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ABSTRACT 

 

Recent advances in deep reinforcement learning has produced state of the art 

algorithms. These algorithms have better training stability, convergence and 

computational performance.  

In this study a state of the art deep reinforcement learning algorithm is used to 

implement a self-learning, model free, non-linear controller to control pH of an 

aquaponic system.  Aquaponics is a soil-less farming system where effluent water from 

a fish tank is used as nutrients for growing plants. Maintaining the pH of an aquaponic 

system provides the optimal condition for micro-organisms that convert the ammonia 

rich fish effluent to nitrates, which are easily absorbed by the plants. In order to 

optimize this conversion process known as nitrification, pH is maintained at optimal 

conditions within an intermediate setup known as the nitrification bioreactor.  

The implementation of a deep reinforcement learning based controller is studied in 

detail and the performance of the deep reinforcement learning based pH controller is 

evaluated by comparing the performance of a classic PID based controller in an 

aquaponic system.  

The results show that DRL based controllers are better suited for control of dynamic 

stochastic control pH process and is capable of learning complex plant models and 

tuning itself based on the learnt model. The outcomes of this research can be applied 

in the design of optimal controllers that learns purely from experience to optimize 

various industrial processes. This type of controllers is ideal in Industry 4.0 based 

applications. 

 

Keywords: Deep Reinforcement Learning, Artificial Intelligence, Aquaponics, 

Nitrification, Process Control 
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CHAPTER 1 INTRODUCTION 

 

Recent advances in Deep Reinforcement Learning (DRL) have produced state of the 

art learning algorithms. These algorithms are capable of performing searches in very 

large state spaces without instabilities and have human like performance in control. 

One such application of these algorithms is Alpha Go [1]. Alpha Go is a deep 

reinforcement learning based algorithm that was able to defeat a 9-dan champion Go 

player. Go is an ancient traditional Chinese board game, that is known to be much 

complex than chess, and widely agreed by the scientific community that the game 

requires human like intuition to win the game. This is a significant achievement in the 

field of Artificial Intelligence and was not expected to be achieved in the next decade 

[2]. The work carried out in creating the Go playing AI agent is expected to impact the 

industry and is currently under active research. 

The current work in deep reinforcement learning is limited in scope and is mostly used 

in AI agents to play computer games and in simulation based research. However, these 

algorithms can be applied in solving complex industrial control and optimization 

problems. The application of state of art Deep Reinforcement Learning algorithms in 

industrial and process control systems have not been studied so far and forms the basis 

of this work. An early study carried out by Spielberg et al [3], provided a methodology 

to implement DRL algorithms in a simulated SISO & MIMO process control system 

and highlighted the requirement to extend the research to non-linear systems. 

Hence this thesis reports on research aiming at applications of deep reinforcement 

learning on real world non-linear control systems. Since biochemical processes are 

highly non-linear with limited sensing and actuation, a biochemical process system 

was selected in order to evaluate the proposed DRL controller. Therefore, this research 

attempts to incorporate insights about application of deep reinforcement learning in 

designing an optimal pH controller for a nitrification bioreactor in an aquaponic system 

[4]. The use of advanced control schemes in bioreactor control have not been studied 

so far in aquaponics systems and is therefore studied in detail in the following work. 
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Aquaponics is an agricultural system that uses effluent from rearing fish tanks as 

nutrient fertilizer for growing plants in industrial, indoor and vertical farms [5]. In the 

aquaponics system shown in Figure 1.1, fish are reared in a tank from which effluent 

water is pumped into a soil-less grow bed system. This water flows through the grow 

bed system delivering nutrients to plants grown within the grow bed and recirculated 

back to the fish tank. The entire system forms a symbiotic system where the plants 

clean the fish effluent from the water and the fish provides the appropriate nutrients 

for the plants. This process is maintained by microorganism that convert the ammonia 

in fish waste in to nitrates that can be easily absorbed by the plants [6]. In order to 

facilitate the process of conversion of fish waste to fertilizer (nitrification), bioreactors 

are employed in aquaponics system and optimal conditions maintained within the 

bioreactor to facilitate the growth of nitrifying bacteria. Aeration of the water generally 

occurs naturally when water flows through the system and supplies oxygen for plant 

roots and fish. However, for complex aquaponics system aerators may be employed to 

supply additional oxygen required by the fish. Using this method, food production 

factories can be implemented to produce vegetables and fruits productively in smaller 

areas than conventional farms. 

 

 

 

Figure 1.1 Operation of an Aquaponics System 
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1.1 Objectives 

 

The objective of this study is to: 

Evaluate the use of Deep Reinforcement Learning based optimal pH controller in 

a nitrification bioreactor of an aquaponics system. 

 

As Deep Reinforcement Learning is a form of general purpose artificial intelligence, 

the following research questions are proposed to the context of this study. 

 

RQ1: Can deep reinforcement learning algorithms be used to control the nonlinear 

bioreactor system without prior knowledge of the nitrification bioreactor? 

Controlling without an explicit mathematical knowledge of the plant is preferred in the 

industry as complex systems can be setup with ease. This question attempts to isolate 

the algorithms that can learn the optimal control strategies without an explicit 

mathematical model of the system. In other words, what algorithms can learn the 

optimal control strategy based purely on experience? 

 

RQ2: How can these deep reinforcement learning algorithms be used with partial 

observation of states? 

Most system states in a nitrification bioreactor cannot be observed. This is due to non-

availability of sensors (due to cost, accuracy or off-line measurements). Therefore, 

these control problems are partially observable. This research question attempts to find 

the deep reinforcement learning methods of optimal control with partial observability. 

In this case, we attempt to optimize the entire bioreactor by measuring the pH only, 

just as a human expert is capable of estimating the performance of the plant using the 

pH alone.  
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Figure 1.2 depicts the relationship between the objectives, research questions and 

various technological domains. 

 

 

 

As shown in Figure 1.2, the research questions are bounded by the DRL based 

approach and by optimal pH control. The methodology and design of the controller in 

this study is determined by the three interacting disciplines of reinforcement learning, 

stochastic control and nonlinear control of nitrification. 

 

 

 

   

Figure 1.2 Relationship between the research problem, research questions and 

discipline 
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1.2 Thesis Outline 

 

This study is organized into five chapters.  

 Chapter 1 introduces the research problem, the objectives of the study and the 

research questions.   

 Chapter 2 presents detailed literature review and related works on nitrification 

process, pH control and fundamental theories of reinforcement learning and 

deep reinforcement learning. The first section of chapter 2 gives an overview 

on nitrification and mathematical models of nitrification used in bioreactors of 

aquaponic systems. Various linear and nonlinear methods of pH control are 

analyzed and the later part of chapter 2 introduces important deep 

reinforcement learning algorithms and caveats of using deep reinforcement 

learning algorithms when designing controllers for non-linear process control 

systems.  

 Chapter 3 presents the design and development of the pH controller and the 

methodology to evaluate the performance of the implementation of the DRL 

controller. Here the controller is evaluated by comparing the performance of 

the DRL controller with respect to a classical PID controller. Two experimental 

setups were devised to characterize the performance of the controllers in the 

case of a deterministic process and an aquaponic system as a dynamic process.  

 Chapter 4 presents the experimental results and the analysis of the results of 

each of the controller in both control scenarios. The details of the experimental 

setups, the experimental procedure and comparative analysis are presented in 

this chapter.  

 Chapter 5 discusses the conclusion of the study and related further works. 
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1.3 Limitations of the Study 

 

This sections explains the limitations which are important to the context of the current 

study. 

Firstly, this study has established a boundary around its research problem by delimiting 

the scope of the investigation on optimal control of bioreactors and focusing 

specifically on two aspects: reinforcement learning and pH control. Although many 

other measurements can be taken for optimal bioreactor operation, this research has 

delimitation, focusing on a single important measurement to reach optimality. 
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CHAPTER 2 LITERATURE REVIEW 

 

2.1 Introduction 

 

This chapter presents important literature in the context of deep reinforcement learning 

based control. The complex nature of the pH control in aquaponics is also discussed 

before reviewing various theories and algorithms used in deep reinforcement learning. 

 

2.2 Related works in Aquaponics and Limitations 

 

Based on the literature review, there are no academic studies carried out in optimal pH 

control of Aquaponics systems. This is mainly due to aquaponics being developed by 

agricultural experts with little intervention from the engineering discipline. Previous 

work carried out by the author showed that aquaponics systems can be modeled using 

a waste water treatment process. Therefore, controllers used in waste water treatment 

are potential candidates for pH control in aquaponics systems. Most of the pH 

controllers used in waste water treatment are PID controllers (refer appendix A). These 

controllers require constant tuning and other adjustments to continuously monitor the 

process. This makes the entire process sub optimal. 

The requirement for an optimal pH controller comes from our necessity to optimize 

biochemical processes such as nitrification [7]. Therefore, it is important to show the 

non-linearity of biochemical processes and how conventional linear control design 

techniques are obsolete. Nitrification is the process of converting ammonia to nitrates 

using bio-organisms. Nitrification is part of the natural nitrification cycle and is 

extensively studied in biology and agriculture. Nitrification has been used in waste-

water treatment [8] where closed systems have been developed to enhance the 

nitrification process. Therefore, we shall discuss the process of nitrification in the 

context of waste-water treatment as applied to aquaponics systems.  
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Nitrification happens within a mineralization tank bioreactor where waste water with 

high concentrations of ammonia is fed in. The bioreactor hosts nitrification bacteria 

that convert ammonia into nitrates using an aerobic process. Aerobic processes 

consume oxygen and oxidize the ammonia into nitrates. As far as industrial processes 

are concerned, controllers have been used to maintain optimum conditions that 

promote growth of nitrifying bacteria within the mineralization tank. The nitrifying 

process causes the pH of the water to decrease, that is to become more acidic. 

However, the nitrification process itself depends on the pH of the environment. This 

relation is shown in Figure 2.1. 

 

  

 

 

 

 

 

 

 

Nitrification can be modeled mathematically and is widely used in the design of 

bioreactors, especially in water treatment plants. Active sludge modeling used in 

sewage treatment is used in designing nitrification bioreactors [9]. The modeling is 

carried out based on the mass balance equation shown in by Figure 2.2. Here a 

biomass, the amount of living organism in the system, feeds on a substrate to increase 

its biomass. If the substrate is increased and aerobic conditions are maintained, it 

would result in growth of the biomass. Similarly, if there is little amount of substrate 

and oxygen, the biomass will not feed on the substrate, resulting in decrease of 

biomass.  

Figure 2.1. Ammonia ionization capability based 

on pH 
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An influent and effluent water flux travels across a system boundary as shown in 

Figure 2.3. Using the principle of conservation of mass, the mass balance equation of 

the system component can be derived for the specified system boundary. The quality 

of the water is determined by the amount of substrate and biomass flowing across the 

system boundary. A nitrification bioreactor of an aquaponic system can be described 

in the context of this boundary.  

 

2.2.1 Biomass Balance Equation 

 

The net biomass within the system boundary is responsible for enhancing the 

nitrification process within the system. The rate of biomass in the bioreactor is given 

by the net flow rate of biomass into the system and the growth of biomass within the 

reactor, which feeds on the substrate. Equation 2.1 models the growth of biomass 

within the system boundary. The rightmost part on the right hand side of the equation 

is known as the Monod’s equation. Monod’s equation models the growth of biomass 

with respect the amount of substrate or food it has to consume. 

 

𝑑𝑋

𝑑𝑡
𝑉 = 𝑄𝑋0 − 𝑄𝑒𝑋𝑒 + 𝑉 [

𝜇𝑚 𝑆

𝐾𝑠+𝑆
− 𝑘𝑑] 𝑋   (2.1) 

 

Where 

Figure 2.2. System Boundary used in Mass Balance Equation 
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 X - Concentration of biomass in the bioreactor (mg/l) 

 V - Volume of the bioreactor (m3) 

 𝑋0- Initial biomass concentration in influent water (mg/l) 

𝑋𝑒- Concentration of biomass in effluent water (mg/l) 

𝜇𝑚- Maximum concentration of biomass in effluent water (mg/l) 

 S - Amount of Substrate for biomass to consume (mg/l) 

𝐾𝑠- Half velocity constant used in Monod's equation (mg/l) 

𝑘𝑑- Death/decay coefficient of biomass 

 

2.2.2 Substrate Balance Equation 

 

Similar to the derivation of the balance equation for biomass within the bioreactor, we 

can model the amount of substrate using mass balance equations. In an aquaponics 

system the substrate is ammonia from fish effluent. The substrate equation given by 

equation 2.2 models how the biomass consumes the ammonia (substrate) within the 

aquaponic system.  

 

𝑑𝑆

𝑑𝑡
𝑉 = 𝑄𝑆0 − 𝑄𝑒𝑋𝑒 + 𝑉 [

𝜇𝑚 

𝑌

𝑆

𝐾𝑠+𝑆
] 𝑋    (2.2) 

 

The rate of change of substrate within the bioreactor is the net amount of substrate 

moving into the bioreactor plus the amount of substrate utilized by the biomass within 

the bioreactor as given by equation 2.2. Here Y represents the utilization factor of the 

maximum possible yield [9]. Now we can construct the total nitrification model using 

the previous two mass balance equations. Nitrification occurs by first utilizing 

ammonia to nitrite using the bacteria called Nitrosomonas. Next another type of 

bacteria known as Nitrobacter converts the nitrites into nitrates. Therefore, the 

nitrification process within the bioreactor can be modeled by the system of equations 

given by equations 2.3. 
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𝑑𝑋𝑛𝑠

𝑑𝑡
𝑉 = −𝑄𝑒𝑋𝑛𝑠 + 𝑉 [

𝜇𝑚,𝑛𝑠 𝑁𝐻3

𝐾𝑁𝐻3
+ 𝑁𝐻3

− 𝑘𝑑] 𝑋𝑛𝑠 

 

𝑑𝑋𝑛𝑏

𝑑𝑡
𝑉 = −𝑄𝑒𝑋𝑛𝑏 + 𝑉 [

𝜇𝑚,𝑛𝑏  𝑁𝑂2

𝐾𝑁𝑂2
+ 𝑁𝑂2

− 𝑘𝑑] 𝑋𝑛𝑏 

 

𝑑𝑁𝐻3

𝑑𝑡
𝑉 = 𝑄(𝑁𝐻3)0 − 𝑄𝑒(𝑁𝐻3)𝑒 + 𝑉 [

𝜇𝑚,𝑛𝑠 

𝑌𝑛𝑠

𝑁𝐻3

𝐾𝑁𝐻3
+ 𝑁𝐻3

𝐷𝑂

𝐾𝐷𝑂 + 𝐷𝑂
[𝑒0.098(𝑇−15)][1 − 0.833(7.2 − 𝑝𝐻)]] 𝑋𝑛𝑏 

 

𝑑𝑁𝑂2

𝑑𝑡
𝑉 = 𝑄(𝑁𝑂2)0 − 𝑄𝑒(𝑁𝑂2)𝑒 + 𝑉 [

𝜇𝑚,𝑛𝑠 

𝑌𝑛𝑠

𝑁𝐻3

𝐾𝑁𝐻3
+ 𝑁𝐻3

𝑋𝑛𝑠 −
𝜇𝑚,𝑛𝑠 

𝑌𝑛𝑠

𝑁𝑂2

𝐾𝑁𝑂2
+ 𝑁𝑂2

 𝑋𝑛𝑏] 

𝑑𝑁𝑂3

𝑑𝑡
𝑉 = 𝑄(𝑁𝑂3)0 − 𝑄𝑒(𝑁𝑂3)𝑒 + 𝑉 [

𝜇𝑚,𝑛𝑠 

𝑌𝑛𝑠

𝑁𝑂2

𝐾𝑁𝑂2
+ 𝑁𝑂2

𝐷𝑂

𝐾𝐷𝑂 + 𝐷𝑂
[𝑒0.098(𝑇−15)][1 − 0.833(7.2 − 𝑝𝐻)]] 𝑋𝑛𝑠 

          (2.3) 

 

We can see from the above system of equations; the control problem is nonlinear. The 

coefficients have been indexed to represent influent, effluent water and the types of 

bacteria for each of the steps in nitrification, namely Nitrosomonas and Nitrobacter 

bacteria.  It can be seen that nitrification depends on the temperature, pH and biomass 

within the bioreactor. The equations show the importance of pH control in biochemical 

process control [10] and are the subject of this study.  

 

 

2.3 Related works in pH control 

 

pH control is an important process variable extensively used in many industries. 

Therefore a wide range of pH control schemes have been developed for different 

process control applications [11].  Different types of controllers used in industrial pH 

control and in control of bioreactors are presented in the following text. 
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2.3.1 PID based pH controllers 

 

Many industrial systems employ PID controllers in the pH control process.  

Proportional-Integral-Derivative (PID) control is the most common control algorithm 

used in industry (Refer Figure 2.3). PID controllers are widely popular due to its robust 

performance in a range of operational conditions and its installation simplicity. PID 

algorithm consists of three basic coefficients; proportional, integral and derivative 

which are varied to get optimal response. 

 

 

 

The procedure followed to set the gain values of Kp, Ki & Kd to get the best response 

from the control system is known as tuning. Tuning sets the controller to its appropriate 

operating condition that the system operates without instability and delay.  

 

PID controllers can be tuned using several standard methods [12].These are namely: 

• Ziegler Nichols method 

• Cohen Coon method 

• Relay method 

• PID tuning software 

Figure 2.3 Block diagram of a typical PID controller used in process 

automation 
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Other forms of adaptive tuning methods have also being developed in order to tune the 

parameters [13]. If the tuning is not performed correctly the system may operate slowly 

or even be unstable. Therefore, tuning is an important part of PID based controlling. 

 

Limitations of PID control – PID controllers in general do not provide optimal 

control [14]. The major drawback with PID control is that its feedback system uses 

constant parameters and the controller has no knowledge of the process and only 

performs reactive control.   

Another limitation of PID control is that in order to design a PID controller, a non-

linear system needs to be linearized. This can cause approximation errors which can 

be neglected in many applications. However, in application such as pH control of 

bioreactors, these approximations can cause the system to perform sub optimally. 

Furthermore, PID controllers under performs when the system is asymmetric. The pH 

control problem is an asymmetric system where a base is dosed into the system to raise 

the pH, but if the pH overshoots, we have no actuation to bring the pH down. In such 

case the PID controllers needs to over damped, and hence not optimal. 

Solutions to these limitation are available, for example, techniques such as gain 

scheduling where a series of stored controller settings are used at different operating 

zones and adaptive techniques to automatically tune parameters by using fuzzy, neural 

networks or even using machine learning [15] . These are ad hoc fixes to inherent 

problem with PID controllers which cannot be ignored in certain applications such as 

pH control. 

 

2.3.2 Fuzzy logic based pH control 

 

Fuzzy control schemes have been widely used in pH process control applications [16]. 

Fuzzy logic is a branch of artificial intelligence that deals with modeling the controller 

with expert knowledge using fuzzy variables and membership functions that directly 

capture expert knowledge and expert actions. Fuzzy logic was introduced as an 
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alternative form of logic [17]. This alternative form of logic is many valued and is 

designed to accommodate partial truths into logical reasoning. The underlying concept 

in fuzzy control can be expressed in three main steps 

 Fuzzification - This is the process of converting all inputs into 

membership values. 

 Execution - The process of executing the rule base generally provided 

by an expert. 

 Defuzzification - The process of generating the outputs from the 

membership functions. 

 

Fuzzification is generally achieved with the use of membership functions. A 

membership function is a function that indicates the level of a certain truth. For 

example, we can define a membership function call warm that includes a range of 

temperatures and provide a value that closely fits the definition of warm. A 

temperature reading of 32 degrees Celsius can have a higher degree of membership to 

warm than a temperature reading of 25 degrees Celsius. Similarly, we can define 

several membership functions for different truths related to temperature. These 

membership functions are subjected to fuzzy operations such as min operation and 

max operation which are the equivalent fuzzy operations for logical AND & OR 

operation respectively. Different membership functions would be evaluated based on 

a rule base. The outputs from these fuzzy operations would then be used in 

defuzzification.  
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Defuzzification can be performed in many ways, but the most popular ones being the 

centre of gravity methods. These methods essentially convert the membership function 

into a value that can be used to control actuators. An implementation of a fuzzy 

controller for pH control is provided in Appendix I. The controller uses fixed 

membership functions based on expert recommendations and simulated in Simulink 

as show in Figure 2.4. The design of the controller was straight forward, however 

tuning the controller on site was cumbersome. 

 

 

Figure 2.4 Fuzzy controller overview (top left), output membership function (top 

right) & input membership function of a fuzzy based pH controller designed 

using simulink 
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2.3.3 Adaptive Neuro Fuzzy Inference Systems 

 

Fuzzy control provides a good method of representing knowledge in a structured 

manner. However, this knowledge needs to be explicitly written or embedded into the 

system. Thus fuzzy logic alone cannot mimic the natural learning observed in nature. 

In order to provide such capabilities fuzzy logic control has been successfully 

intertwined with neural networks to produce adaptive neuro-fuzzy inference systems, 

ANFIS [18]. Figure 2.5 shows a diagrammatic representation of an ANFIS system. It 

is important to note that rules are embedded into the neural network structure and 

usually represented as a Multilayer Perceptron. A noticeable limitation of using ANFIS 

is that the system should be a Takagi-Sugeno type inference system for the controller 

to be implemented as a neural network. ANFIS do not perform general learning, as the 

rules & membership function must be explicitly defined and carefully embedded into 

the neural structure, however it is capable of learning the degrees of membership and 

ranges occupied by each membership function. 

 

 

 

 

Figure 2.5 ANFIS architecture 
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2.3.4 pH controllers based on optimal control 

 

In optimal control theory, a dynamic system is operated in a manner that reduces a cost 

heuristic. It determines what sequence of actions need to be taken to fully optimize the 

process in question. Optimal control techniques usually employ a heuristic known as 

a cost function as shown in equation 2.4 to evaluate the optimality of the controller. 

The objective of the controller is to generate a control law in a manner that reduces the 

overall cost or maximize the accumulated reward over time. The use of such control 

are essential in a variety of non-linear control engineering applications such as 

bioreactor controllers, space exploration vehicles and guidance systems. 

 

J = φ[𝑥0, 𝑡0, 𝑥𝑓 , 𝑡𝑓] + ∫ [x(t), u(t)]dt
𝑡𝑓

𝑡0
     (2.4) 

 

Subjected to first order dynamics of states (state space)
𝑑𝑋

𝑑𝑡
=  𝐹[𝑥(𝑡), 𝑢(𝑡), 𝑡] ; path 

constraints 𝐵[𝑥(𝑡), 𝑢(𝑡), 𝑡] ≤ 0; and boundary conditions [𝑥0, 𝑡0, 𝑥𝑓 , 𝑡𝑓] = 0 where 

x(t) is the state, u(t) is the control, t is the independent variable time t,t0 is the initial 

time and 𝑡𝑓 is the terminal time.  The term 𝜑 signifies the endpoint cost and the L 

signifies the Lagrangian, which gives the trajectory of the current solution.  

 

The optimal control solution can be derived using the Pontryagin’s maximum principle 

or by solving the Hamilton-Jacobi-Bellman equation in continuous time applications 

[19]. The main problem with nonlinear optimal control is that the solution requires to 

solve the nonlinear Hamilton–Jacobi–Bellman (HJB) equation shown by equation 2.5. 

The cost Equation 2.4 is used with HJB to find the optimal control solution. 

 

𝑉(𝑥, 𝑡) +  min
𝑢

{∇𝑉(𝑥, 𝑡) ∙ 𝐹(𝑥, 𝑢) + 𝐽(𝑥, 𝑢)} = 0   (2.5) 
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Subjected to terminal condition V(𝑥, 𝑇) = 𝐷(𝑥); where D(x) gives the economic value 

of the final state.  

The HJB equation is a nonlinear partial differential equation (PDE) and cannot be 

solved using analytical methods. In order to solve this problem dynamic programming 

(DP) methods were developed. DP methods generally provided solutions backward-

in-time which makes the numerical implementation expensive with higher dimension 

of nonlinear systems. Werbos  [20] presented a technique called as approximate 

dynamic methods where approximate solution to equation 2.5 is given forward in time 

with the use of neural networks as a function approximate of the solution.     

Solution to these equations can be used to optimize continuous, discrete and stochastic 

systems in order to generate an optimal control law. The application of optimal control 

with stochastic processes involving process noise can be analyzed using stochastic 

estimation and likelihood. Techniques such as Linear Quadratic Optimization (LQO) 

have sprung from the application of stochastic estimation and control to yield better 

controllers. Optimal controllers use Markovian Decision Processes (MDP) to solve the 

optimal control problem. MDP [21] is a theoretical formulation of a series of state 

transitions within the problem's state space and is a tuple of 4 {S’,P,S,A}that 

completely describes the behavior of the system in where state transition are 

deterministic. 

  

 

 

 

 Figure 2.6 Graphical representation of a Markovian Decision Process 
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The control problem can usually be stated as a MDP, as shown in Fig. 2.6, and then 

solved using optimal control. In other words, MDP is a generalization of the state space 

used in deriving the HJB equation and its cost function. Generally, the states of the 

MDP are assumed to be fully observable and a given state can be directly identified. 

But in many real world applications the states of system are not fully observable. Such 

a system is known as a Partially Observable Markovian Decision Process (POMDP). 

The POMDP is defined by a tuple of 5 {S’, P, S, A, O}. POMDP have less knowledge 

of the plant and therefore estimates the unobserved states of the plant. Figure 2.7 shows 

a graphical representation of a POMDP. MDPs & POMDPs are important analytical 

tools in the design of estimators and controllers for optimal control problems. Most 

systems have unobserved system states due to constraints in sensing or due to noisy 

sensory readings. Furthermore, the amount of actuation/controllability in real world 

systems is quite limited thereby making POMDPs well suited for modeling real world 

problems. 

In an ideal case the principle of optimality assumes that the system is completely 

observable for each state. However as most real problems are not completely 

observable, we have to compensate in order for the principle of optimality to hold. In 

such cases the use of belief is incorporated in the design [22].  Beliefs are learnt truths 

based on a sequence of information and are enforced using belief functions. Belief 

functions are approximate functions that can be used to determine the certain truths 

about the system. Recurrent Neural Networks (RNN) are ideal for representing belief 

functions and are used in deep reinforcement learning based algorithms. 

 

 

 
Figure 2.7 Graphical representation of a Partially Observable 

Markovian Decision Process 
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  2.4 Deep Reinforcement Learning Techniques 

 

Advances in deep reinforcement learning has shown that human like control can be 

achieved using DRL algorithms. Previously, DRL algorithms require large servers for 

training the AI agents, but state of the art algorithms such as Asynchronous Advantage 

Actor Critic (A3C) have proved that these algorithms can be implemented with lesser 

computation power. The interaction between the RL agent and the environment in a 

typical reinforcement learning problem is shown in Figure 2.8 

 

 

2.4.1 Dynamic Programming in the Context of Reinforcement Learning 

 

Dynamic programming is the method of optimizing a given policy (program) of a 

temporal or sequential component of the problem.  Dynamic programming methods 

are used to solve complex problems, especially optimization problems, by breaking 

the main problem into sub problems and combining them in order to solve the entire 

problem. Dynamic programming provides a generalized solution for problems that are 

optimal in substructure and when the sub problems are overlapping each other. This 

allows to break down the main problem into smaller sub problems and solve each of 

these sub problems for optimality. The overlapping nature of the sub problems allows 

us to merge the sub solutions to construct the solution for the main problem.     

 

Figure 2.8 Agent environment interaction in a reinforcement learning 

problem 
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A Markovian Decision Processes (MDP) can satisfy both properties. These two 

properties are evident from the Bellman’s equation (equation 2.6) which is the solution 

to the Markovian Decision Process. The recursive part of the Bellman’s equation 

provides a recursive sub structuring of the optimization problem and the use of a value 

function allows caching and reusing in a manner that satisfy the condition of 

overlapping sub problems. 

Dynamic programming methods require an explicit model [21][23]. Once the model 

of a system is fully known, optimality can be achieved using the Bellman’s Equation. 

This is in contrast to the reinforcement learning problem where the model of the system 

is not known and it is up to the algorithm to learn the model based on its interaction 

with the environment.  However, dynamic programming methods form the basis for 

reinforcement learning methods with modification to make model free reinforcement 

learning possible. Important concepts in dynamic programming techniques that are 

fundamentally important to the reinforcement learning problem are presented in this 

section. 

 

Policy Evaluation: - Policy evaluation is also known as prediction, where the state-

value function is determined. In policy evaluation we input a MDP and a policy π and 

get a value function for that particular policy V. The value function is generally defined 

for a particular policy in which the agent interacts with. The value function is used to 

determine how good the current policy is. We start off with an arbitrary initialized 

value function and update using the Bellman’s equation as given in equation 2.6. 

  

𝑉𝑘+1(𝑠) = 𝐸[𝑅𝑡+1 + 𝑉𝑘(𝑆𝑡)|𝑆𝑡 = 𝑠]    (2.6) 

 

As can be seen from the above equation, policy evaluation uses synchronous updates 

to update the value function. At each k+1 iteration and for all states the value function 

is updated using the next possible states. 
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Policy Improvement - Let's assume that we take a particular action not recommended 

by the current following policy. If this action produces a value function that is greater 

the current value function, then we can switch from the current policy to another.  The 

policy improvement can be represented by the following equation. Let π and π’ be a 

pair of deterministic policies where, for all s ∈ S 

  

𝑞(𝑠, 𝜋′(𝑠)) ≥ 𝑉(𝑠)     (2.7) 

 

Then we can conclude that the new policy π’ must be better than or equal to current 

policy π. In other words, the expected return of the new policy from all states s ∈ S 

must be greater than or equal to expected return from current policy. This condition is 

given in equation 2.8. 

 

𝑉′(𝑠) ≥ 𝑉(𝑠)       (2.8) 

 

Policy Iteration - Policy Iteration is a two-step process, where the current policy is 

evaluated and the resulting value function is used to improve the policy [24].  Once a 

policy, π, has been improved using v to yield a better policy, π’, we can then compute 

v’ and improve it again to yield an even better policy, π’’. We can thus obtain a 

sequence of monotonically improving policies and value functions. This process of 

policy iteration always converges to the optimal policy. Policy Iteration is also known 

as the control problem, where the optimal control strategy is determined. The 

following diagram summarizes the policy iteration technique. 
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Value Iteration - Value iteration is much like Policy evaluation, but it requires the 

maximum to be taken over all actions. Value iteration effectively combines one sweep 

of policy evaluation and one sweep of policy improvements. An important intuition 

used to explain value iteration is that in value iteration, the recursive backups are 

performed from the goal state towards the current state that is being evaluated.  Value 

iteration uses the Bellman’s optimality equation for determining the value function. 

Intermediate value function may not indicate any policy. 

 

𝑉𝑘+1(𝑠) = max
𝑎

𝐸[𝑅𝑡+1 + 𝑉𝑘(𝑆𝑡)|𝑆𝑡 = 𝑠,  𝐴𝑡 = 𝑎]   (2.9) 

  

Generalized Policy Iteration – Generalized Policy Iteration [25] refers to the 

technique of policy evaluation interacting with policy improvement and vice versa. In 

generalized policy iteration the value function is made consistent with the current 

policy and the policy made consistent or greedily exploited with the respect to the 

current value function [26]. In policy iteration, several policy evaluations follow a 

policy improvement stage, but with value iteration, only a single policy evaluation is 

performed between policy improvements.  

Figure 2.9 Pictorial representation of policy evaluation & improvement 

(right) and value iteration (left) 
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Almost all reinforcement learning methods use the concept of a generalized policy 

iteration. These reinforcement algorithms utilize an identifiable policy and value 

function, where the policy is improved with respect to the value function and the value 

function improved to become the value function of the policy. A major drawback of 

dynamic programming methods is that they require operations over the entire state 

space of the MDP. This can be very expensive when the state space is large. 

Asynchronous dynamic programming methods uses iterative methods where entire 

sweeps of the state space are not required. These algorithms update values of the states 

asynchronously using the most recent observations. These algorithms do not update 

all states at once but may update some states several times before updating the other 

states. This makes implementation of the algorithm computationally efficient. 

However, in order for the algorithm to be stable and to converge properly all states 

should be updated during some point.     

 

2.4.2 Summary of Dynamic Programming Methods 

 

Table 1 gives a summary of different dynamic programming schemes used with 

reinforcement learning [27]. Dynamic programming problems can be divided into 

estimation or control problems. A controller could be designed using both these 

techniques but the extent to which policy iteration and value iteration is used differs 

from one another. Therefore, it is up to the designer to select the correct method to 

better suit the problem. However, both these techniques are incorporated into GPI 

algorithms making them general purpose algorithms.  
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Table 1: Summary of Dynamic Programming Methods 

 

 

2.4.3 Monte Carlo Learning 

 

It was shown previously, that solving the Bellman’s equation provides the optimal 

solution for a finite Markovian Decision Process. Direct solution of the Bellman’s 

equation is however difficult. In such cases the solution can be derived stochastically. 

Interactions with the environment can be used to generate experience and the 

expectations of these experience can be used to estimate the value function. This 

approach in solving complex and algorithmic problems falls under the general 

category of Monte Carlo algorithms [28]. 

The Bellman’s equation can be solved elegantly by approximating the dynamic 

programming problem using Monte Carlo methods. Learning from experience allows 

the RL agent to operate without prior knowledge of the system [29]. Monte Carlo 

methods solves the reinforcement learning problem based on averaging sample 

rewards. In general, Monte Carlo algorithms allow us to solve the dynamic 

programming problem without explicitly knowing the state transition probability 

matrix of a finite MDP. Algorithm 1 of appendix E shows the Monte Carlo method to 

update the value function. Experience gathered in episodes is averaged in order to 

estimate the state-value function. For example, the value function is the average reward 

observed at each state experienced in all of the episodes. Each state maintains a list 

(memoization) of observed rewards. In each episode the observed reward is appended 

Problem Bellman Equation Algorithm 

Estimation Bellman Expectation 

Equation 

Iterative Policy 

Evaluation 

Control Bellman Expectation 

Equation + Greedy Policy 

Improvement 

 

Policy Iteration 

Control Bellman Optimality 

Equation 

Value Iteration 
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to the respective state’s reward list. The resulting value function for that state is the 

average of the rewards it has seen throughout its experience.  

Similarly, we can estimate a action value function instead of a value function. The 

difference is that the heuristic of how good the current operating point depends on both 

the state and action. The estimation problem is to determine and learn the heuristic 

value function that determines or how good the current action value function or state 

value function is.   

In Monte Carlo control, the same approach will be used to determine the control 

strategy or the policy to achieve the optimal control strategy. In Monte Carlo control, 

the policy and the value function is approximated by a function approximate. Just as 

with dynamic programming methods, the value function is improved and updated 

based on the current policy. This policy is then improved based on the updated value 

function, as suggested by the right side diagram of Figure 2.9. This is also known as 

generalized policy iteration but within the context of reinforcement learning. 

Algorithm 2 (appendix E) shows how Monte Carlo algorithms are used to determine 

action value function. 

In Monte Carlo control, an arbitrary policy and an arbitrary value function is 

initialized. Next an episode is generated using the current policy until it reaches a 

terminal state. The state value function is then updated using accumulated rewards. 

We define a policy where we chose an action that maximizes the state-action value 

function q. This is the generalized policy iteration concept, where the value function 

is used to evaluate the policy and then improve the policy.   

Based on the studies carried out, we can use Monte Carlo along with approximate DPs 

to successfully solve complex POMDP control problem. An aspect of Monte-Carlo 

methods is that the estimates for each state are independent.  Monte Carlo methods do 

not bootstrap and hence a particular state do not make estimates based on the estimate 

of any other state. The use of extensive bootstrapping is the main idea on TD learning 

and will be dealt in the following section. 
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2.4.4 Temporal Difference Learning 

 

Temporal Difference (TD) combines ideas from Monte-Carlo and Dynamic 

Programming. Like Monte-Carlo methods it is capable of learning from experience 

and like dynamic programming methods, it updates estimates in-part based on other 

learned estimates. The use of estimates to update estimates is usually known as boot-

strapping. The advantage of TD is that it is inherently implemented as an incremental 

on-policy algorithm [24]. The main distinguishing feature of TD is that it uses 

bootstrapping where an estimated value is used to determine another estimate.  The 

simplest TD method makes the update immediately to transition to 𝑆𝑡+1and 

receiving 𝑅𝑡+1 as shown by equation 2.10. 

 

𝑉(𝑡)
 

← 𝑉(𝑆𝑡) + 𝛼[𝑅𝑡+1 + 𝛾[𝑉(𝑆𝑡+1) − 𝑉(𝑆𝑡)]]   (2.10) 

  

This is in contrast to Monte Carlo methods that update its value function at the end of 

each episode, when the final goal state reward has been achieved as given in equation 

2.11.  

𝑉(𝑡)
 

← 𝑉(𝑆𝑡) + 𝛼[𝐺𝑡 − 𝑉(𝑆𝑡)]    (2.11) 

 

The TD estimation and TD control methods are presented by algorithms 3 & 4 

respectively in appendix E. The pseudo code in algorithm 3 shows how TD estimation 

is carried out and how the value function is updated for each step within an episode. 

TD control is based on the generalized policy iteration but uses TD methods to update 

the value function and the policy as given by algorithm 4.  The update rule for online 

TD control is given by equation 2.12. This algorithm is known as the SARSA 

algorithm. This is because the quintuple consisting of, current state, current action, 

current reward, next state and next action are used to estimate and update the action 

value function. 

 

𝑄(𝑆𝑡, 𝐴𝑡)
 

← 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼[𝑅𝑡+1 + 𝛾[𝑄(𝑆𝑡+1, 𝐴𝑡+1) − 𝑄(𝑆𝑡, 𝐴𝑡)]]   (2.12) 
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The off policy algorithm given by algorithm 5 is one of the early breakthroughs in 

reinforcement learning, widely known as Q learning. Here the action-value function, 

Q, directly learns the optimal action-value function, Qmax, even though the current 

policy that is executed may not be the policy that is approximated by the action-value 

function Q. This relation is shown in equation 2.13.  

 

𝑄(𝑆𝑡, 𝐴𝑡)
 

← 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼 [𝑅𝑡+1 + 𝛾 [max
𝑎

 𝑄(𝑆𝑡+1, 𝑎) − 𝑄(𝑆𝑡 , 𝐴𝑡)]]  (2.13) 

 

 

2.4.5 Policy Gradient Methods 

 

Policy gradient methods do not employ a value function that estimates how good a 

state is. Policy search methods directly model the policy and update the policy model 

in order to maximize the expected reward from executing the policy and are 

successfully implemented using gradient and gradient free methods. The policy 

network outputs the means and standard deviation of a probability distribution. These 

are then used to generate the actual actions in continuous space. In the case of discrete 

actions, the policy outputs a probability for each discrete action and the action with the 

highest probability will be selected as the next action. 

Policies can be improved using gradients, but in order to compute the expected return, 

the average has to be taken over entire plausible trajectories under the current policy. 

However, such averaging requires either deterministic approximations or 

approximations made from stochastic sampling. A deterministic estimate can only be 

derived from a model-based setting and is not applicable for model free learning. 

Monte-Carlo methods are therefore used in model-free settings as it provides 

stochastic alternatives to estimate the expected return. However, there is a caveat in 

using gradient learning methods with Monte Carlo methods as the gradients cannot 

pass through sampled values of a stochastic function. In order to circumvent this 

problem, an estimator is used to estimate the gradient using a maximum-likelihood-

ratio estimator or commonly used in RL terminology as REINFORCE rule [30].  
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Policy search methods tries to find a policy directly using gradient based or gradient-

free methods. Most gradient free methods use evolutionary algorithms to learn a policy 

directly whilst back propagation still remains as the most popular gradient based 

learning approach. The use of evolutionary algorithms with large populations or agents 

with large number of parameters is quite expensive but it is capable of optimizing 

arbitrary, non-differentiable models and allows for more exploration in parameter 

space. 

Direct policy searching using neural network with large parameters is difficult and it 

can converge to local maxima. A particular solution to this problem is to use guided 

policy search (GPS), where an optimized controller is used to teach the neural network 

in a supervised manner and then combined with importance sampling [31]. This 

prevents the policy from being stuck in a local maxima and biases the search towards 

a good optimum. 

 

2.4.6 Actor Critic Methods 

 

Methods that blend the use of value functions and policy gradients are generally known 

as actor-critic methods [32]. The actor and critic emulates the policy and the value 

function respectively. This when used with policy gradients reduces the high variance 

in policy gradients. The actor “Policy” learns by feedback from the critic “Value 

Function”. In doing so it reduces the problem of high variance in policy gradients. 

These methods use policy gradients. Actor-critic methods are capable of combining 

policy gradient methods with learned value functions effectively and are generally 

trained based on rewards and TD errors [33]. Actor Critic methods can converge 

quickly as it is sensitive to improvements in policy gradients methods as well as 

improvements in value function methods. 
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2.4.7 Curse of Dimensionality 

 

The curse of dimensionality refers to phenomena that occur when analyzing data in 

high dimensional space. As far as optimization is concerned, the objective function 

must compute for each combination of values. This can be problematic with higher 

dimensional data. Neural networks provide an ingenious solution to overcome the 

problems of high dimensionality as it can represent complex objective function and 

can be evaluated with little computational power [34]. 

 

2.4.8 The Deathly Triads 

 

The danger of divergence and instability occurs in reinforcement learning due to the 

combination of all of the following three elements, known as the deadly triads. 

 Function approximation – Estimating the state space using function 

approximate such as neural networks, non-liner function, tables etc. It also 

enables to model the control with features rather than fully observable states of 

the control problem. 

 Bootstrapping – Updating the value function and policy based on existing 

estimates rather than waiting for rewards based on actions. 

 Off-policy training – Training the value function based on a different policy 

that the policy that is being currently followed. 

It is important to note that the combination of all of the above makes the learning 

process and if one of the above is excluded then the process is unstable. Function 

approximation is critical in solving POMDPs and when the number of states is very 

large. Therefore, it cannot be avoided. Bootstrapping can be avoided at the cost of 

memory and computational costs. In most applications, on-policy learning will suffice. 

Therefore, as far as control problems are involved we can use on-policy techniques 

instead to avoid instability. 
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2.4.9 Activation Functions for neural networks 

 

Activation functions are mathematical models of neurons firing. Different 

mathematical models have been developed based on neurons of different parts of the 

brain [35]. Therefore, proper selection of activation functions must be carried out when 

designing neural architectures for different requirements.  A comparison of commonly 

used activation functions are shown in Figure 2.10. 

 

 

 

 Sigmoid - Sigmoid is a popular activation function used in neural network 

designs. The sigmoid function is particularly useful in classification and 

regression problems and is extensively used in supervised learning 

Figure 2.10 Comparison of activation functions 
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applications. A family of sigmoid functions can be generated and selected in 

order to streamline activation.  

 

 tanH - tanH is also a s-shaped activation function like the sigmoid function, 

but with a larger range. The main distinguishing feature of tanH is that negative 

inputs will be strongly mapped negative. This is also used in classification 

problems. The function is monotonic, but its differentiation is non-monotonic. 

 

 Rectified Linear Unit (ReLu) Activation - This is a newer but simple 

activation function derived by studying biological activation of visual cortex 

neurons. RNNS are better approximated and trained without instabilities using 

the ReLU activation function. Both the ReLu function and its derivative are 

monotonic. 

 

 Softplus/Softmax - Softmax is a normalized exponential function and is a 

generalization of the sigmoid function. The output of the softmax function is 

capable of representing the probability distribution of K possible outcomes. In 

most cases, softmax function is used in the classification problems and usually 

trained with cross entropy. In reinforcement learning the softmax function is 

used in selecting the next action based on the probability distribution of the 

action space. 
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2.5 Summary 

 

It was seen from the literature, that currently no academic work has been performed in 

automated control of pH in aquaponic system using reinforcement learning. However, 

pH controlling schemes have been studied in water treatment processes that can be 

applied in aquaponic system. The literature also pointed out that PID controllers have 

limitations when controlling highly non-linear processes such as pH control in 

aquaponics. Optimal control techniques have been used in designing pH controllers, 

but they lack in the performance and stability promised by the state art deep 

reinforcement learning algorithm. Therefore, deep reinforcement learning concepts 

were extensively studied. Based on the literature reviewed, the research gap addressed 

by this study is to design a controller using state of the state art deep learning algorithm 

to control the pH of an aquaponic system. Table 2 shows individual gaps in research 

identified to construct the research problem of this study. 

 

Table 2: Summary of literature review and identified research gaps 

Key Points Findings Gaps 

Application of Deep 

Reinforcement Learning 

in linear process control 

applications. 

Developed an artificial 

intelligence based approach 

to linear process control 

using deep reinforcement 

learning. 

The use of deep 

reinforcement learning in 

the design of controllers for 

nonlinear process 

controlling is yet to be 

studied. 

Human-level control 

through deep 

reinforcement learning 

Demonstrated a single 

architecture can successfully 

learn control policies in a 

range of different 

environments with only very 

minimal prior knowledge 

Current work in deep 

reinforcement learning is 

confined to simulations and 

computer games. 

Applications in industrial 

processes are to be done. 
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Limitations of PID 

control 

PI-PD controller, 

corresponding to PI control 

of a plant transfer function 

changed by the PD feedback 

can pro- 

duce improved control in 

several situations 

Tuning & PID architectures 

s for non-linear process 

control is not optimal. 

Asynchronous Methods 

for Deep Reinforcement 

Learning 

Asynchronous versions of 

four standard reinforcement 

learning algorithms 

Useful algorithms to be 

used in industrial control 

applications, currently 

implemented only in 

computer simulations & 

games 

Predicting Periodicity 

with Temporal Difference 

Learning 

A TD agent  using complex 

discount rates can identify 

periodic patterns in the 

return 

Can periodic process be 

automatically identified in 

an industrial process? 

Continuous  control  

with  deep  reinforcement 

learning 

Continuous control using 

deep reinforcement learning. 

Study performed in 

simulated environments 

Natural Value 

Approximators: Learning 

when to Trust Past 

Estimates. 

A method that learns how to 

combine a direct value 

estimate with ones projected 

from past estimate 

Is there an improvement in 

performance when using 

A3C algorithm with NVAs 

in industrial control? 

Comparison of Linear and 

Nonlinear Adaptive 

Control of a pH-Process  

Nonlinear adaptive 

controller works better than 

the linear one for tracking as 

well as for regulation 

purposes when infrequent 

disturbances in process feed 

occur 

Deep Reinforcement 

learning based controller 

have not been considered in 

the comparison 
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CHAPTER 3 METHODOLOGY AND CONTROLLER DESIGN 

 

3.1 Introduction 

 

This chapter presents an overview of the methodology of this study, including the 

design of the software, hardware and the experimental setups to study the behavior of 

the DRL based pH controller. 

 

3.2 Methodology 

 

This research methodology is based on several refinements to the context of the study 

as a response to new observations and due to comments brought about during the 

progress reviews. 

In order to study the performance of the controller, two experimental setups were 

designed. One setup was to evaluate the performance of the controllers for 

deterministic static conditions and the other to evaluate the performance in the 

stochastic dynamic system using the aquaponics system.  

In the static case the controller was studied for its transient characteristic under a step 

response, whilst in the dynamic case the controller would be tested for its steady state 

performance. A digital PID controller was also implemented to validate and compare 

the results of the DRL controller.  

 

The outline of the controller design is given below: 

1. Comprehensive literature review & background study 

2. Formulating the problem as a stochastic decisions process 

3. Definition of a input to the pH controllers 

4. Definition of outputs/action of the pH controller 

5. Define the reward function heuristic 
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6. Determine model free control or model based control 

7. Determine whether the actions are continuous or discrete 

8. Determine the type of function approximation 

9. Determine the learning mechanism 

10. Selecting the tool chain for controller development 

11. Selecting the inputs sensors and output actuators 

12. Design Experimental setups for the following cases: 

a. In static system case – In a deterministic setup 

b. In dynamic system case – In a stochastic setup 

13. Evaluating the performance of the controllers with respect to a digital PID 

controller. 

 

3.3 Development of the Deep Reinforcement Learning based controller 

 

The deep reinforcement learning approach uses deep neural networks in order to 

approximate the value function and the policy. Based on the studies carried out, 

recurrent neural network architecture is used to represent the value function. This is 

due to two main reasons, the first being that the entire process is treated as a partially 

observable Markovian decision (POMDPs) process. It was noted in literature that in 

such cases the concept of beliefs should be incorporated into the MDP so that 

Bellman’s solution to the optimal problem can be effectively solved. A belief function 

is capable of estimating unknown states with a series of direct or indirect measurement 

related to system. A relatively straightforward method of employing beliefs into the 

reinforcement learning problem is to represent the approximation function using a 

recurrent neural network. A recurrent neural network is particularly good at handling 

time series data and inherently capable of learning dependence between samples. 

Therefore a recurrent neural network approximates the value function of the current 

state based on the previous sequence of observed state transitions, thereby giving a 

broader analysis of the current state. 
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3.3.1 Specification of Inputs and Outputs to the controller 

 

The controller shall take in the measured pH value of the system as the input only. The 

output is determined by the DRL controller and it directly actuates a peristaltic dosing 

pump. The neural architectures are configured for this input and output. The use of pH 

alone allows to introduce partial information of the state space and to learn beliefs 

from a sequence of input pH measurements. Figure 3.1 shows the block diagram of the 

controller. 

 

 

 

 

 

The overall system is a negative feedback system. However, the DRL controller is 

designed to learn and model the system using experience. The experience is collected 

in the form of pH values and dosed amounts corresponding to observations and actions 

in the context of MDP and reinforcement learning. 

The system of equation given by Equation 2.3 showed that pH, biomass and 

temperature are important parameters of nitrification in an aquaponics system. 

Practically in aquaponics system, pH is the more contributing factor, therefore, this 

study attempts to use the pH to observe the system and use the DRL controller to learn 

control policies to optimize the system with minimal amount of data. 

 

 

 

 

DRL  

Controller 
pH Dosing Pump 

Figure 3.1 Relationship between the input and output of the DRL 

controller 
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3.3.2 Design of Critic 

 

The critic for the proposed deep reinforcement learning controller will be based on a 

Recurrent Neural Network (RNN) with 10 steps. The recurrent neural network was 

necessary in order to mitigate the instabilities in learning due to control of a partially 

observable state space by introducing a belief into the learning process. This allows to 

learn a better value function that not only determines the current state based purely on 

observation but based on current and previous 9 observations. All activations for the 

critic are based on the Rectified Linear Unit (ReLu). This is known to be good in 

training recurrent neural networks and also because the critic attempts to estimate a 

function rather than perform a classification function in which case the softmax or 

sigmoid function is better suited. Furthermore, a basic RNN cell was used in creating 

the RNN network in contrast to using other types of cells such as Long Short Term 

Memory (LSTM) & Differential Neural Computer (DNC). Figure 3.2 shows the 

diagrammatic overview of the RNN used to model the critic that approximates the 

value function of the state space. 

 

 

 

 

 

 

Figure 3.2 Recurrent Neural Network that approximates the critic 
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3.3.3 Design of Policy Network 

 

The policy network produces a probability distribution of the next action based on 

current observations. The output of the policy network will then be used to select the 

next action given the current state in order to maximize the total reward. We can also 

consider a RNN based policy network, but we shall use a feed forward network as we 

can assume that the critic is capable of producing a good estimate of the current state. 

This also can speed up the execution of the reinforcement learning algorithm. Hence, 

the policy will be a feed forward neural network with two hidden layers and activated 

using softmax activation layers. 

 

 

  

 

 

 

 

 

 

 

 

 

The policy network uses the current pH and critic as inputs to the multi-layer neural 

feed forward network. The two outputs from the policy network is combined using the 

normal distribution to produce the actual dosing value as shown in Figure 3.3. 
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Figure 3.3 Neural network that approximates the actor/policy network 
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3.3.4 Determination of Learning Rate 

 

The learning rate plays an important role in training the neural network. Small learning 

rates makes learning slow to converge and thereby require more training steps to 

achieve the desired accuracy. In contrary, large training steps may cause oscillatory 

behavior in training, as seen in hill-climbing problems. Therefore, it is important to 

select an appropriate learning rate to achieve productive results. In our proposed 

system we use a learning rate of 0.01 based on previous training experience.  

 

3.3.5 Learning and Gradient Descent based update 

 

The update mechanism for the policy network and the critic network is performed 

differently. Policy gradient methods discussed in section 2.4.5 are used to update the 

parameterized neural policy network. The policy network updates the policy 

parameters in the direction suggested by the critic. This gives rise to the following 

update rule 

𝑑𝜃
 

← 𝑑𝜃 + ∇𝜃′ logπ(ai|si; 𝜃 ′) (R − V(si; 𝜃 ′
𝜐))    (3.1) 

 

The parameter of the critic is updating based on the action value function as shown 

below 

 𝑑𝜃𝜐
 

← 𝑑𝜃𝜐 +  ∂(R − V(si; 𝜃′𝜐))2 / ∂𝜃′𝜐   (3.2) 

 

Therefore, these updates will be used to update the policy and critic networks within 

the proposed DRL controller.  
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3.3.6 Selection of deep reinforcement algorithm 

 

In order to represent the problem as a general purpose learning problem, the controller 

will be modeled as a model-free reinforcement learning based controller in continuous 

action space. Model-free control provides a general purpose learning technique for 

designing controllers without an explicit mathematical model of the system. Therefore, 

controllers can be designed purely using experience without supervisory training or an 

explicit mathematical model. In order to train the two neural structures, we shall 

employ a gradient based approach in contrast to a gradient-free method such as genetic 

algorithms. The recursive form of Bellman’s equation would be used to update the 

neural network. A range of model free algorithms are compared in table 3. 

 

Table 3: Comparison of different DRL algorithms  

Algorithm Monte 

Carlo 

Q-

Learning 

SARSA DQN A3C 

Policy Off-Policy Off-Policy On-Policy Off-Policy Off-Policy  

State Space Discrete Discrete Discrete Discrete Continuous 

Action 

Space 

Discrete Discrete Discrete Continuous Continuous 

Operator Sample 

means 

Q-Value Q-Learning Q-Learning Advantage 

 

Based on the above comparison, the A3C algorithm would be used in the design. The 

critic will approximate the value function and the actor shall produce actions that are 

continuous in time. This can be achieved using a feed forward neural structure that 

produces the mean and variance for each output action. The actual actuation signal is 

constructed using a probability distribution, function such as the Gaussian function, 

with the generated mean and variance.  Actor-Critic methods provide stable and 

effective learning and have been shown to work well in a range of applications. 

Therefore, the controller would use the A3C actor-critic algorithm shown by 

Algorithm 6. 
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Algorithm 6 Asynchronous advantage actor-critic - pseudo code for each actor-

learner thread. 

//Assume  global shared parameter vectors 𝜃 and 𝜃𝜐 and global shared counter 

//Assume thread specific parameter vectors 𝜃′ and 𝜃′𝜐 

Initialize the thread step counter 

repeat 

 Reset gradients: 𝑑𝜃
 

← 0 𝑎𝑛𝑑 𝑑𝜃𝜐
 

← 0 

 Synchronize thread-specific parameters 𝜃 ′ = 𝜃 and 𝜃′𝜐 = 𝜃𝜐 

 𝑡𝑠𝑡𝑎𝑟𝑡 = 𝑡 

 Get state 𝑠𝑡 

 repeat 

  Perform 𝑎𝑡 according to policy π(at|st;  θ′ ) 

  Receive reward 𝑟𝑡 and new state 𝑠𝑡+1 

  𝑡
 

← 𝑡 + 1 

  T
 

← 𝑇 + 1 

 Until terminal 𝑠𝑡 ort 𝑡 − 𝑡𝑠𝑡𝑎𝑟𝑡 == 𝑡𝑚𝑎𝑥 

 𝑅 = {
0                  𝑓𝑜𝑟 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑠𝑡 

𝑉(𝑠𝑡, 𝜃 ′
𝜐)     𝑓𝑜𝑟 𝑛𝑜𝑛 − 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑠𝑡 

 

 for 𝑖 ∈ {𝑡 − 1, … , 𝑡𝑠𝑡𝑎𝑟𝑡} do 

  𝑅
 

← 𝑟𝑖 + 𝛾𝑅 

  Accumulate gradients wrt 𝜃 ′ : 𝑑𝜃
 

← 𝑑𝜃 + ∇𝜃′ log π(ai|si; 𝜃 ′)(R − V(si; 𝜃′𝜐)) 

  Accumulate gradients wrt 𝜃′𝜐
′ : 𝑑𝜃𝜐

 
← 𝑑𝜃𝜐 +  ∂(R − V(si; 𝜃′𝜐))2 / ∂𝜃′𝜐  

 end for 

 Perform asynchronous update of 𝜃 using 𝑑𝜃 and 𝜃𝜐 using 𝑑𝜃𝜐 

until T> Tmax 

 

 

3.3.7 Designing the Reward Function  

 

The reward function will be based on how close the current measured value is to the 

set point and the measured pH value. The set value generally needs to be kept at 7.2 

based on studies performed on Nitrification. Initially, the reward function will be 

designed based on this information as shown by equation 3.3. However, different 

reward signals can be designed based on the different parameters. For example, the 

reward signal can be obtained with the use of an additional Oxidation Reduction 

Potential (ORP) probe that gives a vague indication of nitrification.  

𝑟 =  {
100        𝑖𝑓 |7.2 − 𝑝𝐻| ≤ 0.01
−100     𝑖 𝑓 |7.2 − 𝑝𝐻| > 0.01

    (3.3) 
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3.3.8 Overall Architecture of the DRL controller 

 

The overall system architecture including, software, hardware is represented in the 

block diagram shown in Figure 3.4. 

 

 

 

 

pH measurements are consumed by the DRL controller and are used to construct the 

reward signal based on the error. In this scenario the pH is set at 7.2 and the error is 

determined. This error is used with equation 3.3 to generate the reward signal. 

Elements of the A3C algorithm are represented by the global & local networks and 

each of these networks contains an actor and a critic network. Architecture of these 

networks were explained in detail in section 3.3.2 and 3.3.4. 

 

3.3.9 Results based on empirical work 

 

The UML diagram shown in Figure 3.5, presents the object oriented implementation 

of the controller. The ACNet class represents the controller containing the actor and 

critic neural nets. Each network is initialized during instantiation of the ACNet neural 

class within the constructor. All parameters required to configure each neural net is 

defined as static class variables or local/global variables. The ACNet class implements 

Figure 3.4 Overall system architecture of DRL controller and its peripherals 
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several methods to construct concrete implementation of the computation graph of the 

neural networks. 

 

 

 

 

A visual representation of the controller implementation using tensorboard is shown 

in Figure 3.6. Tensorboard is a utility provided by google to visualize computational 

graphs used in designing neural architectures and in deep learning research. This 

neural architecture is purely based on the standard reinforcement learning architecture, 

where losses are optimally minimized. Python implementation of the controller is 

produced in Appendix II.  The interaction between several worker networks with the 

global network is shown in Figure 3.6. (Four worker nodes each designated as W_0 to 

W3 and the Global node consists of two neural networks, an actor network and a critic 

network). When the A3C algorithm executes, the neural parameters of the global 

networks are asynchronously updated by the worker networks after several epochs.  

 

Figure 3.5 UML diagram of the DRL controller implementing the A3C algorithm 
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A detailed view of a worker node is presented in Figure 3.7. The actor and critic 

networks can be seen here. Observed readings and predictions from the neural network 

structures are used to generate TD errors. These errors are then used to form the actor 

losses, critic loses. The output from the actor is first bounded within an interval. This 

is then used with the Gaussian function to generate the actual dosing value. 

 

 

 

 

Figure 3.6 Visual Representation of the implemented DRL controller using 

Tensorboard 

Figure 3.7 Internal networks of the DRL controller represented using 

Tensorboard 
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The learning process of the controller is shown in Figure 3.8. It can be seen that the 

actor and the critic components of the controller minimizes its entropy losses and 

converges towards zero. This shows that controller successfully learns and the critic is 

capable of accurately mapping the current state of the system within the learnt state 

space. 

 

 

 

 

 

 

 

 

 

 

 

 

The process of learning was observed using the total reward accumulated during an 

episode over several training epochs. The objective of reinforcement learning is to 

maximize total number of rewards over the duration of an episode. Figure 3.9 shows 

the variation of the total reward with each time step of an episode during an initial 

phase of controller learning. It can be seen that the reward signal produces large 

negative numbers. It is important to note that the design of the reward function has a 

considerable effect on the reward obtained using the controller. Therefore, it is 

important to consider vital parameters when designing the reward signal of the system. 

steps 

Figure 3.8 Training losses of the actor network and critic network plotted at 

each training steps. 

 

steps 
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3.3.10 Tool chains and Development tools 

 

As the controller is based on deep reinforcement learning, the software stack plays a 

major role. There are several software frameworks and the following table compare 

different software framework for developing deep reinforcement learning algorithms. 

 

Table 4: Comparison of different software framework for implementing DRL 

controller  

 

 

 

 

 

Based on the comparison given in table 4, Tensorflow was selected as the framework 

of choice for the implementation of Deep RL based controller. Tensorflow is an open 

source computational framework by Google. It has inherent advantages in machine 

learning, parallel computation and provide unparalleled networking features thereby 

    

Software Library Method Production Level Platform 

Tensorflow Computational graph Yes Single/Multi 

PyTorch Computational graph No Single 

Torch Computational graph Yes Single 

Matlab Matrix based Yes Single/Multi 

Numpy Array -based No Single 

Figure 3.9 Total moving reward generated at two different epochs. 
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making it easy to run tensorflow code in production. Tensorflow operates by defining 

a computational graph and then executing this graph using a Session. Any computation 

within the solution is restructured in a manner that is presentable as a graph. This graph 

is an object, which a session can use to get output/s based on the given input/s. 

 

3.4 Development of the PID controller 

 

A digital PID controller is required to compare the performance of the controller. The 

controller takes in the pH readings from the Atlas sensor and finds the error between 

the reading and the set point of pH 7.2. The controller gains are important parameters 

of the PID controller. Therefore, in order to establish the required PID gain values a 

Matlab/Simulink model was used. This model is shown in Figure 3.10. 

 

 
 

 

The gains shown in table 5 were obtained from the Matlab/Simulink model based on 

works carried out by the author in Appendix I.  Figure 3.10 shows the results on 

modeling carried out using Simulink/Matlab from the study presented in Appendix I. 

These values are fed in to the digital PID controller implementation presented in the 

code listing in Appendix IV. 

Figure 3.10 Simulink model of a nitrification bioreactor in an aquaponics 

system  
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Table 5 Gain values obtained from Simulink model 

 

 

 

 

3.5 Hardware Design 

 

The pH is generally acquired from a pH probe. The probe is an amperometric device 

that measures a small current generated from the probe. The pH measures the 

concentration of H+ and OH- ions within a solution and converts them to an electric 

signal using an ion sensitive membrane transducer. In this study off-the-shall hardware 

would be used in the controller. Table 6 compares different pH measuring systems. 

  

Table 6 Rise times of DRL & PID controller in static system 

 

Based on the above criteria, the Atlas Scientific pH probe and dosing pump was 

selected in our design. The main actuator for the pH controller is the dosing pump. The 

dosing pump is based on the peristaltic pump by Atlas Scientific. Atlas scientific 

provides laboratory grade OEM devices that is fully supported with an application 

programming interface to implement our own hardware & software. This drastically 

reduce hardware development time.  

Proportional gain 1.2 

Integral gain 0.5 

Differential gain 0.2 

   

 pH Sensor Dosing Pump 

 Interface Cost Accuracy Range Interface Cost Accuracy 

Atlas 

Scientific 
UART/ 
I2C 
 

Average +/– 0.002 .001 − 

14.000 
UART/ 
I2C 
 

Average +/- 1% 

Endress 

Hauser 
4-20mA Expensive +/-0.01 .01 − 14 Modbus 

TCP/RTU 
Expensive +/-0.5% 

Hanna Manual Low +/-0.05 .1− 14 - Average +/-5% 

Horiba Serial Expensive +/– 0.001 .001 − 

14.000 
Modbus 

TCP/RTU 
Expensive +/-0.5% 
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The chosen hardware for implementing the DRL controller is the raspberry pi single 

board computer. Raspberry Pi is low cost computational/educational platform that is 

capable of running the linux OS.  This makes the raspberry Pi a powerful computer 

ideal for prototyping robotic controllers, IoT gateways and even nodes of a computer 

cluster. Therefore, the Raspberry Pi is ideal for prototyping the proposed controller in 

embedded computing infrastructure. The raspberry pi model that is used in prototyping 

the proposed deep reinforcement learning based controller is the raspberry pi zero w. 

The raspberry pi zero has inbuilt wifi and bluetooth connectivity, enabling easy 

hardware interface to the Internet. This is an important feature that helps in 

implementing the deep RL based controller design. 

The Atlas pH probe takes pH readings from water that flows through the nitrification 

bioreactor of the aquaponics system. The probe connects to the Atlas pH sensor as 

shown in Figure 3.11. The sensor converts the readings to a digital signal and sends it 

to the raspberry Pi using an I2C interface. The control signals generated from the DRL 

controller is sent to the dosing pump also using the I2C interface. 

Figure 3.11 Hardware Interfacing 
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CHAPTER 4 EXPERIMENTAL RESULTS AND ANALYSIS 

 

4.1 Introduction 

 

In this chapter details on experimental results and their analysis are presented for a 

deterministic/ static system and a dynamic system setup. The static system is a normal 

titration experiment and the dynamic system is the aquaponics system. 

 

4.2 Evaluating controller performance under a static deterministic system 

 

The experimental setup for the static deterministic case is shown in Figure.4.1. The pH 

controller controls the dosing based on the input pH. The DRL controller designed in 

this study is programmed in to the raspberry, which acts as the pH controller. In this 

setup, the performance under acid-base titration is recorded and analyzed. 

 

 

 

 

Figure 4.1 Setup to study the performance in a static system 
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4.2.1 Hardware Setup 

 

Figure 4.2 shows the assembled setup with the pH probe, dosing pump and the 

raspberry pi. 

 

 

 

 

4.2.2 Experimental procedure 

 

In the static process, a base would be dosed into an acid and the output characteristic 

observed. In this case, caustic soda (NaOH) of normality 0.1 mol/L will be used to 

neutralize concentrated vinegar (ethanoic acid).   

  

Figure 4.2 Setup to study the performance in a static 

system 
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4.2.3 Results 

 

The transient response of the controller for a set pH of 7.2 is given in given in Figure 

4.3 

 

 

The proposed controller is promising as it is capable of achieving the set point faster 

than the digital PID controller. The controller is capable of predicting the systems next 

state using the learnt model, whereas in PID controllers no such prediction is made. 

Therefore, the ability to predict makes the DRL based controller respond quickly to 

the error, process noises and external disturbances. This results in significantly smaller 

rise times for a step input. Based on Figure 4.3, the rise time of the deep reinforcement 

learning based controller is around 50 min whilst the rise time of the of the PID 

controller is about 150 min in static system. The PID parameters were based on table 

5 given in section 3.4. Two more titration curves were obtained for two different 

variations of the proportional gains and as shown in Figure 4.3. These gains are 

deviations of proportional gains obtained from section 3.4. Further improvement of 

the rise time was limited due to limitation in actuator dosing, only a maximum of +10 

mL/min could be dosed by the Atlas Scientific peristaltic dosing pump.  

  

Figure 4.3 Transient responses of the controllers in the static 

system 
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4.2.4 Analysis 

 

In order to test whether there is a significant difference between the DRL based 

controller and the PID, the rise time and settling times of both DRL and PID controller 

transient responses were collected. The PID controllers were tested out with a range 

of different gain values, introducing extra variance into the system. Sampled rise time 

from these step responses is shown in table 7. 

 

Table 7: Rise times of DRL & PID controller in static system 

 Rise Times (s) 
 

DRL  PID  

 51 96 
 

61 109 
 

42 155 
 

50 93 
 

52 151 
 

56 95 
 

58 86 
 

64 130 
 

54 119 
 

49 170 
 

55 138 
   

Mean 53.8 122 

Variance 36.8 827.4 

 

 

The data in table 8, shows that there is very little skew in the observed readings. 

Therefore, we can say that the probability distributions of the rise time of both the 

controllers are symmetric and can be modeled by the normal distribution. Therefore, 

we can say that the rise time of the DRL control can be modeled with a Normal~ (53.8, 

36.7) distribution and the rise time of the PID controller can be modeled with a 

Normal~ (122, 827.4). The large variance in the PID controller is because the PID 

gains can be set to different values to obtain different rise times.  Therefore, we can 

proceed to test for Analysis of variance. 



55 
 

 

Table 8: Rise times of DRL & PID controller in static system 

 

 

 

 

 

 

 

 

 

  

 

The data was subjected to a 1-way ANOVA test to determine if there is a significant 

difference between the performances of the two controllers. The following hypothesis 

was used in the ANOVA test with alpha = 0.05 

H0. The means of observations for RL controller is same as PID controller. 

H2. The means of observation for RL controller is different to PID controller. 

  

 DRL Control PID Control 

Mean 53.82 122 

Standard error  1.83 8.67 

Median 54 119 

First Quartile 50.5 95.5 

Third Quartile 57 144.5 

Variance 36.76 827.4 

Standard Deviation 6.06 28.76 

Kurtosis 0.45 -1.31 

Skewness -0.18 0.33 

Range 22 84 

Minimum 42 86 

Maximum 64 170 

Sum 592 1342 

Count 11 11 
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Table 9: Results of ANOVA test on the static case results 

ANOVA-Single Factor 

Alpha 0.05      

       

Groups Count Sum Mean Variance   

DRL 

Controller 

11 593 54 34   

PID 

Controller 

11 1342 122 832   

       

Source of 

Variation 

SS df MS F P-

value 

F 

critical 

Between 

Groups 

25525 1 25525 58.95 2.19 4.35 

Within 

Groups 

8660 20 433    

Total 34185 21     

  

Based on table 9, the null hypothesis is rejected, where the performance of the two 

controllers are not the same. So we can firmly propose that the Deep RL based 

controller is different to the PID controller with higher confidence. However, ANOVA 

does not say which is better than the other. The mean of Deep RL is smaller than the 

PID controller and the two controllers are different, meaning that the Deep RL 

controller is faster.  

The mean steady state values for the two controllers are given in table 10. It can be 

seen that both the controllers have similar final values. 

 

Table 10: Comparison of steady state value of the two controllers in the static case 

  
 DRL Control PID Control 

Mean Steady State Value 7.202136313 7.67035 
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4.3 Evaluating controller performance under a dynamic stochastic system  

 

The aquaponic system represents the dynamic system that is used to evaluate the 

performance controller as shown in Figure 4.4. Effluent waste from the fish tank is 

pumped to a bioreactor before it goes to the grow bed and then returned to the fish 

tank. The pH controlling process happens within the bioreactor under the influence of 

the proposed DRL based controller. 

 

  

Figure 4.4 Setup used to study the performance in a dynamic 

system 
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4.3.1 Hardware Setup 

 

The aquaponics setup with the bioreactor and the DRL controller is shown in 

Figure.4.5. The experimental procedure for the above setup is given in the next section 

 

 

 

.  

Figure 4.5 The aquaponics system used to determine the response 

of the DRL controller dynamic stochastic conditions 
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4.3.2 Experimental procedure 

 

In the dynamic case, which is the harder control problem, the current state of the 

system depends on the previous inputs of the system. In order to evaluate the 

performance of the controller in the dynamic case, the following setup would be used. 

A dynamic system shown below is a simple aquaponics system. Aquaponics is a closed 

loop system for growing plants, where water from a fish tank is used as nutrients to 

plants through the recirculation of water using a water pump. Nitrification occurs 

within the system in the grow bed using microorganisms.  Nitrification causes the pH 

to decrease and this pH in turn causes nitrification process to decrease. This pH 

decrease is also indicative of the amount of microorganism available to actually 

perform the conversion from ammonia to nitrates. Clearly the current pH value has an 

impact on the performance of the system in the future, therefore in this setup, we want 

the controller to maintain a pH of 7.2 continuously and taking the necessary actions to 

counter system changes due to process noise and disturbances. The system ran for 45 

days and the pH was observed over the entire duration. The performance of the two 

controllers was evaluated based on the steady state pH value. 
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4.3.3 Results 

 

The controller was tested for its steady state behavior under a dynamic system. Due to 

the stochastic nature of the control process is better handled by the proposed Deep RL 

based controller. The stochastic nature of the process is effectively learnt by the neural 

networks, especially due to the recurrent neural network. The recurrent network in 

particular is capable of accurately predicting the behavior of the dynamic system as it 

learns the state space through gathered experience. With limited experience or limited 

exploration of state space, the controller slightly under performs but with experience, 

the system shows superior results. The pH values of the aquaponic system monitored 

over a 45-day period is shown in Figure 4.6. 

 

  Figure 4.6 Steady state response of the aquaponics system. This setup is a 

stochastic system and the pH should be maintained at a set point of 7.2 for 

extended durations. 



61 
 

4.3.4 Analysis 

 

In the dynamic case the mean steady state value was evaluated and compared for a set 

point of pH = 7.2 

 

Table 11: Comparison of steady state value of the two controllers in the dynamic case 

 

DRL PID 

Mean Steady State Value 7.202136313 7.7180351952 

  

Based on table 11 we can say that the DRL based controller is much better at 

maintaining the pH for long periods of time. In this study the controllers were observed 

for 45 days in an aquaponics system. The data was logged by the raspberry pi based 

controller hourly. All readings taken during the day were averaged. Average readings 

for the 45 days were used to generate the output characteristics of the controller. Table 

11 gives the mean value for all 45 days and is summarized for both controllers. 
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CHAPTER 5 CONCLUSIONS  

 

5.1 Conclusion on Objectives 

 

This research set out to investigate the application of state of the art deep reinforcement 

algorithms (DRL) in the optimal control of real world nonlinear industrial 

applications, with focus on optimal pH control of a nitrification bioreactor in an 

aquaponics environment. The requirement for this research emerged from the 

widespread adoption of Artificial Intelligence in industrial applications in order to 

meet Industry 4.0 standards. In this research study, a Deep Reinforcement 

Learning based controller was implemented for the optimal control of pH in a 

nitrification bioreactor of an aquaponics system. The controller used the 

Asynchronous Advantage Actor Critic algorithm as its main driving DRL 

algorithm. The performance of this algorithm was compared with a standard 

digital PID control algorithm. The studied DRL algorithm proved to be superior 

to the PID control scheme when operating on a deterministic system and on a 

dynamic system. Therefore, we can conclude that DRL algorithms can be used to 

effectively control highly non-linear process control systems. 

 

One of the major aspects of this study was that in classical pH control, sampling time 

requires to be long for the system to come to equilibrium. In the case of the DRL based 

controller, the system dynamics are slowly learnt with experience and is capable of 

taking drastic actions without causing instabilities within the process control system. 

The PID controller is concerned only with the current observed reading and the current 

error, it has no measure of the system states and its transition dynamics, it just feeds 

back weighted sums of the observed states. This highlights a limitation of using PID 

controllers in controlling non-linear systems. Therefore, we can conclude that deep 

RL based controllers can produce fine grained control with respect to PID controllers. 
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5.2 Conclusion on Research Questions 

 

In this study, model-free reinforcement learning algorithms were identified and 

compared with respect to one another. Important aspects of these algorithms are its 

policy and its method of updating its parameters.  The controller designed is a deep 

reinforcement learning algorithm that is capable of learning the system without any 

prior knowledge about the system or an explicit mathematical model. Therefore we 

can provide a positive answer to the first research question. Furthermore, in this study 

minimalistic use of sensors were enforced in controller design to simulate the partial 

observation scenario. We incorporated beliefs into the system to compensate for the 

limited observations in data through the use of recurrent neural network architectures 

in the controller design. Information & beliefs was extracted from a sequence of 

previous time varying data to estimate the current state without fully observing the 

system. The recurrent neural network provides a powerful function approximate that 

can estimate past history of the system and thereby aid in deriving the appropriate 

beliefs in obtaining an optimized controller under partial observation. 
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5.3 Further works  

 

The work carried out in this thesis can be extended to discrete non-linear systems in 

the industry. The following text elaborates on the application of DRL algorithms in 

some important industrial processes. 

 

5.3.1 Internet of Things use case 

 

The deep reinforcement learning controller resides within the learning servers of an 

IoT cluster, where the algorithm resides and performs the DRL learning steps. This 

flow is shown in the learning cluster of Figure 5.1. The optimized controllers are then 

fed back into the endpoints.  It is important to note that the controller is actually 

residing in the endpoint and only the learning and parameter optimization process 

performed using the learning cluster. This particular implementation was chosen to 

comply the implementation of the system using Industry 4.0 standards and complete 

justification of it is beyond the scope of this research study. 

 

  

Figure 5.1 Implementation of the DRL controller in IoT/Industry 4.0 based 

applications 
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5.3.2 DRL controllers in SCADA systems 

 

An example of implementing the Deep Reinforcement Learning based controllers in 

an Industrial SCADA system is shown in Figure 5.2. 

 

 

 

 

The Deep RL controller consumes the data from sensors and actuators through the 

networking provided by the SCADA system. The DRL controller is hosted in a server 

from which the SCADA data is accessed. The DRL server then creates the policy and 

critic networks required by the DRL algorithm. These policies then can be enforced 

via the SCADA network. The following use case shows a potential application of a 

SCADA based DRL controller architecture. 

Waste Management Optimization - The SCADA based DRL can be effectively used 

in applications of energy optimization and optimal pollution control in waste 

management incinerators. The DRL can be effectively combined with the SCADA 

system to produce optimal control sequences to minimize energy costs and to improve 

gas emissions from the incinerator. The application of state of the art deep 

reinforcement algorithms in a variety of non-linear industrial applications was shown 

in this study. These controllers, powered by artificial intelligence algorithms, paves 

the way for the next industrial revolution, Industry 4.0. Therefore, further studies in 

this domain is encouraged in order to for AI to really impact the modern world. 

Figure 5.2 Implementation of the DRL controller in a SCADA scenario 
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