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Abstract

Thin membranes underpin many light weight deployable space systems. Folds

introduced in these membrane structures for logistics and storage, alter their

in-orbit behaviour while deploying. Numerical modelling is relied on as a

promising tool in studying the deployment behaviour of these space structures.

However, most numerical models aimed at studying deployment behaviour, fail

to incorporate fold-line properties due to unavailability of reliable experimental

data.

In this research, an attempt has been made to virtually predict the fold-line

mechanics using finite element analysis. For this purpose, materially and

geometrically nonlinear contact analyses using Abaqus FEA were performed to

simulate creased geometry and conduct numerical tensile tests on single folded

thin Kapton membranes. Moment - angle responses were plotted using results

of simulations and compared with the data obtained from physical experiments

and a justifiable agreement was achieved. A further comparison with results

from Elastica theory highlights the viability of the proposed numerical approach

over analytical models. The use of virtual simulations to characterize the

mechanics of fold-lines has proved to be an efficient technique.

The developed fold-line behaviour model was then implemented in

commercial finite element package, Abaqus for deployment simulation of single

folded thin Kapton membranes using connector elements defined with rotational

stiffness. The results were validated against physical experiments and compared

with other simulation techniques found in literature. The proposed technique

with connector elements is meritorious over other techniques as it captures both

the deformed profile and axial displacements along the folded membrane with

close agreement with experimental results.
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A quasi-static deployment simulation of a solar sail model with thin

membrane wrapped around a polygonal hub was carried out using

Abaqus/Explicit package to study the deployment behaviour. The fold-line

idealisation scheme with connectors defined with rotational stiffness was used to

model the fold-lines in this multiply-creased membranes. However, the fold-line

stiffness had little effect on the deployment force of the sail in the range of

deployment carried out experimentally .

Keywords : ultra-thin membranes, finite element simulations, fold-line

mechanics, rotational stiffness, neutral angle
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Chapter 1

Introduction

1.1 Deployable Membrane Structures

Deployable sunshields, inflatable telescopes, solar arrays and solar sails are some

deployable space structures constructed with thin membranes [1, 2, 3].

Engineers leverage the two dimensional nature of thin membranes for these

space applications requiring large surface area for in-space operation, tens to

hundreds of metres [4], but low areal density while in-flight [5]. In general, a

large area is required for two reasons: 1) to increase the quantity of flux

collected (solar radiation in the case of solar sails) and 2) to achieve high

aperture, thus high spatial resolution of signals transmitted from space.

Figure 1.1 shows an artist’s concept of LightSail spacecraft by the Planetary

Society to demonstrate solar sail propulsion.

Figure 1.1: Artist′s concept of LightSail spacecraft near Mars
(courtesy: The Planetary Society)
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Packaging into the limited storage space of launch vehicles and reliable

tear-free deployment for operation after launching into space create

fundamental challenges in design of these structures. Out of which prediction of

deployment behaviour is the most difficult without conducting flight tests.

1.2 State of the Art

In 2001, a 20 m square solar sail divided into four right-triangular quadrants

was tested in vacuum, sponsored by NASA [6]. The sail was deployed by four

booms. Hence the independent behaviour of sail membrane could not be

quantified. The primary objective was to characterize the behaviour of the

deployed sail craft rather than studying the deployment mechanics of the sail

membrane. The difficulty in testing under representative space environment was

also highlighted.

JAXA during its IKAROS mission conducted experimental studies to

characterize centrifugal sail deployment [7]. But the experiments were dynamic

that had inertia playing a dominant role. Figure 1.2 illustrates the centrifugal

deployment process of IKAROS.

Figure 1.2: Centrifugal deployment process of IKAROS
(courtesy: JAXA)

DLR and ESA conducted experiments with 5m x 5m square sail made of

7.5 µm thick aluminized Kapton [8]. The deployment forces were measured but
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(a) Folded state (a) Deployed state

Figure 1.3: Ground testing of NanoSail-D2 using a low friction table
(courtesy: NASA)

(a) (b)

Figure 1.4: Parabolic flight
(a) Airbus A300 in parabolic flight (b) maneuver cycle (courtesy: ESA)

were influenced by gravity and air drag since it was done at higher deployment

rates (25 mm/s approx.).

NanoSail-D2 of NASA demonstrated a 3.14 m x 3.14 m sail of 2.5 µm-thick

CP1 deployed in Low Earth Orbit (LEO) from a 3U CubeSat [9]. The sail was

divided into four right-triangular quadrants with four deployable booms. Low

friction tables were used to offload gravity in ground deployment tests as shown

in Figure 1.3. However, with shorter time frame, the deployment mechanism of

the sail membrane was not characterized.

In 2015, the Planetary Society’s LightSail-1 packaged 32 m2 Mylar solar sail

in a 3U CubeSat [10]. The mission suffered atmospheric drag since the altitude

was too low. LightSail-2, currently under development to demonstrate

controlled solar sailing is planned to be deployed at a higher altitude [11]. Both
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missions utilized low friction tables for initial deployment tests.

The above missions highlight gravity and air drag as two variables that are

present in testing deployable membrane structures in Earth but are not present

in space. Gravity offload systems are widely used to eliminate gravity, but they

are more applicable to sufficiently stiff structures whose deployment is

motorized. Less stiff nature of membranes which have thickness in the order of

micrometres, causes them to sag which can change the deployment mechanics

significantly.

Drop towers and zero-gravity flights (see Figure 1.4) are two other options.

These approaches are acceptable for small structures with seconds of deployment

time and are either rugged enough to survive the fall or inexpensive enough to

replace after each test. However, air drag is still present. This can be problematic

while deploying. Conducting experiments in a vacuum chamber is an option to

eliminate air drag, but it can be costly and time consuming.

1.3 Testing in Virtual Environments

The time consuming and costly nature of physical testing of membrane

structures call for an alternative that can be used in design optimization of

these structures that may require several design cycles. There are two

approaches followed in this regard.

The first approach is to employ analytical methods to study the behviour of

these folded membrane structures. Filipov et al. [12] have developed a bar and

hinge model that can capture stretching and shearing of the membranes,

bending of the membranes and bending along fold-lines. Funase et al. [13] have

developed a spring-mass model where membrane is assumed to be isotropic and

substituted by particles connected by springs and dampers. However these

approaches fail to capture contact and discontinuities like dynamic snapping (a

significant change of geometry of the structure within a very small time

interval) which are significant factors in the study of deployment of the

membrane structures.

The second approach is to employ numerical models to study the behaviour

of these folded membrane structures. The present commercial finite element
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packages have robust algorithms to capture contact and the discontinuities

involved. This makes this approach more viable compared to pure analytical

approach. However, it is important to have accurate idealisation schemes in the

virtual models to realize accuracy with low computational cost.

For simplicity, most of these simulations have neglected the effects arising

from membrane folding, i.e. it is often found that the most virtual simulations

idealise the fold or crease lines as perfect hinges. The initial failure of IKAROS

demonstrator mission by JAXA [14] has highlighted this shortcoming. This has

led engineers to review the techniques to incorporate fold-line mechanics in virtual

models [15, 16]. However, the implementation is limited due to unavailability of

reliable fold-line behaviour data, as experimental studies in this regard are bottle-

necked by measurement challenges.

1.4 Scope and Aim

The broad aim of this research is to develop constitutive fold-line behaviour

models of thin membranes through virtual simulations. Simulation is required

to overcome the measurement challenges associated with physical experiments

that make the determination of these key properties cost prohibitive. The

developed model can be fed into the simulation technique proposed by [16] to

study the deployment behaviour of thin-folded membrane structures. This will

lead to a better understanding of these structures and realization of efficient

designs.

Kapton polyimide membranes are considered in this study. Kapton can

maintain excellent physical, electrical and mechanical properties over a wide

range of temperatures (-269◦ C to 400◦ C) [17]. Such durability properties

makes it ideal for space applications.

First, materially and geometrically nonlinear contact analyses using

commercial finite element package Abaqus/Standard [18] were performed to

simulate folded geometry and conduct numerical tensile tests on single folded

thin Kapton membranes. Moment−angle responses were plotted using results of

simulations and validated with experiments carried out by Dharmadasa et al.

[19]. The possibility of quantifying fold-line mechanics using an analytical

model based on Elastica theory was explored.
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The developed fold-line behaviour model was then implemented in finite

element deployment simulation of single folded thin Kapton membranes using

simulation technique presented in [16] and compared with simulation techniques

presented in [15, 20]. A quasi static deployment simulation of a solar sail model

based on the crease pattern proposed by Guest and Pellegrino [21] was carried

out using Abaqus/Explicit package to study the deployment behaviour.

1.5 Chapter Organisation

This thesis consists of six chapters. After the current introductory chapter,

Chapter 2 gives an overview of literature on creased membranes and past study

on characterising their behaviour experimentally and numerically. Specific focus

is given to the study on fold-lines and a review of how fold-lines are idealised in

existing simulations is also presented.

Chapter 3 focuses on predicting mechanical properties of fold-lines of single

folded thin membranes using numerical simulations. The fold-line mechanics is

explained first, followed by a simulation technique to predict the mechanical

properties involved. The possibility of quantifying fold-line mechanics using an

analytical model based on Elastica theory is also explored.

Chapter 4 describes how the predicted mechanical properties in Chapter 3

are to be incorporated in finite element packages. For demonstration, unfolding

of a single folded Kapton membrane to an external tensile load is simulated

using commercial finite element package Abaqus/Standard and validated

against physical experiments. A comparison with existing simulation techniques

from literature is also presented.

Chapter 5 presents a quasi-static simulation technique to study the

deployment behaviour of a solar sail with the proposed fold-line idealisation

technique presented in Chapter 4. A brief introduction to the available features,

simulation parameters and necessary checks is presented. The sensitivity of the

simulation to various parameters is investigated.

Chapter 6 concludes the thesis with suggestions for future research.
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Chapter 2

Literature Review

This chapter provides an overview of literature on creased membranes, their

applications and past study on characterizing their behaviour experimentally

and numerically. The chapter begins with an introduction to tessellated

membranes, various crease patterns that are utilized to form these tessellations

and their applications. Next a review of study on fold-lines that cause change in

behaviour of these tessellated membranes is presented. The final section gives

an overview of existing numerical modelling techniques to characterise the

behaviour of these tessellated membranes.

2.1 Tessellated Membranes

A fold in a membrane can be categorized into two, viz; elastic, recoverable and non

localized deformation, bend and plastic, permanent and localized deformation,

crease. Creases or fold-lines are formed by scoring or folding thin membranes,

thereby adding permanent ridges to the membranes, which are known to enhance

directional stiffness whilst promoting flexibility in other directions. Systematic

creasing of membranes creates tessellated membranes which engineers make use

of to develop numerous applications.

2.1.1 Crease patterns

Traditionally, the Japanese art of Origami has been employed in developing

tessellated membranes to achieve the high compaction and required alteration of

material properties. The design of crease patterns being the core of this

tessellated membranes, several designs have been formulated.

One such pattern to achieve biaxial compaction was developed by Miura [22]

as shown in Figure 2.1. Miura-ori pattern where the fold-lines are aligned at a
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specific angle allowing a large sheet to be easily folded with a simple linear

motion. The presence of plastic deformations, i.e. creases is found to be

influential in material state and mechanical response of these highly compacted

thin membranes, for instance, unusual response to stretching and bending and

negative Poisson’s ratio [23] as illustrated in Figure 2.1(b,c and d). Filipov et al.

[24] used Miura-ori pattern to create origami tubes that can be reconfigured

into numerous geometries.

Guest [21] proposed a mathematical relationship to derive a wrapping

pattern based on the polygonal shape. This pattern allows a single membrane

to be wrapped around the central hub which will provide a higher stability in

deployed state, compared to a membrane made by attaching small portions (see

Figure 2.2(c).

Other examples are the tessellations obtained when tiling the plane with a

six-crease waterbomb base which has been used to create an origami stent (see

Figure 2.2(b)) [26]. Tesellation developed by Ron Resch [25] as illustrated in

Figure 2.2(a) has inspired scientists to create origami-based mechanical

metamaterials [27].

2.1.2 Applications

Tessellated membranes are widely used in deployable structures. Deployable

structures are structures that can be reduced in size for storage and

transportation. Folding is the simplest of solutions for achieving the compaction

requirement for transportation of large planar structures Section 1.1 describes

the application of this concept in space.

However, this concept has been employed in numerous other applications.

For one, automotive designers have been developing airbags that can achieve

high compaction and rapid deployment using this concept [29]. NASA′s novel

concept for a cooling radiator consists of Miura-Ori configuration allowing the

radiator to expand or contract depending on the external temperature [30].

Another application of tessellated membranes is reconfigurable

meta-materials. Tessellations in micron scale enable materials to achieve

properties such as stiffness and strength that are not present inherently. Other

8



Figure 2.1: Behaviour of Miura-ori described in [23]
(a)tessellation pattern, (b) negative Gaussian curvature response to twisting, (c)

negative Poisson’s ratio response to stretching and (d) response to bending

(a) (b) (c)

Figure 2.2: Crease patterns
(a) Resch [25] (b) Waterbomb [26] (c) Guest & Pellegrino [21]

9



(a) (b)

(c)

(d)

Figure 2.3: Applications of tessellated membranes
(a) paper versions of cellular metamaterials (b) a deployable paper structure

based on origami zipper tubes [24] (c) a self folding robot [28] and (d)
self-deployable origami stent graft based on the waterbomb pattern [26]

applications include self-folding robots and bio-medical devices as illustrated in

Figure 2.3.

2.2 Studies on Fold-lines

The kinematics of folded membrane were explored mainly under the pseudo-

rigidity assumption in the past [31], considering rigidity of faces on either side

of creases and creases as the zone of concentrated strain and movement. This

approach simplifies modelling but does not fully describe the degrees of freedom

of these structures. It is now known that the movement depends not only on

the creases but also on the flexibility of faces [32, 33]. This revelation has led to

increased use of shell approach to modelling these membrane structures. However,

to use the thin shell method for creased membranes, the initial imperfections

should be quantitatively introduced to the numerical model [34].

2.2.1 Experimental studies

Efforts have been made to quantify the behaviour of creased membranes

experimentally, especially to determine the material properties of the crease

10



region, which is highly non-linear and size dependent. Gough et al. [35]

performed a series of experiments to measure global nonlinear properties of

creased Kapton membranes. However, it was carried out at a relatively high

stress range due to gauging difficulties. Hossain et al. [20] performed uniaxial

tensile tests, also at a relatively high stress range on creased Kapton membranes

and observed that creases offer permanent deformation and length shortening.

Non linearity in material properties was confined to the crease region and

elsewhere elastic behaviour was identified. Figure 2.4 shows the experimental

setup and the stress - strain relationship recorded in the crease region

(hyper-elastic) and membrane region (linear-elastic).

(a) Experimental setup
(b) Stress - strain profile of 
     crease region (Point 1)

(c) Stress - strain profile of 
     membrane region (Point 2)

Figure 2.4: Experimental investigations of tensile behaviour of Kapton [20]

Thiria and Adda Bedia [36] presented a model experiment to observe the

relaxation mechanism of single creased membranes. In the experiment conducted

with Mylar, two regimes of relaxation, the first due to stretching of the fold and

the second narrow Arrhenius-like relaxation, were observed (see Figure 2.5).

Lechenault et al. [37] observed the behaviour of single creased membranes

under external load and rotational stiffness offered by creases against

deployment was quantified. Authors quantified the moment-rotation response of

single folded 350 µm Mylar membranes using force sensors. A linear relationship

of moment and angle was observed as shown in Figure 2.6. The authors also

proposed a limiting value for dimensions of membrane specimens to be used in

testing, below which bending of faces due to external loads can be ignored.

The studies highlight that due to the associated extreme compliance,

experimental characterization of creased membranes is quite challenging. Hence
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engineers also opt for analytical and numerical studies to understand the

underlying mechanics of creased membranes.

Figure 2.5: Time evolution of the angle of a crease made in a Mylar sheet of
thickness 350 µm [36] (Inset: Superimposed images of the Mylar sheet during
relaxation)

2.2.2 Analytical and numerical studies

MacNeal and Robbins [38] developed an analytical model for transversely

creased tape under a tensile load based on elasto-plastic beam theory to predict

the crease topology. From the topology, effective elastic modulus of creased

tapes was predicted. Murphy et al. [39] extended this model for coated

membranes. In these studies, the creased hinge was simply assumed to behave

elastically initially and then become a perfectly plastic hinge beyond a certain

load level. In the derivation, effect of creasing procedure and consequentially

the residual stress during creasing were not considered. Woo et al.[40] developed

a numerical model to determine the effective modulus of single creased thin

membranes where the whole process of creasing and subsequent uniaxial tensile

loading test were simulated considering elasto-plastic material properties for the

membrane specimens.
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Figure 2.6: Moment - angle relationship for a Mylar sheet of thickness 350 µm [37]

These extensive studies highlight that understanding crease mechanics is

essential to understanding the overall behaviour of membrane structures with

crease network. The crease behaviour can be simplified to two key

characteristics, relaxation mechanism as soon as the creasing load is removed

and rotational resistance to opening by an external load.

2.3 Numerical Simulation of Creased Membrane Structures

It is evident that creases are influential in altering material state and

mechanical response of creased membrane structures. Hence, deployment

simulation of large creased membrane structures like solar sails, aimed at design

optimization requires creases to be introduced into the thin-film for accurate

prediction of deployment behaviour.

Characterizing the deployment behavior numerically requires determining

the material properties of the film, the bending properties of the creases and

contact response when the film comes into contact with itself. In employing

shell approach to modelling these films, material properties and contact

properties can be fed into the simulation with ground tests. However, capturing

the fold-line behaviour in virtual simulations is challenging.
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Sleight et al. [41] have developed separate virtual simulations for ground

deployment test of a 10 m x 10 m sail by NASA. NEiNastran and Abaqus

software packages were used for simulations. Liyanage and Mallikarachchi [42]

in carrying out virtual simulations to assess the merit of spiral and

circumferential folding patterns have considered ideal conditions of

zero-thickness and no plastic deformation in the fold line. In both these studies,

for simplification crease-mechanics were ignored.

One option is to represent creases with a moment−angle relationship like

how it was done for simulations of the IKAROS solar sail mission [43]. However,

the sail was modelled with membrane elements which failed to capture the

bending of panels which is a key consideration as well. Papa and Pellegrino [44]

used thin shells to model the membrane and introduced creases as kinks. This

approach assumed the crease region to have the same stiffness as the base

membrane. Further, it is tedious to employ this approach to model membranes

with large number of creases.

Recently, Dharmadasa [16] has made an attempt to include fold line properties

in virtual deployment simulation of a solar sail model. Creases were modelled with

tie constraints and connector elements offered by Abaqus. The connectors can be

defined with rotational stiffness. This enables the inclusion of rotational stiffness

as well as the self-opening action due to creases in simulations.
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Chapter 3

Predicting Mechanical Properties of Fold-Lines

This chapter focuses on predicting fold-line mechanics of single folded thin

membranes using numerical simulations. The experimental study by

Dharmadasa et al. [19] on thin Kapton membranes is chosen as a case study

and the possibility of quantifying fold-line mechanics using an analytical model

based on Elastica theory is explored.

3.1 Mechanics of Fold-Lines

Face bending

Angle opening

(b) (c)

F

F

Fold-line

(a)

 

θ

Φ

Neutral angle

(d)

Figure 3.1: Geometric state of membrane
(a) initial stress-free state (b) new stress-free state after folding (c) unfolding

due to external load (d) fully unfolded state

The focus of this study is the effect of fold-lines on the deployment
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behaviour of creased membrane structures. The fold-line mechanics underlying

while the creased membranes are unfolding were investigated in this regard.

This underlying mechanics is twofold: 1) Relaxation Mechanism − the

self-opening action exhibited by creased membranes as soon as the creasing load

is removed (see Figure 3.1(a) and 3.1(b)) Moment-Rotation Response when

opening with an external load (see Figure 3.1(c)).

The study of such mechanics at the microscopic scale is complex and is not

under the scope of this study. A better understanding of the underlying mechanics

from a macroscopic point of view can be achieved by studying membrane coupons

with single straight fold. Further, it uncouples the effect of crease interaction and

measurement difficulties present in a multiple-creased membrane.

3.1.1 Relaxation mechanism

Relaxation mechanism was observed by Papa and Pellegrino [44] in a membrane

creased with a Miura-Ori folding pattern. Physical tests on single folded thin

membranes have been conducted to quantify the relaxation mechanism by using

opening angle at stress free state termed as Neutral angle (φ), as an index (see

Figure 3.1(a)) [45, 19]. Mierunalan and Mallikarachchi [46] focused on predicting

neutral angle through numerical simulations. Effects of folding pressure, material

properties and thickness on neutral angle were explored, and a close agreement

was achieved with the experimental results.

3.1.2 Moment-rotation response

The mechanical response of a creased membrane to an external load has two

characteristics as illustrated in Figure 3.1(c). The first is the change in the

angle of the fold, which is dependent on the material and fold preparation

method. The second is the bending of the faces on either side of the fold-line,

which is dependent on the flexural rigidity of the faces and boundary

conditions. The internal resistant moment in the fold-line is a function of fold

angle. An effort should be made to isolate this moment-rotation response of the

fold-line from the bending of faces, as bending of faces is captured by employing

shell approach to model membranes in numerical simulations.

Pradier et al. [47] and Dharmadasa et al. [19] utilized a simple experimental

setup as illustrated in Figure 3.3 to characterise the moment-rotation response
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using calibrated weights. In the experiments, selected membrane specimens

were folded using a roller to form a straight fold-line in the middle. Then, one

end of the folded membrane at stress free neutral angle state, was attached to a

rigid frame using a low stiffness adhesive tape and the other end was loaded

with prescribed calibrated weights progressively. The opening angle θ, was

measured using digital images taken at each loading stage.

(a) Experimental setup

Rigid frame

Low-sti�ness adhesive tape

Fold-line

Neutral angle

Calibrated weight

(b) Opening behaviour in [47]

l

Φ

θ

F

θ

F

l
h

(c) Opening behaviour in [19]

Figure 3.2: Experimental investigations of moment - rotation response [47, 19]

The former study which was performed on printer paper, neglected the

bending of faces by selecting specimens based on [37]. Hence, the moment at

the fold-line due to applied load F was taken as M = Flcos(θ/2). However, in
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the latter study which was performed on Kapton membranes, the deformed

shape was as illustrated in Figure 3.1(c). Hence, in order to isolate the bending

of faces, the moment was taken as in Equation 3.1,

M = Flh (3.1)

Then a relationship between moment (M) and current opening angle of the

fold (θ) was established as in Equation 3.2.

M = kw(θ − φ) (3.2)

where φ is the neutral angle, w is the width of the membrane and k is the

gradient of M − θ graph.

3.2 Elastica Theory

The movement of membrane can be regarded to be sufficiently slow compared

to the characteristic times taken for elastic wave propagation, in the experiment

carried out in [19]. Hence, membrane can be considered to be in static

equilibrium at each loading stage. By taking advantage of this, it is possible to

establish a relationship between F and θ. Since l/t >> 100 for the membrane

specimens under consideration, Foppl - Von Karman plate theory can be used to

analytically deduce the deformed topology of the membrane under tensile load.

However, by neglecting any out of plane curvature of the membranes and

variance in thickness when loaded, the problem can be simplified to solving high

deflection beam theory or Elastica theory. Taking advantage of symmetry about

fold-line, one half of the membrane is treated as a 1-dimensional beam fixed to a

rotational spring at a variable angle θ/2 at each loading stage. The definition of

curvature (κ) at any point along the deflected beam in Cartesian coordinates

defined in Figure 3.3 is given in Equation 3.3.
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Mx

F

F

F
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x

y

F
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Figure 3.3: Idealized beam considering symmetry

κ =
d2y
dx2(

1 +
(
dy
dx

)2) 3
2

(3.3)

The Euler-Bernoulli theory that relates bending moment (Mx) and curvature

(κ) still holds for this highly deflected beam due to assumed small strain. This

relationship for a beam with uniform elastic modulus (E) and second moment of

area (I) is given in Equation 3.4.

Mx = EI
d2y
dx2(

1 +
(
dy
dx

)2) 3
2

(3.4)

By free body diagram, the bending moment at any point along the deflected

beam is as in Equation 3.5.

Mx = F (lh − x) (3.5)

By combining Equations 3.4 & 3.5, we obtain Equation 3.6.
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F (lh − x) = EI
d2y
dx2(

1 +
(
dy
dx

)2) 3
2

(3.6)

Equation 3.6 is a second order non-linear differential equation and the exact

solution is not present. However, treating it as a boundary value problem, a

solution can be obtained. MacNeal and Robbins [22] have obtained a solution

by imposing boundary conditions of θ/2 on one end and the invariance in length

as in Equation 3.7.

dy

dx
= sin−1

(
F

2EI
(x− lh)2

)
(3.7a)

where lh =

√
2EI

F
(1− sin(θ/2)) (3.7b)

Though this solution requires θ to be input which can be only obtained

through simulations or experiments, by substituting θ, this will serve as a check

for lh, used in determining moment in the fold-line as per Equation 3.1.

3.3 Finite Element Simulation

To predict the moment-rotation response numerically, finite element models of

Kapton thin membranes were set-up in commercial finite element package

Abaqus/Standard [18]. Though 40 mm long and 20 mm wide membrane

coupons were used in [19], taking advantage of symmetry about fold-line, only

one half of the membrane coupons were modelled. Since the membrane coupons

of concern are predominantly under bending stress state during the entire

simulation, plane strain condition was assumed. Hence only the cross section of

the membrane was modelled with 2-dimensional plane strain elements.

Accordingly, the type of element selected for the simulation was four-node

plane strain elements with incompatible mode (CPE4I). The incompatible mode

enables the use of lesser number of elements compared to elements with first

order reduced integration and is cost-effective compared to second order
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elements which are commonly used to overcome shear locking problem

associated with in-plane bending. Minimization of distortion was achieved by

having a finer mesh closer to the creased region and a coarser mesh towards the

free end of the membrane, resulting in better accuracy(see Figure 3.4). A

typical finite element model consisted of 9898 nodes and 8631 plane strain

elements with a minimum length of 0.8 µm.

20 mm

t

2.5t 2.5t 5t

Crease region

Figure 3.4: Mesh arrangement from the finite element simulation to determine
moment - angle response of a single crease

The folded configuration of the membrane needs to be computed first, in

order to generate its moment rotation response. Though a rolling procedure

was adopted in the experimental study [19], the implementation of such

procedure in numerical simulations is complex. Hence, the folded configuration

or creased geometry was achieved through the methodology set out in [46].

Three different creasing gauges, d = 1.5t, 2t and 2.5t were chosen to generate

different creased geometries (φ/2) in the range of neutral angles observed in

experimental study, where t is the membrane thickness. Once the creased

geometry was achieved, the membrane was subjected to sequential tensile

loading (F ) at the free end to simulate the experimental procedure in [19]. A

loading regime ranging from 0.00001 N to 10 N was chosen to maintain

predominant bending stress state. At each loading stage, θ and lh were recorded

numerically. Figure 3.5 illustrates the employed simulation sequence.
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bending displacement

(b) Bend

d = speci!ed

(d) Crease

F = speci!ed l
h

θ/2 

(f) Load

line of symmetry

20 mm

t = 7.5 , 25 , 50 and 75 μm 

symmetric boundary, u
y
 = u

x
 =0

free end

(a) Initial state

y 

x 

(e) Release

Φ/2 

(c) Align

rigid plates

Figure 3.5: Snapshots from the finite element simulation to determine moment -
angle response of a single crease

Figure 3.6: Stress - strain curve for Kapton - type HN film [17]
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In this study, 7.5 µm, 25 µm, 50 µm and 75 µm thick Kapton - type HN

membranes were simulated. Figure 3.6 shows the stress strain curve of Kapton

membrane [17]. The specification of true stress, true strain and true plastic

strain in material definition is required by Abaqus. Accordingly, for the

conversion of nominal stresses (σnom) and normal strains (εnom) from Figure 3.6

to true stresses (σtru), true strains (εtru) and plastic strains (εpla), Equations 7,

8 and 9 were utilized. Table 1 summarizes the Kapton material properties used

in the simulation.

Table 3.1: Material properties of Kapton used in the finite element simulation to
determine moment - angle response of a single crease

Density (kg/m3) 1420
Elastic modulus (MPa) 2500
Poisson’s ratio 0.34
Yield stress (MPa) 69
Yield strain 0.03
Ultimate stress (MPa) 231
Ultimate strain 0.72

Abaqus/Standard solver with Newton-Raphson time integration was used

for simulations owing to the two-dimensional nature of the problem with no

significantly large deformations. However, the resulting complications of

instability and localized deformation (on contact and application of

displacement at a single node respectively) with Static/General analysis step

had to be overcome by using *STATIC, STABILIZE option. A stabilization

factor ranging from 2 x 10−7 to 2 x 10−5 and a reasonable time scale from 1.0s

to 5.0s for varying creasing gauges were used based on a trial and error process.

3.4 Results and Discussion

Figure 3.7 shows the creased geometry and the tensile geometry of 25 µm Kapton

membrane subjected to three different creasing gauges (1.5t, 2t and 2.5t) and a

subsequent tensile load, F of 0.4 N. The crease, takes the form of a kink (locally)

as seen in Figure 3.7. However, the experimental work in [19] did not capture

such fine details. Hence, to maintain consistency, φ/2 and θ/2 were measured by

drawing a tangent to the straight region immediate to the kink region as shown

in Figure 3.7.
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Φ/2 = 15° Φ/2 = 28° Φ/2 = 38°

d = 1.5t d = 2t d = 2.5t 

(a)

d = 1.5t d = 2.5t 

(b)
d = 2t 

Max. In-Plane Principal Stress
(Avg: 75%)

θ/2 = 31° θ/2 = 41° θ/2 = 48°

Figure 3.7: Deformed shape of 25 µm Kapton membrane
(a) when creased to different creasing gauges (b) when subsequently subjected

to 0.4 N tensile load

Figures 3.8, 3.9, 3.10 & 3.11 show the moment - rotation response of Kapton

membranes of four thicknesses subjected to three different creasing gauges.

Moment at each loading stage was calculated using Equation 3.1 and divided by

the width of the membrane coupon (20 mm) to obtain the moment per unit

width. Distance from fold-line to loaded end, lh in Equation 3.1 was numerically

recorded at each loading simulation along with the opening angle, θ/2 as

indicated in Figure 3.5.

Moment - rotation responses of all thicknesses generally have three phases.

In the initial phase, there is no angle opening with increasing moment. This

increase in moment is due to local bending at the edge of the membrane. This is

pronounced in 7.5 µm Kapton membrane. There is a drop in transition from

first phase to second phase. This is due to the membrane undergoing high

deflection and transforming to a vertical asymptote towards the loaded end,

causing a sudden decrease in lh, thus M . In the second phase, all three

thicknesses exhibit an approximately linear moment rotation response with

almost similar gradient for all three creasing gauges. In the third phase,

moment - rotation response undergoes a decrease. Careful observation of the

simulation revealed that with increasing load, the membrane undergoes axial

extension making the dominant bending assumption void. Hence, the results in

the third phase are unreliable.
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Figure 3.8: Moment - angle relationship for Kapton 7.5 µm
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Figure 3.9: Moment - angle relationship for Kapton 25 µm
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Figure 3.10: Moment - angle relationship for Kapton 50 µm
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Figure 3.11: Moment - angle relationship for Kapton 75 µm
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Only the linear phase was observed in [19] due to the limited availability of

calibrated weights. Table 3.2 presents a comparison of fold-line stiffness (k)

calculated from the gradient of the linear region of the moment-rotation plots

(Figure 7) to that from the experiments. For a particular thickness, the average

fold-line stiffness from the 3 creased gauges is presented.

Table 3.2: Comparison of fold-line stiffness

Membrane thickness
Fold-line stiffness(N/deg)
Experiment [19] Simulation

7.5 µm - 0.000017
25 µm 0.00015 0.00003
50 µm 0.0006 0.0010
75 µm 0.0025 0.0026

The values obtained from the simulations were observed to be of the same

order as the experimental values [19] for membrane thicknesses 25 µm, 50 µm

and 75 µm, with no significant effect imposed from the varying neutral angles

(φ) which was observed in experiments as well.

Figure 3.12 shows a comparison between lh obtained from simulating 25 µm

Kapton membrane creased to creasing gauge of 2t and the solution from

Elastica for the same (Equation 3.7b), against tensile load, F . For a loading

regime less than 0.02 N, there is a significant deviation between the two

methods. This is due to the assumption in Elastica that towards the loaded

end, membrane will form a vertical asymptote. However, in the simulation there

were no significant deflections observed for loads below 0.02 N. For loads above

0.02 N, a fair agreement can be seen. A slight deviation is still existent as

Elastica assumes the fold-line to be a hinge whereas in the simulation the

fold-line takes the form of a kink as in Figure 3.7.
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Figure 3.12: Comparison of lh values from simulation and Elastica theory
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Chapter 4

Implementation in Finite Element Package

In this chapter, how the fold-line mechanics predicted in Chapter 3 are to be

incorporated in numerical simulations of folded membranes is discussed. For

demonstration, unfolding of a single folded Kapton membrane to an external

tensile load is simulated and validated against the experiments carried out by

Hossain et al. [20].

4.1 Connector Element

Taking advantage of negligible thickness compared to other two dimensions of the

films, it is convenient to model them with shell elements. Modelling the membrane

panels with shell elements makes it possible to capture the panel bending as

illustrated in Figure 3.1. The width of the crease line itself is in the order of

thickness of these films [45]. Hence, in view of its small width, crease line could

be conveniently represented by connector elements, connecting two adjacent shell

elements (see Figure 4.1). In this study, it is proposed to represent the crease

line with a series of 2-noded connector elements with zero thickness, connecting

two adjacent Kirchhoff shell elements (see Figures 4.1 & 4.2).

Membrane panel

Crease region

Shell elements

Connector elements

Figure 4.1: Representation of folded membrane with shell and connector elements
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Figure 4.2: Local axes and vector definitions for (a) crease region (b) a connector
element

The crease region connecting two membrane panels is illustrated in

Figure 4.2(a) with local axes and corresponding vector definitions. Since

creasing weakens the bending properties along crease lines, only rotations about

1 can be expected to be large. In fact, this relative rotation has been considered

to be the dominant factor affecting rotational resistance to opening by an

external load in Chapter 3. As discussed, mechanics of fold-line under

consideration are associated with opening angle of the fold and resisting

moment due to internal stresses in the crease. Hence both responses discussed

in Section 3.1 could be represented by the constitutive equation for

moment-angle about 1 as in Equation 4.1.

M =

krθ, if θ < φ

ko(θ − φ), if θ ≥ φ
(4.1)

where θ is the opening angle of the fold, φ is the neutral angle, k is the fold-line

stiffness and subscripts r and o indicate relaxation and opening respectively.

This constitutive model in Equation 4.1 could be implemented in connector

elements by constraining rotations about 2 and 3 axes and imposing free rotation

about the shared axis 1. The two kinematic constraints to be imposed are given

by Equation 4.2.
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V̂ a
1 · V̂ b

2 = 0 and V̂ a
1 · V̂ b

3 = 0 (4.2)

Node b can rotate about the shared local axis 1. The rotation θ of the local

directions of node b relative to node a is given by Equation 4.3.

θ = − tan−1

(
V̂ a
2 · V̂ b

3

V̂ a
3 · V̂ b

3

)
(4.3)

where θ is measured in anticlockwise sense of angle of rotation of V̂ a
2 and

V̂ b
2 about V̂ a

1 . Hence the connector constitutive rotation can be described by

Equation 4.4

β = θ − βi (4.4)

where βi is the initial angular position and at closely creased state βi = 0.

this leads to β = θ. Kinematic moment in the connector is given by Equation 4.5.

Mc = M1V̂ a
1 (4.5)

By combining Equations 4.1 & 4.5, the constitutive model reduces to Equation

4.6.

Mc =

krθV̂ a
1 , if θ < φ

ko(θ − φ)V̂ a
1 , if θ ≥ φ

(4.6)

Hence, if both kr and ko are known and assigned to connector elements, the

mechanics of fold-lines can be captured by the proposed method.
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4.2 Implementation in Abaqus

In this section, an attempt is made to simulate the unfolding of single-folded

thin membranes using the above proposed connector element in a commercially

available finite element analysis software. Abaqus/FEA package was selected

in this regard because of the robust algorithm involving connectors and contact

simulation. Furthermore, it is widely used by the aerospace community. For

the proposed technique to be a robust solution, it should be able to capture both

behaviour within the fold-lines as well as behaviour of the membrane on either side

of a fold-line, while unfolding. Hence in this section, performance of single folded

membranes with the proposed technique, unfolded when subjected to tensile loads

has been simulated. The results are validated against the experiments performed

by Hossain et al. [20]. A comparison between the simulation techniques presented

in [20, 15] and the proposed technique is also presented.

4.2.1 Finite element model of single folded membrane

A rectangular Kapton coupon folded in the middle with dimensions of 10 mm X

80 mm and thickness of 25 µm was modelled. Linear three-node shell elements

(S3) were used for the shell portions in all the simulations. For bending

simulations with contact, S3 elements have proven to be cost effective when

compared to fully integrated quadrilateral elements (S4) and accurate by

eliminating hour-glassing when compared to quadrilateral elements with

reduced integration (S4R). However, for better accuracy distortion should be

minimized. This was achieved by having a finer mesh closer to fold-line where

high bending is expected and a coarser mesh towards the ends of the membrane.

A typical finite element model consisted of 1618 nodes and 2964 shell elements

with a minimum length of 0.25 mm.

The properties of Kapton used in the simulation are given in Table 4.1.

Table 4.1: Material properties of Kapton used in the finite element simulation of
unfolding of single folded membrane

Thickness (µm) 25
Density (kg/m3) 1420
Elastic modulus (MPa) 2500
Poisson’s ratio 0.34
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Free edge

Pinned edge

(a)

(b) (c)

10 mm

80 mm

0.112 N
0.422 N

Centre-line

Figure 4.3: Simulation sequence for unfolding of single folded membrane
(a) initial folded state (b) unfolding to 0.112 N tensile force (c) unfolding to

0.422 N tensile force

The simulation sequence was selected to follow the tensile testing

experiment procedure discussed in [20] and illustrated in Figure 4.3. In the

initial configuration the single-folded Kapton membrane is fully folded, i.e the

fold angle θ = 0. One end of the membrane was restrained with a pinned

boundary condition allowing it to freely rotate while the other end was

unrestrained. From the initial configuration, two tensile point loads of 0.112 N

and 0.422 N were applied sequentially at the center of the free edge. Axial

displacement in the loading direction of selected points lying on the centre-line

of the membrane (see Figure 4.3) was recorded considering initial folded state as

the base at both loading stages.

Since this is a simple simulation with no significantly large deformations,

Abaqus/Standard solver with Newton-Raphson time integration was used.

However, high curvature bending close to fold-line and application of load at a

single node presented problems with instabilities and localized deformation

respectively with Static/General analysis step. To stabilize the computation,

the *STATIC,STABILIZE option was used while maintaining the damping

coefficient, just small enough for the computations to continue. Non-linear

geometry option was used to capture the large deflections of the shell portions.

Modelling the fold-line

Three different approaches were followed to model the fold-line in the

simulation as shown in Figure 4.4.
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Effective elastic modulus
(25 mm)

Kapton material properties

Pinned connection

Kapton material properties
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Figure 4.4: Different techniques used to model fold-line

(a) With effective modulus for crease region

In this approach, the methodology set out in [15] was followed. The folded

membrane was modelled with two shell portions. The connection between two

shell portions was established by using *TIE constraints without rotational

degrees of freedom, simulating pinned joint. Crease region, extending over a

distance of 500t on either side of fold-line was modelled with general purpose S3

elements similar to the shell portions but assigned with effective material

properties obtained from experiments carried out by Cai et al. [15]. This

modelling technique is illustrated in Figure 4.4(a).

(b) With hyper-elastic material properties for crease region

In this approach, the methodology set out in [20] was followed. The creased

membrane was modelled as a single part with S3 elements with crease region,

extending over a distance of 1.5 mm on either side of fold-line, and was assigned

with hyper-elastic material properties. For evaluating the hyper-elastic material

model to be used, Evaluate option in Abaqus was used. Fifth order reduced

poynomial hyper-elastic material model that best fitted with the material test

data obtained from experiments carried out by Hossian et al. [20] was used.

Figure 4.5 shows the result from the evaluation procedure. This modelling

technique is illustrated in Figure 4.4(b).

(c) Proposed technique

In this approach, the folded membrane was modelled with two shell portions.

The connection between two shell portions was established by using *TIE

constraints without rotational degrees of freedom. Connectors were used to
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Figure 4.5: Results from hyper-elastic material model evaluation

incorporate the rotational stiffness of folds. Revolute type two-node 3D

connector elements (CONN3D2) were used to model the connectors. As

discussed in Section 4.1, only the rotation about the fold-line dominates the

mechanics of fold-lines. Revolute type connector elements allow the user to

allow a single desired rotational degree of freedom between two points and

define rotational elasticity to account for rotational response of creases, that can

be used for this purpose. *CONNECTOR, ELASTICITY behaviour was

assigned to connector elements to account for kr and ko, given in equation 4.6.

In this case, it was considered as ko = kr = k assuming a similar behaviour of

Kapton to that of Mylar observed in [37] (see Figure 2.6). This assumption was

made as there are no experimental data on ko. The fold-line stiffness (k) was

accounted for by using linear rotational elasticity. The value of k was obtained

from Table 3.2. The total rotational stiffness of the fold-line was uniformly

distributed among all the connectors along the fold-line. A sensitivity analysis

on the number of connectors showed that with increasing number of connectors,

the stress distribution tend to be uniform along the fold-line, compared to when

fewer number of connectors are used which result in the concentration of

stresses at the connected nodes. Based on the sensitivity study, 5 connectors

were used. This modelling technique is illustrated in Figure 4.4(c).
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4.2.2 Results and Discussion

Figure 4.6 shows a comparison of the axial displacement in the loading direction

for the load case of 0.422 N with respect to the load case of 0.112 N, measured

along the centre-line experimentally [20] with the simulated responses. This axial

displacement was calculated as the difference in axial displacement in the loading

direction from the initial folded state, between load cases of 0.422 N and 0.112

N. In addition, two extreme cases where fold-line is idealized as pinned joint

(minimum rotational stiffness) and welded joint (maximum rotational stiffness)

are also presented. The results are plotted against non-dimensional length (L*)

which indicates the location from the pinned end as a ratio of the overall length

of the coupon (80 mm), of the selected points (to measure axial displacement)

in the initial pristine state before creasing. The location of the fold-line is at a

non-dimensional length of L* = 0.5 (corresponding to 40 mm).
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Figure 4.6: Comparison of difference in axial displacement between 0.422 N
loading stage and 0.112 N loading stage

A ”jump” in the experimental observation close to L∗ ≈ 0.5 corresponds to

crease opening at 0.422 N loading stage from 0.112 N loading stage. The figure

shows that the extreme cases of pinned and welded connection act as lower and

upper bounds for the axial displacement respectively, with significant deviation
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from actual behaviour. Welded connection gives a significantly higher

estimation of crease opening (jump), whilst pinned connection fails to capture

the crease opening. The technique proposed by Cai et al. [15] yields axial

displacement close to that of pinned connection as this technique is also unable

to capture the crease opening. Hence this technique cannot be used for our

purpose.

Use of connector elements with rotational stiffness is able to capture the

crease opening. However, use of rotational stiffness determined experimentally

by Dharmadasa et al. [19] (0.00015 N/deg) and through simulations in the

present work (0.0003 N/deg) give a slightly lower and higher estimation of

crease opening respectively. This may be due to the assumption made that the

neutral angle of the folded membrane is 0. This assumption was made since the

neutral angle was not recorded during the experiment. Dharmadasa [16]

observed that though the rotational stiffness is independent of the neutral angle,

the resistant moment exerted by crease-line depends on the neutral angle as in

Equation 4.1. Inputting the correct neutral angle might give a reduced crease

opening as the resistant moment decreases. Following a trial and error

procedure of using rotational stiffness in between the above values, an effective

rotational stiffness of 0.00024 N/deg (that accounts for the neutral angle effect)

gives a much closer estimation of crease opening.

The technique proposed by Hossain et al. [20] estimates the crease opening

by axial extension of the hyper-elastic region and yields close agreement with

experimental observations. However, for different loads, the hyper-elastic region

length of 3 mm used in the simulation requires further calibration to match the

results. Also at much smaller loads, it fails to capture the actual deformed

geometry of the folded membrane. Figure 4.7 shows that the use of this

technique gives an almost fully unfolded shape whereas it is not the actual

deformed shape. Hence, this technique is suitable to study the behaviour of

creased membranes in the fully deployed state but cannot be used for our

purpose of predicting deployment behaviour of multiply creased membranes.

Another merit of the proposed technique is that it is cost effective to employ

in modelling membranes with large no of creases. It should also be noted that

the use of shell elements to model the membrane panels in all the simulations

has captured the axial displacement due to bending or axial extension of the
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(a) Experiment (b) Proposed technique (c) Hossain et al. [2]

Figure 4.7: Comparison of deformation profiles for an external load of 0.002 N

membrane panel when subjected to external loads as well, thus giving closer

results to experimental observations.
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Chapter 5

Quasi-static Deployment Simulation of a Solar Sail

In this chapter, an attempt is made to develop a numerical model of complete

solar sail with the proposed simulation technique to incorporate fold-line

mechanics presented in Chapter 4 to study the deployment behaviour. The

simulated response is compared against physical experiments carried out by

Arya and Pellegrino [48].

5.1 Crease Pattern

For this purpose, a model of thin membranes wrapped around a polygonal hub

based on the crease pattern proposed by Guest and Pellegrino [21] were utilized.

This crease pattern algorithm takes four inputs: the number of sides of the

polygonal hub (N), radius of circumcircle of the polygonal hub (R), the spacing

between adjacent layers in the folded configuration (u) and the number of radial

tabs (j). A solar sail model was created setting the parameters as given in

Table 5.1. The fully deployed diameter (Df ) was around 265 mm.

Table 5.1: Parameters used to generate Solar Sail Model

t (µm) 25
N 8
R (mm) 20
u (µm) 50
j 8

In cylindrical coordinates defined at the centre of the hub as indicated in

Figure 5.1(d), the coordinates of vertices Pij, where i corresponds to fold-line

and j corresponds to the vertex in the fold line, are given by Equation 5.1.
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Figure 5.1: Crease pattern [21]
(a) crease pattern for n = 6 (b)plan view of fold lines in wrapped configuration
(c) location of vertices Pij in folded configuration (d) location of vertices Pij in

deployed configuration

Pij =

 R + (j − 1)s

2(j − 1)π/N

zj

 (5.1)

The only unknown coordinate in the above is the z coordinate as other two

coordinates can be simply obtained by substituting values from Table 5.1. In

order to find the z coordinates (zj), the angular relationship at a vertex in the

deployed state can be used (see Figure 5.1(d)). This yields the following four

simultaneous equations with four unknown terms, β, δ, χ and zj.
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β = arccos

(
(P12 − P11)

||P12 − P11||
˙
(P21 − P11)

||P21 − P11||

)
(5.2a)

χ = arccos

(
(P22 − P21)

||P22 − P21||
˙
(P12 − P21)

||P12 − P21||

)
(5.2b)

δ = arccos

(
(P21 − P11)

||P21 − P11||
˙
(P12 − P21)

||P12 − P21||

)
(5.2c)

α + β + χ+ δ = 2π (5.2d)

By solving similar sets of equations at each vertex in a fold-line, the crease

pattern was generated for the parameters in Table 5.1. MATLAB function

vpasolve() was used to solve these equations numerically [49].

5.2 Experimental Setup Details

In the experimental study by Arya and Pellegrino [48], the octagonal sheet

generated using crease pattern described in Section 5.1 was perforated with a

laser along fold-lines and 36 % of material along each fold-line was removed to

fold easily. In the folded configuration, the hub was suspended in the middle

with a string. The deployment was controlled by linear actuators that pulled

the two tabs tangentially in two opposite directions. Deployment forces were

recorded using the force sensors attached to the linear actuators. Deployment

forces were plotted as a function of deployment coefficient (defined as the

partially deployed diameter, D divided by the fully deployed diameter, Df ).

Figure 5.2 shows the experimental setup used in the study.

Weight of the membrane was offloaded through the string supporting the hub

and through the force sensors supporting the tabs to minimize the effect of gravity.

Effect of air drag was reduced by ensuring quasi-static nature of deployment by

maintaining a deployment rate (q) of 0.78 mm/s. However, the membrane could

not be fully deployed as the membrane collapsed when the fold angles reached

180◦ (at a deployment coefficient of 0.9).
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Figure 5.2: Experimental setup [48]

5.3 Solar Sail Finite Element Model

Numerical model of solar sail was setup in Abaqus/Explicit finite element

package. To study the deployment behaviour, the intial folded configuration

should be accurately captured. In these simulation, an ideal scenario of vertices

of membrane panels in the folded state lying radially linear at each vertex of the

hub was considered (see Figure 5.1(b)). The membrane panel geometry in the

folded configuration (see Figure 5.4(a)) was created in AutoCAD and meshed in

Abaqus/Explicit. Three-node reduced integrated shell elements, S3R were used

to model the membrane panels. Crease lines were represented by two-node

connector elements, CONN3D2 as described in Chapter 4. The hub was

modeled as a rigid body. The finite element model of the membrane consisted of

19522 shell elements and 12642 nodes.
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Figure 5.3: Finite element geometry of solar sail model

Simulation sequence was set to follow the experiment discussed in Section

5.2. Two reference nodes (A and B) were defined 165 mm apart to exert the

pulling displacement of 150 mm in two opposite directions, (+)ve x and (-)ve x

direction respectively. A Link connector element was used to attach the

reference point to the membrane ensuring a constant distance in between during

the simulation. Reaction force at node A was recorded throughout the

simulation. All degrees of freedom of the hub were restrained except for rotation

about z.

Material properties of Kapton were defined as given in Table 4.1. The

definition of several contact surfaces is also required, as different parts of the

solar sail will come into contact with each other and also with the rigid hub

during deployment. The General Contact feature was assigned to the entire

model by specifying Contact Inclusions, All Exterior. With this option

Abaqus/Explicit automatically defines potential contact surfaces that will come

into contact. Hard contact property that uses penalty stiffness was used.

There are two types of fold-lines in this particular model; major folds, which

are aligned radially folded upto 180◦ at compacted state and minor folds, which

are aligned circumferentially where the membrane is folded by 22.5◦ during

compaction as illustrated in Figure 5.3. Rotational stiffness of minor folds was
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assumed negligible as they are folded to a negligible angle during compaction.

Rotational stiffness for major folds were assigned as discussed in Section 4.2.

Rotational stiffness was reduced by 36 % to account for scoring as described in

Section 5.2. Neutral angle was assumed to be zero as it was not recorded during

experimental study.

5.4 Abaqus/Explicit Solver

Abaqus/Explicit solver was initially designed to solve dynamic high speed impact

events. It implements central difference time integration rule with the use of

diagonal or lumped element mass matrices, to solve for dynamic equilibrium

where inertia plays a significant role given as follows.

mü = e− i (5.3)

where m is the mass matrix, e is the external load vector and i is the

internal load vector.

Recently, Explicit solver has been used to solve static problems by taking

precautions to keep the term on the left hand side of Equation 5.3 negligible. In

fact, explicit procedure has proven efficient in solving quasi static problems with

complicated contact problems when compared to implicit solvers. In addition,

when the models become very large and complex explicit procedure uses fewer

resources than implicit procedure.

In this case, the deployment simulation of solar sail involves discontinuities

such as dynamic snapping which is better handled by explicit than implicit

solver. These phenomena will result in numerical instabilities and the

convergence will be affected by singularity in stiffness matrix. To avoid stiffness

matrix in computation, explicit procedure which advances the kinematic state

of each degree of freedom by direct integration of its equations of motion has

been adopted. However, effort should be made to simulate the deployment

event in the shortest time, keeping the effects of inertia insignificant.
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5.4.1 Energy balance in quasi-static analysis

In order to confirm that the effects of inertia are insignificant, at any particular

time, kinetic energy in the system should be a very small percentage of internal

energy, generally lesser than 1% to 5% of internal energy [18].

Further, the robustness of a particular analysis can be verified by

investigating the energy history. Mainly the total energy in the system, Etotal

should be equal to the total energy introduced to the system externally.

According to Abaqus/Explicit terms for the deployment simulation of a solar

sail, energy balance equation can be written as follows.

Etotal = Ei + Evd + Eke − Ewk (5.4)

where Ei is the internal energy which is the summation of elastic, inelastic

strain energy and artificial energy, Evd is the viscous dissipation, Eke is the

kinetic energy and Ewk is the work done by the external forces.

If the energy balance shows any discrepancy, the solution has not converged

properly, in this case necessary measures should be taken to maintain the

quasi-static state and ensure the analysis is free from any numerical

instabilities. Artificial energy should be a very small percentage of internal

energy, generally lesser than 1% to 2% of internal energy [18] as well to ensure

that the simulation free from artificial effects like hour glassing, shear locking

etc. Therefore, during an explicit simulation, it is essential to check the energy

history before coming to a conclusion from the output.

5.4.2 Economising the solution

While solving in explicit procedure, out of balance forces are propagated as stress

waves to adjacent elements. In order to capture these stress waves, the stable

time increment should be small enough. Explicit time integration is stable only if

the time increment is lesser than the time for a wave to travel between adjacent

nodes in the finite element mesh which is known as the Courant condition [50].

Therefore, central difference operator is conditionally stable, and when the system
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includes damping to control high frequency oscillations, the stability limit for the

operator is given in terms of the highest eigenvalue in the system as given below.

∆t 6
2

ωmax

(√
1− ξ2 − ξ

)
(5.5)

This condition can be considered as an approximate equation for minimum

stable time increment as follows.

∆t = α
(√

1− ξ2 − ξ
) lmin

cd
(5.6)

where α, ξ, lmin and cd denote time scaling factor, fraction of critical damping

in the fundamental frequency mode, the shortest length of finite element and the

dilatational wave speed, respectively. Dilatational wave speed can be expressed

as follows.

cd ≈

√
E

ρ
(5.7)

where E and ρ denote modulus of elasticity and material density,

respectively.

This shows that the size of the time increment is purely dependent on the

highest natural frequency of the model, material properties and element size,

despite the type of loading. Therefore, it is impractical to model the process

in its natural time period. For example, initial estimated stable time increment

for the model created as per Section 5.3 was 1 x 10−7 s. To deploy to 150 mm

at a deployment rate of 0.78 mm/s as in the experimental study, it will take

approximately 193 s. Thereby it will require 1.93 x 109 increments if the loading

rate is to be maintained as per the experiment, which is very costly. Hence,

artificially increasing the speed of the process is necessary to achieve economic

solution. This can be achieved through three methods, viz; increasing loading

rate, applying viscous pressure and mass scaling.
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Loading rate

In this method, the time scale of the process is artificially reduced by

increasing the loading rate. Hence, a fewer no of increments is enough to solve

the process compared to solving in its natural time period. However, high

loading rate will emphasize the dynamic responses. Hence, it is essential to

strike a balance. Abaqus [18] recommends to use a time scale of 10 times the

fundamental natural period of the structure as an initial estimate. For the solar

sail model described in Section 5.3, fundamental natural period was computed

by doing a frequency analysis in Abaqus/Standard. The estimated period was

0.091 s, hence the definition of the overall loading rate was initially set such that

deployment would occur over a time period of ten times the fundamental period,

or 0.91 s. However, the kinetic energy was beyond the limit of 1% to 5% of

internal energy for this time scale. By trial and error process, a time scale of 3 s

was chosen finally, where the kinetic energy can be maintained within the limits.

The concern while applying load/displacement is, it should not create any

significant inertial effects in the structure which violate the quasi-static condition.

Hence, the load/displacement should be applied as smooth as possible. In the

simulation, the displacement of the reference points were applied through a fifth

order polynomial function of time with first and second time derivatives equal

to zero at the beginning and end of the time interval using the Abaqus/Explicit

command *Amplitude, Definition = Smooth Step. This ensures the smoothness

of the displacement application, so as to not cause any accelerations imposed on

the structure at the beginning and the end of a particular action.

Viscous pressure

Viscous pressure loading is an effective way to damp out dynamic effects

quickly, and thus reach quasi-static equilibrium in a minimal number of

increments. A viscous pressure load generates a normal velocity-dependent

pressure on surfaces. This pressure can be written in the form of,

p = −cvv.n (5.8)

where cv is the damping coefficient, v is the velocity and n is the normal

vector.
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Since this is applied as an external load, this damping will not directly affect

the stable time increment given in Equation 5.6. However, if the value of cv is

high, it will over damp the structure and produce erroneous results. Typically,

initial guess for cv is chosen as a very small percentage (below 2%) of ρcd, given

as follows.

ρcd = ρ

√
E(1− ν)

ρ(1 + ν)(1− 2ν)
(5.9)

where ρ, E, ν denotes material density, modulus of elasticity and Poisson’s

ratio respectively.

The value of ρcd is approximately equal to 2 x 10−3 for the current simulation.

Hence, initially a value of 4 x 10−5 was chosen for cv (2% of ρcd). However, this

caused high deformation in the elements during the simulation. By a trial and

error process, a value of 4 x 10−8 was chosen finally, just enough for the simulation

to complete.

Mass scaling

Increasing the mass of a structure results in the decrease in dilatational wave

speed, cd (Equation 5.7) of the structure, thus increasing the stable time

increment, ∆t (Equation 5.6). However, increasing the mass will increase the

inertial effects. Hence, it is necessary to strike a balance. Artificially increasing

the material density by a factor of f 2 increases the stable time increment by a

factor of f .

In this simulation, *FIXED MASS SCALING, TYPE=BELOW MIN, DT=dt

command in Abaqus/Explicit was used to scale only elements whose stable time

increment is below the value assigned to DT so that their stable time increment

equals dt. In order to select a suitable value for dt, a sensitivity analysis was

carried out. Figure 5.4 shows a comparison of kinetic energy of the structure for

simulations carried out for two different values of dt with typical internal energy.

Based on the results dt = 1 x 10−6 was chosen where the kinetic energy was

within the acceptable limits as discussed in Section 5.4.1. The sudden spikes in

the kinetic energy at certain locations in the plots indicate dynamic snapping
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effect discussed earlier in Section 1.3 which the simulation has captured.
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Figure 5.4: Comparison of kinetic energy profiles for different mass scaling

5.5 Results and Discussion

Figure 5.5 shows energy balance checks carried out to identify any numerical

instabilities in the simulation as discussed in Section 5.4.1. The initial simulation

yielded a high viscous dissipation energy compared to internal energy which is an

indication of external factors influencing the results. This was due to the default

contact damping force (fvd) for penalty contact applied in Abaqus/Explicit which

is expressed as follows.

fvd = µ0Av
el
rel (5.10)

where A is the nodal area, velrel is the rate of relative motion between the two

surfaces and µ0 is the damping coefficient. By default, µ0 is set to 0.03 Ns/m.

This resulted in the high viscous dissipation. This was overridden with the

command *CONTACT DAMPING, DEFINITION=DAMPING

COEFFICIENT, 0, setting µ0 to 0. This yielded a negligible viscous dissipation

energy as shown in the figure. However, it was observed that the total energy

experienced an increase towards the end for this simulation. This is an
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indication of numerical instabilities. Hence it was decided not to set µ0 to 0.

Further investigation of viscous dissipation energy of the membrane alone for

µ0 = 0.03 Ns/m showed that it is negligible. This confirms that the membrane

is unaffected by the viscous damping under question. As we are only interested

in the deployment forces of the membrane, it is acceptable to follow the results

thus obtained. It should be noted that the total energy for this simulation is

close to zero throughout the simulation, confirming that the simulation is free

from numerical instabilities. However, artificial energy lies in 5% to 10% range

of internal energy. Abaqus inputs artificial energy during contact and when

elements distort to ensure numerical errors do not disrupt the energy balance.

This requires further investigation.

Figure 5.6 shows deployment force recorded at node A plotted against

deployment coefficient, D/Df as described in Section 5.2. D was recorded in

the simulations as the distance between the two points in the membrane that

are attached to link connectors. MATLAB function smooth (x, y, span, ’rloess’)

was used to reduce the noise of raw data where the span was set to 0.1. The

’rloess’ method is a local regression analysis that uses weighted linear least

squares and a 2nd degree polynomial model and assigns lower weight to outliers

in the regression. For comparison, deployment force for model that has
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fold-lines without rotational stiffness is also plotted.

The general trend of deployment force observed in the experiment is of two

phases. The first phase is upto 80% deployment with almost zero stiffness and

the second phase is with increasing stiffness. Initial hypothesis for this

increasing stiffness is that it is due to increasing stiffness of fold-lines. However,

both simulations with and without fold-line stiffness exhibit this behaviour.

Therefore, this might be due to stretching of the membrane panels. Membrane

stresses were not recorded during the experiment. This requires further

investigation.

However, the deployment with fold-line stiffness was smoother compared to

deployment without fold-lines. The deployment without fold-line stiffness exhibits

sudden spikes in deployment force. This might be due to dynamic snapping

effect. This created overshooting in the model without fold-line stiffness, but

the model with fold-line stiffness could resist that by the stiffness provided by

fold-lines with only minor fluctuations. Figure 5.7 shows snapshots taken during

deployment simulation at different deployment coefficients for both models. At

the deployment coefficient of 0.39, the overshooting is clearly visible in the model

without fold-line stiffness, which was not observed in the model with fold-line

stiffness.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Fold-lines create permanent plastic deformation in thin membranes which alter

their physical state and behaviour. It has been emphasized in the past studies

that the effect of fold-lines is captured in virtual tests that are aimed at

studying the folded membrane structures. This thesis presents a simulation

technique that can be used to carry out virtual tensile tests on single-folded

thin membranes to quantify their moment-rotation response, which is one of the

key properties of fold-lines.

The comparison of fold-line stiffness determined from the proposed virtual

testing of Kapton membranes, with the experimental data as per available

literature shows that the values are in the same order. The deviations in exact

values could be owing to the experimental difficulties involved in the

measurement of angles using digital imaging, and the adopted creasing and

loading procedure without adequate calibration.

A further comparison was made with results from Elastica theory. A

reasonable agreement is achieved between the moment rotation response from

simulating 25 µm Kapton membrane (creased to a creasing gauge of 2 times the

thickness of membrane) and the solution obtained from Elastica, for tensile

loading above 0.02 N. However, the inherent assumptions and the absence of

simple solving techniques limit the possibility of quantifying fold-line mechanics

using Elastica theory. It is evident that the finite element analysis techniques

prove to be substantially competent for the simulation of creased geometry and

conducting numerical tensile tests on single folded thin membranes.

A strategy for implementing the fold-line stiffness thus obtained in
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commerical finite element packages is also presented. The proposed fold-line

idealisation scheme is to represent fold-lines with connectors defined with

rotational stiffness. For demonstration, unfolding of a single folded Kapton

membrane to an external tensile load is simulated using commercial finite

element package Abaqus/Standard and validated against physical experiments.

The proposed technique with connector elements is meritorious over other

available techniques as it captures both the deformed profile and axial

displacements along the folded membrane with close agreement with

experimental results.

The proposed strategy with the fold-line stiffness determined from virtual

testing was used to study the quasi-static deployment behaviour of a solar sail

model with 25 µm thick membrane wrapped around a polygonal hub using

Abaqus/Explicit package. However, the fold-line stiffness had little effect on the

deployment force of the sail in the range of deployment carried out

experimentally. It is to be noted that the simulation was based on several

assumptions, namely; neutral angles of all fold-lines are zero, the fold-line

stiffness is uniform along the length of the fold-line and the effect of scoring can

be captured by reducing fold-line stiffness.

6.2 Future Work

The following are some suggested future research directions.

1. Developing a framework for quantifying fold-line stiffness of thin folded

membranes at a wider load regime.

2. Quantifying the behaviour of asymmetric fold-lines and interacting fold-

lines at a vertex of a folded membrane.

3. Carrying out experimental studies to verify the effect of fold-line stiffness at

higher deployment coefficients while recording membrane stresses through

Digital Image Correlation techniques (DIC) and validating with numerical

studies as suggested.
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Appendix

Keywords of Abaqus Input Files

1. Predicting Mechanical Properties of Fold-Lines

∗∗——————————————————–

∗∗ MATERIAL PROPERTY DEFINITION

∗∗——————————————————–

*Material, name=Kapton

*Density

1.42e-09,

*Elastic

2500., 0.34

*Plastic

69., 0.

78.654, 0.0045384

87.183, 0.0111268

93.902, 0.0184392

101.397, 0.0254412

107.083, 0.0331668

112.51, 0.040996

117.42, 0.049032

....... .......

224.931, 0.586028

226.224, 0.59551

227.516, 0.604994

228.808, 0.614477

230.1, 0.62396

230.1, 1.
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2. Deployment Simulation of Single-Folded Membrane

∗∗———————————————————–

∗∗ CONSTRAINT DEFINITION

∗∗———————————————————–

* Constraint: tie

*Tie, name=tie, adjust=yes, no rotation,

type=NODE TO SURFACE

∗∗———————————————————–

∗∗ CONNECTOR PROPERTY DEFINITION

∗∗———————————————————–

Connector Behavior, name=elastic

*Connector Elasticity, component=4

0.018,

∗∗———————————————————–

∗∗ MATERIAL PROPERTY DEFINITION

∗∗———————————————————–

*Material, name=Kapton-lin

*Density

1.42e-09,

*Elastic

2500., 0.34

**

3. Quasi-static Deployment of a Solar Sail

∗∗———————————————————–

∗∗ CONSTRAINT DEFINITION

∗∗———————————————————–

** Constraint: tie

*Tie, name=tie, adjust=yes, no rotation,

type=SURFACE TO SURFACE

∗∗———————————————————–

∗∗ CONNECTOR PROPERTY DEFINITION
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∗∗———————————————————–

*Connector Behavior, name=elastic

*Connector Elasticity, component=4

0.018,

∗∗———————————————————–

∗∗ ELEMENT CONTROL

∗∗———————————————————–

*Section Controls, name=EC-1

1., 1., 1., 0.01, 1.

*Amplitude, name=Smooth, definition=SMOOTH STEP

0., 0., 4.1, 1.

∗∗———————————————————–

∗∗ MATERIAL PROPERTY DEFINITION

∗∗———————————————————–

*Material, name=Hub

*Density

1.42e-09,

*Elastic

200000., 0.3

*Material, name=Kapton

*Density

1.42e-09,

*Elastic

2500., 0.34

∗∗———————————————————–

∗∗ INTERACTION PROPERTY

∗∗———————————————————–

*Surface Interaction, name=contactproperty

*Surface Behavior, pressure-overclosure=HARD

∗∗———————————————————–

∗∗ BOUNDARY CONDITIONS

∗∗———————————————————–

** Name: Hub Type: Displacement/Rotation

*Boundary

Set-5, 1, 1

Set-5, 2, 2

Set-5, 3, 3
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Set-5, 4, 4

Set-5, 5, 5

∗∗———————————————————–

∗∗ INTERACTIONS

∗∗———————————————————–

** Interaction: Contact

*Contact, op=NEW

*Contact Inclusions, ALL EXTERIOR

*Contact Property Assignment,contactproperty

∗∗———————————————————–

∗∗ STEP: Deploy

∗∗———————————————————–

*Step, name=Deploy, nlgeom=YES

*Dynamic, Explicit

, 4.2

*Bulk Viscosity

0., 0.

** Mass Scaling: Semi-Automatic

** Whole Model

*Fixed Mass Scaling, dt=1e-06, type=below min

∗∗———————————————————–

∗∗ BOUNDARY CONDITIONS

∗∗———————————————————–

** Name: RP1 Type: Displacement/Rotation

*Boundary, amplitude=Smooth

RP1, 1, 1, 140.

RP1, 2, 2

** Name: RP2 Type: Displacement/Rotation

*Boundary, amplitude=Smooth

RP2, 1, 1, -140.

RP2, 2, 2

∗∗———————————————————–

∗∗ LOADS

∗∗———————————————————–

** Name: viscous Type: Pressure

*Dsload, ref node=Set-26

Surf-129, VP, 2e-08
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