
DESIGN OF A DEEP REINFORCEMENT LEARNING

BASED OPTIMAL PH CONTROLLER FOR

NITRIFICATION BIOREACTORS IN AQUAPONICS

SYSTEMS

Pin Chathushka Parami De Silva

(168658R)

Dissertation submitted in partial fulfillment of the requirements for the degree Master

of Science in Industrial Automation

Department of Electrical Engineering

University of Moratuwa

Sri Lanka

May 2019

i

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in

any other University or institute of higher learning and to the best of my knowledge

and belief it does not contain any material previously published or written by

another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to

reproduce and distribute my dissertation, in whole or in part in print, electronic or

other medium. I retain the right to use this content in whole or part in future works

(such as articles or books).

Signature: Date:

The above candidate has carried out research for the Masters dissertation under my

supervision.

Name of the supervisor: Dr. A.G.B.P Jayesekera

Signature of the supervisor: Date:

ii

DEDICATION

To all the people who feed us….

iii

ACKNOWLEDGEMENTS

This research would have been another dream without the support from the following

people.

First of all, I wish to express my sincere thanks to my supervisor, Dr Buddhika

Jayasekara, for guiding me in the research process and providing feedback and advice

over the years.

Next, I wish to thank Dr. D.P. Chamdima and Prof. K.T.M.U. Hemapala for their

valuable feedback. Their feedback was extremely valuable in asking the right research

questions and steering the study in the correct direction.

I wish to thank Eng. B.S. Samarasiri for mentoring me through the years and

introducing me to research and product development. I would also like to give my

sincere thanks to Mr. Jayasiri Kumarasinghe for all those industrial outings and for the

valuable and practical industrial experience. He has taken me all over the country to

see various industries and introduced me to industrial instrumentation and automation.

This exposure was significant in finding the currently studied research problem.

Finally, I would like to thank my wife, my mother, my father and my brother for all

the love and support they have given me and persevering with me during the entire

period of the research.

iv

ABSTRACT

Recent advances in deep reinforcement learning has produced state of the art

algorithms. These algorithms have better training stability, convergence and

computational performance.

In this study a state of the art deep reinforcement learning algorithm is used to

implement a self-learning, model free, non-linear controller to control pH of an

aquaponic system. Aquaponics is a soil-less farming system where effluent water from

a fish tank is used as nutrients for growing plants. Maintaining the pH of an aquaponic

system provides the optimal condition for micro-organisms that convert the ammonia

rich fish effluent to nitrates, which are easily absorbed by the plants. In order to

optimize this conversion process known as nitrification, pH is maintained at optimal

conditions within an intermediate setup known as the nitrification bioreactor.

The implementation of a deep reinforcement learning based controller is studied in

detail and the performance of the deep reinforcement learning based pH controller is

evaluated by comparing the performance of a classic PID based controller in an

aquaponic system.

The results show that DRL based controllers are better suited for control of dynamic

stochastic control pH process and is capable of learning complex plant models and

tuning itself based on the learnt model. The outcomes of this research can be applied

in the design of optimal controllers that learns purely from experience to optimize

various industrial processes. This type of controllers is ideal in Industry 4.0 based

applications.

Keywords: Deep Reinforcement Learning, Artificial Intelligence, Aquaponics,

Nitrification, Process Control

v

TABLE OF CONTENT

Declaration i

Dedication ii

Acknowledgements iii

Abstract iv

Table of Content v

List of Figures viii

List of Tables x

List of Abbreviations xi

List of Appendices xii

Chapter 1 Introduction 1

1.1 Objectives 3

1.2 Thesis Outline 5

1.3 Limitations of the Study 6

Chapter 2 Literature Review 7

2.1 Introduction 7

2.2 Related works in Aquaponics and Limitations 7

2.2.1 Biomass Balance Equation 9

2.2.2 Substrate Balance Equation 10

2.3 Related works in pH control 11

2.3.1 PID based pH controllers 12

2.3.2 Fuzzy logic based pH control 13

2.3.3 Adaptive Neuro Fuzzy Inference Systems 16

2.3.4 pH controllers based on optimal control 17

2.4 Deep Reinforcement Learning Techniques 20

2.4.1 Dynamic Programming in the Context of Reinforcement Learning 20

2.4.2 Summary of Dynamic Programming Methods 24

2.4.3 Monte Carlo Learning 25

2.4.4 Temporal Difference Learning 27

2.4.5 Policy Gradient Methods 28

2.4.6 Actor Critic Methods 29

vi

2.4.7 Curse of Dimensionality 30

2.4.8 The Deathly Triads 30

2.4.9 Activation Functions for neural networks 31

2.5 Summary 33

Chapter 3 Methodology and Controller Design 35

3.1 Introduction 35

3.2 Methodology 35

3.3 Development of the Deep Reinforcement Learning based controller 36

3.3.1 Specification of Inputs and Outputs to the controller 37

3.3.2 Design of Critic 38

3.3.3 Design of Policy Network 39

3.3.4 Determination of Learning Rate 40

3.3.5 Learning and Gradient Descent based update 40

3.3.6 Selection of deep reinforcement algorithm 41

3.3.7 Designing the Reward Function 42

3.3.8 Overall Architecture of the DRL controller 43

3.3.9 Results based on empirical work 43

3.3.10 Tool chains and Development tools 47

3.4 Development of the PID controller 48

3.5 Hardware Design 49

Chapter 4 Experimental Results and Analysis 51

4.1 Introduction 51

4.2 Evaluating controller performance under a static deterministic system 51

4.2.1 Hardware Setup 52

4.2.2 Experimental procedure 52

4.2.3 Results 53

4.2.4 Analysis 54

4.3 Evaluating controller performance under a dynamic stochastic system 57

4.3.1 Hardware Setup 58

4.3.2 Experimental procedure 59

4.3.3 Results 60

4.3.4 Analysis 61

Chapter 5 Conclusions 62

vii

5.1 Conclusion on Objectives 62

5.2 Conclusion on Research Questions 63

5.3 Further works 64

5.3.1 Internet of Things use case 64

5.3.2 DRL controllers in SCADA systems 65

REFERENCES 66

Appendix A: Modelling and Controlling Techniques for Aquaponic Systems 70

Appendix B: DRL Controller Implementation 76

Appendix C: Device Driver For Hardware Interfacing 83

Appendix D: Digital PID Controller Implementation 85

Appendix E: List of Algorithms 87

viii

LIST OF FIGURES

Figure 1.1 Operation of an Aquaponics System 2

Figure 1.2 Relationship between the research problem, research questions and

discipline 4

Figure 2.1. Ammonia ionization capability based on pH 8

Figure 2.2. System Boundary used in Mass Balance Equation 9

Figure 2.3 Block diagram of a typical PID controller used in process automation 12

Figure 2.4 Fuzzy controller overview (top left), output membership function (top

right) & input membership function of a fuzzy based pH controller

designed using simulink 15

Figure 2.5 ANFIS architecture 16

Figure 2.6 Graphical representation of a Markovian Decision Process 18

Figure 2.7 Graphical representation of a Partially Observable Markovian Decision

Process 19

Figure 2.8 Agent environment interaction in a reinforcement learning problem 20

Figure 2.9 Pictorial representation of policy evaluation & improvement (right) and

value iteration (left) 23

Figure 2.10 Comparison of activation functions 31

Figure 3.1 Relationship between the input and output of the DRL controller 37

Figure 3.2 Recurrent Neural Network that approximates the critic 38

Figure 3.3 Neural network that approximates the actor/policy network 39

Figure 3.4 Overall system architecture of DRL controller and its peripherals 43

Figure 3.5 UML diagram of the DRL controller implementing the A3C algorithm 44

Figure 3.6 Visual Representation of the implemented DRL controller using

Tensorboard 45

Figure 3.7 Internal networks of the DRL controller represented using Tensorboard 45

Figure 3.8 Training losses of the actor network and critic network plotted at each

training steps. 46

file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717714
file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717715
file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717715
file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717716
file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717717
file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717718
file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717719
file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717719
file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717719
file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717720
file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717721
file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717722
file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717722
file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717723
file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717724
file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717724
file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717725
file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717726
file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717727
file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717728
file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717729
file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717730
file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717731
file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717731
file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717732
file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717733
file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717733

ix

Figure 3.9 Total moving reward generated at two different epochs. 47

Figure 3.10 Simulink model of a nitrification bioreactor in an aquaponics system 48

Figure 3.11 Hardware Interfacing 50

Figure 4.1 Setup to study the performance in a static system 51

Figure 4.2 Setup to study the performance in a static system 52

Figure 4.3 Transient responses of the controllers in the static system 53

Figure 4.4 Setup used to study the performance in a dynamic system 57

Figure 4.5 The aquaponics system used to determine the response of the DRL

controller dynamic stochastic conditions 58

Figure 4.6 Steady state response of the aquaponics system. This setup is a stochastic

system and the pH should be maintained at a set point of 7.2 for extended

durations. 60

Figure 5.1 Implementation of the DRL controller in IoT/Industry 4.0 based

applications 64

Figure 5.2 Implementation of the DRL controller in a SCADA scenario 65

file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717734
file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717735
file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717736
file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717737
file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717738
file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717739
file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717740
file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717741
file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717741
file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717742
file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717742
file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717742
file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717743
file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717743
file:///E:/Parami/version1/New%20folder/Docs/Thesis_2.docx%23_Toc10717744

x

LIST OF TABLES

Table 1: Summary of Dynamic Programming Methods .. 25

Table 2: Summary of literature review and identified research gaps......................... 33

Table 3: Comparison of different DRL algorithms .. 41

Table 4: Comparison of different software framework for implementing DRL

controller .. 47

Table 5: Gain values obtained from Simulink model .. 49

Table 6: Rise times of DRL & PID controller in static system 49

Table 7: Rise times of DRL & PID controller in static system 54

Table 8: Rise times of DRL & PID controller in static system 55

Table 9: Results of ANOVA test on the static case results .. 56

Table 10: Comparison of steady state value of the two controllers in the static case 56

Table 11: Comparison of steady state value of the two controllers in the dynamic

case .. 61

xi

LIST OF ABBREVIATIONS

Abbreviation Description

AI Artificial Intelligence

RL Reinforcement Learning

DRL Deep Reinforcement Learning

MDP Markovian Decision Process

POMDP Partially Observable Markovian Decision Process

SISO Single Input Single Output

MIMO Multiple Input Multiple Output

DP Dynamic Programming

ADP Asynchronous Dynamic Programming

GPI Generalized Policy Iteration

RPi Raspberry Pi

I2C Inter- Integrated Circuit Protocol

ReLu Rectified Linear Unit

IoT Internet of Things

ANOVA Analysis of Variance

xii

LIST OF APPENDICES

Appendix Description Page

Appendix A Modeling and Controlling Techniques for Aquaponic

Systems

73

Appendix B DRL controller Implementation 79

Appendix C Device Driver for Hardware Interfacing 86

Appendix D Digital PID Controller Implementation 88

Appendix E List of DRL Algorithms 90

1

CHAPTER 1 INTRODUCTION

Recent advances in Deep Reinforcement Learning (DRL) have produced state of the

art learning algorithms. These algorithms are capable of performing searches in very

large state spaces without instabilities and have human like performance in control.

One such application of these algorithms is Alpha Go [1]. Alpha Go is a deep

reinforcement learning based algorithm that was able to defeat a 9-dan champion Go

player. Go is an ancient traditional Chinese board game, that is known to be much

complex than chess, and widely agreed by the scientific community that the game

requires human like intuition to win the game. This is a significant achievement in the

field of Artificial Intelligence and was not expected to be achieved in the next decade

[2]. The work carried out in creating the Go playing AI agent is expected to impact the

industry and is currently under active research.

The current work in deep reinforcement learning is limited in scope and is mostly used

in AI agents to play computer games and in simulation based research. However, these

algorithms can be applied in solving complex industrial control and optimization

problems. The application of state of art Deep Reinforcement Learning algorithms in

industrial and process control systems have not been studied so far and forms the basis

of this work. An early study carried out by Spielberg et al [3], provided a methodology

to implement DRL algorithms in a simulated SISO & MIMO process control system

and highlighted the requirement to extend the research to non-linear systems.

Hence this thesis reports on research aiming at applications of deep reinforcement

learning on real world non-linear control systems. Since biochemical processes are

highly non-linear with limited sensing and actuation, a biochemical process system

was selected in order to evaluate the proposed DRL controller. Therefore, this research

attempts to incorporate insights about application of deep reinforcement learning in

designing an optimal pH controller for a nitrification bioreactor in an aquaponic system

[4]. The use of advanced control schemes in bioreactor control have not been studied

so far in aquaponics systems and is therefore studied in detail in the following work.

2

Aquaponics is an agricultural system that uses effluent from rearing fish tanks as

nutrient fertilizer for growing plants in industrial, indoor and vertical farms [5]. In the

aquaponics system shown in Figure 1.1, fish are reared in a tank from which effluent

water is pumped into a soil-less grow bed system. This water flows through the grow

bed system delivering nutrients to plants grown within the grow bed and recirculated

back to the fish tank. The entire system forms a symbiotic system where the plants

clean the fish effluent from the water and the fish provides the appropriate nutrients

for the plants. This process is maintained by microorganism that convert the ammonia

in fish waste in to nitrates that can be easily absorbed by the plants [6]. In order to

facilitate the process of conversion of fish waste to fertilizer (nitrification), bioreactors

are employed in aquaponics system and optimal conditions maintained within the

bioreactor to facilitate the growth of nitrifying bacteria. Aeration of the water generally

occurs naturally when water flows through the system and supplies oxygen for plant

roots and fish. However, for complex aquaponics system aerators may be employed to

supply additional oxygen required by the fish. Using this method, food production

factories can be implemented to produce vegetables and fruits productively in smaller

areas than conventional farms.

Figure 1.1 Operation of an Aquaponics System

3

1.1 Objectives

The objective of this study is to:

Evaluate the use of Deep Reinforcement Learning based optimal pH controller in

a nitrification bioreactor of an aquaponics system.

As Deep Reinforcement Learning is a form of general purpose artificial intelligence,

the following research questions are proposed to the context of this study.

RQ1: Can deep reinforcement learning algorithms be used to control the nonlinear

bioreactor system without prior knowledge of the nitrification bioreactor?

Controlling without an explicit mathematical knowledge of the plant is preferred in the

industry as complex systems can be setup with ease. This question attempts to isolate

the algorithms that can learn the optimal control strategies without an explicit

mathematical model of the system. In other words, what algorithms can learn the

optimal control strategy based purely on experience?

RQ2: How can these deep reinforcement learning algorithms be used with partial

observation of states?

Most system states in a nitrification bioreactor cannot be observed. This is due to non-

availability of sensors (due to cost, accuracy or off-line measurements). Therefore,

these control problems are partially observable. This research question attempts to find

the deep reinforcement learning methods of optimal control with partial observability.

In this case, we attempt to optimize the entire bioreactor by measuring the pH only,

just as a human expert is capable of estimating the performance of the plant using the

pH alone.

4

Figure 1.2 depicts the relationship between the objectives, research questions and

various technological domains.

As shown in Figure 1.2, the research questions are bounded by the DRL based

approach and by optimal pH control. The methodology and design of the controller in

this study is determined by the three interacting disciplines of reinforcement learning,

stochastic control and nonlinear control of nitrification.

Figure 1.2 Relationship between the research problem, research questions and

discipline

5

1.2 Thesis Outline

This study is organized into five chapters.

 Chapter 1 introduces the research problem, the objectives of the study and the

research questions.

 Chapter 2 presents detailed literature review and related works on nitrification

process, pH control and fundamental theories of reinforcement learning and

deep reinforcement learning. The first section of chapter 2 gives an overview

on nitrification and mathematical models of nitrification used in bioreactors of

aquaponic systems. Various linear and nonlinear methods of pH control are

analyzed and the later part of chapter 2 introduces important deep

reinforcement learning algorithms and caveats of using deep reinforcement

learning algorithms when designing controllers for non-linear process control

systems.

 Chapter 3 presents the design and development of the pH controller and the

methodology to evaluate the performance of the implementation of the DRL

controller. Here the controller is evaluated by comparing the performance of

the DRL controller with respect to a classical PID controller. Two experimental

setups were devised to characterize the performance of the controllers in the

case of a deterministic process and an aquaponic system as a dynamic process.

 Chapter 4 presents the experimental results and the analysis of the results of

each of the controller in both control scenarios. The details of the experimental

setups, the experimental procedure and comparative analysis are presented in

this chapter.

 Chapter 5 discusses the conclusion of the study and related further works.

6

1.3 Limitations of the Study

This sections explains the limitations which are important to the context of the current

study.

Firstly, this study has established a boundary around its research problem by delimiting

the scope of the investigation on optimal control of bioreactors and focusing

specifically on two aspects: reinforcement learning and pH control. Although many

other measurements can be taken for optimal bioreactor operation, this research has

delimitation, focusing on a single important measurement to reach optimality.

7

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction

This chapter presents important literature in the context of deep reinforcement learning

based control. The complex nature of the pH control in aquaponics is also discussed

before reviewing various theories and algorithms used in deep reinforcement learning.

2.2 Related works in Aquaponics and Limitations

Based on the literature review, there are no academic studies carried out in optimal pH

control of Aquaponics systems. This is mainly due to aquaponics being developed by

agricultural experts with little intervention from the engineering discipline. Previous

work carried out by the author showed that aquaponics systems can be modeled using

a waste water treatment process. Therefore, controllers used in waste water treatment

are potential candidates for pH control in aquaponics systems. Most of the pH

controllers used in waste water treatment are PID controllers (refer appendix A). These

controllers require constant tuning and other adjustments to continuously monitor the

process. This makes the entire process sub optimal.

The requirement for an optimal pH controller comes from our necessity to optimize

biochemical processes such as nitrification [7]. Therefore, it is important to show the

non-linearity of biochemical processes and how conventional linear control design

techniques are obsolete. Nitrification is the process of converting ammonia to nitrates

using bio-organisms. Nitrification is part of the natural nitrification cycle and is

extensively studied in biology and agriculture. Nitrification has been used in waste-

water treatment [8] where closed systems have been developed to enhance the

nitrification process. Therefore, we shall discuss the process of nitrification in the

context of waste-water treatment as applied to aquaponics systems.

8

Nitrification happens within a mineralization tank bioreactor where waste water with

high concentrations of ammonia is fed in. The bioreactor hosts nitrification bacteria

that convert ammonia into nitrates using an aerobic process. Aerobic processes

consume oxygen and oxidize the ammonia into nitrates. As far as industrial processes

are concerned, controllers have been used to maintain optimum conditions that

promote growth of nitrifying bacteria within the mineralization tank. The nitrifying

process causes the pH of the water to decrease, that is to become more acidic.

However, the nitrification process itself depends on the pH of the environment. This

relation is shown in Figure 2.1.

Nitrification can be modeled mathematically and is widely used in the design of

bioreactors, especially in water treatment plants. Active sludge modeling used in

sewage treatment is used in designing nitrification bioreactors [9]. The modeling is

carried out based on the mass balance equation shown in by Figure 2.2. Here a

biomass, the amount of living organism in the system, feeds on a substrate to increase

its biomass. If the substrate is increased and aerobic conditions are maintained, it

would result in growth of the biomass. Similarly, if there is little amount of substrate

and oxygen, the biomass will not feed on the substrate, resulting in decrease of

biomass.

Figure 2.1. Ammonia ionization capability based

on pH

9

An influent and effluent water flux travels across a system boundary as shown in

Figure 2.3. Using the principle of conservation of mass, the mass balance equation of

the system component can be derived for the specified system boundary. The quality

of the water is determined by the amount of substrate and biomass flowing across the

system boundary. A nitrification bioreactor of an aquaponic system can be described

in the context of this boundary.

2.2.1 Biomass Balance Equation

The net biomass within the system boundary is responsible for enhancing the

nitrification process within the system. The rate of biomass in the bioreactor is given

by the net flow rate of biomass into the system and the growth of biomass within the

reactor, which feeds on the substrate. Equation 2.1 models the growth of biomass

within the system boundary. The rightmost part on the right hand side of the equation

is known as the Monod’s equation. Monod’s equation models the growth of biomass

with respect the amount of substrate or food it has to consume.

𝑑𝑋

𝑑𝑡
𝑉 = 𝑄𝑋0 − 𝑄𝑒𝑋𝑒 + 𝑉 [

𝜇𝑚 𝑆

𝐾𝑠+𝑆
− 𝑘𝑑] 𝑋 (2.1)

Where

Figure 2.2. System Boundary used in Mass Balance Equation

10

 X - Concentration of biomass in the bioreactor (mg/l)

 V - Volume of the bioreactor (m3)

 𝑋0- Initial biomass concentration in influent water (mg/l)

𝑋𝑒- Concentration of biomass in effluent water (mg/l)

𝜇𝑚- Maximum concentration of biomass in effluent water (mg/l)

 S - Amount of Substrate for biomass to consume (mg/l)

𝐾𝑠- Half velocity constant used in Monod's equation (mg/l)

𝑘𝑑- Death/decay coefficient of biomass

2.2.2 Substrate Balance Equation

Similar to the derivation of the balance equation for biomass within the bioreactor, we

can model the amount of substrate using mass balance equations. In an aquaponics

system the substrate is ammonia from fish effluent. The substrate equation given by

equation 2.2 models how the biomass consumes the ammonia (substrate) within the

aquaponic system.

𝑑𝑆

𝑑𝑡
𝑉 = 𝑄𝑆0 − 𝑄𝑒𝑋𝑒 + 𝑉 [

𝜇𝑚

𝑌

𝑆

𝐾𝑠+𝑆
] 𝑋 (2.2)

The rate of change of substrate within the bioreactor is the net amount of substrate

moving into the bioreactor plus the amount of substrate utilized by the biomass within

the bioreactor as given by equation 2.2. Here Y represents the utilization factor of the

maximum possible yield [9]. Now we can construct the total nitrification model using

the previous two mass balance equations. Nitrification occurs by first utilizing

ammonia to nitrite using the bacteria called Nitrosomonas. Next another type of

bacteria known as Nitrobacter converts the nitrites into nitrates. Therefore, the

nitrification process within the bioreactor can be modeled by the system of equations

given by equations 2.3.

11

𝑑𝑋𝑛𝑠

𝑑𝑡
𝑉 = −𝑄𝑒𝑋𝑛𝑠 + 𝑉 [

𝜇𝑚,𝑛𝑠 𝑁𝐻3

𝐾𝑁𝐻3
+ 𝑁𝐻3

− 𝑘𝑑] 𝑋𝑛𝑠

𝑑𝑋𝑛𝑏

𝑑𝑡
𝑉 = −𝑄𝑒𝑋𝑛𝑏 + 𝑉 [

𝜇𝑚,𝑛𝑏 𝑁𝑂2

𝐾𝑁𝑂2
+ 𝑁𝑂2

− 𝑘𝑑] 𝑋𝑛𝑏

𝑑𝑁𝐻3

𝑑𝑡
𝑉 = 𝑄(𝑁𝐻3)0 − 𝑄𝑒(𝑁𝐻3)𝑒 + 𝑉 [

𝜇𝑚,𝑛𝑠

𝑌𝑛𝑠

𝑁𝐻3

𝐾𝑁𝐻3
+ 𝑁𝐻3

𝐷𝑂

𝐾𝐷𝑂 + 𝐷𝑂
[𝑒0.098(𝑇−15)][1 − 0.833(7.2 − 𝑝𝐻)]] 𝑋𝑛𝑏

𝑑𝑁𝑂2

𝑑𝑡
𝑉 = 𝑄(𝑁𝑂2)0 − 𝑄𝑒(𝑁𝑂2)𝑒 + 𝑉 [

𝜇𝑚,𝑛𝑠

𝑌𝑛𝑠

𝑁𝐻3

𝐾𝑁𝐻3
+ 𝑁𝐻3

𝑋𝑛𝑠 −
𝜇𝑚,𝑛𝑠

𝑌𝑛𝑠

𝑁𝑂2

𝐾𝑁𝑂2
+ 𝑁𝑂2

 𝑋𝑛𝑏]

𝑑𝑁𝑂3

𝑑𝑡
𝑉 = 𝑄(𝑁𝑂3)0 − 𝑄𝑒(𝑁𝑂3)𝑒 + 𝑉 [

𝜇𝑚,𝑛𝑠

𝑌𝑛𝑠

𝑁𝑂2

𝐾𝑁𝑂2
+ 𝑁𝑂2

𝐷𝑂

𝐾𝐷𝑂 + 𝐷𝑂
[𝑒0.098(𝑇−15)][1 − 0.833(7.2 − 𝑝𝐻)]] 𝑋𝑛𝑠

 (2.3)

We can see from the above system of equations; the control problem is nonlinear. The

coefficients have been indexed to represent influent, effluent water and the types of

bacteria for each of the steps in nitrification, namely Nitrosomonas and Nitrobacter

bacteria. It can be seen that nitrification depends on the temperature, pH and biomass

within the bioreactor. The equations show the importance of pH control in biochemical

process control [10] and are the subject of this study.

2.3 Related works in pH control

pH control is an important process variable extensively used in many industries.

Therefore a wide range of pH control schemes have been developed for different

process control applications [11]. Different types of controllers used in industrial pH

control and in control of bioreactors are presented in the following text.

12

2.3.1 PID based pH controllers

Many industrial systems employ PID controllers in the pH control process.

Proportional-Integral-Derivative (PID) control is the most common control algorithm

used in industry (Refer Figure 2.3). PID controllers are widely popular due to its robust

performance in a range of operational conditions and its installation simplicity. PID

algorithm consists of three basic coefficients; proportional, integral and derivative

which are varied to get optimal response.

The procedure followed to set the gain values of Kp, Ki & Kd to get the best response

from the control system is known as tuning. Tuning sets the controller to its appropriate

operating condition that the system operates without instability and delay.

PID controllers can be tuned using several standard methods [12].These are namely:

• Ziegler Nichols method

• Cohen Coon method

• Relay method

• PID tuning software

Figure 2.3 Block diagram of a typical PID controller used in process

automation

13

Other forms of adaptive tuning methods have also being developed in order to tune the

parameters [13]. If the tuning is not performed correctly the system may operate slowly

or even be unstable. Therefore, tuning is an important part of PID based controlling.

Limitations of PID control – PID controllers in general do not provide optimal

control [14]. The major drawback with PID control is that its feedback system uses

constant parameters and the controller has no knowledge of the process and only

performs reactive control.

Another limitation of PID control is that in order to design a PID controller, a non-

linear system needs to be linearized. This can cause approximation errors which can

be neglected in many applications. However, in application such as pH control of

bioreactors, these approximations can cause the system to perform sub optimally.

Furthermore, PID controllers under performs when the system is asymmetric. The pH

control problem is an asymmetric system where a base is dosed into the system to raise

the pH, but if the pH overshoots, we have no actuation to bring the pH down. In such

case the PID controllers needs to over damped, and hence not optimal.

Solutions to these limitation are available, for example, techniques such as gain

scheduling where a series of stored controller settings are used at different operating

zones and adaptive techniques to automatically tune parameters by using fuzzy, neural

networks or even using machine learning [15] . These are ad hoc fixes to inherent

problem with PID controllers which cannot be ignored in certain applications such as

pH control.

2.3.2 Fuzzy logic based pH control

Fuzzy control schemes have been widely used in pH process control applications [16].

Fuzzy logic is a branch of artificial intelligence that deals with modeling the controller

with expert knowledge using fuzzy variables and membership functions that directly

capture expert knowledge and expert actions. Fuzzy logic was introduced as an

14

alternative form of logic [17]. This alternative form of logic is many valued and is

designed to accommodate partial truths into logical reasoning. The underlying concept

in fuzzy control can be expressed in three main steps

 Fuzzification - This is the process of converting all inputs into

membership values.

 Execution - The process of executing the rule base generally provided

by an expert.

 Defuzzification - The process of generating the outputs from the

membership functions.

Fuzzification is generally achieved with the use of membership functions. A

membership function is a function that indicates the level of a certain truth. For

example, we can define a membership function call warm that includes a range of

temperatures and provide a value that closely fits the definition of warm. A

temperature reading of 32 degrees Celsius can have a higher degree of membership to

warm than a temperature reading of 25 degrees Celsius. Similarly, we can define

several membership functions for different truths related to temperature. These

membership functions are subjected to fuzzy operations such as min operation and

max operation which are the equivalent fuzzy operations for logical AND & OR

operation respectively. Different membership functions would be evaluated based on

a rule base. The outputs from these fuzzy operations would then be used in

defuzzification.

15

Defuzzification can be performed in many ways, but the most popular ones being the

centre of gravity methods. These methods essentially convert the membership function

into a value that can be used to control actuators. An implementation of a fuzzy

controller for pH control is provided in Appendix I. The controller uses fixed

membership functions based on expert recommendations and simulated in Simulink

as show in Figure 2.4. The design of the controller was straight forward, however

tuning the controller on site was cumbersome.

Figure 2.4 Fuzzy controller overview (top left), output membership function (top

right) & input membership function of a fuzzy based pH controller designed

using simulink

16

2.3.3 Adaptive Neuro Fuzzy Inference Systems

Fuzzy control provides a good method of representing knowledge in a structured

manner. However, this knowledge needs to be explicitly written or embedded into the

system. Thus fuzzy logic alone cannot mimic the natural learning observed in nature.

In order to provide such capabilities fuzzy logic control has been successfully

intertwined with neural networks to produce adaptive neuro-fuzzy inference systems,

ANFIS [18]. Figure 2.5 shows a diagrammatic representation of an ANFIS system. It

is important to note that rules are embedded into the neural network structure and

usually represented as a Multilayer Perceptron. A noticeable limitation of using ANFIS

is that the system should be a Takagi-Sugeno type inference system for the controller

to be implemented as a neural network. ANFIS do not perform general learning, as the

rules & membership function must be explicitly defined and carefully embedded into

the neural structure, however it is capable of learning the degrees of membership and

ranges occupied by each membership function.

Figure 2.5 ANFIS architecture

17

2.3.4 pH controllers based on optimal control

In optimal control theory, a dynamic system is operated in a manner that reduces a cost

heuristic. It determines what sequence of actions need to be taken to fully optimize the

process in question. Optimal control techniques usually employ a heuristic known as

a cost function as shown in equation 2.4 to evaluate the optimality of the controller.

The objective of the controller is to generate a control law in a manner that reduces the

overall cost or maximize the accumulated reward over time. The use of such control

are essential in a variety of non-linear control engineering applications such as

bioreactor controllers, space exploration vehicles and guidance systems.

J = φ[𝑥0, 𝑡0, 𝑥𝑓 , 𝑡𝑓] + ∫ [x(t), u(t)]dt
𝑡𝑓

𝑡0
 (2.4)

Subjected to first order dynamics of states (state space)
𝑑𝑋

𝑑𝑡
= 𝐹[𝑥(𝑡), 𝑢(𝑡), 𝑡] ; path

constraints 𝐵[𝑥(𝑡), 𝑢(𝑡), 𝑡] ≤ 0; and boundary conditions [𝑥0, 𝑡0, 𝑥𝑓 , 𝑡𝑓] = 0 where

x(t) is the state, u(t) is the control, t is the independent variable time t,t0 is the initial

time and 𝑡𝑓 is the terminal time. The term 𝜑 signifies the endpoint cost and the L

signifies the Lagrangian, which gives the trajectory of the current solution.

The optimal control solution can be derived using the Pontryagin’s maximum principle

or by solving the Hamilton-Jacobi-Bellman equation in continuous time applications

[19]. The main problem with nonlinear optimal control is that the solution requires to

solve the nonlinear Hamilton–Jacobi–Bellman (HJB) equation shown by equation 2.5.

The cost Equation 2.4 is used with HJB to find the optimal control solution.

𝑉(𝑥, 𝑡) + min
𝑢

{∇𝑉(𝑥, 𝑡) ∙ 𝐹(𝑥, 𝑢) + 𝐽(𝑥, 𝑢)} = 0 (2.5)

18

Subjected to terminal condition V(𝑥, 𝑇) = 𝐷(𝑥); where D(x) gives the economic value

of the final state.

The HJB equation is a nonlinear partial differential equation (PDE) and cannot be

solved using analytical methods. In order to solve this problem dynamic programming

(DP) methods were developed. DP methods generally provided solutions backward-

in-time which makes the numerical implementation expensive with higher dimension

of nonlinear systems. Werbos [20] presented a technique called as approximate

dynamic methods where approximate solution to equation 2.5 is given forward in time

with the use of neural networks as a function approximate of the solution.

Solution to these equations can be used to optimize continuous, discrete and stochastic

systems in order to generate an optimal control law. The application of optimal control

with stochastic processes involving process noise can be analyzed using stochastic

estimation and likelihood. Techniques such as Linear Quadratic Optimization (LQO)

have sprung from the application of stochastic estimation and control to yield better

controllers. Optimal controllers use Markovian Decision Processes (MDP) to solve the

optimal control problem. MDP [21] is a theoretical formulation of a series of state

transitions within the problem's state space and is a tuple of 4 {S’,P,S,A}that

completely describes the behavior of the system in where state transition are

deterministic.

 Figure 2.6 Graphical representation of a Markovian Decision Process

19

The control problem can usually be stated as a MDP, as shown in Fig. 2.6, and then

solved using optimal control. In other words, MDP is a generalization of the state space

used in deriving the HJB equation and its cost function. Generally, the states of the

MDP are assumed to be fully observable and a given state can be directly identified.

But in many real world applications the states of system are not fully observable. Such

a system is known as a Partially Observable Markovian Decision Process (POMDP).

The POMDP is defined by a tuple of 5 {S’, P, S, A, O}. POMDP have less knowledge

of the plant and therefore estimates the unobserved states of the plant. Figure 2.7 shows

a graphical representation of a POMDP. MDPs & POMDPs are important analytical

tools in the design of estimators and controllers for optimal control problems. Most

systems have unobserved system states due to constraints in sensing or due to noisy

sensory readings. Furthermore, the amount of actuation/controllability in real world

systems is quite limited thereby making POMDPs well suited for modeling real world

problems.

In an ideal case the principle of optimality assumes that the system is completely

observable for each state. However as most real problems are not completely

observable, we have to compensate in order for the principle of optimality to hold. In

such cases the use of belief is incorporated in the design [22]. Beliefs are learnt truths

based on a sequence of information and are enforced using belief functions. Belief

functions are approximate functions that can be used to determine the certain truths

about the system. Recurrent Neural Networks (RNN) are ideal for representing belief

functions and are used in deep reinforcement learning based algorithms.

Figure 2.7 Graphical representation of a Partially Observable

Markovian Decision Process

20

 2.4 Deep Reinforcement Learning Techniques

Advances in deep reinforcement learning has shown that human like control can be

achieved using DRL algorithms. Previously, DRL algorithms require large servers for

training the AI agents, but state of the art algorithms such as Asynchronous Advantage

Actor Critic (A3C) have proved that these algorithms can be implemented with lesser

computation power. The interaction between the RL agent and the environment in a

typical reinforcement learning problem is shown in Figure 2.8

2.4.1 Dynamic Programming in the Context of Reinforcement Learning

Dynamic programming is the method of optimizing a given policy (program) of a

temporal or sequential component of the problem. Dynamic programming methods

are used to solve complex problems, especially optimization problems, by breaking

the main problem into sub problems and combining them in order to solve the entire

problem. Dynamic programming provides a generalized solution for problems that are

optimal in substructure and when the sub problems are overlapping each other. This

allows to break down the main problem into smaller sub problems and solve each of

these sub problems for optimality. The overlapping nature of the sub problems allows

us to merge the sub solutions to construct the solution for the main problem.

Figure 2.8 Agent environment interaction in a reinforcement learning

problem

21

A Markovian Decision Processes (MDP) can satisfy both properties. These two

properties are evident from the Bellman’s equation (equation 2.6) which is the solution

to the Markovian Decision Process. The recursive part of the Bellman’s equation

provides a recursive sub structuring of the optimization problem and the use of a value

function allows caching and reusing in a manner that satisfy the condition of

overlapping sub problems.

Dynamic programming methods require an explicit model [21][23]. Once the model

of a system is fully known, optimality can be achieved using the Bellman’s Equation.

This is in contrast to the reinforcement learning problem where the model of the system

is not known and it is up to the algorithm to learn the model based on its interaction

with the environment. However, dynamic programming methods form the basis for

reinforcement learning methods with modification to make model free reinforcement

learning possible. Important concepts in dynamic programming techniques that are

fundamentally important to the reinforcement learning problem are presented in this

section.

Policy Evaluation: - Policy evaluation is also known as prediction, where the state-

value function is determined. In policy evaluation we input a MDP and a policy π and

get a value function for that particular policy V. The value function is generally defined

for a particular policy in which the agent interacts with. The value function is used to

determine how good the current policy is. We start off with an arbitrary initialized

value function and update using the Bellman’s equation as given in equation 2.6.

𝑉𝑘+1(𝑠) = 𝐸[𝑅𝑡+1 + 𝑉𝑘(𝑆𝑡)|𝑆𝑡 = 𝑠] (2.6)

As can be seen from the above equation, policy evaluation uses synchronous updates

to update the value function. At each k+1 iteration and for all states the value function

is updated using the next possible states.

22

Policy Improvement - Let's assume that we take a particular action not recommended

by the current following policy. If this action produces a value function that is greater

the current value function, then we can switch from the current policy to another. The

policy improvement can be represented by the following equation. Let π and π’ be a

pair of deterministic policies where, for all s ∈ S

𝑞(𝑠, 𝜋′(𝑠)) ≥ 𝑉(𝑠) (2.7)

Then we can conclude that the new policy π’ must be better than or equal to current

policy π. In other words, the expected return of the new policy from all states s ∈ S

must be greater than or equal to expected return from current policy. This condition is

given in equation 2.8.

𝑉′(𝑠) ≥ 𝑉(𝑠) (2.8)

Policy Iteration - Policy Iteration is a two-step process, where the current policy is

evaluated and the resulting value function is used to improve the policy [24]. Once a

policy, π, has been improved using v to yield a better policy, π’, we can then compute

v’ and improve it again to yield an even better policy, π’’. We can thus obtain a

sequence of monotonically improving policies and value functions. This process of

policy iteration always converges to the optimal policy. Policy Iteration is also known

as the control problem, where the optimal control strategy is determined. The

following diagram summarizes the policy iteration technique.

23

Value Iteration - Value iteration is much like Policy evaluation, but it requires the

maximum to be taken over all actions. Value iteration effectively combines one sweep

of policy evaluation and one sweep of policy improvements. An important intuition

used to explain value iteration is that in value iteration, the recursive backups are

performed from the goal state towards the current state that is being evaluated. Value

iteration uses the Bellman’s optimality equation for determining the value function.

Intermediate value function may not indicate any policy.

𝑉𝑘+1(𝑠) = max
𝑎

𝐸[𝑅𝑡+1 + 𝑉𝑘(𝑆𝑡)|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (2.9)

Generalized Policy Iteration – Generalized Policy Iteration [25] refers to the

technique of policy evaluation interacting with policy improvement and vice versa. In

generalized policy iteration the value function is made consistent with the current

policy and the policy made consistent or greedily exploited with the respect to the

current value function [26]. In policy iteration, several policy evaluations follow a

policy improvement stage, but with value iteration, only a single policy evaluation is

performed between policy improvements.

Figure 2.9 Pictorial representation of policy evaluation & improvement

(right) and value iteration (left)

24

Almost all reinforcement learning methods use the concept of a generalized policy

iteration. These reinforcement algorithms utilize an identifiable policy and value

function, where the policy is improved with respect to the value function and the value

function improved to become the value function of the policy. A major drawback of

dynamic programming methods is that they require operations over the entire state

space of the MDP. This can be very expensive when the state space is large.

Asynchronous dynamic programming methods uses iterative methods where entire

sweeps of the state space are not required. These algorithms update values of the states

asynchronously using the most recent observations. These algorithms do not update

all states at once but may update some states several times before updating the other

states. This makes implementation of the algorithm computationally efficient.

However, in order for the algorithm to be stable and to converge properly all states

should be updated during some point.

2.4.2 Summary of Dynamic Programming Methods

Table 1 gives a summary of different dynamic programming schemes used with

reinforcement learning [27]. Dynamic programming problems can be divided into

estimation or control problems. A controller could be designed using both these

techniques but the extent to which policy iteration and value iteration is used differs

from one another. Therefore, it is up to the designer to select the correct method to

better suit the problem. However, both these techniques are incorporated into GPI

algorithms making them general purpose algorithms.

25

Table 1: Summary of Dynamic Programming Methods

2.4.3 Monte Carlo Learning

It was shown previously, that solving the Bellman’s equation provides the optimal

solution for a finite Markovian Decision Process. Direct solution of the Bellman’s

equation is however difficult. In such cases the solution can be derived stochastically.

Interactions with the environment can be used to generate experience and the

expectations of these experience can be used to estimate the value function. This

approach in solving complex and algorithmic problems falls under the general

category of Monte Carlo algorithms [28].

The Bellman’s equation can be solved elegantly by approximating the dynamic

programming problem using Monte Carlo methods. Learning from experience allows

the RL agent to operate without prior knowledge of the system [29]. Monte Carlo

methods solves the reinforcement learning problem based on averaging sample

rewards. In general, Monte Carlo algorithms allow us to solve the dynamic

programming problem without explicitly knowing the state transition probability

matrix of a finite MDP. Algorithm 1 of appendix E shows the Monte Carlo method to

update the value function. Experience gathered in episodes is averaged in order to

estimate the state-value function. For example, the value function is the average reward

observed at each state experienced in all of the episodes. Each state maintains a list

(memoization) of observed rewards. In each episode the observed reward is appended

Problem Bellman Equation Algorithm

Estimation Bellman Expectation

Equation

Iterative Policy

Evaluation

Control Bellman Expectation

Equation + Greedy Policy

Improvement

Policy Iteration

Control Bellman Optimality

Equation

Value Iteration

26

to the respective state’s reward list. The resulting value function for that state is the

average of the rewards it has seen throughout its experience.

Similarly, we can estimate a action value function instead of a value function. The

difference is that the heuristic of how good the current operating point depends on both

the state and action. The estimation problem is to determine and learn the heuristic

value function that determines or how good the current action value function or state

value function is.

In Monte Carlo control, the same approach will be used to determine the control

strategy or the policy to achieve the optimal control strategy. In Monte Carlo control,

the policy and the value function is approximated by a function approximate. Just as

with dynamic programming methods, the value function is improved and updated

based on the current policy. This policy is then improved based on the updated value

function, as suggested by the right side diagram of Figure 2.9. This is also known as

generalized policy iteration but within the context of reinforcement learning.

Algorithm 2 (appendix E) shows how Monte Carlo algorithms are used to determine

action value function.

In Monte Carlo control, an arbitrary policy and an arbitrary value function is

initialized. Next an episode is generated using the current policy until it reaches a

terminal state. The state value function is then updated using accumulated rewards.

We define a policy where we chose an action that maximizes the state-action value

function q. This is the generalized policy iteration concept, where the value function

is used to evaluate the policy and then improve the policy.

Based on the studies carried out, we can use Monte Carlo along with approximate DPs

to successfully solve complex POMDP control problem. An aspect of Monte-Carlo

methods is that the estimates for each state are independent. Monte Carlo methods do

not bootstrap and hence a particular state do not make estimates based on the estimate

of any other state. The use of extensive bootstrapping is the main idea on TD learning

and will be dealt in the following section.

27

2.4.4 Temporal Difference Learning

Temporal Difference (TD) combines ideas from Monte-Carlo and Dynamic

Programming. Like Monte-Carlo methods it is capable of learning from experience

and like dynamic programming methods, it updates estimates in-part based on other

learned estimates. The use of estimates to update estimates is usually known as boot-

strapping. The advantage of TD is that it is inherently implemented as an incremental

on-policy algorithm [24]. The main distinguishing feature of TD is that it uses

bootstrapping where an estimated value is used to determine another estimate. The

simplest TD method makes the update immediately to transition to 𝑆𝑡+1and

receiving 𝑅𝑡+1 as shown by equation 2.10.

𝑉(𝑡)

← 𝑉(𝑆𝑡) + 𝛼[𝑅𝑡+1 + 𝛾[𝑉(𝑆𝑡+1) − 𝑉(𝑆𝑡)]] (2.10)

This is in contrast to Monte Carlo methods that update its value function at the end of

each episode, when the final goal state reward has been achieved as given in equation

2.11.

𝑉(𝑡)

← 𝑉(𝑆𝑡) + 𝛼[𝐺𝑡 − 𝑉(𝑆𝑡)] (2.11)

The TD estimation and TD control methods are presented by algorithms 3 & 4

respectively in appendix E. The pseudo code in algorithm 3 shows how TD estimation

is carried out and how the value function is updated for each step within an episode.

TD control is based on the generalized policy iteration but uses TD methods to update

the value function and the policy as given by algorithm 4. The update rule for online

TD control is given by equation 2.12. This algorithm is known as the SARSA

algorithm. This is because the quintuple consisting of, current state, current action,

current reward, next state and next action are used to estimate and update the action

value function.

𝑄(𝑆𝑡, 𝐴𝑡)

← 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼[𝑅𝑡+1 + 𝛾[𝑄(𝑆𝑡+1, 𝐴𝑡+1) − 𝑄(𝑆𝑡, 𝐴𝑡)]] (2.12)

28

The off policy algorithm given by algorithm 5 is one of the early breakthroughs in

reinforcement learning, widely known as Q learning. Here the action-value function,

Q, directly learns the optimal action-value function, Qmax, even though the current

policy that is executed may not be the policy that is approximated by the action-value

function Q. This relation is shown in equation 2.13.

𝑄(𝑆𝑡, 𝐴𝑡)

← 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼 [𝑅𝑡+1 + 𝛾 [max
𝑎

 𝑄(𝑆𝑡+1, 𝑎) − 𝑄(𝑆𝑡 , 𝐴𝑡)]] (2.13)

2.4.5 Policy Gradient Methods

Policy gradient methods do not employ a value function that estimates how good a

state is. Policy search methods directly model the policy and update the policy model

in order to maximize the expected reward from executing the policy and are

successfully implemented using gradient and gradient free methods. The policy

network outputs the means and standard deviation of a probability distribution. These

are then used to generate the actual actions in continuous space. In the case of discrete

actions, the policy outputs a probability for each discrete action and the action with the

highest probability will be selected as the next action.

Policies can be improved using gradients, but in order to compute the expected return,

the average has to be taken over entire plausible trajectories under the current policy.

However, such averaging requires either deterministic approximations or

approximations made from stochastic sampling. A deterministic estimate can only be

derived from a model-based setting and is not applicable for model free learning.

Monte-Carlo methods are therefore used in model-free settings as it provides

stochastic alternatives to estimate the expected return. However, there is a caveat in

using gradient learning methods with Monte Carlo methods as the gradients cannot

pass through sampled values of a stochastic function. In order to circumvent this

problem, an estimator is used to estimate the gradient using a maximum-likelihood-

ratio estimator or commonly used in RL terminology as REINFORCE rule [30].

29

Policy search methods tries to find a policy directly using gradient based or gradient-

free methods. Most gradient free methods use evolutionary algorithms to learn a policy

directly whilst back propagation still remains as the most popular gradient based

learning approach. The use of evolutionary algorithms with large populations or agents

with large number of parameters is quite expensive but it is capable of optimizing

arbitrary, non-differentiable models and allows for more exploration in parameter

space.

Direct policy searching using neural network with large parameters is difficult and it

can converge to local maxima. A particular solution to this problem is to use guided

policy search (GPS), where an optimized controller is used to teach the neural network

in a supervised manner and then combined with importance sampling [31]. This

prevents the policy from being stuck in a local maxima and biases the search towards

a good optimum.

2.4.6 Actor Critic Methods

Methods that blend the use of value functions and policy gradients are generally known

as actor-critic methods [32]. The actor and critic emulates the policy and the value

function respectively. This when used with policy gradients reduces the high variance

in policy gradients. The actor “Policy” learns by feedback from the critic “Value

Function”. In doing so it reduces the problem of high variance in policy gradients.

These methods use policy gradients. Actor-critic methods are capable of combining

policy gradient methods with learned value functions effectively and are generally

trained based on rewards and TD errors [33]. Actor Critic methods can converge

quickly as it is sensitive to improvements in policy gradients methods as well as

improvements in value function methods.

30

2.4.7 Curse of Dimensionality

The curse of dimensionality refers to phenomena that occur when analyzing data in

high dimensional space. As far as optimization is concerned, the objective function

must compute for each combination of values. This can be problematic with higher

dimensional data. Neural networks provide an ingenious solution to overcome the

problems of high dimensionality as it can represent complex objective function and

can be evaluated with little computational power [34].

2.4.8 The Deathly Triads

The danger of divergence and instability occurs in reinforcement learning due to the

combination of all of the following three elements, known as the deadly triads.

 Function approximation – Estimating the state space using function

approximate such as neural networks, non-liner function, tables etc. It also

enables to model the control with features rather than fully observable states of

the control problem.

 Bootstrapping – Updating the value function and policy based on existing

estimates rather than waiting for rewards based on actions.

 Off-policy training – Training the value function based on a different policy

that the policy that is being currently followed.

It is important to note that the combination of all of the above makes the learning

process and if one of the above is excluded then the process is unstable. Function

approximation is critical in solving POMDPs and when the number of states is very

large. Therefore, it cannot be avoided. Bootstrapping can be avoided at the cost of

memory and computational costs. In most applications, on-policy learning will suffice.

Therefore, as far as control problems are involved we can use on-policy techniques

instead to avoid instability.

31

2.4.9 Activation Functions for neural networks

Activation functions are mathematical models of neurons firing. Different

mathematical models have been developed based on neurons of different parts of the

brain [35]. Therefore, proper selection of activation functions must be carried out when

designing neural architectures for different requirements. A comparison of commonly

used activation functions are shown in Figure 2.10.

 Sigmoid - Sigmoid is a popular activation function used in neural network

designs. The sigmoid function is particularly useful in classification and

regression problems and is extensively used in supervised learning

Figure 2.10 Comparison of activation functions

32

applications. A family of sigmoid functions can be generated and selected in

order to streamline activation.

 tanH - tanH is also a s-shaped activation function like the sigmoid function,

but with a larger range. The main distinguishing feature of tanH is that negative

inputs will be strongly mapped negative. This is also used in classification

problems. The function is monotonic, but its differentiation is non-monotonic.

 Rectified Linear Unit (ReLu) Activation - This is a newer but simple

activation function derived by studying biological activation of visual cortex

neurons. RNNS are better approximated and trained without instabilities using

the ReLU activation function. Both the ReLu function and its derivative are

monotonic.

 Softplus/Softmax - Softmax is a normalized exponential function and is a

generalization of the sigmoid function. The output of the softmax function is

capable of representing the probability distribution of K possible outcomes. In

most cases, softmax function is used in the classification problems and usually

trained with cross entropy. In reinforcement learning the softmax function is

used in selecting the next action based on the probability distribution of the

action space.

33

2.5 Summary

It was seen from the literature, that currently no academic work has been performed in

automated control of pH in aquaponic system using reinforcement learning. However,

pH controlling schemes have been studied in water treatment processes that can be

applied in aquaponic system. The literature also pointed out that PID controllers have

limitations when controlling highly non-linear processes such as pH control in

aquaponics. Optimal control techniques have been used in designing pH controllers,

but they lack in the performance and stability promised by the state art deep

reinforcement learning algorithm. Therefore, deep reinforcement learning concepts

were extensively studied. Based on the literature reviewed, the research gap addressed

by this study is to design a controller using state of the state art deep learning algorithm

to control the pH of an aquaponic system. Table 2 shows individual gaps in research

identified to construct the research problem of this study.

Table 2: Summary of literature review and identified research gaps

Key Points Findings Gaps

Application of Deep

Reinforcement Learning

in linear process control

applications.

Developed an artificial

intelligence based approach

to linear process control

using deep reinforcement

learning.

The use of deep

reinforcement learning in

the design of controllers for

nonlinear process

controlling is yet to be

studied.

Human-level control

through deep

reinforcement learning

Demonstrated a single

architecture can successfully

learn control policies in a

range of different

environments with only very

minimal prior knowledge

Current work in deep

reinforcement learning is

confined to simulations and

computer games.

Applications in industrial

processes are to be done.

34

Limitations of PID

control

PI-PD controller,

corresponding to PI control

of a plant transfer function

changed by the PD feedback

can pro-

duce improved control in

several situations

Tuning & PID architectures

s for non-linear process

control is not optimal.

Asynchronous Methods

for Deep Reinforcement

Learning

Asynchronous versions of

four standard reinforcement

learning algorithms

Useful algorithms to be

used in industrial control

applications, currently

implemented only in

computer simulations &

games

Predicting Periodicity

with Temporal Difference

Learning

A TD agent using complex

discount rates can identify

periodic patterns in the

return

Can periodic process be

automatically identified in

an industrial process?

Continuous control

with deep reinforcement

learning

Continuous control using

deep reinforcement learning.

Study performed in

simulated environments

Natural Value

Approximators: Learning

when to Trust Past

Estimates.

A method that learns how to

combine a direct value

estimate with ones projected

from past estimate

Is there an improvement in

performance when using

A3C algorithm with NVAs

in industrial control?

Comparison of Linear and

Nonlinear Adaptive

Control of a pH-Process

Nonlinear adaptive

controller works better than

the linear one for tracking as

well as for regulation

purposes when infrequent

disturbances in process feed

occur

Deep Reinforcement

learning based controller

have not been considered in

the comparison

35

CHAPTER 3 METHODOLOGY AND CONTROLLER DESIGN

3.1 Introduction

This chapter presents an overview of the methodology of this study, including the

design of the software, hardware and the experimental setups to study the behavior of

the DRL based pH controller.

3.2 Methodology

This research methodology is based on several refinements to the context of the study

as a response to new observations and due to comments brought about during the

progress reviews.

In order to study the performance of the controller, two experimental setups were

designed. One setup was to evaluate the performance of the controllers for

deterministic static conditions and the other to evaluate the performance in the

stochastic dynamic system using the aquaponics system.

In the static case the controller was studied for its transient characteristic under a step

response, whilst in the dynamic case the controller would be tested for its steady state

performance. A digital PID controller was also implemented to validate and compare

the results of the DRL controller.

The outline of the controller design is given below:

1. Comprehensive literature review & background study

2. Formulating the problem as a stochastic decisions process

3. Definition of a input to the pH controllers

4. Definition of outputs/action of the pH controller

5. Define the reward function heuristic

36

6. Determine model free control or model based control

7. Determine whether the actions are continuous or discrete

8. Determine the type of function approximation

9. Determine the learning mechanism

10. Selecting the tool chain for controller development

11. Selecting the inputs sensors and output actuators

12. Design Experimental setups for the following cases:

a. In static system case – In a deterministic setup

b. In dynamic system case – In a stochastic setup

13. Evaluating the performance of the controllers with respect to a digital PID

controller.

3.3 Development of the Deep Reinforcement Learning based controller

The deep reinforcement learning approach uses deep neural networks in order to

approximate the value function and the policy. Based on the studies carried out,

recurrent neural network architecture is used to represent the value function. This is

due to two main reasons, the first being that the entire process is treated as a partially

observable Markovian decision (POMDPs) process. It was noted in literature that in

such cases the concept of beliefs should be incorporated into the MDP so that

Bellman’s solution to the optimal problem can be effectively solved. A belief function

is capable of estimating unknown states with a series of direct or indirect measurement

related to system. A relatively straightforward method of employing beliefs into the

reinforcement learning problem is to represent the approximation function using a

recurrent neural network. A recurrent neural network is particularly good at handling

time series data and inherently capable of learning dependence between samples.

Therefore a recurrent neural network approximates the value function of the current

state based on the previous sequence of observed state transitions, thereby giving a

broader analysis of the current state.

37

3.3.1 Specification of Inputs and Outputs to the controller

The controller shall take in the measured pH value of the system as the input only. The

output is determined by the DRL controller and it directly actuates a peristaltic dosing

pump. The neural architectures are configured for this input and output. The use of pH

alone allows to introduce partial information of the state space and to learn beliefs

from a sequence of input pH measurements. Figure 3.1 shows the block diagram of the

controller.

The overall system is a negative feedback system. However, the DRL controller is

designed to learn and model the system using experience. The experience is collected

in the form of pH values and dosed amounts corresponding to observations and actions

in the context of MDP and reinforcement learning.

The system of equation given by Equation 2.3 showed that pH, biomass and

temperature are important parameters of nitrification in an aquaponics system.

Practically in aquaponics system, pH is the more contributing factor, therefore, this

study attempts to use the pH to observe the system and use the DRL controller to learn

control policies to optimize the system with minimal amount of data.

DRL

Controller
pH Dosing Pump

Figure 3.1 Relationship between the input and output of the DRL

controller

38

3.3.2 Design of Critic

The critic for the proposed deep reinforcement learning controller will be based on a

Recurrent Neural Network (RNN) with 10 steps. The recurrent neural network was

necessary in order to mitigate the instabilities in learning due to control of a partially

observable state space by introducing a belief into the learning process. This allows to

learn a better value function that not only determines the current state based purely on

observation but based on current and previous 9 observations. All activations for the

critic are based on the Rectified Linear Unit (ReLu). This is known to be good in

training recurrent neural networks and also because the critic attempts to estimate a

function rather than perform a classification function in which case the softmax or

sigmoid function is better suited. Furthermore, a basic RNN cell was used in creating

the RNN network in contrast to using other types of cells such as Long Short Term

Memory (LSTM) & Differential Neural Computer (DNC). Figure 3.2 shows the

diagrammatic overview of the RNN used to model the critic that approximates the

value function of the state space.

Figure 3.2 Recurrent Neural Network that approximates the critic

39

3.3.3 Design of Policy Network

The policy network produces a probability distribution of the next action based on

current observations. The output of the policy network will then be used to select the

next action given the current state in order to maximize the total reward. We can also

consider a RNN based policy network, but we shall use a feed forward network as we

can assume that the critic is capable of producing a good estimate of the current state.

This also can speed up the execution of the reinforcement learning algorithm. Hence,

the policy will be a feed forward neural network with two hidden layers and activated

using softmax activation layers.

The policy network uses the current pH and critic as inputs to the multi-layer neural

feed forward network. The two outputs from the policy network is combined using the

normal distribution to produce the actual dosing value as shown in Figure 3.3.

p

H

Rel

u

Rel

u

Rel

u

Rel

u

Actio

n

Q Action

varian

ce

Figure 3.3 Neural network that approximates the actor/policy network

40

3.3.4 Determination of Learning Rate

The learning rate plays an important role in training the neural network. Small learning

rates makes learning slow to converge and thereby require more training steps to

achieve the desired accuracy. In contrary, large training steps may cause oscillatory

behavior in training, as seen in hill-climbing problems. Therefore, it is important to

select an appropriate learning rate to achieve productive results. In our proposed

system we use a learning rate of 0.01 based on previous training experience.

3.3.5 Learning and Gradient Descent based update

The update mechanism for the policy network and the critic network is performed

differently. Policy gradient methods discussed in section 2.4.5 are used to update the

parameterized neural policy network. The policy network updates the policy

parameters in the direction suggested by the critic. This gives rise to the following

update rule

𝑑𝜃

← 𝑑𝜃 + ∇𝜃′ logπ(ai|si; 𝜃 ′) (R − V(si; 𝜃 ′
𝜐)) (3.1)

The parameter of the critic is updating based on the action value function as shown

below

 𝑑𝜃𝜐

← 𝑑𝜃𝜐 + ∂(R − V(si; 𝜃′𝜐))2 / ∂𝜃′𝜐 (3.2)

Therefore, these updates will be used to update the policy and critic networks within

the proposed DRL controller.

41

3.3.6 Selection of deep reinforcement algorithm

In order to represent the problem as a general purpose learning problem, the controller

will be modeled as a model-free reinforcement learning based controller in continuous

action space. Model-free control provides a general purpose learning technique for

designing controllers without an explicit mathematical model of the system. Therefore,

controllers can be designed purely using experience without supervisory training or an

explicit mathematical model. In order to train the two neural structures, we shall

employ a gradient based approach in contrast to a gradient-free method such as genetic

algorithms. The recursive form of Bellman’s equation would be used to update the

neural network. A range of model free algorithms are compared in table 3.

Table 3: Comparison of different DRL algorithms

Algorithm Monte

Carlo

Q-

Learning

SARSA DQN A3C

Policy Off-Policy Off-Policy On-Policy Off-Policy Off-Policy

State Space Discrete Discrete Discrete Discrete Continuous

Action

Space

Discrete Discrete Discrete Continuous Continuous

Operator Sample

means

Q-Value Q-Learning Q-Learning Advantage

Based on the above comparison, the A3C algorithm would be used in the design. The

critic will approximate the value function and the actor shall produce actions that are

continuous in time. This can be achieved using a feed forward neural structure that

produces the mean and variance for each output action. The actual actuation signal is

constructed using a probability distribution, function such as the Gaussian function,

with the generated mean and variance. Actor-Critic methods provide stable and

effective learning and have been shown to work well in a range of applications.

Therefore, the controller would use the A3C actor-critic algorithm shown by

Algorithm 6.

42

Algorithm 6 Asynchronous advantage actor-critic - pseudo code for each actor-

learner thread.

//Assume global shared parameter vectors 𝜃 and 𝜃𝜐 and global shared counter

//Assume thread specific parameter vectors 𝜃′ and 𝜃′𝜐

Initialize the thread step counter

repeat

 Reset gradients: 𝑑𝜃

← 0 𝑎𝑛𝑑 𝑑𝜃𝜐

← 0

 Synchronize thread-specific parameters 𝜃 ′ = 𝜃 and 𝜃′𝜐 = 𝜃𝜐

 𝑡𝑠𝑡𝑎𝑟𝑡 = 𝑡

 Get state 𝑠𝑡

 repeat

 Perform 𝑎𝑡 according to policy π(at|st; θ′)

 Receive reward 𝑟𝑡 and new state 𝑠𝑡+1

 𝑡

← 𝑡 + 1

 T

← 𝑇 + 1

 Until terminal 𝑠𝑡 ort 𝑡 − 𝑡𝑠𝑡𝑎𝑟𝑡 == 𝑡𝑚𝑎𝑥

 𝑅 = {
0 𝑓𝑜𝑟 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑠𝑡

𝑉(𝑠𝑡, 𝜃 ′
𝜐) 𝑓𝑜𝑟 𝑛𝑜𝑛 − 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑠𝑡

 for 𝑖 ∈ {𝑡 − 1, … , 𝑡𝑠𝑡𝑎𝑟𝑡} do

 𝑅

← 𝑟𝑖 + 𝛾𝑅

 Accumulate gradients wrt 𝜃 ′ : 𝑑𝜃

← 𝑑𝜃 + ∇𝜃′ log π(ai|si; 𝜃 ′)(R − V(si; 𝜃′𝜐))

 Accumulate gradients wrt 𝜃′𝜐
′ : 𝑑𝜃𝜐

← 𝑑𝜃𝜐 + ∂(R − V(si; 𝜃′𝜐))2 / ∂𝜃′𝜐

 end for

 Perform asynchronous update of 𝜃 using 𝑑𝜃 and 𝜃𝜐 using 𝑑𝜃𝜐

until T> Tmax

3.3.7 Designing the Reward Function

The reward function will be based on how close the current measured value is to the

set point and the measured pH value. The set value generally needs to be kept at 7.2

based on studies performed on Nitrification. Initially, the reward function will be

designed based on this information as shown by equation 3.3. However, different

reward signals can be designed based on the different parameters. For example, the

reward signal can be obtained with the use of an additional Oxidation Reduction

Potential (ORP) probe that gives a vague indication of nitrification.

𝑟 = {
100 𝑖𝑓 |7.2 − 𝑝𝐻| ≤ 0.01
−100 𝑖 𝑓 |7.2 − 𝑝𝐻| > 0.01

 (3.3)

43

3.3.8 Overall Architecture of the DRL controller

The overall system architecture including, software, hardware is represented in the

block diagram shown in Figure 3.4.

pH measurements are consumed by the DRL controller and are used to construct the

reward signal based on the error. In this scenario the pH is set at 7.2 and the error is

determined. This error is used with equation 3.3 to generate the reward signal.

Elements of the A3C algorithm are represented by the global & local networks and

each of these networks contains an actor and a critic network. Architecture of these

networks were explained in detail in section 3.3.2 and 3.3.4.

3.3.9 Results based on empirical work

The UML diagram shown in Figure 3.5, presents the object oriented implementation

of the controller. The ACNet class represents the controller containing the actor and

critic neural nets. Each network is initialized during instantiation of the ACNet neural

class within the constructor. All parameters required to configure each neural net is

defined as static class variables or local/global variables. The ACNet class implements

Figure 3.4 Overall system architecture of DRL controller and its peripherals

44

several methods to construct concrete implementation of the computation graph of the

neural networks.

A visual representation of the controller implementation using tensorboard is shown

in Figure 3.6. Tensorboard is a utility provided by google to visualize computational

graphs used in designing neural architectures and in deep learning research. This

neural architecture is purely based on the standard reinforcement learning architecture,

where losses are optimally minimized. Python implementation of the controller is

produced in Appendix II. The interaction between several worker networks with the

global network is shown in Figure 3.6. (Four worker nodes each designated as W_0 to

W3 and the Global node consists of two neural networks, an actor network and a critic

network). When the A3C algorithm executes, the neural parameters of the global

networks are asynchronously updated by the worker networks after several epochs.

Figure 3.5 UML diagram of the DRL controller implementing the A3C algorithm

45

A detailed view of a worker node is presented in Figure 3.7. The actor and critic

networks can be seen here. Observed readings and predictions from the neural network

structures are used to generate TD errors. These errors are then used to form the actor

losses, critic loses. The output from the actor is first bounded within an interval. This

is then used with the Gaussian function to generate the actual dosing value.

Figure 3.6 Visual Representation of the implemented DRL controller using

Tensorboard

Figure 3.7 Internal networks of the DRL controller represented using

Tensorboard

46

The learning process of the controller is shown in Figure 3.8. It can be seen that the

actor and the critic components of the controller minimizes its entropy losses and

converges towards zero. This shows that controller successfully learns and the critic is

capable of accurately mapping the current state of the system within the learnt state

space.

The process of learning was observed using the total reward accumulated during an

episode over several training epochs. The objective of reinforcement learning is to

maximize total number of rewards over the duration of an episode. Figure 3.9 shows

the variation of the total reward with each time step of an episode during an initial

phase of controller learning. It can be seen that the reward signal produces large

negative numbers. It is important to note that the design of the reward function has a

considerable effect on the reward obtained using the controller. Therefore, it is

important to consider vital parameters when designing the reward signal of the system.

steps

Figure 3.8 Training losses of the actor network and critic network plotted at

each training steps.

steps

47

3.3.10 Tool chains and Development tools

As the controller is based on deep reinforcement learning, the software stack plays a

major role. There are several software frameworks and the following table compare

different software framework for developing deep reinforcement learning algorithms.

Table 4: Comparison of different software framework for implementing DRL

controller

Based on the comparison given in table 4, Tensorflow was selected as the framework

of choice for the implementation of Deep RL based controller. Tensorflow is an open

source computational framework by Google. It has inherent advantages in machine

learning, parallel computation and provide unparalleled networking features thereby

Software Library Method Production Level Platform

Tensorflow Computational graph Yes Single/Multi

PyTorch Computational graph No Single

Torch Computational graph Yes Single

Matlab Matrix based Yes Single/Multi

Numpy Array -based No Single

Figure 3.9 Total moving reward generated at two different epochs.

48

making it easy to run tensorflow code in production. Tensorflow operates by defining

a computational graph and then executing this graph using a Session. Any computation

within the solution is restructured in a manner that is presentable as a graph. This graph

is an object, which a session can use to get output/s based on the given input/s.

3.4 Development of the PID controller

A digital PID controller is required to compare the performance of the controller. The

controller takes in the pH readings from the Atlas sensor and finds the error between

the reading and the set point of pH 7.2. The controller gains are important parameters

of the PID controller. Therefore, in order to establish the required PID gain values a

Matlab/Simulink model was used. This model is shown in Figure 3.10.

The gains shown in table 5 were obtained from the Matlab/Simulink model based on

works carried out by the author in Appendix I. Figure 3.10 shows the results on

modeling carried out using Simulink/Matlab from the study presented in Appendix I.

These values are fed in to the digital PID controller implementation presented in the

code listing in Appendix IV.

Figure 3.10 Simulink model of a nitrification bioreactor in an aquaponics

system

49

Table 5 Gain values obtained from Simulink model

3.5 Hardware Design

The pH is generally acquired from a pH probe. The probe is an amperometric device

that measures a small current generated from the probe. The pH measures the

concentration of H+ and OH- ions within a solution and converts them to an electric

signal using an ion sensitive membrane transducer. In this study off-the-shall hardware

would be used in the controller. Table 6 compares different pH measuring systems.

Table 6 Rise times of DRL & PID controller in static system

Based on the above criteria, the Atlas Scientific pH probe and dosing pump was

selected in our design. The main actuator for the pH controller is the dosing pump. The

dosing pump is based on the peristaltic pump by Atlas Scientific. Atlas scientific

provides laboratory grade OEM devices that is fully supported with an application

programming interface to implement our own hardware & software. This drastically

reduce hardware development time.

Proportional gain 1.2

Integral gain 0.5

Differential gain 0.2

 pH Sensor Dosing Pump

 Interface Cost Accuracy Range Interface Cost Accuracy

Atlas

Scientific
UART/
I2C

Average +/– 0.002 .001 −

14.000
UART/
I2C

Average +/- 1%

Endress

Hauser
4-20mA Expensive +/-0.01 .01 − 14 Modbus

TCP/RTU
Expensive +/-0.5%

Hanna Manual Low +/-0.05 .1− 14 - Average +/-5%

Horiba Serial Expensive +/– 0.001 .001 −

14.000
Modbus

TCP/RTU
Expensive +/-0.5%

50

The chosen hardware for implementing the DRL controller is the raspberry pi single

board computer. Raspberry Pi is low cost computational/educational platform that is

capable of running the linux OS. This makes the raspberry Pi a powerful computer

ideal for prototyping robotic controllers, IoT gateways and even nodes of a computer

cluster. Therefore, the Raspberry Pi is ideal for prototyping the proposed controller in

embedded computing infrastructure. The raspberry pi model that is used in prototyping

the proposed deep reinforcement learning based controller is the raspberry pi zero w.

The raspberry pi zero has inbuilt wifi and bluetooth connectivity, enabling easy

hardware interface to the Internet. This is an important feature that helps in

implementing the deep RL based controller design.

The Atlas pH probe takes pH readings from water that flows through the nitrification

bioreactor of the aquaponics system. The probe connects to the Atlas pH sensor as

shown in Figure 3.11. The sensor converts the readings to a digital signal and sends it

to the raspberry Pi using an I2C interface. The control signals generated from the DRL

controller is sent to the dosing pump also using the I2C interface.

Figure 3.11 Hardware Interfacing

51

CHAPTER 4 EXPERIMENTAL RESULTS AND ANALYSIS

4.1 Introduction

In this chapter details on experimental results and their analysis are presented for a

deterministic/ static system and a dynamic system setup. The static system is a normal

titration experiment and the dynamic system is the aquaponics system.

4.2 Evaluating controller performance under a static deterministic system

The experimental setup for the static deterministic case is shown in Figure.4.1. The pH

controller controls the dosing based on the input pH. The DRL controller designed in

this study is programmed in to the raspberry, which acts as the pH controller. In this

setup, the performance under acid-base titration is recorded and analyzed.

Figure 4.1 Setup to study the performance in a static system

52

4.2.1 Hardware Setup

Figure 4.2 shows the assembled setup with the pH probe, dosing pump and the

raspberry pi.

4.2.2 Experimental procedure

In the static process, a base would be dosed into an acid and the output characteristic

observed. In this case, caustic soda (NaOH) of normality 0.1 mol/L will be used to

neutralize concentrated vinegar (ethanoic acid).

Figure 4.2 Setup to study the performance in a static

system

53

4.2.3 Results

The transient response of the controller for a set pH of 7.2 is given in given in Figure

4.3

The proposed controller is promising as it is capable of achieving the set point faster

than the digital PID controller. The controller is capable of predicting the systems next

state using the learnt model, whereas in PID controllers no such prediction is made.

Therefore, the ability to predict makes the DRL based controller respond quickly to

the error, process noises and external disturbances. This results in significantly smaller

rise times for a step input. Based on Figure 4.3, the rise time of the deep reinforcement

learning based controller is around 50 min whilst the rise time of the of the PID

controller is about 150 min in static system. The PID parameters were based on table

5 given in section 3.4. Two more titration curves were obtained for two different

variations of the proportional gains and as shown in Figure 4.3. These gains are

deviations of proportional gains obtained from section 3.4. Further improvement of

the rise time was limited due to limitation in actuator dosing, only a maximum of +10

mL/min could be dosed by the Atlas Scientific peristaltic dosing pump.

Figure 4.3 Transient responses of the controllers in the static

system

54

4.2.4 Analysis

In order to test whether there is a significant difference between the DRL based

controller and the PID, the rise time and settling times of both DRL and PID controller

transient responses were collected. The PID controllers were tested out with a range

of different gain values, introducing extra variance into the system. Sampled rise time

from these step responses is shown in table 7.

Table 7: Rise times of DRL & PID controller in static system

 Rise Times (s)

DRL PID

 51 96

61 109

42 155

50 93

52 151

56 95

58 86

64 130

54 119

49 170

55 138

Mean 53.8 122

Variance 36.8 827.4

The data in table 8, shows that there is very little skew in the observed readings.

Therefore, we can say that the probability distributions of the rise time of both the

controllers are symmetric and can be modeled by the normal distribution. Therefore,

we can say that the rise time of the DRL control can be modeled with a Normal~ (53.8,

36.7) distribution and the rise time of the PID controller can be modeled with a

Normal~ (122, 827.4). The large variance in the PID controller is because the PID

gains can be set to different values to obtain different rise times. Therefore, we can

proceed to test for Analysis of variance.

55

Table 8: Rise times of DRL & PID controller in static system

The data was subjected to a 1-way ANOVA test to determine if there is a significant

difference between the performances of the two controllers. The following hypothesis

was used in the ANOVA test with alpha = 0.05

H0. The means of observations for RL controller is same as PID controller.

H2. The means of observation for RL controller is different to PID controller.

 DRL Control PID Control

Mean 53.82 122

Standard error 1.83 8.67

Median 54 119

First Quartile 50.5 95.5

Third Quartile 57 144.5

Variance 36.76 827.4

Standard Deviation 6.06 28.76

Kurtosis 0.45 -1.31

Skewness -0.18 0.33

Range 22 84

Minimum 42 86

Maximum 64 170

Sum 592 1342

Count 11 11

56

Table 9: Results of ANOVA test on the static case results

ANOVA-Single Factor

Alpha 0.05

Groups Count Sum Mean Variance

DRL

Controller

11 593 54 34

PID

Controller

11 1342 122 832

Source of

Variation

SS df MS F P-

value

F

critical

Between

Groups

25525 1 25525 58.95 2.19 4.35

Within

Groups

8660 20 433

Total 34185 21

Based on table 9, the null hypothesis is rejected, where the performance of the two

controllers are not the same. So we can firmly propose that the Deep RL based

controller is different to the PID controller with higher confidence. However, ANOVA

does not say which is better than the other. The mean of Deep RL is smaller than the

PID controller and the two controllers are different, meaning that the Deep RL

controller is faster.

The mean steady state values for the two controllers are given in table 10. It can be

seen that both the controllers have similar final values.

Table 10: Comparison of steady state value of the two controllers in the static case

 DRL Control PID Control

Mean Steady State Value 7.202136313 7.67035

57

4.3 Evaluating controller performance under a dynamic stochastic system

The aquaponic system represents the dynamic system that is used to evaluate the

performance controller as shown in Figure 4.4. Effluent waste from the fish tank is

pumped to a bioreactor before it goes to the grow bed and then returned to the fish

tank. The pH controlling process happens within the bioreactor under the influence of

the proposed DRL based controller.

Figure 4.4 Setup used to study the performance in a dynamic

system

58

4.3.1 Hardware Setup

The aquaponics setup with the bioreactor and the DRL controller is shown in

Figure.4.5. The experimental procedure for the above setup is given in the next section

.

Figure 4.5 The aquaponics system used to determine the response

of the DRL controller dynamic stochastic conditions

59

4.3.2 Experimental procedure

In the dynamic case, which is the harder control problem, the current state of the

system depends on the previous inputs of the system. In order to evaluate the

performance of the controller in the dynamic case, the following setup would be used.

A dynamic system shown below is a simple aquaponics system. Aquaponics is a closed

loop system for growing plants, where water from a fish tank is used as nutrients to

plants through the recirculation of water using a water pump. Nitrification occurs

within the system in the grow bed using microorganisms. Nitrification causes the pH

to decrease and this pH in turn causes nitrification process to decrease. This pH

decrease is also indicative of the amount of microorganism available to actually

perform the conversion from ammonia to nitrates. Clearly the current pH value has an

impact on the performance of the system in the future, therefore in this setup, we want

the controller to maintain a pH of 7.2 continuously and taking the necessary actions to

counter system changes due to process noise and disturbances. The system ran for 45

days and the pH was observed over the entire duration. The performance of the two

controllers was evaluated based on the steady state pH value.

60

4.3.3 Results

The controller was tested for its steady state behavior under a dynamic system. Due to

the stochastic nature of the control process is better handled by the proposed Deep RL

based controller. The stochastic nature of the process is effectively learnt by the neural

networks, especially due to the recurrent neural network. The recurrent network in

particular is capable of accurately predicting the behavior of the dynamic system as it

learns the state space through gathered experience. With limited experience or limited

exploration of state space, the controller slightly under performs but with experience,

the system shows superior results. The pH values of the aquaponic system monitored

over a 45-day period is shown in Figure 4.6.

 Figure 4.6 Steady state response of the aquaponics system. This setup is a

stochastic system and the pH should be maintained at a set point of 7.2 for

extended durations.

61

4.3.4 Analysis

In the dynamic case the mean steady state value was evaluated and compared for a set

point of pH = 7.2

Table 11: Comparison of steady state value of the two controllers in the dynamic case

DRL PID

Mean Steady State Value 7.202136313 7.7180351952

Based on table 11 we can say that the DRL based controller is much better at

maintaining the pH for long periods of time. In this study the controllers were observed

for 45 days in an aquaponics system. The data was logged by the raspberry pi based

controller hourly. All readings taken during the day were averaged. Average readings

for the 45 days were used to generate the output characteristics of the controller. Table

11 gives the mean value for all 45 days and is summarized for both controllers.

62

CHAPTER 5 CONCLUSIONS

5.1 Conclusion on Objectives

This research set out to investigate the application of state of the art deep reinforcement

algorithms (DRL) in the optimal control of real world nonlinear industrial

applications, with focus on optimal pH control of a nitrification bioreactor in an

aquaponics environment. The requirement for this research emerged from the

widespread adoption of Artificial Intelligence in industrial applications in order to

meet Industry 4.0 standards. In this research study, a Deep Reinforcement

Learning based controller was implemented for the optimal control of pH in a

nitrification bioreactor of an aquaponics system. The controller used the

Asynchronous Advantage Actor Critic algorithm as its main driving DRL

algorithm. The performance of this algorithm was compared with a standard

digital PID control algorithm. The studied DRL algorithm proved to be superior

to the PID control scheme when operating on a deterministic system and on a

dynamic system. Therefore, we can conclude that DRL algorithms can be used to

effectively control highly non-linear process control systems.

One of the major aspects of this study was that in classical pH control, sampling time

requires to be long for the system to come to equilibrium. In the case of the DRL based

controller, the system dynamics are slowly learnt with experience and is capable of

taking drastic actions without causing instabilities within the process control system.

The PID controller is concerned only with the current observed reading and the current

error, it has no measure of the system states and its transition dynamics, it just feeds

back weighted sums of the observed states. This highlights a limitation of using PID

controllers in controlling non-linear systems. Therefore, we can conclude that deep

RL based controllers can produce fine grained control with respect to PID controllers.

63

5.2 Conclusion on Research Questions

In this study, model-free reinforcement learning algorithms were identified and

compared with respect to one another. Important aspects of these algorithms are its

policy and its method of updating its parameters. The controller designed is a deep

reinforcement learning algorithm that is capable of learning the system without any

prior knowledge about the system or an explicit mathematical model. Therefore we

can provide a positive answer to the first research question. Furthermore, in this study

minimalistic use of sensors were enforced in controller design to simulate the partial

observation scenario. We incorporated beliefs into the system to compensate for the

limited observations in data through the use of recurrent neural network architectures

in the controller design. Information & beliefs was extracted from a sequence of

previous time varying data to estimate the current state without fully observing the

system. The recurrent neural network provides a powerful function approximate that

can estimate past history of the system and thereby aid in deriving the appropriate

beliefs in obtaining an optimized controller under partial observation.

64

5.3 Further works

The work carried out in this thesis can be extended to discrete non-linear systems in

the industry. The following text elaborates on the application of DRL algorithms in

some important industrial processes.

5.3.1 Internet of Things use case

The deep reinforcement learning controller resides within the learning servers of an

IoT cluster, where the algorithm resides and performs the DRL learning steps. This

flow is shown in the learning cluster of Figure 5.1. The optimized controllers are then

fed back into the endpoints. It is important to note that the controller is actually

residing in the endpoint and only the learning and parameter optimization process

performed using the learning cluster. This particular implementation was chosen to

comply the implementation of the system using Industry 4.0 standards and complete

justification of it is beyond the scope of this research study.

Figure 5.1 Implementation of the DRL controller in IoT/Industry 4.0 based

applications

65

5.3.2 DRL controllers in SCADA systems

An example of implementing the Deep Reinforcement Learning based controllers in

an Industrial SCADA system is shown in Figure 5.2.

The Deep RL controller consumes the data from sensors and actuators through the

networking provided by the SCADA system. The DRL controller is hosted in a server

from which the SCADA data is accessed. The DRL server then creates the policy and

critic networks required by the DRL algorithm. These policies then can be enforced

via the SCADA network. The following use case shows a potential application of a

SCADA based DRL controller architecture.

Waste Management Optimization - The SCADA based DRL can be effectively used

in applications of energy optimization and optimal pollution control in waste

management incinerators. The DRL can be effectively combined with the SCADA

system to produce optimal control sequences to minimize energy costs and to improve

gas emissions from the incinerator. The application of state of the art deep

reinforcement algorithms in a variety of non-linear industrial applications was shown

in this study. These controllers, powered by artificial intelligence algorithms, paves

the way for the next industrial revolution, Industry 4.0. Therefore, further studies in

this domain is encouraged in order to for AI to really impact the modern world.

Figure 5.2 Implementation of the DRL controller in a SCADA scenario

66

REFERENCES

[1] J. X. Chen, "The Evolution of Computing: AlphaGo," Computing in Science &

Engineering, vol. 18, no. 4, p. 4–7, 2016.

[2] V. Mnih et al, "Human-level control through deep reinforcement learning,"

Nature, vol. 518, no. 7540, p. 529–533, 2015.

[3] S. P. K. Spielberg, R. B. Gopaluni and P. D. Loewen, "Deep reinforcement

learning approaches for process control," in Proceedings of the 6th

International Symposium on Advanced control of Industrial Processes

(AdCONIP), Taipei, 2017.

[4] P. M. Jacob, "A Comparative Analysis on Smart Farming Techniques using

Internet of Things (IoT)," HELIX, vol. 8, no. 2, p. 3294–3302, 2018.

[5] N. A. Savidov, E. Hutchings and J. E. Rakocy, "Fish and Plant Production in a

Recirculating Aquaponic System: A New Approach to Sustainable Agriculture

in Canada," Acta Horticulturae, no. 742, pp. 209-221, 2007.

[6] C. Somerville, M. Cohen, E. Pantanella, A. Stankus and A. Lovatelli, "Small-

scale aquaponic," FAO, Rome, 2014.

[7] P. A. Pearce and D. M. Foster, "Optimizing Nitrification on Biological Filters,"

Water and Environment Journal, vol. 13, no. 6, p. 406–412, 1999.

[8] S. Okabe, Y. Aoi, H. Satoh and Y. Suwa , "Nitrification in Wastewater

Treatment," in Nitrification, Washington, DC, ASM Press, 2011, pp. 405-433.

[9] J. Makinia, Mathematical Modelling and Computer Simulation of Activated

Sludge Systems, London: IWA Publishing, 2010.

[10] J. Skadsen, "Effectiveness of High pH in Controlling Nitrification," American

Water Works Association, vol. 94, no. 7, p. 73–83, 2002.

[11] D. R. James and R. W. Lumry, "Recent Developments in Control of pH and

Similar Variables," in Methods of Biochemical Analysis, New York, John

Wiley & Sons, 2006, p. 137–206.

[12] A. O’Dwyer, Handbook of PI and PID Controller Tuning Rules, London:

Imperial College Press, 2009.

[13] M. M. Zirkohi , "Optimal Pid Controller Design Using Adaptive Vurpso

Algorithm," Open Engineering, vol. 5, no. 1, p. 179–185, 2015.

67

[14] D. P. Atherton and S. Majhi, "Limitations of PID controllers," in Proceedings

of the American Control Conference, San Diego, 1999.

[15] H. P. H. ANH and N. T. Nam, "A new approach of the online tuning gain

scheduling nonlinear PID controller using neural network," 19 April 2011.

[Online]. Available: http://www.intechopen.com/books/pid-

controlimplementation-and-tuning/a-new-approach-of-the-online-tuning-gain-

scheduling-nonlinear-pid-controllerusing-neural-network. [Accessed 18 03

2018].

[16] B. KELKAR and B. POSTLETH WAITE , "FUZZY-MODEL BASED pH

CONTROL," in Proceedings of 1994 IEEE 3rd International Fuzzy Systems

Conference, Orlando, 1994.

[17] D. Shaghaghi, H. MonirVaghefi and A. Fatehi, "Generalized predictive control

of pH neutralization process based on fuzzy inverse model.," in 13th Iranian

Conference on Fuzzy System, Tehran, 2013.

[18] D. Nauck and R. Kruse, Neuro-Fuzzy Methods in Fuzzy Rule Generation,

Boston: Springer, 1999.

[19] D. Kalise, K. Kunisch and Z. Rao, Hamilton-Jacobi-Bellman Equations:

Numerical Methods and Applications in Optimal Control, Berlin: De Gruyter,

2018.

[20] P. J. Werbos, "Using ADP to Understand and Replicate Brain Intelligence: the

Next Level Design," in 2007 IEEE International Symposium on Approximate

Dynamic Programming and Reinforcement Learning, Honolulu, 2007.

[21] J. L. Speyer and W. H. Chung, Stochastic Processes, Estimation, and Control,

Philadelphia: Society for Industrial and Applied Mathematics, 2008.

[22] R. P. Srivastava and T. J. Mock, "Introduction to Belief Functions," in Belief

Functions in Business Decisions, Heidelberg, Physica, 2002, p. 1–16.

[23] J. S. Kennedy, "Introduction to Dynamic Programming," in Dynamic

Programming, Dordrecht, Springer, 1986, p. 27–49.

[24] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,

London: Bradford Books, 2018.

[25] D. Liu, Q. Wei and P. Yan, "Generalized Policy Iteration Adaptive Dynamic

Programming for Discrete-Time Nonlinear Systems," IEEE Transactions on

Systems, Man, and Cybernetics: Systems, vol. 45, no. 12, p. 1577–1591, 2015.

[26] Q. Wei and D. Liu, "Optimal learning control for discrete-time nonlinear

systems using generalized policy iteration based adaptive dynamic

68

programming," in Proceeding of the 11th World Congress on Intelligent

Control and Automation, Shenyang, 2014.

[27] A. Jeerige, D. Bein and A. Verma, "Comparison of Deep Reinforcement

Learning Approaches for Intelligent Game Playing," in IEEE 9th Annual

Computing and Communication Workshop and Conference (CCWC), Las

Vegas, 2019.

[28] S. Tigani, M. Ouzzif and A. Hasbi, "Monte Carlo simulation based algorithm

design for automatic learning machine performance analysis," in 2014

International Conference on Next Generation Networks and Services (NGNS),

Casablanca, 2014.

[29] O. Sonmez and A. T. Cemgil, "Sequential Monte Carlo samplers for model-

based reinforcement learning," in 2013 21st Signal Processing and

Communications Applications Conference (SIU), Haspolat, 2013.

[30] M. Reidmiller, J. Peters and S. Schaal, "Evaluation of Policy Gradient Methods

and Variants on the Cart-Pole Benchmark," Honolulu, 2007.

[31] H. S. Jakab and L. Csato, "Reinforcement learning with guided policy search

using Gaussian processes," in The 2012 International Joint Conference on

Neural Networks (IJCNN), Brisbane, 2012.

[32] H. Lin, Q. Wei and D. Liu, "Online identifier-actor-critic algorithm for optimal

control of nonlinear systems," Optimal Control Applications and Methods, vol.

38, no. 3, p. 317–335, 2017.

[33] S. Parisi, V. Tangkaratt, J. Peters and M. E. Khan, "TD-regularized actor-critic

methods," 19 December 2018. [Online]. Available:

https://arxiv.org/abs/1812.08288. [Accessed 8 January 2019].

[34] U. Doraszelski and K. L. Judd, "Avoiding the curse of dimensionality in

dynamic stochastic games," Quantitative Economics, vol. 3, no. 1, p. 53–93,

2012.

[35] K. Hara and K. Nakayamma, "Comparison of activation functions in multilayer

neural network for pattern classification," in Proceedings of 1994 IEEE

International Conference on Neural Networks (ICNN’94), Orlando, 1994.

