should be calibrated to indicate the user’s mouth lo-

cation. Control system will generate a motion path according to the given mouth

location and it will be used throughout the feeding process.

Adaptive feeding methods are being researched to find solutions that will solve

the problem discussed above. Mostly vision based systems are used in conjunction

with button or joystick controllers. Vision is used to identify the food positions

and the path of the robot arm. Vision based robot arm designed by the University

of the Ryukyus, Japan [14] has used a web camera to identify the water bottle kept

at a table and fetch it to the patient. Same function can be achieved by other

sensing methods like laser range finders, IR sensing etc. Meal support system

designed by the Shizuoka University, Japan [15] has used a laser range finder

to locate the food on a bowl and scoop it using the manipulator. Wheelchair-

mounted robotic arm designed by the University of Massachusetts Lowell [36] has

used a stereo camera to identify an object and direct the robot arm on to the
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object and return it to the patient. Similar system can be used in meal assistance

robot to detect food items according to the favor of the individual.

2.2.3 Emerging technologies in meal assistance robots.

As the advancement of technology, new control methods are introduced and

they can be adopted to existing meal assistance robot designs. By adopting these

technologies accuracy and reliability can be improved for the meal assistance

robots. For an example, the problem of food spilling when using the robot arms

in meal assistance robot has been addressed [37]. In that paper, the team has

given a computational fluid dynamic simulation of the stabilizing process and it

has been experimentally proved using a 6 DOF robot arm. Journal article by

University of Toronto [38] discuss the use of 3d depth sensing using Kinect sensor

for meal time assistance. User’s facial expressions was monitored to provide

cognitive assistance during the meal consumption.

Research by Nara Institute of Science and Technology [39] discuss the use

of vision based calorie counting application for smartphones. Calorie/nutrition

monitoring methods can be incorporate with meal assistance robots to moni-

tor the intake of the user and assist the nutritionist in determining meal plans.

Furthermore, safety of meal assistance robot is an another important aspect in de-

signing the robot. It should not injure or miss operate during the usage. Collision

avoidance methods/ compliant control methods can be incorporated with meal

assistance robots to increase the safety and user friendliness of robots. Methods

such as current sensing, mechanical safety systems [40], image processing and

sensor fusion [41] can be used as compliant control methods for meal assistance

robots.
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2.2.4 Use of Brain Machine Interfacing as a control signal.

Brain Machine Interface (BMI) is the concept of extracting neural information

from the brain and translating that information to control a hardware. Main

aim of using BMI is to replace or restore useful body functions of people suf-

fering from neuromuscular disorders such as Spinal Cord Injuries(SCI), stroke,

cerebral palsy and amyotrophic lateral sclerosis. BMI can be mainly identified

under two categories of invasive BMI and non-invasive BMI. Invasive brain ma-

chine interfacing is the method of surgically removing the scalp and implanting

electrodes to record the electrical activity of the brain. Two main technologies

dominate the invasive brain machine interface research: ECoG and implanted

microelectrode arrays [42]. Electrocorticography (ECoG), is a similar method as

electroencephalography (EEG). Instead of recoding electrical activity from scalp,

ECoG uses implanted electrodes to record the signals. Electrodes placed under

the scalp has a higher spatial resolution than EEG from scalp. Also those signals

are less affected by the external and internal artifacts such and EOG, EMG sig-

nals and power-line noise. Next method, implanted microelectrode arrays provide

higher accuracy signals than ECoG. It is considered as the only BMI technique

that allows decoding intended movements of the patient’s limb with high accu-

racy. Even though both ECoG and implanted electrodes provide higher accuracy

Figure 2.5: Implanted electrodes over the motor cortex
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levels than EEG, it is not practical to use those technologies due to invasiveness

and higher cost associated. Because of this most of invasive BMI applications are

carried out using primates [43–45]. Research carried out by John Hopkins Uni-

versity [46] can be identified as one of the few researches related to human based

invasive brain machine interfacing. High density 32 electrode grid was implanted

over the left sensorimotor cortex to record motion intentions of the user Fig.2.5.

During the experiments participant was able to achieve robust control of a 3D

cursor. Invasive BMI research is gaining interests throughout the world and there

will be more robust applications in future.

Non-invasive BMI on the otherhand focus of recording electrical activity of the

brain from the surface of the scalp (EEG). It’s a safe, convenient and relatively

inexpensive method that gained interest of researches during recent years. Recent

EEG researches such as brain spellers [47, 48] for spell words using brain, brain

games [49] for cognitive training, brain controlled hand orthoses [50] and brain

controlled wheelchair [51] demonstrate the capabilities of BMI. Fig.2.6 shows the

Figure 2.6: Use of non invasive BMI to control a wheelchair
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usage of non invasive BMI during an experiment. Because EEG is recoded on the

scalp, signal is subjected to external and internal noise, artifacts which needed

to be removed from the final signal to obtain a acceptable signal to noise ratio.

As the advancement of machine leaning techniques, signal processing techniques

and classification methods now it is possible to obtain more reliable EEG signals

from the scalp.

In non inversive brain machine interfaces, six types of signals are being re-

searched [52]. Sensori-motor rhythms (rolandic alpha or mu-rhythms), slow cor-

tical potentials (SCP), event-related potentials (ERPs), steady-state visually or

auditory evoked potentials (SSVEP/SSAEP), blood-oxygenation level dependent

(BOLD),contrast imaging using functional MRI and concentration changes of

oxy/deoxy hemoglobin using functional near-infrared spectroscopy(fNIRS) [52].

MRI and fNIRS need specific equipment that are not accessible in normal research

environment. On the other hand, ERPs, Sensori-motor rhythms and SSVEP

methods are considered as the most prominent EEG BMI tequniques used in

research field.

2.2.5 Event-related potentials (ERPs)

Event-related potentials are the electrical response of the brain to specific

events or stimuli [53]. ERPs can be excited by variety of cognitive, motor or

sensory events and they provide a non-invasive insight in to psychological states

on physiological system responses. ERP signals can be categorized in to two main

categories: Sensory signals which occur within the first 100 milliseconds after the

stimuli and cognitive signals which are generated in later parts. ERP signal

waveforms are analyzed according to the amplitude and latency [53]. Among

different ERP methods, P300 is the main research areas under Event Related

Potential signals.

P300 is a positive component in EEG signal that peaks 300ms or more after

24



a task-relevant stimulus and oddball paradigm is used to generate the ERP. In

oddball paradigm, user is presented with one general stimulus train and one odd

stimulus randomly in between the general stimulus. Because human brain focus

on the odd stimulus in between the general stimulation, an electrical response

can be examined in the brain waves as shown in Fig.2.7. P300 signal depend

on number of variables such as the significance of the stimulus, subject’s mental

state, the task that has to be accomplished, and the degree of attention. [54]. At

the earliest stages, p300 signal was used as a lie detector. But currently it is used

in many applications such as brain spellers [55], brain controlled wheelchairs [56],

games [57] and much more.

2.2.6 Sensorimotor rhythms (SMR)

Sensorimotor rhythms are the rhythmic activity recorded over the sensory

motor cortex Fig. 2.8 (a) of the brain. Motor cortex is the region of the brain as-

sociated with planning, controlling of voluntary motions in a human body. Senso-

rimotor rhythms (SMR) are the electrical activity generated by actual movement,

motor intention or motor imagery. Frequency range of the SMR waves are from

12Hz to 15Hz for most humans [58]. In SMR based brain machine interfaces,

user’s imaginary motor moments are decoded and translate them in to control

signals. In some researches users were able to achieve both 2D and 3D control of

Figure 2.7: P300 wave. Figure from [2]
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robots using SMR signals [59,60]. Research by University of Minnesota evaluate

the use of SMR to control a quadcopter in 3D space [60] proving the use of SMR

based BMI’s potential.

Even though sensorimotor rhythms show promising results in BMI field, few

disadvantages limit them from using in online applications. Feature extraction

and classification of SMR signals is a complex process when compared with some

other BMI methods. This is because SMRs are generated in a small region of

the brain and when the signal is recorded from outside, strength of the signal

is reduced. Usually brain activity is measured inside the brain in millivolts but

from outside of the brain it reduces to micro volts range. Complex filtering and

feature extraction methods that have high computational cost must be imple-

mented in order to identify the SMR signals. Also SMR need a longer training

time compared with methods such as SSVEP and P300, where user is able to pro-

duce the necessary signals without any pre-training. Also accuracy of the SMR

classification is relatively low [61] when compared with other BMI methods.

Figure 2.8: (a) Motor cortex. (b) Visual cortex
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2.2.7 Steady State Visually Evoked Potential (SSVEP)

Steady state visually evoked potential (SSVEP) is a phenomena created in the

visual cortex of the brain (Fig.2.8) (b) due to repetitive stimulations that has

different properties such as frequency and phase [62]. Multiple stimuli associated

with multiple commands are presented simultaneously to the user to select. User

need to focus on the intended stimulus to select the command associated with

that stimulus. When the user focus on a target, SSVEP is created as oscillatory

signal in the visual cortex of the brain. Focused stimuli evoke SSVEP responses

at the corresponding frequency as well as it’s harmonics. SSVEP signal can be

evoked by flickering visual stimuli in the frequency range of 1Hz to 90Hz [63].

Also SSVEP is evoked in all most all humans making it an another viable control

input for users where other control methods might not work [64].

Multiple stimuli based SSVEP being widely used with BMIs for the robustness

and high signal to noise ratio of the SSVEP signal. Applications such as wheel

chairs [65], home automation units [66] and active prostheses [67] are some of the

popular applications based on multiple stimuli based SSVEP. Generally, stimuli

are kept at a distance from each other for visual separation. But for subjects

who do not have necessary muscle control to redirect the gaze in between stimuli,

gaze independent SSVEP BMIs have been proposed [68,69].

2.2.8 Summary

Controlling of the meal assistance robot can be categorized under two main

topics: User input detection and hardware control of the meal assistance robot.

In terms of user input detection, most of the existing meal assistance robot use

button/ joystick operation as their main input method. Eventhough there are

few other control methods such as voice control and eye control, most of them

doesn’t provide the needed solution for SCI and other patients suffering from

severe disabilities. Due to this reason EEG can be identified as a reliable solution

27



which can provide ideal control signal solution for meal assistance robots. Hence,

it is important to research on the possibility of incorporating EEG as a control

signal. Within EEG, SSVEP can be identified as the best BMI solution due to

its high signal to noise ratio and it’s possibility to induce in any type of patients

who are not suffering brain injuries or coma.

All most all of the existing meal assistance robots use fix point system to feed

food to users. But this is not an ideal solution since the user has to be in a fixed

location throughout the feeding process. Due to this, it is important to research

on adaptive feeding methods which can identify user’s mouth location and feed

according to that location. Further, in current systems, only method to identify

the user’s willingness to consume food is by pressing a button or else system will

feed at a fixed rate. Other methods to identify user’s intention will aid the users

with severe disabilities who cannot use current systems.
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Chapter 3

OVERVIEW AND HARDWARE DESIGN OF THE PRO-

POSED MEAL ASSISTANCE ROBOT

3.1 Introduction

Before moving to in-depth details of the proposed system, it is vital to un-

derstand the overall working process of the proposed system. Hence, beginning

of this chapter will describe the overview of the proposed meal assistance robot.

Components and connection of the overall system will be discussed in brief and

the control algorithm proposed will also discussed during the overview section.

Second section of this chapter will be focused in discussing the design and control

structure of the proposed 4DOF meal assistance robot. First, mechanical design

and forward/inverse kinematic solutions of the manipulator will be presented

along with the hardware components used in fabricating the meal assistance

robot. Then, hardware control of the proposed manipulator will be discussed

in the later section.

3.2 Overview of the proposed meal assistance robot

The overall system consists of mainly four subsystems: Feeder robot arm, LED

panel system, camera system and EEG signal acquisition system. Fig.3.1 gives an

overview of the hardware connection of the system. The feeder robot arm is used
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Figure 3.1: Hardware system overview of the meal assistance robot

to perform the feeding motions. It is a RC Servo motors based robot arm which

has a 4 Degrees of Freedoms(DOF). RC servo motors are used with an external

gearbox to increase the torque while maintaining the smooth motion. Driving of

the RC servo motors are realized through a 12 channel servo (Pololu Maestro)

controller. High level commands for the servo controller are issued by a laptop

where main program is running. Three food containers are fixed on the base

frame of the robot arm to store the food items. Adjacent to each food container,

an 8*8 LED matrix is mounted and they are used to generate the required visual

stimuli signals. An embedded system (Arduino Nano) is used to flicker the LED

matrices at 6Hz, 7Hz and 8Hz frequencies.

In order to recognize the user’s mouth position and whether it opens or close,

a miniature wide angle camera(Mobius) with 1280X720 resolution is used. It is

mounted at the end effector above to the spoon as shown in Fig.3.2 . The Camera

module is connected directly to the laptop via USB interface. IR based distance

sensor capable of measuring distance from 2cm to 15cm was also mounted on the

end effector to acquire depth data. Sensor data is transmitted to laptop using an

Arduino Nano controller board. Electrical connections will be further discussed

in the section 3.3.4. Moreover, to acquire the EEG signals, OpenBCI 32bit V3 8
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Figure 3.2: Camera mounted of the end effector of the meal assistance robot

channel EEG acquisition system is used. Measured EEG signals at 250 Hz sample

rate are transmitted using Bluetooth interface of OpenBCI to the laptop which

runs the main program of the system. The laptop (Core i7,12 GB RAM) used in

this study is responsible for processing EEG signals, processing camera data and

generating servo commands according the implemented program.

Basic control algorithm of the proposed meal assistance robot system is shown

in Fig.3.3. At the start of the system, program runs through a loop which used

to identify the user intention using SSVEP based classification method. After

identifying the user intention, necessary commands will be sent to the feeder

robot which will scoop the selected food using a pre-programmed motion path.

The spoon at the end effector of the meal assistance robot travels from its rest

position as shown in Fig.3.4 (Rest), scoops the food and arrives to a position

where the camera can have a wide view towards the user. Since the motion path

from the home position to a container and then arrive to the camera tracking

position is same for any user irrespective of the situation, for the simplicity,

three separate pre-programmed motion paths are implemented for scooping from

respective containers. At the end of each motion, the spoon arrives at the same

position so that the algorithm could move into automatic mouth position tracking

stage.
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Figure 3.3: Overall control algorithm of the system

Once the robot reaches to the fixed location, the system algorithm moves to

the automatic mouth position tracking stage. At this moment, the algorithm

starts to track the position of the mouth of the user within the video frame.

After positioning the robot according to the user’s mouth, algorithm will process

the video data to identify the opening of the mouth. Once the user open his/her

mouth food will be fed according to the position of the mouth. Identification of

the distance that spoon should travel is identified by the IR distance measuring
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Figure 3.4: A: End of scooping motion Rest: Initial position of the robot B: End
of automatic mouth position stage and start of mouth open/closed identification
stage.

sensor. After completion of the feeding, robot will continue to feed from the same

bowl for a pre-configured time period. Furthermore, feeding bowl selection can

be changed using an another user input or stop the feeding process by gazing at

the same LED panel that current feeding is carried out.

3.3 Mechanical design and controlling of the 4DOF meal assistance

robot

This chapter discusses the mechanical design and controlling of the 4DOF meal

assistance robot. Meal assistance robot consists of the 4 DOF robot arm and 3

food containers. Food containers are placed in a quadrant type discussed in the

section 2.1.2. Robot arm was designed with the capability ot upgrade in future

with end end effector devices such as grippers, camera modules, etc.
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Figure 3.5: (a) 3D design of the meal assistance robot (b) Joint diagram of the
robot.

3.3.1 Mechanism and Mechanical Design

3d model of the feeder arm design is shown in Fig.3.5 (a) and the joint arrange-

ment in Fig.3.5.(b) . Modular type design was implemented for future modifica-

tions using off the shelve components. Feeder arm consists of two tube mount

servo gear boxes [5:1 gear ratio], one top mount servo gear box [7:1 gear ratio],

four metal gear servos and various mounting hardware to connect each equipment.

Top mount gear box Fig.3.6 (a) with a gear ratio of 7.1 was used for joint 1 which

was mounted on an aluminum bracket. Joint 2 and joint 3 comprised of the two

tube mount gear boxes Fig.3.6 (b) having 5:1 gear ratio. Each gearbox was con-

nected using 16mm diameter 3mm thickness carbon fiber tubes using 16mm bore

90°clamping mounts [Fig.3.6 (d)]. Spoon and the camera was mounted as the end

effector using a 3d printed hardware [Fig.3.6 (e)] and a servo hub [Fig.3.6 (f)] as

shown in Fig.3.2. Four Hi-Tech HS-5685MH metal gear servos were selected as

the actuation devices of the robot considering the durability and potential future

upgrades. Some of the important specification details of the servos are as follows.

� 6.0V - 7.4V voltage range
� No-load speed (6.0V) of 0.20sec/60°
� No-load speed (7.4V) of 0.17sec/60°
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Figure 3.6: (a) Top mount gearbox (b) Tube mount gearbox (c) 16mm carbon
fiber tube (d) 90°clamping mount

� Stall torque (6.0V) of 157oz/in. (8.8kg.cm)
� Stall torque (7.4V) of 179oz/in. (12.9kg.cm)
� Max PWM signal range (standard) of 750-2250µsec
� Metal gears
� Operating temperature range of -20°C to +60°C

Fig.3.7 shows the workspace model of the feeder robot modeled using Matlab.

Maximum reach along the X, Y, and Z axes are 40 cm, 40 cm and 45 cm respec-

tively. These amounts are sufficient to scoop the food from the designed quadrant

type food storage method shown in Fig.2.3. 3 plastic food storage bowls were

fixed in an acrylic frame which was used to mount the feeder arm as well.
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Figure 3.7: Workspace of the designed meal assistance robot

Figure 3.8: Quadrant design of the food storage method.

3.3.2 Kinematic analysis of the meal assistance robot

Analyzing the kinematics of the meal assistance robot is necessary to control

the robot in the workspace. Forward kinematic analysis is essential in finding

the location and the pose of the end effector using current joint angles. Inverse
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Figure 3.9: (a)3DOF planner robot (b) 1DOF Rotation joint.

kinematics solutions are necessary in identifying the joint angles using the end

effector coordinates and pose. Finding forward kinematics of a 4DOF robot arm is

possible with different method such as DH parameters, geometrical methods, etc.

But solving the inverse kinematics solutions for 4DOF robot using only 3 known

parameters is complex and results in multiple solutions. Hence it was decided

to simplify the kinematic analysis by separating the robot arm to two kinematic

models: 1DOF rotation around the 1st Joint (Fig.3.9 (b)) and 3DOF planner

robot arm (Fig.3.9 (a)). Solution for 1DOF rotation joint is straight forward and

geometrical solution for 3DOF feeder robot is discussed in the sections below.

Forward kinematics

3DOf feeder robot was defined with the angles and coordinates as mentioned

below.

joint angles = θ1, θ2, θ3

end effector coordinates = x,y,φ
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Figure 3.10: 3DOF robot arm for FK

link lengths = l1, l2, l3

Position and pose of the end effector can be stated using the equations 4.1, 4.2

and 4.3.

x = l1 cos θ1 + l2 cos(θ1 + θ2) + l3 cos(θ1 + θ2 + θ3) (3.1)

y = l1 sin θ1 + l2 sin(θ1 + θ2) + l3 sin(θ1 + θ2 + θ3) (3.2)

φ = θ1 + θ2 + θ3 (3.3)

Inverse Kinematics

Reducing the problem to 2DOF manipulator will simply the process of finding

solutions. Point on the 3rd joint was defined and Px, Py.

Px = X − l3 cosφ (3.4)

Px = X − l3 sinφ (3.5)
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Figure 3.11: 3DOF robot arm for IK

Reduced problem can be graphically represent as in Fig.3.12.

Figure 3.12: 3DOF robot arm reduced to 2DOF solution

L =
√
P 2
x + P 2

y (3.6)
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β1 = atan(
Py

Px

) (3.7)

Applying cos law for the angle θ1 − β1

cos(θ1 − β1) =
l21 + L2 − l22

2l1L
(3.8)

θ1 = acos(
l21 + L2 − l22

2l1L
) + β1 (3.9)

Figure 3.13: 3DOF robot arm reduced to 2DOF solution

Define a point on joint 2 as Px2, Py2. It is possible to represent Px2, Py2 from

equations

Px2 = l1 cos θ1 (3.10)

Py2 = l1 sin θ1 (3.11)

Using the tan representation, tan(θ2 − θ1) can be represented as follows.
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Figure 3.14: Feeder robot control algorithm

tan(θ2 − θ1) =
Py2 − Py1

Px2 − Px1

(3.12)

θ2 can be deduced as

θ2 = atan(
l1 sin θ1 + l3 sinφ− y

l1 cos θ1 + lc cosφ− x
) + θ1 (3.13)

θ3 can be deduced as

θ3 = φ− θ2 − θ1 (3.14)

3.3.3 Controlling of the meal assistance robot

Fig.3.14 show the control algorithm used to control the feeder robot. After re-

ceiving the classified command from Matlab, feeder arm controller will determine

the activation or de-activation of the meal assistance robot using the current sta-

tus. If it’s the beginning of the program it will activate the pre-programed motion
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path related to the classified signal. If it is not the first control command, it will

check for the previous control command. Feeder arm will stop and come to the

rest position Fig.3.4 (b) if the current command Ci matches with the previous

command Ci−1. If current command is different from the previous one, controller

will activate the motion path related to new control command.

Each feeding cycle consists of two sub systems: pre-programmed motion path

controller for food scooping and vision based motion controller for mouth tracking.

Need and application of vision based mouth tracking section controller will be

discussed in chapter 5 in detail. Once the controller activates a control command

to feed a food from a bowl, first it will perform the pre-programmed food scooping

motion. At the end of food scooping, motion path controller will switch to the

vision base mouth identification and mouth open/close identification stage. After

feeding the food, controller will return to the pre-programmed controller again to

scoop the food. This process will continue until the user sends a stop command

or 10 repetitions are completed. In case of user’s voluntary stop command, food

will be dumped again in to the respective bowl and feeder arm will travel in to

the rest position.

3.3.4 Electrical component connections

Fig.3.15 shows the hardware connection diagram of the meal assistance robot.

Three LED matrices were blinked according to their stimulus frequency using an

Arduino Nano controller board. Use of a dedicated controller board is necessary

to achieve the correct flickering of the frequency. Four servos were controlled by

using a Pololu servo controller board and it was powered via a regulator at 7.4v

using an external power source. Controller was connected to the laptop using a

USB mini cable and a python script was used to issue control commands. Some

of the main features of the controller are listed below. Wide angle camera was

also powered using the connected USB mini cable. Furthermore, another Arduino

nano was used to acquire the IR sensor data and transfer it to laptop.
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Features of Pololu servo controller.

� 12 Channels
� Three control methods: USB, TTL (5V) serial, and internal scripting
� 0.25µs output pulse width resolution
� Pulse rate configurable from 1 to 333 Hz
� Individual speed and acceleration control for each channel
� GPIO pins

Figure 3.15: Connection diagram of electrical components
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Chapter 4

DEVELOPMENT OF USER INTENTION DETECTION

METHOD USING EEG:SSVEP BASED BMI

4.1 Introduction

User inputs can be fed in to the meal assistance robot by two main methods.

First one as direct control of the robot arm where he/she can direct the spoon

to any desired location within the workspace. This need at least six signals to

control the robot in 3D space. But this is an impossible goal to achieve using

current surface electrode based Brain Machine Interface methods. Second method

is to get the input as a selection of food items. In this method user only need to

select the food item he/she needs to eat. This is the most common method used

in almost all meal assistance robots.

Steady State Visually Evoked Potential BMI can be identified as one the most

reliable methods to implement with a meal assistance robot. As discussed in

the section 2.2.7, SSVEP is a signal generated in the brain due to external vi-

sual stimulations. This can be achieved by flickering a light source at required

frequencies. Since three food items were selected for the experiment three stim-

uli frequencies were needed for the experiment. Furthermore, at the initial stage

classification of the SSVEP signal was carried out using Fast Fourier Transforma-

tion. But considering the disadvantages, Canonical Correlation Analysis based

classification method was implemented at a later stage. This chapter discuss the

stage one of the main control algorithm depicted in Fig.4.1
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Figure 4.1: Section 1 of the main control algorithm

4.2 Selection of the stimulation frequency

Literature indicate that it is possible to elicit SSVEP signals from 1Hz to

90Hz [63] in human brain. But the signal is considerably prominent in the lower

frequency regions. Initially six frequencies from 6Hz to 11Hz at 1Hz intervals was

selected for experiments. Initial experiments indicate that there is considerable

amplitude from the alpha waves region of the brain wave frequency.

Frequency range from 8Hz to 12Hz is associated with alpha waves which evoked

when the user is calm, relaxed and even when daydreaming and inability to focus.

Fig.4.2 shows a frequency graph during a trial where two users were not gazing

a stimulus. Clear amplitude difference can be seen in the alpha wave range. Due

to this frequencies of 6Hz, 7Hz and 8Hz were selected as stimuli frequencies.
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4.3 Visual stimuli generation

There are two methods of generating the visual stimuli. First one is using a

monitor having a high screen refresh rate (120Hz or higher). Monitor is divided

in to different regions and flickered in required frequencies. This is not suitable

for the use of meal assistance robot since it cannot be incorporated with the robot

effectively. Hence it was decided to use the second method of using a flickering

light sources such as LEDs for stimuli generation. Three 6*6, 5mm thick LED

matrices were used to generate the three frequencies needed as shown in Fig.4.4.

Figure 4.2: (a) Subject A when resting. (b) Subject B when resting
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LED panels were fixed 60cm, 70cm and 80cm from the seating position.

Visual fatigue is a common problem in SSVEP BMIs. Intensity of the light

source is proportional to the level of visual fatigue. In order to decrease the in-

tensity of the LED panel 250 Ohms Resistor was used in series with each LED

panel. Timing of the blinking sequence was precisely controlled using a dedi-

cated Arduino Nano. Fig.4.3 depict the connection diagram of the LED stimuli

generation panels.

Figure 4.3: LED Panel connection diagram

4.4 Acquisition of EEG signals.

Proper EEG acquisition is essential for the success of BMI systems. Selecting

a suitable EEG acquisition system depends on many factors. Number of Chan-

nels, Sampling rate, adaptability to the application, cost of the system are some

of the major factors that need consideration. Considering above factors it was

decided to use the OpenBCI EEG acquisition system for the acquisition process.

Specification of the EEG system is given below and the Fig.4.5 shows a photo of
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the system.

OpenBCI 32bit board:

� 8 differential, high gain, low noise input channels.
� Compatible with active and passive electrodes.
� Texas Instruments ADS1299 ADC.
� PIC32MX250F128B microcontroller w/chipKIT� bootloader (50MHz).
� RFduino� Low Power Bluetooth� radio.
� 24-bit channel data resolution.
� Programmable gain: 1, 2, 4, 6, 8, 12, 24.
� 3.3V digital operating voltage.
� +/-2.5V analog operating voltage.
� 3.3-12V input voltage
� LIS3DH accelerometer.
� Micro SD card slot.
� 5 GPIO pins, 3 of which can be Analog.

OpenBCI daisy module:

� 8 differential, high gain, low noise input channels.
� Compatible with active and passive electrodes.
� Texas Instruments ADS1299 ADC.
� 24-bit channel data resolution.
� Programmable gain: 1, 2, 4, 6, 8, 12, 24.
� 3.3V digital operating voltage.

Figure 4.4: 3mm Diameter 8 x 8 LED Matrix
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Figure 4.5: OpenBCI EEG acquisition system

� +/-2.5V analog operating voltage.
� Powered by OpenBCI board

Passive gold cup electrodes

� 26 gauge stranded wire.
� 1-meter, color-coded cable.
� Single female header termination per cable.
� Insulation = PVC rated to 80*C.
� Overall OD = 1.45mm/0.057”.

OpenBCI acquisition system is an open source 16 high gain channel, active and

passive electrode compatible system capable of transferring data at a 250Hz via

Bluetooth. Furthermore, cost of the system is comparatively low with compared

to popular EEG systems. OpenBCI system is provided with a ProcessingTM based

GUI which provide basic data visualization capability and a python interface

capable of accessing raw data from electrodes.

Out of the sixteen channels, eight was used to acquire the data from the

scalp. Gold plated passive electrodes with a conductive paste was used during

the experiments. Channels 1 to 8 were placed at the O1, O2, POz, PO3, PO4,
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Figure 4.6: Electrode locations used according to 10/10 system

C1, C2, C3 locations respectively according to 10/10 electrode placement system

and these locations are shown in Fig.4.6. EasyCapTM electrode placement cap

marked with above locations was used in proper placement of electrodes. First

EasyCapTM was placed on the subject’s head. Sufficient amount of Ten20 paste

was applied to electrodes before placing them on above locations. Ten20 paste is

used to conduct the signals from skin or scalp to the electrode. Electrodes placed

in PO3, POz, PO4, O1, Oz locations are above the visual cortex of user’s brain.

Visual cortex is the region associated with processing visual data from eyes. Thus

it’s the area where the required SSVEP signals are been created. Another three

electrodes were placed in the locations of C1, Cz, C2. These electrodes act as a

reference to indicate the electrical potential on surface of the scalp. Furthermore,

reference and ground electrodes of the system were attached to earlobes of the

user using Ten20 paste and medical plasters. Electrode paste on a gold cup

electrode is depicted in Fig.4.7 and picture of the electrodes attached on the head

according to the above described method is shown in Fig.4.8.

EEG system is powered using four AA size batteries and a USB Bluetooth

dongle was used to transmit data to the laptop. In the laptop, OpenBCI python
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Figure 4.7: Ten20 electrode paste on gold cup electrodes

Figure 4.8: Goldcup Electrodes attached to a user’s scalp using the EasyCap
placement cap

interface along with labstreaming layer was used to transfer data from the dongle

to Matlab 2016 application.
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4.5 Preprocessing of acquired raw signals

Figure 4.9: Data preprocessing algorithm

Since EEG signals are in micro volts range, many different factors affect the

quality of acquired signals. Effect from internal noise, external noise, and artifacts

can be reduced or completely eliminated by using preprocessing methods. For

the preprocessing and classification process, laptop with a Core i7 processor and

a 12 gb memory was used. Fig.4.9 indicate the steps of data preprocessing. First

data acquisition was carried out as described using Labstreaminglayer [70].
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Labstreaming layer, which used to feed the data to Matlab is an interface to

transfer signal data from an acquisition system to different software platforms

simultaneously. Matlab 2016b version was used throughout data processing and

classification process. In Matlab, two circular buffers having a size of 1000 samples

and 2500 samples was used to store the data for CCA based Classification and

FFT based classification respectively. Moving Circular buffer having a gap of

50 samples was used as shown in the Fig.4.10. The gap of 50 samples were

selected considering the computational power required and the classification speed

required. This data window was subjected to the data processing steps shown in

Fig.4.9.

Figure 4.10: Use of Moving window in data processing

First data from 8 channels were separated in to two groups. First group with

C1, Cz, C2 and second group with PO3, POz, PO4, O1, Oz electrodes. Two

signals were created by adding the channels in each group and averaging them.

After that signal from visual cortex region was subtracted by the reference signal.

This eliminate the noise and other artifacts common to both electrode sets. Then

Matlab was used to differentiate the two signals. This step eliminates the signal

drift and keep the signal’s base line as zero. Then this pre-processed signal was

used for classification. After the FFT implementation, Canonical correlation

based classification method was implemented to overcome the disadvantages of

FFT based classification.
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4.6 Feature extraction and classification of SSVEP signal

Different classification methods can be used to classify SSVEP signals with

varying degree of advantages and disadvantages. According to literature, some

of the most commonly used classification methods can be listed as follows. Fast

Fourier Transformation(FFT), Principle Component Analysis(PCA), Canonical

Correlation Analysis(CCA), Multivariate Synchronization Index(MSI). Usage of

these methods varies depending on the application. FFT is considered as the

primitive method of SSVEP classification. At the initial stage of the research

FFT based threshold classification was used to identify the SSVEP signals and

control the meal assistance robot.

4.6.1 Fast Fourier Transformation based SSVEP classification

Fast Fourier Transformation is a method of converting time domain signal to

frequency domain signals. It creates a set of frequency components using the time

Figure 4.11: 6Hz classification instance
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domain signal, each having a distinct frequency with their own amplitude and

phase. Amplitude of a frequency will reflect the dominancy of that frequency

within the tested signal. This is used to classify the frequency user is gazing.

Fig.4.11 shows an instance of a user gazing at LED panels blinking in 6Hz fre-

quency. Classification was done by identifying the frequencies above a threshold

as shown in the figure. User specific threshold value was calculated for each fre-

quency in the beginning of the experiment by asking the user to gaze the three

LED panels for 60 second each. Furthermore, to generate the required output

signals for the meal assistance robot five consecutive classifications from FFT was

used. This was to avoid false classifications occurred from signal noise.

Although using FFT is better in terms of computational cost and simplic-

ity, it is not a suitable classification method because of the low accuracy and

high average classification time.Furthermore, when threshold classification was

implemented, it is important that amplitude from the desired frequencies are

considerably higher than the noise level to increase the classification accuracy.

Increasing the size of sample window is essential to achieve this. This results in

longer classification times undesirable in real-time applications. Canonical Corre-

lation Analysis was selected in order to overcome these problems while increasing

accuracy and decreasing classification time.

4.6.2 Canonical correlation based SSVEP classification

Canonical Correlation Analysis is a method of identifying the associations

among two sets of variables. Canonical Correlation coefficient is the strength of

association between two variables and the goal is to find the maximal correlation

coefficient between those two sets. Lin et al [71] first proposed the use of CCA to

detect SSVEP signals. CCA method can be described mathematically as follows.

Let X, Y be to multidimensional variables represented as x = XtWx and

y = YtWx. Wx and Wy are weight vectors. Following equation is solved to
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find the weight vectors, which maximize the correlation between x and y linear

combinations.

ρ(x, y) = maxWx,Wy

E[xyT ]√
E[xxT ]E[yyT ]

= maxWx,Wy

E[W T
x XY

TWy]√
E[W T

x XX
TWx]E[W T

y Y Y
TWy]

(4.1)

When SSVEP classification was carried out using CCA, correlation coefficients

between the reference stimuli signal and the EEG signal was calculated and the

frequency having the maximum correlation was identified as the classified fre-

quency. For this it is necessary to create a reference signal. The reference signals

Y is set as

Figure 4.12: Overview of CCA based classification
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Where fk is the stimulus frequency, Nh is the number of harmonics, T is the

number of sampling points. Fs is the sampling rate. 4 Harmonics (Nh =4) was

used in the real time application with a sample size of 1000. Fig.4.12 illustrate

the use of CCA when classifying SSVEP signals.

Fig.4.13 shows a instance where the user was asked to gaze at 6Hz, 7Hz and

8Hz LED panels consecutively in 10 seconds intervals. Clear increase in the

correlation values can be observed from the correlation graph. At this stage

subject was not encourage to adhere a strict time line explaining the delay in

Figure 4.13: CCA correlation values for user gazing.
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8Hz peak. During experiments, correlation value of 0.5 was used as the threshold

value for classification.
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Chapter 5

VISION BASED MOUTH POSITION IDENTIFICATION

AND MOUTH OPEN/CLOSE IDENTIFICATION

5.1 Introduction

This chapter of the thesis discusses the use of adaptive vision based feeding

algorithm in the meal assistance robot. Specifically, section 2 and 3 of the main

control algorithm shown in Fig.5.1. Camera based mouth position identification

and mouth open/close identification is an important contribution of this research

that intend to solve the issue of fix point feeding and to determine the willingness

of the user to consume food. In order to recognize the user’s mouth position and

whether it is in opens or close condition, a miniature wide angle camera (Mobius)

with 1280X720 resolution is used at 15 fps (frames per second).

In the first section of the thesis, automatic mouth position identification and

tracking algorithm will be discussed in detail. In the later section, mouth open/close

status identification algorithm is discussed in detail.

5.2 Automatic mouth position identification and tracking

Once the food scooping motion path is finished, the system algorithm will move

to the automatic mouth position tracking stage. At this moment, the algorithm

starts to track the position of the user’s mouth within the video frame. In order
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Figure 5.1: Section 2 and 3 of the main control algorithm

to track the mouth, it is necessary to identify the mouth shape in the video

frame and to realize this, a Haar Cascade classifier implemented in OpenCV is

used. OpenCV Haar classifier is an effective object detection classifier which is

used in many applications to do object detection. In order to track the mouth,

a pre-trained open source classifier [72] is applied. Furthermore, the classifier is

modified to identify the mouths within 10-30 cm distance from the camera. This

process omits any mouth shape objects in the background beyond that threshold

and allows the program to identify only mouth shapes within the seating area.

When the program identify a mouth position two type of errors can be defined

as shown in Fig.5.2 (a). First one is the error in panning direction which is given

by δZ. Other error is the height difference between the identified mouth position

in the image and the actual height of the user’s mouth which is required to feed

the mouth correctly. This is indicated in δY. In order to center align the spoon
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with the mouth position, δZ and δY are corrected during the proposed method.

To generate the motion of the 4DOF robot arm in this stage, two separate

kinematic models are used as described in the section 3.3.2. Panning motion

around Z axis which is represented by Fig.5 (c) is handled as an independent

model. Then, the motions on XY plane (as depicted in Fig.5 (b) is realized as

a 3DOF planer robot manipulator separately. When a mouth is identified, the

implemented classifier outputs the coordinates of the mouth position as (x1; y1)

and the width (w) and height (h) of the bounding box of the mouth. These data

are represented in Fig.5.2 (a). Using these data, the error between center of the

Figure 5.2: Notations and motion directions of meal assistance robot designed in
the proposed camera based automatic mouth position tacking method
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Algorithm 1: Panning motion (Z direction) adjustment algorithm

1 if δZ < -50 pixels then
2 Panservonew = Panservoold - k;
3 if δZ > 50 pixels then
4 Panservonew = Panservoold + k;

identified mouth and the center of the image frame in Z direction is calculated

based on following equation.

δZ = Cx − (x1 +
w

2
) (5.1)

where the center of the frame given in (Cx; Cy). Then algorithm 1 is used to

correct the δZ error by generating servo motor commands of the panning motion

motor of the meal assistance robot. In algorithm, the current panning servo

position is taken as the Panservoold and k is a constant which sets experimentally.

Also the pixel values of -50 to 50 is taken after conducting initials experiments

with different values. When the identified mouth center is in between these values

it provides the proper centering for the mouth. After correcting the δZ error, the

program then corrects the height error, δY as the second step. Correcting δY is

carried out considering the robot arm as a 3 DOF planer robot manipulator. At

first the error between center of the identified mouth and the center of the image

frame in Y direction is derived based on following equation.

δY =
Cy

2
− (y1 +

h

2
) (5.2)

Then the current position (Ax; Ay) and pose (θ) are calculated using the

forward kinematics equations of a 3DOF planer robot. Algorithm 2 is realized

whether to increase or decrease the height of the spoon or end effector considering

δY. Experimentally it is found out that keeping the identified mouth between -200

to -100 pixels gives the proper height needed to feed the food properly. Inverse
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kinematics equations of a 3 DOF planer robot are used to calculate the new joint

angles according to the output by Algorithm 2. During Z and Y direction align

process, Ax is kept at a fix distance from the base frame of the robot arm. k is

a constant which is set experimentally.

Algorithm 2: Height (Y direction) adjustment algorithm

1 if δY < -200 pixels then
2 Ay = Ay - k;
3 if δY > -100 pixels then
4 Ay = Ay + k;

5.3 User mouth open/close detection

Once the mouth position tracking stage is finished, algorithm moves to the

mouth open detection stage. This stage is important since, it provides the user

with the facility to accept or reject food at his/her will. Whereas in existing meal

assistance robots, it feeds the food irrespective of the user’s readiness to eat. In

this proposed method, when opening of user’s mouth is identified, it gives the

program an indication that the user is ready to accept the food.

A separately trained OpenCV Haar cascade classifier is used for distinguishing

mouth open from mouth close instances. In order to train the classifier, 430

positive images (open mouth) images and 1300 negative images are used in the

training process. Positive samples include the cropped images of open mouth and

negative samples consist of full face photos with mouth close. Once the classifier

is properly trained it outputs the location of the open mouth if an open mouth is

presented in the image. If the classifier detects an open mouth instance of the user,

it starts a counter. Once the counter reaches 5 instances of mouth identification,

the spoon is set to translate till the distance from mouth to camera is become

8cm. Both no counting instances and distance from mouth to camera was selected

using experimental values. Counting 5 instances of mouth identifications aid in
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removing errors occurred due to false classifications. Depth data was acquired

using the IR sensor mounted on the end effector shown in Fig.3.2. After that

the spoon holds the extended position for 5 seconds to user to consume the food.

Then the spoon pulls back along X direction and start the next feeding cycle.

Fig.5.3 demonstrate the user of this algorithm in a normally lit condition.

Figure 5.3: Identification of user mouth open/close status
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Chapter 6

EXPERIMENTS, RESULTS AND DISCUSSION.

Figure 6.1: Experiment setup

A set of experiments have been carried out to validate the system. Experi-

mental setup used during the experiments is shown in the Fig.6.1. The user was

wearing the electrode cap with electrodes attached through the cap. The user

was in a seated position in-front of the meal assistance robot (nealr 60cm away)

as shown in the Fig.6.1. All the required hardware was connected to the laptop

running the EEG classification and visual servoing scripts. Further, Fig.6.2 illus-

trates the steps diagram of a one feeding cycle. For the illustration purpose food

was not included during the depicted experiment.

In order to validate the proposed methods, experiments were conducted un-

der two main categories:SSVEP classification validation and Mouth tracking and
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Figure 6.2: Steps followed in one feeding cycle

open/close stage validation. In order to validate the two classification meth-

ods five healthy male subjects who were aged 25-28 years participated voluntary

for the experiment. All experiments were performed in a typical room lighting

level and without outside distractions. During the experiments, subjects were

instructed to gaze at the given LED panel in order to select the desired bowl.

The time taken from start of this given instruction to start of the feeder arm mo-

tion was measured separately for further analysis. This purposed methods deals

with gazing at the LED panels and eating from the spoon of the meal assistance

robot. Therefor it is important to consider the user feedback about the proposed
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system and the process. In order to get the user feedback, a questioner was given

for every participant at the end of experiment. Given questioner is depicted in

FIg.6.3.

Figure 6.3: Feedback form given to the experiment participants

Fig 6.4 shows the plots of subject D’s final FFT signals generated using the

algorithm described in Fig.4.9. Significant magnitude difference in relevant fre-

Table 6.1: Accuracy and average classification time using FFT based classification
Subject Frequency Accuracy (%) Average time(s)

A
6 85.7 19
7 85.7 27
8 71.4 27

B
6 100.0 39
7 77.7 39
8 77.7 39

C
6 80.0 22
7 100.0 30
8 90.0 31

D
6 100.0 31
7 80.0 38
8 70.0 23

CJ
6 100.0 21
7 100.0 22
8 100.0 20
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Figure 6.4: FFT plots of 6,7 and 8Hz visual stimulus for the subject CJ

quencies can be identified with compared to noise.

Table 6.1 presents the average classification accuracies of FFT based classi-

fications for all the subjects during experiments. Subjects C and CJ were able

to select the bowls with an accuracy more than 80% and classification results of
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Figure 6.5: Canonical Correlation values of 6, 7 and 8Hz stimuli

other subjects were above the chance level. It should be noted that subject A to

D did not have any prior training and only subject E had prior training in SSVEP
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related experiments. Also Table 6.1 reports the average classification time that

took by each subject to correctly command the feeder arm robot. Even though

the accuracy levels were above 80% almost every instance, average classification

time was above 30s.

Second stage is to verify CCA based classification algorithm. First, in order to

demonstrate the change of correlation values, when a user is gazing at a stimuli,

one subject was asked to do three trials from 3 frequencies. Fig.6.5 shows the

canonical correlation values of subject CJ, when he was asked to gaze at the 3

stimulus. Correlation values were calculated according to the algorithm discussed

in the section 4.6.2. Each trial comprise of 60 seconds of rest time and 60 seconds

of gaze time. At the start of the trial, the user was asked to rest for 60s and at

the end of the 60 seconds user was asked to gaze the 6Hz, 7Hz and 8Hz stimuli. A

clear increase of the correlation values can be observed after the subject started

to gaze at the stimulus.

Furthermore, another series of experiments were carried out to validate the

CCA based classification method. Five male subjects different from the previous

set (except subject CJ) was asked to participated in the experiments. Same set

of instructions were given and consents were taken before the experiments. Time

taken for each classification was recorded for further analysis. Apart from classi-

fication time, data needed for the calculation of false positive, false negative and

true negative values were recorded. Table 6.2 reports the overview of the clas-

sification accuracy and average classification time taken by each subject during

the experiments. Figure 6.6 illustrate the confusion plots for each subjects. First

3 elements of the confusion matrix diagonal represents the true positive values

of the classifications and forth element represent the true negative classification

rate.

Out of the subjects who participated in this second experiments, subject CJ

and Q had previous experiences of using SSVEP. As an overview, it is evident that

all accuracy values for each subjects at each frequency values are above the chance
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Table 6.2: Accuracy and average classification time using CCA based classifica-
tion

Subject Frequency Accuracy (%) Average time(s)

CJ
6 86.7 9.6
7 93.3 9
8 93.3 9.3

Q
6 80.0 9.5
7 90.0 10.0
8 95.0 8.8

R
6 85.7 11.0
7 92.9 8.4
8 89.3 11.3

S
6 60.0 11.6
7 76.0 9.9
8 88.0 6.9

T
6 86.7 11.9
7 93.3 6.2
8 90.0 7.1

level. Additionally, around 10% of false positive classifications can be observed

from all most every experiment subject at every frequency. Subject Q display

the least false positive classification rate as an average and subject S display

the highest amount of false classification rate. Also Subject S’s classification of

6Hz frequency is account for the lowest amount in classification accuracies(60%).

Highest accuracy of the set can be observed from the subject Q’s 8Hz classification

results (95%). Subjects who had previous experience with SSVEP had a low level

of false classification and high level of true negative classifications. Particularly,

their false classifications during the rest period was comparatively low. Moreover,

false classifications caused by 6Hz frequency is at the minimum. For most of the

subjects it was at the 0% rate. But subject R and T displays a small amount of

false classifications of 6Hz at 3.6% and 3.3% respectively.

Figure 6.7 represent the overview of the classification time data distribution

(mean, 25th and 75th percentiles, most extreme data points and outliers). Also

figure 6.8 illustrate the mean classification times and standard deviations of the

classification time taken by each subject. Results show that average time taken
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for the classification of each frequency is around 10 seconds. Lowest classification

time recorded in the data is 3 seconds. Moreover, there were outliers for the

subjects Q, S and T which exceeded 25 seconds.

Figure 6.6: Confusion matrices for each subject.
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Figure 6.7: Average classification times for each subject at each frequency

Figure 6.8: Mean and standard deviation of the classification time taken by each
subject
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In order to validate the automatic mouth position tracking and open/close

identification, the algorithm was executed only for each stage and analyzed the

results. Six subjects were participated voluntarily in the experiments. Sample

image sequence of the motion of spoon which was captured using end-effector

mounted camera from the fixed position at the beginning of the stage to correctly

centering along mouth at the end is shown in Fig.6.9.(a). For all the subjects,

the proposed tracking method was able to effectively track the mouth position

during all the trials. Time taken to correctly track the mouth and center is

recorded and Table 6.3 summarizes the results for all the subjects. It can be seen

that the proposed method was able to track the mouth position of any user with

an average time below 12 seconds. Also Table 6.3 presents the accuracy rates of

open mouth detection , average time taken to recognize the open mouth and the

standard deviations. Fig.6.9.(b) present the instances of mouth open detection

performed on 3 subjects. First raw illustrate the user at resting position and

second raw illustrate the identification of the mouth open, represented by the

green box.

Table 6.3: Performance of the camera based mouth position tracking method and
mouth open/close detection method

Subject
Time taken to track the
center of the mouth (s)

Mouth open detection
accuracy

Time to identify
mouth opening(s)

mean SD mean SD
CJ 9.3 0.3 100 0.8 0.1
L 10.2 0.2 100 1.8 0.6
M 11.1 0.9 100 3.7 1.1
N 10.1 0.4 100 2.7 1.6
O 10.2 0.2 100 1.8 1.1
P 10.0 0.2 100 0.1 0.1

Fig.6.10 depict the scores of the feedback form given for users. First question

was asked regarding the ability to concentrate on the LED panels. Averagely,

users indicated that they are it is not hard nor easy to concentrate on the led

panels (average score of 2.9). Second question was asked on the comfortability of

the eye when gazing at the LED panels and averagely participants agreed that

it was difficult to gaze at the LED panels (average score of 3.9). According to
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the answers form the 3rd question, users agreed that the food amount scooped is

enough for biting (average score of 4). Further, answers from question 4 indicate

that users agree to the statement of ”it is difficult to wear the electrodes on the

head” (average score of 3.7). Answers form the final question reveal that users

disagree (average score of 1.9) to the statement of ”it is difficult to follow the

instructions”.

Figure 6.9: (a) Image sequence of mouth position tracking process as seen from
the end effector mounted camera. Yellow colored box represents the detected
mouth shape by the algorithm (Subject P) (b) Detection results indicating open
mouth status of subject L, M, N. Green colored box indicates the detected mouth
open status by the algorithm
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Figure 6.10: Results from the feedback form
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6.1 Discussion

Self-feeding is one of the main Activities of Daily Living performed by a human

in his/her life time. However, people who suffer from disabilities such as spinal

cord injuries, upper limb dis-articulations, paralysis will not have the opportunity

to feed themselves. They will either need the assistance from a care taker or they

will have to use specially designed meal assistive devices to feed themselves. Meal

assistance robots are one of those solutions designed to cater the need of disabled

individuals in intaking their food.

It is possible to find different types of meal assistance robots as both commer-

cial products and research designs. One major drawback identified during the

literature review process was the limitation of control methods used. Most of the

robots used button/joystick as their main control input and it limit the user group

significantly. There are few innovative control methods such as eye tracking, sip

and puff switches and voice recognition that have tried to address this issue. But

it is important to research on other possible control solutions that can increase

the device’s user group. In additionally, it was identified that another important

drawback in current meal assistive devices was the feeding method. All most all

the systems use a fix point to feed the food and user had to preadjust this fix

point to consume food at the correct location. Once configured he/she had to

stay at that point without moving the location of the head to intake food. Fur-

thermore, food was fed at a continuous rate without considering the willingness

or readiness of the user to consume food (Unless there is a separate control input

to indicate the willingness of the user). Based on these research problems, this

thesis proposed an EEG signal based Brain Machine Interface for a meal assis-

tance robot which is capable to adapt the feeding location according to the user’s

mouth position and which is able to identify the user’s readiness to intake food

(Mouth open of the user).

In this research, 4DOF robot with a spoon as the end effector was designed
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and fabricated to act as the meal assistance robot. A geometry based kinematic

analysis was conducted to solve the system’s forward and inverse kinematic solu-

tions. Additionally, a wide angle camera was mounted on the end effector to get

image data necessary in adaptive feeding system and user’s mouth open detec-

tion system. For both mouth tracking system and mouth open detection system,

OpenCV based algorithm was constructed and validated using six subjects. Fur-

ther, SSVEP based Brain Machine Interface was designed to identify the user’s

food selection. 3 LED stimuli flickering at 3 different frequencies (6Hz, 7Hz and

8Hz) was used to designate 3 food containers. Then two classification methods

were tested with 5 healthy subjects to validate the proposed system.

Finding from this research validate the successful use of the brain machine

interface for the meal assistance robot. Users were able to successfully control

the meal assistance robot using the SSVEP based Brain Machine Interface. Using

the Fast Fourier Transformation based classification method, it was possible to

attain high accuracy levels. But time taken for classification was high, resulted

in eye strains of the user after few minuets of use. On the other hand, using the

classification method Canonical Correlation Analysis, it was possible to achieve

high classification results with shorter classification times with compared to FFT

based classification. Average classification time of 28.5s could be reduced to

9.3s using CCA. It is a considerable decrease in the classification time without

compromising the accuracy levels. However, few outliers were present in the data

which took more than 25 seconds to classify the output. In term’s of the accuracy,

CCA based classification resulted in high accuracy rates above 80% for most of

the subjects.

All subjects except S, displayed accuracy levels above 80%. But only the sub-

ject P was able to produce false classification rates below 10% for all frequencies.

However, subject R and T, each had only one instance of false classification rate

above 10%. Subject S however demonstrated a relatively low classification rate

when he was instructed to gaze at 6Hz LED panel. Similarly 46% of the resting
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state of subject S was classified as false positive outputs from the algorithm. It

may be required to identify different frequencies for subject S to increase the

accuracy levels.

It was evident from the results that, subjects who had previous experiences of

SSVEP based BCI illustrate high level of true positive classification accuracies

while maintaining high level of true negative classification rates suggesting that

with experience users can increase the classification accuracies and decrease false

classification rate.

Furthermore, satisfaction survey reveal that users reported discomfort when

wearing the EEG electrodes for a long period of time during experiments. This is

due to the gel type electrodes that are being used in experiments. The adhesive

Ten20 gel used in experiment is a high viscous gel, but after some time it’s

viscosity get reduced due to body heat and sweat, making the user uncomfortable

of wearing the electrodes. Additionally, reducing the no of electrodes will also

increase the user comfort. Investigating the possibility of reducing the electrodes

without decreasing the accuracy will be paramount in future studies. Another

important fact revealed by the survey was the uncomfortably in gazing at the

LED panels. This is a common disadvantage occur in SSVEP. Scientists are

researching on finding solutions to minimize the effect from the flickering LEDs.

Reducing the surface area of the LED panel and reducing the intensity will aid

to increase the user comfort.

Mouth tracking and open state identifying methods were more than adequate

for the task. Both systems were able to track and identify the mouth open

condition in every experiment. Average time to track the mouth was around

10s and average time to identify the mouth open was around 2 seconds. But

it was observed that two methods were dependent on the lighting level of the

environment. Both methods underperformed in dark environments or backlit en-

vironments. Exposure compensation measures can be incorporated to the image

processing algorithm to increase accuracy in such conditions.
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Chapter 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this thesis, a meal assistance robot with an EEG based brain machine inter-

face was proposed and the system was validated using experiments. First stage

of the research was to design and fabricate a 4DOF meal assistance robot capa-

ble of handling multiple food items. A servo motor based meal assistance robot

with 3 food containers was developed and kinematic modeling was carried out

in order to facilitate the visual servoing task. As the next objective, SSVEP

based user intention detection system was developed using 3 stimuli frequen-

cies (6Hz,7Hz,8Hz) and validated using 5 healthy subjects. SSVEP classification

process was carried out using both Fast Fourier Transformation and Canonical

Correlation Analysis. Using the FFT method, overall average classification time

was around 29s. On the other hand, average classification time using CCA was

around 9s and accuracy was around 90%. These data exemplifies the use of CCA

for EEG classification in the proposed meal assistance robot.

According to the existing literature, another important objective to fulfill was

the adaptive feeding capability. Feeding the food according to the user’s mouth

location was carried out by using a OpenCV based image processing algorithm.

A wide angle camera was mounted on the end-effector of the robot and image

data from the camera was used to identify the mouth location in the image frame

and ultimately correct the spoon location according to the tracked mouth loca-
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tion. Proposed visual serving method was successfully able to classify and center

according to the mouth position of every user the system tested with (at 100%

accuracy). Furthermore, mouth open detection classifier was trained separately

to identify the user’s intention to consume food. OpenCV Haar classifier was

trained using mouth open images and the trained classifier was able to success-

fully identify the mouth openings of the users (100% accuracy).

Finally the system was experimentally validated using healthy subjects. Five

male subjects voluntary participated to validate the intention detection system

while six male subjects were participated to validate the mouth tracking and

mouth open detection system. Results from the intention detection validation

experiments indicate that even-though FFT offer high levels of accuracy, it is

not suitable to use due to the long classification times. CCA on the other hand

provides the same level of accuracy while keeping the average classification time

around 10s. This is a considerable improvement from the FFT based classifica-

tion method which take more than 30s to classify the output. Mouth position

tracking and open state detection system results indicate that systems performed

at 100% accuracy for the all subjects. Even-though system underperformed at

some lighting conditions, it performed at 100% accuracy in normal room lighting

conditions.

Despite the availability of few commercial meal assistance robots, the need

for improvements is important in many ways. One of the major drawbacks of

current meal assistance robots is the control method they are using. Also fix

point feeding is an another important aspect to solve in order to increase the

usability of the system. Therefore, this research can be stated as an attempt to

address those drawbacks and increase the effectiveness of meal assistance robots.

Moreover, according to the literature reviewed in the thesis process, this is the

first time a application of EEG was carried out for a meal assistance robot with

a adaptive feeding capability.

81



7.2 Future directions

Even-though the proposed EEG based BMI of the meal assistance system has

given promising results following suggestions can improve the usability of the

system for the user.

� Further studying the capability of decreasing false classification rates will

improve the reliability of the system even more. Furthermore, emphasis

should be given to decrease the false classification rate at the rest state.

� Investigating the possibility of using dry electrode technology is important

to reduce the un-comfortability of the user when wearing the electrode for

longer period of time. Additionally dry electrodes will reduce the prepara-

tion time significantly which will make the system more plug and play.

� Testing the proposed system with end users will be essential in validating

the proposed design. It will give new insights on modifying the current

system to best suit disabled individuals.
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Appendix A

FIRST APPENDIX

A.1 Forward kinematics equations
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A.2 Inverse kinematics equations
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