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Abstract 

Complex event processing (CEP) is very useful in analyzing event streams and identifying useful 

patterns from them. Due to the distributed nature of existing applications, high volume of event 

generation and complex queries, using a single node CEP became problematic. One way to overcome 

this problem is to introduce multiple complex event processing nodes and distribute the queries 

among them for load balancing. However, due to the stateful nature of events, distributing queries 

among CEP nodes is not an easy task. Query distribution across CEP nodes is an NP hard problem.  

 

This research is focused on the problem of optimally processing a large number of different 

event streams using a large number of CEP queries in a distributed manner. Optimization of 

query processing and distribution is done in two aspects: optimizing the individual query by 

introducing query rewriting, and optimizing query distribution across multiple nodes by 

introducing new factors to the query distribution algorithm. Cost of individual queries, 

number of event streams common to queries, CPU and memory utilization of nodes that run 

CEP queries, type of queries, and the number of queries in each node are the factors 

considered for query distribution. Usability improvement is done in two ways: adding 

standard communication by introducing JSON messages for communication, and integrating 

firebase messaging service to standardize the event source. 

 

 

Experiments show that with these optimizations, compared to existing systems, STHITHIKA 

is capable of providing a higher system throughput, without making an adverse impact on 

event duplication or process load variance across processing nodes. It has the ability to 

handle higher number of queries compared to existing system. It is also more robust to event 

bursts. Due to the changes in query distribution and re-writing, time taken for initial query 

distribution has increased. Usability improvement enabled the easy integration with other 

technology and decoupling event source from the system. 
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1 INTRODUCTION 

Availability of data in digital format increases exponentially with the advancement of 

technology. Real-time analytics of big data created the need for fast data processing. In 

highly competitive business environments, the ability to analyze real-time events and giving a 

quick response is highly advantageous rather than storing data in a database to be analyzed 

later. Real-time data analysis is helpful for decision making in areas such as the stock market, 

fraud detection in online transactions, health care, traffic analysis, etc. Existing applications 

achieve this objective [1, 2] with the real-time input stream analyzing capability using 

Complex Event Processing (CEP). Using CEP, high volume of event streams can be handled 

to identify complex events. Achieving high performance in a high volume of event streams is 

a major challenge.  

 

There are several problems associated with single node CEP systems. Single point of failure 

is possible in an erroneous situation. The CEP node overloading is another possible problem 

when there is a high load of input event streams. A single node CEP system might not be able 

to handle complex and large scale event streams. There are difficulties in getting the expected 

performance when using a central server [3, 4] as well as scalability issues.  

 

When using a single node CEP system, all the low level events generated by the 

geometrically distributed sources need to be sent to a single location, increasing the 

communication overhead. As a result of a high volume of events being transferred, network 

latency can increase. There are security concerns when low level events are being transferred 

across the network as low level data can be manipulated by third parties while being 

transferred across the network. 

 

As a solution, distributed complex event processing systems were introduced, where queries 

used to identify useful patterns in event streams are distributed across the processing nodes. It 

is a Non- deterministic Polynomial-time (NP) hard problem [2, 4] because the parameters that 

affect for query distribution is much higher. There is no specific optimal way to distribute 

queries efficiently across processing nodes.  
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Parameters such as the number of shared events between nodes, the processing power of the 

CEP node and the underlying CEP engine can affect the throughput of the system. With 

Complex Event Processing (CEP), it is possible to analyze these data streams based on a 

given set of queries. A pre-defined rule set is available in each of the CEP nodes. Based on 

these set of rules, input event streams are analyzed and the output is produced. The rules in 

the CEP nodes are written using a simple query language similar to SQL. There are two 

techniques in distributed CEP; operator distribution and query distribution. In operator 

distribution, operators in a query are distributed across multiple processing nodes and input 

events need to follow a sequence of operators. In query distribution, queries are distributed 

across multiple nodes. Operator distribution is used to handle complex queries whereas query 

distribution is used to handle higher amount of queries. In this research, the main focus is 

query distribution.  

1.1 Research Problem 

There are multiple problems that need to be addressed in distributing CEP queries. 

Implementing a global algorithm is problematic when the number of queries and event 

sources are keep on increasing. The query distribution algorithm needs to scale up with 

respect to the number of queries and the number of events. The real problem in scaling up is 

query distribution. Some queries may not execute in high frequencies whereas some queries 

may execute frequently with respect to the incoming event stream. If the few queries that 

execute frequently belong to the same node, there is a higher probability of overloading that 

node while other nodes remain idle. There are many parameters that need to be considered for 

query distribution. Amount of queries, input/output streams, network latency, communication 

overhead, processing power of the nodes, allocated queries in a particular node, and statistics 

of the event stream are some of the parameters. Therefore, optimal distribution of queries 

among CEP nodes is an NP hard problem [2, 4] because the number of parameters affects for 

optimal query distribution is much high. 

 

Due to the above-mentioned facts, distribution of queries among processing nodes is not an 

easy task. Queries should be distributed among processing nodes in such a way that each CEP 

node receives events without overloading. In such a system, heterogeneous event processing 

can achieve high performance by dividing processing into separate nodes [6]. 
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The query distribution algorithm should be capable enough to distribute the queries among 

processing nodes without overloading and with minimum communication overhead.  

The SCTXPT system for query distribution [3] maintains a threshold level when allocating 

queries to a node. However, correlated queries grouped into the same node can lead to 

overloading when there is a high volume of such events. Therefore, there should be a 

mechanism to predict the load in a particular node before allocating a query. Cost based 

query allocation is an existing solution for this. The VISIRI system is an improvement of 

SCTXPT which uses cost based query allocation [7]. In the VISIRI system, three main 

factors have been considered for query distribution; the number of attributes in a query, the 

count of input/output streams and the window length. However, the VISIRI system does not 

focus on parameters such as event type, or processing power of a node. 

 

Most of the existing distributed CEP systems including VISIRI system focus on improving 

only the query distribution. It is possible to have alternatives that can improve the overall 

system performance other than the query distribution. Those factors are not considered in 

most of the CEP systems. But we can improve the overall efficiency by integrating new 

features such as query optimization. At the end, the actual execution is based on the underline 

query. Time taken to produce the output depends on the execution plan of the query. 

Therefore having optimized query execution plan will provide the fast responses. Since there 

can be thousands of queries in a long run, optimizing each single query will cause for high 

throughput of the system. If a node can produce fast responses, then the possibility of node 

overloading will decrease. Then the overall efficiency will eventually increase even though 

the query distribution cannot be further optimized. Therefore, query optimization is another 

aspect of improving the performance of distributed CEP systems.  

 

Another aspect of CEP systems is the usability. Most of the existing distributed CEP systems 

including VISIRI system are mainly focusing on performance and efficiency. But in actual 

usage, usability of the system and ease of integration is matters. As an example, existing 

VISIRI system is tightly coupled with Java and it cannot integrate with any other technology. 

Therefore improving the usability and decoupling the technology based restrictions is 

required with the help of standard communication mechanisms. It will reduce the developer 

work when it needs to integrate with different environments.  
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1.2 Research Objectives 

Main objective of this research is to improve the overall performance and usability of 

distributed CEP systems. To achieve the main objective followings needs to be done.  

 

Maximize the throughput in a distributed CEP system, while handling a high query count. 

There should have a balanced resource utilization across all the CEP nodes without 

overloading. In order to achieve this, it is essential to build query distribution algorithms 

using the parameters mentioned above in section 1.2.  

 

Improve the query execution plans of distributed CEP systems which will help to minimize 

the execution time of each single query. The lower execution time will contribute to achieve 

high throughput of distributed CEP system. 

 

Finally, standardization of query distribution of CEP system since most of the distributed 

CEP systems are having technology based restrictions which have reduced the usability of the 

systems. Decoupling these technology based restrictions in order to improve the usability and 

introducing standard event source to the distributed CEP system as an enhancement. 

 

1.3 Research Contributions  

There are multiple optimizations and enhancements done as research contributions. First 

contribution is static query distribution algorithm optimization by introducing resource 

utilization and event type. Second contribution is individual query optimization within the 

distributed CEP system. The queries are optimized before the distribution between nodes. 

The queries are re-writing and checking for duplicates under query optimization.  

 

There are two system enhancements. The Json messages are introduced to standardize the 

communication and reduce the technology based restrictions. The firebase messaging service 

is introduced to decouple the system from inbuilt event source and standardize the 

communication.  
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1.4 Structure of Thesis 

The chapters of the thesis are organized as: Chapter 2 of the thesis contains the literature 

review, and Chapter 3 contains the research methodology. Chapter 4 is the evaluation, 

chapter 5 is the future work, chapter 6 is conclusion and 7 is references.  
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2 LITERATURE REVIEW 

This chapter comprises of the background related to complex event processing. The chapter 

begins with an introduction to complex event processing and details about complex event 

processing engines such as Siddhi, Esper and Cayuga CEP engines. 

 

Under the distributed complex event processing section, the need of distributed CEP system, 

the problems in a distributed CEP system and distributed CEP techniques are discussed. 

There are two ways to do the event distribution; operator distribution and query distribution. 

These two techniques and the research carried out in these two areas are discussed under the 

distributed CEP section. It includes detailed descriptions on Wihidum, COSMO, S4, Next 

CEP, Borealis stream processing engine, SCTXPF, WSO2 distributed CEP system and 

VISIRI distributed CEP system. The latter part of this chapter contains details on the query 

cost calculation. 

 

2.1 Complex Event Processing 

With technology advancements, most manual processes are replaced by computer systems. 

The availability of data in digital formats leads to the introduction of novel technologies. One 

such area is data processing. The ability to analyze data generated from different types of 

applications leads to real-time identification of unusual behaviors when events occur. Some 

examples of application domains are social networks, financial services, sensor networks 

(Weather, Spacecraft's etc.), web activities, health care, and business applications.  

 

In the early stages, data processing was done by storing data in Database Management 

Systems (DBMS). It required data to be stored and indexed in persistent storage. Then when 

a user request comes through, data can be analyzed using a set of given queries. However, 

this does not achieve the real need as timing matters. Using persistent storage is 

asynchronous with respect to information arrival. For example, consider the data stream of 

credit card transactions. Identification of fraudulent behavior in real-time is important in 

order to prevent losses as opposed to analyzing the data later. Another example is data 

streams received from weather sensors. If there is an unusual weather pattern, it is better to 

identify it on the fly to prevent any losses. So the actual need is to be able to process data 

flows in real-time. This requirement introduces new concepts in processing data flows by 
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using a predefined set of rules. After several years of research, two models emerged. Those 

are complex event and data stream processing [8]. 

 

Information flow processing belongs to the data stream processing model. It processes the 

data streams from multiple sources and produce new output data stream. In contrast, complex 

event processing identifies an incoming stream as a notification of the events occurring, 

which need to be filtered in order to identify useful patterns of events occurring. This concept 

originated from the publisher-subscriber systems. Based on the interested content, the 

subscriber identifies required events. Complex event processing extends this concept to 

identify event patterns [9]. The architecture of CEP system is shown below in figure 2.1. The 

processing and routing events from sources to interested sinks is done by CEP system. 

 

 

 

 

Figure 2.1- Complex event processing architecture [8] 
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2.1.1 CEP Engines 

As shown in Figure 2.1 above, processing the event streams is done by CEP engine. The CEP 

engine provides the runtime to complex event processing. It executes the predefined queries 

on top of the incoming event stream. CEP engines accept queries given by the user, match the 

event stream generated by multiple sources against the queries given by the user and produce 

output when there’s a match between the query and the input stream [10]. The performance 

of the CEP engine defines the performance of the query processing. Examples for event 

processing engines are Siddhi [10], Esper [11], Cayuga [12] and S4 [13]. These 

heterogeneous CEP engines are comprised of different capabilities that are suitable for their 

operation domain. Therefore, the CEP engine itself affects the query distribution.  

 

2.1.1.1 Siddhi 

Siddhi is an open source CEP engine and the architecture is shown in below Figure 2.2.  

 

 

Figure 2.2 - Siddhi CEP architecture [10] 

 

As shown in Figure 2.2 above, Siddhi CEP engine has input adapters, siddhi core and output 

adapters. Input adapters accept input events. Siddhi has its own internal representation of 

events. After an event is received, it converts the event to the internal representation. Siddhi 
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core handles all the operations performed on events. Siddhi core consists of queues and the 

processor. Input queue store the incoming events until the processor starts to process them. If 

an event matches with a condition defined in the queries, the processor selects that event for 

processing. Output queue is collecting the result events. These results can be delivered to 

third party subscriptions or can be used for further processing by another processor. Output 

adapters are used to send output events. The query compiler is used to compile the user given 

queries. Real time query processing is supported by Siddhi CEP. Adding and removing 

queries in run time is supported by CEP engine. 

 

The Siddhi CEP engine comprises of an architectural design that enables high performance. 

One such design is event tuples. Inside the Siddhi core, all the incoming events are converted 

to its internal representation as tuples. These tuples are similar to a database row. There are a 

couple of advantages of this tuple data structure. It enables the use of an SQL-like query 

language, relational database optimization techniques are applicable and it gives higher 

efficiency than when using XML.  

 

Siddhi uses own structured query language similar with relational algebraic expressions. 

Those queries contain simple SQL syntaxes such as SELECT, FROM, and WHERE. It 

enables the ease of use since everyone is familiar with SQL queries. Siddhi comprises of Java 

API to create queries.  

 

Another important feature of Siddhi is that it enables complex queries. The output stream of 

one query can be an input to another query. The combination of these queries creates 

complex queries. This feature enables the reuse of common queries and eliminates common 

sub queries, which will help to improve the overall performance.  

 

Siddhi has pipeline architecture. Multiple processors can connect together via event queues. 

The output of a CEP engine can feed as input to another and consequently send the event 

response to users. Other CEP engines such as Cayuga [12] uses single processor architecture. 

It is less complex compared to the Siddhi architecture and inefficient in resource utilization. 

The main disadvantage of this design is sub query duplication. Due to the use of complex 

queries, common sub queries can be available in complex queries. This is a performance 

factor that enables parallel processing. Nondependent queries can be processed in parallel at 

different stages of query processing leading to fast execution as well as higher throughput.  
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The Siddhi processor consists of two components; Executor and Event Generator. The 

processor processes an event taken from the input queue. If the output event matches with 

another processor, then that processor picks that output event for further processing. The 

Executor component handles this event selection.    

 

Siddhi is comprised of a state machine. The state machine manages pattern and sequence 

queries. In pattern queries, if a particular event satisfies a series of conditions in a particular 

order, an alarm is fired, whereas in sequence queries an alarm is fired when a sequence of 

conditions is matched repeatedly. Siddhi also uses window queries. Both time based and 

length based sliding window and batch window queries are supported by Siddhi. The time 

sliding window observes the input events for a predefined duration with the purpose to 

analyze event arrival within a particular time interval. The length sliding window observes 

the number of events. Event processing is done by batches in the batch window. After the 

duration expires, time batch window provides the appropriate output and after completing the 

event count, length batch window provides the relevant output by removing the batch away. 

 

Duplicate event detection is also supported by the Siddhi CEP. The user can define the 

criteria of duplicate events by specifying a particular set of attributes. Once the selected 

attributes are satisfied by an input event, it will be detected as event duplication and the 

relevant output will be produced based on the given criteria. 

 

2.1.1.2 Esper 

 

Esper is another CEP engine designed to process a high volume of events. Similar to Siddhi, 

Esper has its own event processing language with filtering, aggregation and joins. Esper 

supports sliding window based queries and pattern semantics for complex queries.  

 

Esper is compatible with a multiple types of input event streams such as Java beans, XML, 

key value pairs etc. It is a Java based application, therefore integrating with existing java 

applications or using it as a middleware, has minimal overhead. Queries need to be registered 

with the Esper CEP container before use. After that, events feeding into the system will be 
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analyzed based on the queries and relevant output is produced as plain old java objects 

(POJO). This ensures easy integration with existing SOA architecture [11]. 

 

 

 

Figure 2.3 - Esper CEP architecture [11] 

 

The architecture of Esper CEP is shown in Figure 2.3 above. Similar to Siddhi CEP, Esper 

also has input stream adapters, output adapters and an engine. Esper has a historical data 

access layer, which is not available in Siddhi CEP.  

2.1.1.3 Cayuga 

Cayuga [12] is another CEP engine similar to Siddhi and Esper. The architecture of Cayuga 

CEP is shown below in Figure 2.4.  

 

 

Figure 2.4 - Cayuga CEP architecture [12] 
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As shown in Figure 2.4 above, the Cayuga system is comprised of an Event Receiver (ER), 

Priority Queue, Query Engine and Client Notifiers (CN). Event Receivers take in external 

events and feed them into the system. Each ER has a separate thread, which receives events 

from a particular source. It helps to distribute the load among ERs.     

 

The query engine is a single threaded application. It supports sequential processing. Heap/GC 

is a customized memory manager with a Garbage Collector. It helps to run the application 

with a small amount of memory. Efficient object sharing and high performance are also 

achieved via this memory manager.  

 

Similar to Siddhi, Cayuga has its own internal representation of events since input streams 

can be encoded in different ways. After converting events to the internal representation, 

events are added into the priority queue. Dequeuing events from the priority queue happens 

based on the detected time of the event. Since the priority depends on the detected time, 

Cayuga has a correction for clock skew to overcome the timing errors that occur due to 

network delay, time of data source and event reordering.  

 

The Client Notifier (CN) is used to send notifications based on the input events to the 

subscribed clients. One particular CN per connected client is used. CNs can subscribe to 

output events. When the query engine detects that a particular event has an output, the query 

engine sends an output matching that input to all the CNs subscribed to that output event. 

 

The Garbage Collector is a special feature in Cayuga CEP that is not available in other CEPs. 

While event processing is happening, strings and objects are generated frequently. Space and 

time overheads can happen due to the large number of generated strings and objects. The 

Garbage Collector encourages object sharing.    

2.1.1.4 Simple Scalable Streaming System 

Simple Scalable Streaming System (S4) [13] is a general purpose distributed streaming 

platform with high scalability. It can operate with high input data rate and with high volume 

of data. The design goals are to provide a simple programming interface, cluster with high 

availability and scalability, maintaining local memory in each processing node to reduce 

latency, avoid using shared state, use a decentralized symmetric architecture, adopt to a 

pluggable architecture for customization, easy to program and flexibility. S4 has two main 
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assumptions. The first assumption is that failover loss is acceptable. The state of a process is 

lost when a server fails since the state is maintained in a local memory. The second 

assumption is that no runtime adjustments such as node addition or deletion in clusters. 

 

S4 has a decentralized symmetric architecture. It has achieved a high level of simplicity due 

to the symmetric architecture. There is no centralized control over processing nodes. All the 

nodes are identical. S4 consumes event streams, compute intermediates values and emits 

streams. The input stream is considered as a sequence of events with a tuple of keys and 

attributes.  

 

Figure 2.5 - S4 processing node architecture [13] 

The architecture of a processing node of S4 is shown above in Figure 2.5. The basic 

computational unit of S4 is the Processing Element (PE). Each PE has four main components. 

These are the functionality of the PE, types of events the PE consumes, keyed attribute of the 

events and value of the keyed attribute. These four components are used to uniquely identify 

processing elements. Each PE only consumes key values that are an exact match. A new 

instance of PE is created if there is no corresponding key value. Keyless PEs, which assign 

keys to inputs events, are also available. These PEs can be removed for memory 

management. If a particular PE is in use, it can be deleted and the state of the PE will be lost.  
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Processing elements are located in the Processing Node (PN) component. PNs are the logical 

host of PEs.  As shown in Figure 2.5 above, PNs do the following tasks, monitoring incoming 

events, query execution on input events, event dispatching with the use of the communication 

channels and emitting outputs. In a S4 cluster, multiple PNs exist. Routing event streams to 

these PNs happen based on a hash function. The hash function calculation uses the known 

keys in event. The multiple PNs can receive a single event. The S4 cluster configuration 

contains all possible keying attributes. The event listener of the PN receives the events and 

routes it to the Processing Element Container (PEC). Then the PEC will invoke the 

appropriate PEs in the required order.  

 

The communication layer handles cluster management and does the mapping of physical 

nodes to logical nodes and automatic failure detection using failover management. In the 

communication layer, there is a pluggable architecture for network layer protocols. 

Coordination between nodes in the S4 cluster is handled using ZooKeeper. The ZooKeeper is 

a centralized coordination service for distributed applications.  

2.2 Distributed Complex Event Processing 

Details about complex event processing and complex event processing engines are given in 

the above section. However, we cannot use a single CEP in practice. There are some practical 

problems associated with single CEPs leading to the introduction of distributed CEPs. The 

problems associated with single node CEP are discussed below. 

2.2.1 Need of distributed CEP 

We can use a CEP node to process event streams from multiple sources and produce outputs. 

However, using a single node CEP can be an overhead in practice. Complex event processing 

is applicable in different domains including the banking and financial sector, network 

monitoring, sensor network, social network, web activities, health care etc. Most of these 

applications are distributed in nature, containing multiple components dispersed across 

several countries.  

 

For example, consider a sensor network that analyzes weather conditions. There may be 

multiple server instances in different countries to collect weather changes and a data center 



 
 

15 
 

stationed in a different country. Analyzing data can happen from all over the world. If this 

system has a single CEP system located in the UK, collects data from USA, Canada, and 

Japan etc. and then needs to send the collected data to the central CEP in the UK, it can 

increase network traffic. It will increase the communication overhead and the network 

latency due to the high volume of events transferred across the network. Instead, if we can 

locate multiple CEP instances, then the network overhead will reduce.  

 

In a single node CEP system, low-level events are transferred across the network. This causes 

security threats as low-level data can be manipulated by third-parties while being transferred 

across the network. If the transferring data comprises of sensitive information, there is a high 

security threat. 

 

Another problem with single node CEP is the single point of failure. Node failure is possible 

due to a hardware issue, network issue etc. In such an adversary situation, the entire event 

processing will stop.   

 

Scalability is another problem associated with a single node CEP. When the system needs to 

scale up, a single node CEP can be a bottleneck. As a solution to these problems, distributed 

CEP was introduced. 

2.2.2 Problems with distributed CEP 

Though there are problems with single node CEPs, it’s easy to create and manage. 

Distributed CEP has practical problems that need to be overcome. In a distributed CEP, the 

load is distributed among a set of CEP nodes, which is not an easy task. It is not just 

balancing the number of queries in each node; we need to consider the probability of 

executing a particular query in an event stream and the correlation between queries before 

allocating a query to a particular node. Most of the time, a small subset of the operators is 

responsible for the performance bottlenecks. The easiest way to improve performance in such 

a system is to distribute the bottleneck queries among several processing nodes. If the 

bottleneck queries are stateful, dividing them among processing nodes becomes complicated 

[5]. 

 

When distributing the queries among the nodes, there are multiple factors that need to be 

considered apart from balanced load distribution. This depends on the query distribution and 
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the input events being transferred across the network. If the same event stream needs to be 

transferred across multiple nodes while processing, it causes an increase in the network 

overhead and increases bandwidth utilization as well as event duplication. Minimum event 

duplication, less communication overhead, low bandwidth utilization, using minimum 

resources, maximum throughput etc., are the factors that should be taken into account when 

distributing the load among processing nodes. Thus, optimal distribution of queries among 

CEP nodes while preserving balanced load is an NP hard problem [4]. 

2.2.3 Distributed CEP techniques 

 

CEP queries can mainly be categorized into two types; stateful and stateless [5]. Stateless 

operators do not depend on the prior executed events. Filtering is an example of a stateless 

operator. Filtering does not require previously executed events and directly filters out the 

events based on the given conditions. In stateful operators, the current event being executed 

depends on the previously executed events, for example, window operation. Both time based 

and length based window operations require keeping track of previously executed events. 

While stateless operators can be easily distributed among CEP nodes, stateful operator 

distribution is more complex. For example, Figure 2.6 below shows some of the load 

balancing mechanisms in use [3]. According to Figure 2.6-a, if event A and event B are 

stateful operators and event B should execute after event A, if event A and event B are routed 

to two different processing nodes in a round robin manner, we cannot guarantee the execution 

of event B after event A. 

 

We cannot use traditional load balancing mechanisms with stateful operators. There are 

existing techniques that can be used with stateful operators. One such mechanism is using a 

shared state [3] as shown in Figure 2.6-b. Hashing can be used to assign event streams to 

event processors [3,16].  It requires maintaining a shared state across the processing nodes. 

Since the shared state has a specific event allocated to a specific processing node, after event 

A is executed, a search can be made for event B using the shared state. However, this 

approach introduces an additional overhead of accessing shared states. To overcome shared 

memory access, the states need to be stored within the processing nodes. 
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Figure 2.6  - Load balancing strategies in CEP [3] 

 

Figure 2.6-c shows the use of the event dispatcher to dispatch events to processing nodes. 

The dispatcher (DISP) can dispatch the incoming event stream based on the rule set available 

in DISP. DISP rules contain the event condition and destination event processor pair.  If 

event B is required for both processor 1 and 2, then it will be multicast to both event 

processor 1 and 2. This mechanism is introduced to overcome the overhead of too much 

multicasting. To avoid that, CEP rules related to the same event need to be deployed on one 

processing node. Figure 2.6-d above demonstrates that scenario, but it has unbalanced load 

distribution across the processing nodes.  

 

There are two ways to do the query distribution; operator distribution and query distribution. 

Details of how operator distribution and query distribution can be used with existing 

mechanisms are discussed below.  
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2.2.3.1 Operator distribution 

In operator distribution, the sequence of queries is distributed among nodes. There is a 

specific order of execution between distributed nodes. Operator distribution is achieved by 

using pipelining and partitioning. Wihidum [14], Next CEP [16] and COSMOS [4] are 

examples of operator distributed complex event processing applications. An example of 

operator distribution is given below:  

 

Consider the following query:  

 

From account [balance < 25000 and balance > 10000]#window.length(2000) select account 

No, account balance insert into bonus category 

 

In operator distribution, operators are distributed into separate nodes. In the above query, the 

filter operation and window operation can be separated into two nodes. Then node 1 and node 

2 will have the following queries: 

 

Node 1:  

from account [balance < 25000 and balance > 10000] select account No, account balance 

insert into insert into filtered accounts; 

 

Node 2: 

from filtered accounts#window.length(2000) select account No, account balance insert into 

bonus category 

 

When the event stream contains events matching the above query, it is necessary to first route 

it to node 1 and then node 2. There is an order of execution between nodes in operator 

distribution. Wihidum, S4, COSMOS and Next CEP have used operator distribution, which is 

discussed further below. 
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2.2.3.1.1 Wihidum 

 

Wihidum is a distributed complex event processor that uses operator distribution. Operators 

are distributed across the nodes and the final result is calculated by aggregating results from 

all the CEP nodes. Wihidum uses the Hazelcast caching framework for inter-node 

communication. By using this caching framework, Wihidum is maintaining shared state 

information including load balancing mechanism, the node sub query count, and event 

pipelining information at startup. It helps to reduce the inter-node communication between 

CEP nodes, which can cause network congestion.  

 

Data partitioning, data pipelining and distributed operators are used in Wihidum to avoid the 

use of shared states across processing nodes. Partitioning is used to distribute queries among 

the processing nodes. Independent queries are partitioned across these nodes in order to 

prevent inter-node communication. In pipelining, the queries are divided into multiple stages 

and distributed across multiple nodes. There is a sequential order of execution in these stages. 

The main objectives of using this approach are to reduce data duplication and retrain missions 

to achieve high efficiency. Wihidum presents a methodology redeploy stateful queries. 

Stateful queries are distributed across the CEP nodes along with the sub queries required to 

deploy in the nodes.  

 

The query can contains complex operations such as filters, sequence operators, joins, 

pipelines etc. When Wihidum receives a query with these complex operators, it distributes 

across multiple nodes. The setup of Wihidum is shown in Figure 2.7 below. 
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Figure 2.7 - Wihidum setup [14] 

 

As shown in Figure 2.7 above, simple operators, parallel operators, partitions and distributed 

operators are the deployment strategies used. In simple operators, filtering, window and 

patterns are placed on the same node. Pipeline operators are placed in a node series when 

executing parallel operators. Partitioning executes the required operator on top of the 

partitioned data while distributed operator executes required operator on top of the events 

[14].  

2.2.3.1.2 Next CEP 

 

Next CEP is designed for query distribution and rewriting. The most important feature of 

Next CEP is automata based event detection. Similar to other CEPs, Next CEP has a high 

level query language and internal representation of events. Scalability is achieved by 

distributing automata among the cluster of nodes [16]. A cost model is used for query 

rewriting. Next and Union operators are the most commonly used operators for query 

rewriting. By using this cost model, greedily selects the deployment plan is selected to 

distribute queries for low resource usage in each node.  

 

The main design goals of Next CEP are to receive TCP connections from clients, connect to 

sources, sinks and queries, multiple remote sources and sinks, multiple concurrent running 

queries and event automata models that can easily change operator semantics and an addition 

of new operators [24]. 
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Figure 2.8 - Architecture of Next CEP system [24] 

 

Erlang is the language used for Next CEP. The importance of Erlang, it has specifically 

designed for fault tolerant computing. Erlang is a language where processes are known as 

actors. The interaction between processes happens via asynchronous message passing. 

 

The architecture of Next CEP is shown above in Figure 2.8. The Central Manager handles the 

receiving, processing, optimizing and instantiating of queries on an available node. The node 

manager is responsible for monitoring nodes, which are selected for operator distribution. 

The query receiving, transferring it to the engine and response returning are handled by the 

client manger.  

 

The Operator consists of four different types of processes. The Guaranteed Detection Policy 

determines the stability of an event before consuming it. The Input process guarantees the 

stability of event-by-event buffering by other operators or until the next event becomes 

stable. Then the event is sent to the operator simulation process, which defines the operator 

types event emulating. The simulator processes the event and finally sends to other operators 

or to sink by the output process. 

2.2.3.1.3 COSMOS 

 

In distributed CEP systems, communication between event sources and consumers are tightly 

coupled. Typically in operator distribution, all the queries are collected and an operator graph 

is generated. Using an optimization algorithm, the distribution of the operators is identified in 

order to have a low communication cost. The main assumption is that, there is optimized 
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global operator graph. However, having optimal operator graph is not possible. Maintaining 

optimal operator graph is a challenging with frequent adding and removing of queries. As a 

solution, a publisher-subscriber model can be used. For better optimization of operator 

distribution, duplicate data transfer must be avoided, early data filtering must be performed 

and the query operators must be placed in the proper places. The placement of the operator 

must be determined by considering the data rate and the common data components as well.  

 

The publisher/subscriber concept can be used to overcome the above problems. It allows 

content based filtering and has the inherited advantages of multicast. In multicast, there is at 

most one distribution of a message across a link. The important aspect is that we can avoid 

the tight coupling without maintaining the records source and consumer by using the pub/sub 

concept.  

 

In COSMOS [4], Pub/Sub communication is used to achieve loosely-coupled communication 

as well as query optimization. For the query optimization, fine-tuning and re-arranging the 

operators from source to destination has done after analyzing the common sub queries among 

the queries. A new query distribution algorithm is proposed in COSMOS for placing 

operators.  

 

In order to reduce the complexity and achieve fast adoption, the query load is distributed in 

the unit of queries instead of operators. By allocating operators across multiple nodes, 

synchronization is required during query processing, insertion, and removals. It affects the 

scalability as well as the loose coupling of the system. These problems were addressed in the 

proposed query distribution algorithm.  

 

The proposed query distribution algorithm is more scalable and having an operator graph is 

not mandatory. Scalability improvements are achieved via hierarchical techniques. It uses the 

characteristics of pub/sub communication with the target of load balancing and 

communication cost reduction.  

 

In this system, an N number of processors are interconnected via an overlay network. Data 

from sources will feed into the system by using these processors. Users can be connected to 

these processors and place the queries. User queries are similar to SQL. User queries are fed 

into the COSMOS middleware. It will handle the placement of query to the processor and 
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achieve the system performance. Not having prior knowledge about the network topology 

and publisher/subscriber components are the main assumption in query distribution. This is 

the basis to obtain loose coupling in the system. This query distribution algorithm is 

constructed with two objectives; balancing the load across the processing nodes and reduce 

total communication cost.  

 

For load balancing among the processors, CPU speed is used as a parameter. The CPU time 

in an indication of the given query. The maximum load of the processor is given below. L is 

the total query load and C is the total capability of CPU. 

 

Here, alpha is added to the load imbalance and the practical value is 0.1, ci is the CPU time 

used to record time in the processor and has a value of 1.  

 

The total communication cost is the combination of two components. Those are transferrin 

cost from source to the processor and transferring cost from processor to the user. Weighted 

unit time communication cost is used. 

 

 

Where, r(ni,nj) is per-unit time traffic (bit/s) on the link between ni and nj and d(ni,nj) is the 

transfer latency of the link.  

 

In order to obtain the objectives of query distribution, it is necessary to distribute the queries 

with lowest communication cost while maintaining the balanced load constraints.  The query 

graph and the network graph are created to obtain those objectives. 

 

All the processing nodes are included to the network graph. Data sources also belong to these 

processors. Processing capabilities and communication latencies are included as weights of 

the edges. The query graph includes the query vertex and network vertex. The query vertex 

represents the query and the network vertex represents the node in the network. Edges in the 

query graph represent either data requested from the data source by queries or the results 

being sent back. By using the network graph and query graph, a mapping that obeys the 

minimum communication cost must be found along with load constraints and minimum 

weight of the edges. 
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The runtime algorithm is also required since constructing query graph and network graph is 

difficult when the nodes of the network and queries are scaling up. Finding an optimal path in 

the network graph is NP hard and the statistics of queries and the network can be changed at 

runtime. Therefore, dynamically adjusting the algorithm is possible. However, static query 

distribution is the main focus over dynamic query distribution in this research. Therefore, 

dynamic adjustment is not considered in this research. 

2.2.3.1.4 Borealis stream processing engine 

 

The operation goals of the Borealis distributed stream-processing engine are dynamic 

resource management, query optimization and high availability [20]. Borealis is comprised of 

the inherited stream processing functionality from Aurora [21] and the inter node 

communication from Medusa [22]. Incremental scalability and high availability are the key 

reasons motivated for distributed stream processing.  

 

The Borealis stream-processing engine accepts multiple queries and these queries will be 

distributed among the nodes for processing. The main components of the Borealis site are 

shown below in Figure 2.9. 

 

Figure 2.9 - Borealis Architecture [20] 

 

The query processor is used for local query executions. The I/O queues are used to supply the 

incoming data into the query processor. Routing data among clients and nodes are also 

managed by I/O queues. 
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There is an admin module next to the query processor as shown above in Figure 2.9. It is 

responsible for controlling the query processor and coordinating with the local optimizer to 

perform local enhancements. The local optimizer is responsible for scheduling, updating 

runtime information and the load shedder. The load shedder discards low priority data in 

overloading scenarios. The role of Neighborhood Optimizer (NH optimizer) is the 

communication with other NH optimizers as well as maintaining balanced load among the 

processing nodes. Monitoring and handling failures are handled by High Availability (HA) 

module. The local Monitor is used to collect statistics.  

 

The load distribution is based on correlation and has a dynamic load-balancing scheme. The 

purpose of load-balancing algorithm is to reduce the processing and latency among the nodes. 

The load-balancing algorithm in Borealis is used to balance the average load as well as 

minimize the variation among the nodes. It helps to minimize data queuing latencies and 

maximize the correlation between nodes. It will cause to the amount of dynamic load 

migrations. 

 

Load shedding is responsible for handling overloading scenarios. The drop operator is added 

during load shedding. The drop operator is used to filter out messages. Load shedding helps 

to reduce the load on a downstream node. Borealis uses the distributed load shedding 

algorithm for load shedding. It will collect the statistics of the nodes. These statistics are used 

to pre determine the drop plan in compile time.  

 

Recovery is required to achieve high availability. In Borealis, they focus on three recovery 

types. Gap recovery, which will discard the tuples in erroneous situations.  The rollback 

recovery, which will restart the query processing from the last checkpoint, and precise 

recovery, which will recover from the correct failure point. Primary and secondary nodes are 

used for recovery. The primary node is responsible for sending periodic checkpoint messages 

to the secondary nodes and when the primary fails, the secondary can continue from the last 

checkpoint.  

 

Borealis has initial static query distribution as well as dynamic query distribution, which will 

happen at runtime. The Borealis uses the CPU utilization as the fact for system loading [23]. 

It operates with the main assumption of load correlations between the node vary among 
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operators. In initial query distribution, minimizing the end-to- end time is the target, whereas 

in dynamic distribution, the goal is to achieve balanced load distribution.  

 

By minimizing the average load variance or maximize the average load correlation [23] gives 

the average end-to-end time. The dynamic load distribution is achieved by using the pair wise 

algorithm. A centralized server will observe the load in each node and then order by average 

load. These nodes are paired by selecting the highest load with the lowest load, and so on. 

The operators are then moved between the nodes and the load is balanced between two nodes. 

There are two approaches in this algorithm; correlation based one-way distribution and two 

way redistribution. In the one-way correlation based algorithm, the most loaded node will 

move the load to the least loaded node. This will reduce the load movement. In the two-way 

correlation based redistribution, operators between the pair will be redistributed without 

considering prior location.  

 

Global operator distribution is used for the initial query distribution. This algorithm has two 

stages. Obtaining balanced load across the nodes by reducing the average load is the first 

step. By selecting a node with a minimum load and assigning operators to that node is done in 

the first stage. In the second step, the average load correlation will be minimized. This will be 

achieved by further load balancing by a single round of pair wise one-way correlation.  

 

2.2.3.1.5 WSO2 distributed CEP System 

 

WSO2 CEP is a distributed CEP engine that supports real-time event detection, correlation 

and notification of alerts. It has a powerful GUI tool for monitoring [26]. Distribution is 

achieved by using the Apache Storm cluster. It’s a lightweight and easy-to-use CEP and is 

based on the Siddhi CEP engine. It supports various types of input and output protocols [25]. 
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Figure 2.10 - System architecture of WSO2 CEP on Apache Storm [26] 

 

As shown above in Figure 2.10, storm cluster topology is comprised of receiving spouts, 

Siddhi bolts and publishing bolts. Event receiver, manager, and event publisher are external 

to the storm cluster range. The same query language used by Siddhi CEP is used for the 

WSO2 CEP as well. Queries specified in the Management Console in the Siddhi query 

language are compiled into storm topology and will be deployed in the storm cluster. Event 

streams are received by an event receiver and will be fed into the storm cluster via receiving 

spouts. Then, the events will be processed in Siddhi bolts. The processed event outputs will 

be published into the event publisher via publishing bolts.  

 

The WSO2 CEP comprises of a lot of features. It has the ability to handle the massive amount 

of event streams. This is due to the low latency engine used in the CEP system. Out of order 

event detection, data partitioning for distributed deployments, event stream filtering and 

transforming, temporal, logical and event sequence detection, supporting historical data 

stored in file system, external data sources and databases, dynamic editing and deployments 

of queries [26] are the features of WSO2 CEP.  

 

It supports standalone fault tolerant deployment and distributed deployment with Apache 

Storm. The WSO2 CEP supports multiple data formats. Text, XML, JSON and map formats 

are supported as incoming event streams. For the data receiving and publishing, HTTP(s), 

JMS, SOAP, REST, Web sockets can be used. Another important feature is that it creates an 

interactive dashboard and configure the queries via interactive tool along with monitoring the 

system status. 
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2.2.3.1.6 ZStream 

 

ZStream is a cost-based query processor for adaptively detecting composite events. It has the 

ability to process sequential patterns and detect other patterns such as conjunction, 

disjunction, negation, and Kleene closure. The tree based execution plan of the query is 

constructed. A cost model is introduced to calculate the computational cost of the query plan. 

Since this research is based on query cost calculation, the ZStream query cost calculation 

mechanism will be helpful to design the query cost calculation model. Usually, in order to 

evaluate CEP queries, non-deterministic finite automata (NFA) is used. However, NFA has a 

fixed evaluation order. The drawbacks of the NFA based query evaluation [27] includes 

inability to represent negation and difficulty to support concurrent event executions.  

 

ZStream evaluates the events using a language tree. It constructs a physical tree plan and does 

the cost calculation. There can be primitive events with a single occurrence that cannot be 

split, composite events with a collection of primitive events, single class and multi class 

predicates for one and multiple event classes respectively. CEP queries have the following 

format: 

 

PATTERN Composite Event Expressions 

WHERE Value Constraints 

WITHIN Time Constraints 

RETURN Output Expression 

 

The operators supported are sequence, negation, conjunction and disjunction, and Kleene 

operator. The connection between primitive and/or composite events are created by these 

operators. 

 

As the first step in query processing, ZStream generates an internal tree representation of the 

query. A sample tree representation is given in below Figure 2.11. ZStream buffers incoming 

events according to the temporal order of leaf nodes and intermediates results in internal 

nodes. Time range sequence matching can be done with this buffer design. ZStream uses a 

batch iterator model, which periodically observes the nodes and takes actions based on the 

state. Events are discarded in leaf nodes and intermediate nodes in case of not reaching to the 

final state within pre-defined time duration. In idle rounds, the events are accumulated in leaf 
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nodes and populated in internal buffers. In the Assembly round, internal buffers are populated 

and an output is produced if the event has been received to the final events buffer. The 

Earliest Allowed Timestamp (EAT) is calculated in an assembly process. Any event with a 

time stamp before the EAT is discarded from processing. 

 

Figure 2.11 - ZStream tree representation [27] 

 

Based on the operators that are used for the query, the query plan can be constructed. A query 

tree can be constructed for all the operators such as sequence, negation, conjunction and 

disjunction and Kleene operation. Based on the tree, the query cost can be constructed.  

 

The optimal execution plan is identified by using the cost model in ZStream. A typical 

database estimates the cost of a query by using inputs, outputs, and the CPU cost. ZStream 

does not consider the I/O cost since the primitive events it uses are memory resident. It 

computes the CPU cost by three factors: cost of accessing input data, predicate evaluation as 

well as output generation cost. 

 

C=Ci+(nk)Ci+pCo 

C - Total cost 

Ci - Input data access cost 

pCo - Output data generation cost  

(nk)Ci – Predicate evaluation cost. ‘n’ is the amount of multi-class predicates 

k - Weights 
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Ci, Co – accessing input and assembling output data cost 

 

2.2.3.2 Query distribution 

 

Query distribution is allocating a set of queries among different nodes in order to minimize 

the processing load on each node and/or to minimize the communication overhead between 

nodes. In existing query distribution projects, network cost, resource utilization and event 

duplication are considered to distribute queries.  

 

For example, consider a scenario with 1000 queries and 5 processing nodes. In query 

distribution, these 1000 queries are distributed among 5 processing nodes. It does not 

necessarily have to be 200 queries in each node. It depends on the frequency of events 

occurring, query complexity, query correlation, the processing power of the nodes, the CEP 

engine, window length, network latency, bandwidth utilization, the number of input events 

and the output events, etc. These queries need to be distributed among the 5 nodes in such a 

way that all the nodes have a balanced load with minimum communication overhead.    

 

This research focuses on query distribution. There are existing projects with query 

distribution. SCTXPF [3] and VISIRI [7] are examples for query distributed complex event 

processing mechanisms. Details about those mechanisms and the pros and cons of those 

mechanisms are discussed below: 

2.2.3.2.1 SCTXPF 

 

The Scalable Context Delivery Platform (SCTXPF) is a distributed complex event processing 

[3] system designed to achieve load distribution of a CEP system by distributing queries 

among event processors. Effective allocation of queries to the CEP nodes in order to achieve 

scalability and high performance is another major concern. Scalability is based on a number 

of CEP rules and the volume of incoming traffic. The architecture of this system is shown 

below in Figure 2.12. 
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Figure 2.12 – SCTXPF architecture [3] 

 

As shown above in Figure 2.12, SCTXPF has an Event Processing Controller (EP-CTL), 

Event Processor (EP) and a Dispatcher (DISP). The EP-CTL is responsible for managing the 

mapping of CEP rules to EPs. It generates DISP rules, which contain events that need to be 

dispatched to EPs. The DISPs will discard other events. EP handles the processing of events 

based on the given queries and produces outputs. DISPs are responsible for dispatching 

events to the relevant EP based on the dispatching rule [3]. The process of allocating a new 

query is given below:  

 

New CEP rule will be added to EP-CTL. The query will be deployed in an EP and the 

dispatcher will be updated about the EP where the query was deployed. Once DISP receives 

an event from event sources, it will look up and find the matching EP for that query and 

dispatch the event to that EP. The EP will then process it and generate the output and places it 

on the relevant event sink.  
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The main objective of the query distribution algorithm used in SCTXPF is to minimize the 

number of CEP nodes that requires the same event stream and maintain equality between the 

numbers of queries deployed in each CEP node [3].  SCXTPF uses multicasting for event 

distribution if the same event is used by multiple EPs, as shown in Figure 2.6-c. Therefore, 

minimizing the number of multicasts and minimizing the EPs that use the same event are the 

responsibilities of the query distribution algorithm. 

 

The query distribution algorithm used in SCXTPF tries to maintain a number of queries in 

EPs under the certain threshold. As the first step, it removes the EPs that have more queries 

than the Nthreshold, which will be defined compared to the EP with the least number of queries. 

Then, the EP with the most common values compared to the new query is selected. This 

selection helps to reduce the number of multicasts. If there are multiple EPs, the EP with the 

fewest conditions for CEP rules is selected. If multiple EPs are still present, one EP is 

randomly selected [3].  

 

One of the main assumptions of this algorithm is that the processing load of each CEP rule is 

equal, and the load will not be summarized even if common CEP rules are put into the same 

EP [3]. This assumption is the main drawback of this query distribution algorithm. It does not 

consider the correlation between queries. Having an equal number of queries in each CEP 

node does not guarantee that the CEP node will not be overloaded. If two queries with high 

event frequency belong to the same node, then there is a higher possibility for that node to be 

overloaded.  

2.2.3.2.2 VISIRI 

 

Visiri presents a distributed complex event processing system with query distribution. It 

supports both static query distribution as well as dynamic query distribution. It focuses on 

reducing event duplication in order to minimize network traffic, reduce event duplication and 

achieve an even distribution of load among the processing nodes. The architecture of the 

Visiri system comprises of techniques that support these expected objectives. One of the 

special features of Visiri is that it supports both static query distribution as well as dynamic 

query distribution. Initial query distribution and query assigning to CEP node belongs to 

static query distribution. Query distribution at runtime belongs to dynamic query distribution. 

High-level architecture of the Visiri system is shown below in Figure 2.13. 
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Figure 2.13 - High-level architecture of Visiri System [7] 

The events are generated from event sources. The dispatcher controls the event assignments 

among the CEP nodes, which attempt to balance the load. Dispatchers need to have a 

mechanism to route events to CEP nodes in such a way that none of the nodes get overloaded. 

Then, after the processing of events, the output will be added to the event sinks.  

 

CEP queries are deployed on the CEP nodes. When a new query is available, deploying the 

node of the new query depends on the query distribution algorithm. The dispatcher will be 

updated about the newly added query and the allocated CEP node. The dispatcher contains 

the forwarding table. The forwarding table contains the assignment of each query to the CEP 

nodes. The dispatcher controls the routing of events to CEP nodes based on query allocation. 

It is responsible only for sending the event to the relevant CEP node. 
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Figure 2.14 - Low-level architecture of VISIRI system [7] 

 

System integration of the VISIRI system is shown above in Figure 2.14. Once the event 

stream comes into the dispatcher, it looks up the forwarding table and identifies which CEP 

node that particular event belongs to. Then, the event is placed in that particular CEP node. 

The TCP binary communication protocol is used to transport the event to a particular CEP 

node.  

 

VISIRI uses Siddhi as the CEP engine. There is a Siddhi CEP engine per each node. Siddhi 

CEP engines are responsible for processing the input and producing the output. The Hazelcast 

caching framework is used for message parsing query allocation messages between the CEP 

nodes and the dispatcher.  
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Visiri uses the SXTPF query distribution algorithm as the starting point. The main difference 

between the SXTPF query distribution and the Visiri query distribution is that Visiri uses a 

cost model for query allocation. Queries with higher cost are not deployed in the same CEP 

node. This prevents node overloading. Having an equal number of queries across CEP nodes 

does not guarantee that there will be a balanced event distribution across the CEP nodes.  

 

The Visiri system considers three main factors in query distribution. Those are: 

●    Cost of the query 

●    Number of queries in each node 

●    Number of common events required 

 

The most important factor is the cost of the query. It depends on the complexity of the query. 

The VISIRI system has its own cost model. VISIRI Query distribution algorithm is given 

below Algorithm 2.1:  

 

Algorithm 2.1: VISIRI Query distribution algorithm [7] 

 

01 Distribute-Query(Query q,Node[] nodes) 

02 candidates = nodes; 

03 //find minimum queries 

04 min-queries = min(nodes[0].queryCount,nodes[1].queryCount,...) 

05 //filter nodes with too many queries 

06 for node in candidates: 

07     if node.queryCount> min-queries + QUERY_VARIABILITY: 

08         candidates.remove(node) 

09 // lowest queries 

10 min-cost = infinity; 

11 for node in candidates: 

12     cost = sum(node.queries[0].cost,node.queries[1].cost, ...) 

13     node.cost = cost 

14     if min-cost > cost: 

15         min-cost = cost; 

16 // highest query filtering 
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17 for node in candidates: 

18     if node.cost> min-cost + COST_VARIABILITY: 

19         candidates.remove(node) 

20 //find maximum common event types 

21 q-inputs = q.inputStreams 

22 max-common-nodes =[] 

23 max-common-inputs = 0 

24 for node in candidates: 

25     commons = count(intersect(q-inputs,node.allInputs)) 

26     if max-common-inputs == commons: 

27         max-common-nodes.add(node) 

28     else if max-common-inputs > commons: 

29         max-common-nodes.clear() 

30         max-common-nodes.add(node) 

31         max-common-inputs = commons 

32 candidates = max-common-nodes 

33 //select one randomly from the candidates 

34 target = random.select(candidates) 

35 return target 

 

 

In the VISIRI query distribution algorithm, all the existing nodes are first taken as the 

candidate list along with the number of queries assigned to each node. The nodes are then 

removed from the candidate list, which have more queries than a certain threshold value. This 

helps to avoid the overhead of having a higher amount of queries in the same node. The next 

step is to calculate the minimum cost from all the nodes. The cost of a node is calculated 

using the sum of the costs of all the queries deployed on that particular node. If the cost of a 

node is less than the minimum cost, it will be assigned as a minimum cost. After calculating 

the minimum cost of existing nodes, the nodes with a cost higher than the minimum cost plus 

the variability are removed from the candidate list. By doing this, the cost will have a 

balanced distribution across the nodes.  

 

After filtering out the maximum queries and higher cost nodes from the candidate list, the 

nodes that have a maximum number of event streams in common with the query need to be 
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deployed is selected. This will help to reduce event duplication since most of the events are 

common with the newly deploying query, and there is no need to send an event to a couple of 

nodes. Then, the node with the highest amount of events in common will be selected as the 

node in which to deploy the new query. 

 

The arrival rate of the queries is not considered in this query distribution algorithm. Queries 

in common need to have higher priority since it directly deals with event duplication and 

network bandwidth. There is a possibility of removing nodes that have more common event 

streams than the selected one.  

 

The main function of this query distribution is the cost of a query. The method of calculating 

the cost of the query directly affects the query distribution. The cost model used in the Visiri 

system is based on empirical studies done by Marcelo et al. [15] and Schilling et al. [6]. This 

cost model will give a numeric value for the cost of the query. These numerical values are 

assigned based on the importance of each factor. Higher the numerical value, higher the 

impact over the others.  

 

The first factor to be considered for the cost of the query is the number of attributes in the 

query, such as filtering parts. A number of attributes in a query will increase the resource 

requirement of that query [6]. Therefore, the higher the number of attributes, the higher the 

cost of the query. The second factor to be considered is the count of input and output streams. 

This factor represents the impact of having a large number of streams in a query. The third 

and most affected factor is the window length, which increases exponentially with the 

window size. The cost model of VISIRI supports both sliding window and batch window 

with time or length. Finally, the logarithm of this numerical value, which represents the total 

cost of the query, is taken.  

 

When comparing SXTPF and VISIRI query distribution algorithms, the VISIRI system has 

more options compared to SXTPF. The main difference between SXTPF query distribution 

and VISIRI query distribution is that VISIRI uses a cost model for query allocation. Queries 

with a higher cost do not deploy in the same CEP node. This prevents nodes from 

overloading. In SXTPF, all queries are assumed to have the same cost. Having an equal 

number of queries across CEP nodes does not guarantee that there will be a balanced, even 

distribution of load across CEP nodes. We cannot guarantee that all queries have the same 
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cost because it depends on the number of operators that the particular query has, as well as 

the frequency of events occurring in the input event stream.  

 

When considering the VISIRI system, the existing algorithm of the cost model can be 

improved. The cost model has a relationship with the query engine. However, it is not 

considered in the VISIRI system. This cost model does not support join queries and pattern 

queries. The processing power of nodes is not considered. Query distribution has a 

relationship with the processing power of the node. Such attributes need to be identified via 

comprehensive performance analysis. 

2.2.4 Query Cost Calculation 

 

Query distribution is based on query cost. Therefore, effective ways of query cost estimation 

is required for better load distribution in a distributed CEP. In order to develop a cost model, 

the parameters affecting the query cost need to be identified. In order to develop a parametric 

model for the query cost, scope determination, data collection, data normalization, data 

analysis, data application, testing and documentation need to be done [17].  

 

In cost model scope defining, defining the end use of the model, the physical characteristics 

of the model, the cost basis of the model, and its critical components and cost drivers need to 

be identified. In order to develop an appropriate cost model for query distribution, we need to 

consider the factors mentioned above. Based on the input event, the output will differ. 

However, there will be some outputs that are more critical than others. Without considering 

the number of input and output streams, a measure for criticality of the output needs to be 

introduced, which will introduce more cost to query. Other critical components affecting the 

query distribution such as operators need to be considered as well.  

 

Pattern matching techniques are also important for the cost model and can either be temporal 

(time), dimension or direct filters. Temporal windows and dimension windows could be 

started and stopped based on set conditions [18]. Different costs depending on the window 

operator should be included for the query cost.  

 

Queries can either be single query or multi query or operator placement [19]. Single queries 

have the performance of execution based on CPU usage, network consumption or processing 
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latency. Multi queries consist of overlaps between queries. Other than the CPU usage and 

network latency, the shared cost of query execution needs to be considered. The allocation of 

shared queries should have a minimum cost for the total query cost. Operator placement is the 

task of mapping each query execution into the set of available computational resources [19]. 

Operator placement should be done in such a way that query cost is minimized.  

2.3) Query Optimization  

 

Inside the CEP engine, queries execute and produce the output. Queries can be executed in 

different ways according to the query execution plan. Resource consumption performance 

characteristics will depends on the execution plan of the query. The goal of query 

optimization is to find the deployment plan or the execution plan with best possible behavior. 

In query distribution, this can achieve by re writing queries where as in operator distribution 

this can achieve by rewriting event patterns to better equivalent patterns [16]. 

 

Memory, CPU and network bandwidth utilization are the three main resources that cause for 

the performance of distributed CEP system. Bottleneck due to computation overhead in 

queries cause for high CPU and memory consumption even in low event rates. This can cause 

to reduce the throughput and scalability of the whole CEP system as well as overloading the 

system. Low detection frequency can be the result of such situation [16].  

2.3.1 Query re-writing 

 

Query re-writing comes as a part of query optimization. There is some research that has been 

followed in query re-writing but mainly those are focusing on operator distribution [16] 

which focus on distribution of query within multiple nodes [28].  

 

Query re-writing mechansms in operator distribution aim to reuse existing operators to 

minimize CPU usage and latency. Receiving, processing and sending network packets 

consume CPU resources and traversing network links increases latency. By reusing existing 

operators, network packet process and traversing can be reduced. Patterns with union 

operator, patterns with next operator and patterns with exception operator are selected for 

query re-writing in operator distributed CEP systems [16]. Commutative and associative 
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behavior of union operator is the main focus in query re-writing. Example for commutative 

and associative property is given below [16]:  

Ex: E1|E2 ≡ E2|E1 and E1| (E2|E3) ≡ (E1|E2) |E3  

 

Cost of the execution of above queries depends on cost of E1, E2 and E3. Therefore 

arranging E1, E2 and E3 with minimum cost gives the best execution plan. The next operator 

is associative and thus E1; (E2; E3) ≡ (E1; E2); E3 holds. The cost of each of the two event 

patterns depends on the properties of E1, E2 and E3.  

 

In both union and next operators, the lowest cost pattern can be found by enumerating all 

equivalent patterns and computing each cost. The exception pattern E1; (E2\E3) is equivalent 

to (E1; E2)\E3 because the terminating pattern E3 only influences the composite event 

detection after the next operator has detected E1, which does not depend on E2. Therefore 

this can process same as next operator [16]. This is the way of handling query re-writing in 

operator distribution where it will create multiple operator distributed query execution plan 

and get the execution plan with minimum cost for actual deployment. For this algorithm, 

there are four main assumptions: the deployment nodes are dedicated servers in a data center 

with only the CEP system running, network links between nodes are not congested, the 

source streams are Poisson distributed and the average event rate is available or can be 

measured and operators only consume CPU cycles when processing events, yielding the CPU 

when idle [16]. But in actual deployment environment, above conditions might not be  

satisfied. 

 

Query re-writing in stream processing uses semantic analysis [29] as the method for query re-

writing. First it transforms the query based on its ontology and creates a new query equivalent 

to the actual query. Transformed query can be unfolded and expressed as a union of 

conjunctive queries, as long as some restrictions are imposed on the expressivity of the 

ontology language [29] that allows converting them to languages like SQL without using 

advanced features like recursion 

 

Another way of query re-writing is using a syntax parser and syntax tree. Event patterns and 

context are included in the syntax tree. Both pattern and context can be composite. Query 

analysis is divided into four parts: context resolving and event stream filtering, data 

partitioning, query plan generating and executing. Some context contains parameters and we 
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need to resolve the parameters first. The parameters can be resolved in three ways: event 

database, ontology and sub-queries.  

 

Event partition can be done in three ways: spatial context where space is partitioned into N 

areas first, event sequences portioned in to these N areas, and segmentation context and 

temporal context. In query plan generation and execution, a sub query is generated for each 

partition and all the sub queries are parallel executed. Sometimes results of these sub queries 

need to share with other nodes. As an optimization, send the temporary result only to the 

selected proper local node instead of the main global node [28].  

 

Even though the existing query re-writing mechanism support operator distribution and 

stream processing, extending these concepts for query distribution is still possible. This is not 

complicated as operator distribution, since optimizations should be done to the whole query 

instead of operators separately. 
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3 METHODOLOGY 

As mentioned above, there are two types of distribution; query distribution and operator 

distribution. This project only focuses on query distribution. Since the VISIRI system has a 

proven architectural solution for distributed complex event processing, it has been used for 

this project.  

 

Before moving into query distribution, individual queries can be optimized. Query rewriting 

is one such method of optimizing the query and it gives a low cost execution plan for the 

query. Query rewriting is the first optimization of the system. There can be duplicates in 

queries.  Removing these duplicates will be done after rewriting the queries.  

 

The next optimization is making improvements to the existing query distribution algorithm. 

The VISIRI system already has a query distribution algorithm based on the query cost. In the 

existing system, the number of attributes in the query such as filtering parts, the count of 

input and output streams, and the window length, which increases the cost exponentially with 

the window size, are considered for query cost calculation. Number of queries in a node, cost 

of the query and maximum common inputs are considered for query distribution. Other than 

the above considered parameters, there are other factors such as the correlation between 

queries, query type, processing power of nodes, and memory consumption of the node and 

CEP engine. Enhancing the VISIRI system query distribution algorithm by considering query 

type and resource utilization and analyzing the impact of those factors on the overall 

performance has been done in this project.  

 

Standardizing the event source is an enhancement done in the system. For the existing 

VISIRI system, there’s no standard event source. It has its in-built event source, which is 

tightly coupled with the application. Google firebase for real time event sending has been 

added to the application in order to standardize the event source.  

 

Standardizing communication is another enhancement done in the system by adding standard 

JSON messages to communicate within the application. One drawback of the VISIRI system 

is that it support only Java applications. To avoid that drawback, standardized JSON 

messages are introduced.  This will provide easy integration with any other technology, since 

standard message parsing is used instead of tightly coupled Java string message parsing.  
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3.1 Changes to the VISIRI system 

 

 

Figure 3.1 - Modifications to VISIRI Architecture 

 

Figure 2.13 and Figure 2.14 show the VISIRI High Level and Low Level architecture 

respectively. Figure 3.1 and 3.2 show the changes in the existing VISIRI system due to the 

optimizations.  

The existing VISIRI system is not compatible with external sources. Therefore, tight coupling 

with event source is removed from the VISIRI system and standard event source is 

introduced to the system by integrating with the Google Firebase push notification service. 
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Figure 3.2 - Modifications to VISIRI Processing Node 

 

In the existing VISIRI system, query rewriting is not available. Instead of focusing more on 

improving the query distribution algorithm, execution of single query optimization can give 

better performance. Therefore, query optimization is added in between the main node starting 

up and query distribution, as shown in Figure 3.2 above.  

 

There were few factors that were missing in the VISIRI system, such as processing power of 

each node, event type, correlation between queries and the underlying CEP engine. By adding 

to the processing power of each node and event type, the query distribution algorithm was 

improved in this research.  

3.2 Query Optimization 

 

Each query has a cost of execution that decides how much memory the CPU needs in order to 

execute the query. The lesser the cost, the lesser the resource utilization. When we add a 

query to VISIRI System, there can be multiple query execution plans that give the same 

results. The cost of each query execution plan will be different. Low cost query execution 

will guarantee better overall performance in query execution.  

 

ZStream [27] uses a tree-based query plan with operators in leaf nodes and intermediate 

results in internal nodes in runtime as given in section 2.2. Opposite to that, tree structure is 

created in query deployment time and recognizing re-writable nodes and optimizing has done 

under query optimization. 
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The queries are distributed in to the processing nodes based on the query distribution 

algorithm and the dispatcher is updated with query allocation. In query rewriting, queries are 

evaluated and rewritten to produce the lowest cost query execution plan. The query re-writing 

has done on filtering operators. Commutative and associative rules are used for query re-

writing with highest priority to equal and ‘AND’ operator. Equal operator has the highest 

priority. The query rewriting algorithm is given below in Algorithm 3.1.  

 

Query optimization logic is given in Algorithm 3.1:  

  

Algorithm 3.1: Query Optimisation algorithm 

1) query re-writing algorithm 

2) Input : originalQuery 

3) Output : rewrittenQuery 

4)   extractedQuery = Pattern.matcher(originalQuery) 

5)   operatorList = comparingTokens = extractedQuery..createQueryTree(); 

6)   newQueryList = new ArrayList<String>(0); 

7) case QueryType of  

8)   filterQuery: 

9)    For each int i in tokens step by 3 

10)       For each int j start from 3 sterp by 3 

11)          if token match with comparingToken then 

12)           if tokens.next === comparingTokens.next and contains "<" then 

13)            if tokens.next < comparingToken.next then 

14)             value = comparingTokens.next; 

15)             operator=comparingTokens.current; 

16)            else 

17)             value = tokens.next; 

18)             operator=tokens.current; 

19)            end if 

20)           else if tokens.next && comparingTokens.next and contains(">") then 

21)            if tokens.next > comparingTokens.next then 

22)             value = comparingTokens.next; 

23)             operator=comparingTokens.current; 
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24)            else 

25)             value = tokens.next; 

26)             operator=tokens.current; 

27)            end if 

28)           end if 

29)          end if 

30)          newQueryList.add(tokens.previous); 

31)          newQueryList.add(operator); 

32)          newQueryList.add(value); 

33)          needToAdd = false; 

34)          tokens.previous = ""; 

35)          tokens.current= ""; 

36)          tokens.next = ""; 

37)       end for 

38)       if needToAdd then 

39)        newQueryList.add(tokens.previous); 

40)        newQueryList.add(tokens.current); 

41)        newQueryList.add(tokens.next); 

42)       end if        

43)    end for 

44)   WindowQuery : 

45)    For each int i in tokens step by 3 

46)       For each int j start from 3 sterp by 3 

47)          if token match with comparingToken then 

48)           if tokens.next === comparingTokens.next and contains "<" then 

49)            if tokens.next < comparingToken.next then 

50)             value = comparingTokens.next; 

51)             operator=comparingTokens.current; 

52)            else 

53)             value = tokens.next; 

54)             operator=tokens.current; 

55)            end if 

56)           else if tokens.next && comparingTokens.next and contains(">") then 

57)            if tokens.next > comparingTokens.next then 
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58)             value = comparingTokens.next; 

59)             operator=comparingTokens.current; 

60)            else 

61)             value = tokens.next; 

62)             operator=tokens.current; 

63)            end if 

64)           end if 

65)          end if 

66)          newQueryList.add(tokens.previous); 

67)          newQueryList.add(operator); 

68)          newQueryList.add(value); 

69)          needToAdd = false; 

70)          tokens.previous = ""; 

71)          tokens.current= ""; 

72)          tokens.next = ""; 

73)       end for 

74)          newQueryList.add(tokens[i]); 

75)          newQueryList.add(operator); 

76)          newQueryList.add(value); 

77)          if tokens.length> i+3 then 

78)           newQueryList.add(tokens[i+3]); 

79)          end if 

80)          needToAdd = false; 

81)          tokens[j] = ""; 

82)          tokens[j+1] = ""; 

83)          tokens[j+2] = ""; 

84)       end for 

85)       if needToAdd then 

86)        newQueryList.add(tokens.previous); 

87)        newQueryList.add(tokens.current); 

88)        newQueryList.add(tokens.next); 

89)       end if        

90)    end for 

91) EndCase 
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92) if newQueryList.size()%4 == 0 then 

93)  newQueryList.remove(newQueryList.size()-1); 

94) end if 

95) rewrittenQuery = StringUtils.join(newQueryList, " "); 

 

In the query rewriting algorithm, there are four main steps. Those are; extraction, syntax 

parsing, rearranging and re-construction of the query. As the first step, extract the executing 

section from the query (line 4). Then the syntax tree is created by parsing the extracted query 

(line 5). Each node of the syntax tree contains 3 nodes with attribute, operator and value. 

Then, the query is rewritten based on the operators. Filtering parts have the highest priority. 

AND operators are given the second priority. Commutative and associative rules are followed 

when rewriting the query. Based on these rules, rearranging is done (line 9-42). Finally, the 

query is reconstructed as given in line 95. Based on the query type, the algorithm will change. 

Filter queries are rewritten as given above. For window queries, extraction of the query is 

different from the filter query. A segment is extracted from the query and the rewriting is 

handled separately (line 45-90).  

 

For window queries, two sub-trees are created separately and the query is reconstructed. The 

query rewriting algorithm is given above in Algorithm 3.1. Query re-writing logic and 

examples are given below in Figure 3.3 and Figure 3.4.  A simple query has 3 parts in each 

segment; two parameters and a value. 

For example : In Volume > 5, Volume and 5 are parameters, ‘>’ sign is the operator  

 

This creates Volume and 5 as child nodes and ‘>’ sign as the parent node in the operator tree. 

All the available conditions are drawn in the node according to this convention. The parent 

node is always an operator.  Figure 3.3 below shows the structure of an operator graph.  
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Figure 3.3 - Query re-writing logic 

 

Sample query for query re-writing is given below:  

 

"From stockPrice[Open > 2 and Close > 3 and LastTrade == 2] select Symbol, LastTrade 

insert into stockPriceOut"; 

 

 

In this query, the equal operator has the least priority. For an event, this query validates all 3 

conditions if the first and second condition match. Since the first two operators are open-

ended, most events can go through them, however, events are filtered out from the last 

conditions. But if the filtering part has the first priority, most of the events will skip the 

execution of open-ended operators and it will help to increase the throughput.  

 

Query after extraction: Open > 2 and Close > 3 and LastTrade == 2 

Extracted query is shown in the operator graph Figure 3.4 below: 
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Figure 3.4 - Sample query re-writing logic step 1 

 

Query after rearranging the operator tree is shown below in Figure 3.5.  

 

Figure 3.5 - Sample query re-writing logic step 2 

 

The re-written query is taken by doing in-order traversal of the operator graph. 

"From stockPrice[LastTrade == 2 and Open > 2 and Close > 3] select Symbol, LastTrade 

insert into stockPriceOut" 

 

Duplicate query detection can be categorized into two sections; within query duplicate 

detection and between queries duplicate detection. If there are duplicates in queries, events 

will go through the similar operators repeatedly, which will reduce the overall throughput. 

Instead, if there’s a single operator for each matching attribute, response generation will be 

fast and system throughput increases. Duplicate query detection is performed on top of the re-
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written queries. Within query duplicate detection is tightly coupled with the query re-writing 

algorithm. After creating the syntax tree for query re-writing, if there’s any duplicates, it’s 

removed from the query. An example is given below:  

 

Sample query for query re-writing is given below. Here Open > 2 and Open > 3 are 

duplicates which can reduce to Open > 2. 

 

"From stockPrice[Open > 2 and Open > 3 and LastTrade == 2] select Symbol, LastTrade 

insert into stockPriceOut"; 

 

Query after extraction: Open > 2 and Open > 3 and LastTrade == 2 

 

 

Figure 3.6 - Extracted query from original query 
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Query after rearranging 

 

Figure 3.7 - Query after re-arrange 

 

 

After duplicate removing  

 

Figure 3.8 - Duplication removed query 

 

Duplicate removed and re-written Query 

 

"From stockPrice[LastTrade == 2 and Open > 3] select Symbol, LastTrade insert into 

stockPriceOut"; 

 

Between queries duplicate detection is executed after executing the query rewriting 

algorithm. The re-written query will be compared against the already re-written queries and 

duplicate queries will be removed. When detecting duplicated queries, the first step is 
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validating inputs and outputs. If inputs and outputs don’t match, duplicate query detection 

continues to the next query. If the inputs and outputs match, then the execution segment of 

the query will be evaluated. Inheriting operators such as >, <, >= & <= will be evaluated and 

duplicate queries are detected. 

3.3 Query Distribution Algorithm Optimization 

 

Query distribution algorithm in VISIRI is one of the most efficient algorithms available since 

it calculates the query cost. But still, there are some areas where further optimization of the 

algorithm is possible. In practice, the processing power of a node and current memory 

consumption matters for performance. Dedicated server allocation is not always possible. 

Therefore, multiple applications can be executed in a particular node at a time. Therefore, 

considering processing power and memory consumption of a node is important. 

 

The event type [30] is another important factor that wasn’t considered in the VISIRI query 

distribution algorithm. Query type is identified based on the complexity (no. of conditions) of 

the query. A query type is assigned to each query in the system. Therefore, a processing node 

contains similar types of queries. The rationale behind selecting the query type is to distribute 

the queries to minimize the number of nodes required for event processing. Ultimately, this 

reduces the latency of distributing queries. In the example given below, No. of conditions =2, 

then Query type = 2 

Ex: from stock[Volume >= 10000 and Bid < 2] select Symbol,Volume,Ask insert into 

volumes 

 

Therefore, processing power and memory utilization of a node and event type, increases the 

performance of the query distribution algorithm. Algorithm 3.2 given below shows the steps 

of the modified query distribution algorithm. Before starting the query distribution, first we 

calculate the total cost of each node. Then, the query allocation is started.  

 

Algorithm 3.2: Query distribution algorithm 

 

1. Require: Query q, Node[] nodes, nodeAttributeMap  

2. Output: targetNode 

3. candidates = nodes;  
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4. //find minimum total cost  

5. minCost = infinity  

6. for node in candidates do  

7. cost = sum(node.queries[0].cost,node.queries[1].cost, ...)  

8. node.cost = cost  

9. if minCost >cost then  

10. minCost = cost  

11. end if  

12. end for  

13. //filter nodes with too much cost  

14. for node in candidates do  

15. if node.cost >minCost + CostVariability then  

16. candidates.remove(node)  

17. end if  

18. end for  

19. //find maximum common event types  

20. qInputs = q.inputStreams  

21. maxCommonNodes =[]  

22. maxCommonInputs = 0  

23. for node in candidates do  

24. node.allInputs=union(node.queries[0].inputStreams,node.queries[1].inputStreams.)  

25. commons = count(intersect(qInputs,node.allInputs))  

26. if maxCommonInputs == commons then  

27. maxCommonNodes.add(node)  

28. else if maxCommonInputs >commons then  

29. maxCommonNodes.clear()  

30. maxCommonNodes.add(node)  

31. maxCommonInputs = commons  

32. end if  

33. end for  

34. // remove nodes with high memory utilization 

35. maxMemory = 0; 

36. for (node in candidateNodes) do 

37. freeMemory=nodeAttributeMap(node).getFreeMemoryPercentage(); 



 
 

55 
 

38. if freeMemory > maxMemory then 

39. maxMemory = freeMemory; 

40. end if 

41. end for 

42. for (node in candidateNodes) do 

43. freeMemory = nodeAttributeMap(node).getFreeMemoryPercentage(); 

44. if freeMemory < maxMemory - memoryUtilizationVariablility then 

45. candidateNodes.remove(node) 

46. end if 

47. end for 

48. // remove nodes with high cpu utilization 

49. minCPU = infinity; 

50. for (node in candidateNodes) do 

51. cpuUtilization=nodeAttributeMap(node).getJvmCpuUtilization(); 

52. if cpuUtilization < minCPU then 

53. minCPU = cpuUtilization; 

54. end if 

55. end for 

56. for (node in candidateNodes) do 

57. cpuUtilization=nodeAttributeMap(node).getJvmCpuUtilization(); 

58. if cpuUtilization > minCPU + CPUUtilizationVariablility then 

59. candidateNodes.remove(node) 

60. end if 

61. end for 

62. //find minimum queries  

63. min-queries = min(nodes[0].queryCount,nodes[1].queryCount,...)  

64. //filter nodes with too many queries  

65. for node in candidates do  

66. if node.queryCount >minQueries + QueryVariability then  

67. candidates.remove(node)  

68. end if  

69. end for  

70. // check query type 

71. newQueryType = newQuery.getQueryType(); 
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72. for (node in candidateNodes) do 

73. queryList = nodeQueryTable.get(candidateNode); 

74. count = 0; 

75. for (query in queryList) do 

76. if query.queryType === newQueryType then 

77. count ++; 

78. end if 

79. end for 

80. similaryMap.put(candidateNode, count) 

81. end for 

82. similarityMap.sort(); 

83. if (!similarityMap.isEmpty()) then 

84. entry = similarityMap.entrySet().iterator().next(); 

85. targetNode = entry.getKey(); 

86. else  

87. targetNode = random.select(candidates)  

88. end if 

 

The query distribution algorithm given above operates as follows. When there’s a query to 

distribute, the first query distribution algorithm calculates the total cost of each node line 5-

12. It is calculated by summing up the cost of queries in each node. Then the node with the 

minimum total cost is selected. Nodes having costs greater than the threshold, which is 

minimum total cost plus cost variability, are removed. A set of nodes are selected as 

candidate nodes after the cost-based filtering. 

 

As the second step in line 20-31, finding events in common is done. This is based on 

common input streams. Input for a node is the union of all input streams of deployed queries. 

Nodes with maximum number of common input streams are selected, which will reduce the 

events needed to be sent over the network as inputs are minimized. This is to reduce event 

duplication and bandwidth utilization. 

 

In the third step, lines 35-61 filter out the nodes with high memory and CPU utilization. 

While the system is starting up, each node will publish its CPU and memory utilization to the 
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hazelcast cache. The main node collects these details and uses in query distribution. This will 

reduce the need of dynamic query distribution. In case of an event burst, over utilizing nodes 

can easily get overloaded, which will trigger the costly dynamic distribution. Therefore, the 

resource utilization filter helps to reduce system overload.  

 

Fourth step is to find the nodes with minimum number of queries from the remaining nodes, 

in lines 63-69. Nodes having queries more than the threshold will be removed from the 

candidate nodes. This is again to reduce the system overload in case of an event burst.  

 

Finally, as the last step in lines 71-79, query type will be evaluated in each node. The nodes 

with maximum number of common query types are selected. If there are multiple candidate 

nodes, a node is randomly selected to deploy the new query.    

3.4 Standardized Event Source & Communication 

 

In VISIRI, there’s an event source that is in-built with the application. But it is not useful in 

practice since it’s tightly coupled with the application. VISIRI is tightly coupled with Java 

programming language and therefore can’t be used with any other technology.  Decoupling 

event source and integrating standard event source will improve the usability of the 

application. Introducing a standard communication mechanism will help to reduce the 

integration overhead with any other technology. Therefore, standardizing event source and 

communication helps to increase the practical use of the application.  

 

As the standard event source, Google events will be used. Google provides firebase 

(https://firebase.google.com/) real-time database and push notifications. The main restriction 

to accommodate Google firebase cloud messaging service is that the application should either 

be an Anroid/iOS mobile app or web application. Therefore, HTML based web component is 

integrated with the system, which provides the connectivity to Google notifications. Having a 

real-time database has an additional benefit. Data can be disseminated and the real-time 

output can be received, which is one advantage. The second advantage is the storing and 

analyzing capability. VISIRI will provide both real time analysis and storing analysis by 

integrating with the Google notification service. 

 

https://firebase.google.com/
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Standardized communication is achieved by introducing standard messages to the system. 

JSON is the widely used message format in the IT industry. Google provides Gson library for 

JSON message parsing. Therefore, JSON messages are introduced to the system as the 

communication mechanism. By doing so, the VISIRI system can easily integrate with any 

other JSON message supporting components instead of supporting only Java based 

applications. Firebase database with stock data given below in Figure 3.9. 

 

 

Figure 3.9 - Firebase real-time database with stored events 

 

Security is a main concern in data-intensive applications. Data security is provided by the 

Google firebase itself. Only applications with apiKey, which is unique to the Google firebase 

server and the VISIRI application, can share the data. By providing the unique apiKey, 

Google preserves the data security. Firebase configurations of the project is given below in 

Figure 3.10: 

 

Figure 3.10 - Firebase real-time database with stored events 
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4 EVALUATION 

 

For the measurements, computers with different capacities are used. Machine 

configurations are given below:  

 Intel Core i7 CPU @ 2.60GHz - 16 GB RAM 

 Intel Core i7 CPU @ 1.80 GHz - 8 GB RAM 

 Intel Core i3 CPU @ 2.0 GHz - 8 GB RAM 

 Intel Core i3 CPU @ 2.4 GHz - 8 GB RAM 

Common system configurations are given below: 

 System type: 64-bit 

 Operating System: Windows 8 

 Wifi connection : 46.1 Mbps 

 

Performance evaluation of the system is done between the VISIRI system and the 

STHITHIKA system. Firebase real-time database is pre-stored with actual stock market data 

taken from the Gulf region stock markets (mfg-uat-phoenix.mubashertrade.com). Event rate 

needs to be controlled in each test scenario when testing the VISIRI and STHITHIKA 

systems. It was achieved using threads and controlling the event sending rate from the event 

source. A random query generation algorithm was used to generate large query sets, which 

are used by VISIRI [7]. Query attributes are taken from the stock market event feed. Sample 

queries are given below:  

● from stock[LastTrade <= 100  and LastTrade > 80] select Symbol,Date,Volume insert 

into stocks 

● from stock#window.lengthBatch(10)  select Symbol, max(Close) as close insert into stock 

Evaluation of VISIRI and STHITHIKA was done in two aspects. Effectiveness of VISIRI 

initial query distribution algorithm vs the STHITHIKA query distribution algorithm was 

measured first and then the effectiveness of query re-writing was measured by enabling both 

improved static query distribution and query re-writing in the STHITHIKA system. 

A. Comparison of VISIRI Vs STHITHIKA 

Performance evaluation of the VISIRI system vs the STHITHIKA system was done in this 

scenario. Fixed event rate (75000 events/sec) and number of queries (1000 queries) are used 

in this analysis. The VISIRI system, STHIHIKA with query distribution algorithm 
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enhancements, and STHITHIKA with both query distribution algorithm enhancements and 

query re-writing, was tested individually in this scenario.  

 

Figure 4.1 below shows the comparison of query distribution algorithms of VISIRI and 

STHITHIKA. According to the results, the query distribution algorithm of STHITHIKA 

gives better performance. Both resource utilization and event type provided better 

performance. Query re-writing has the highest impact on throughput compared to resource 

utilization and event type. In STHITHIKA, using resource utilization, event type and query 

rewriting, achieved better performance compared to the VISIRI system. 

  

 
Figure 4.1 - Comparison of Query distribution VISIRI vs STHITHIKA 

 

 

B. Performance analysis for increasing query count 

 

The next evaluation scenario is to analyze the support for a large number of queries in both 

the VISIRI and the STHITHIKA system. In this scenario, event rate is kept constant (75000 

events/sec) and query count increases. Throughput is analyzed in both the VISIRI and 

STHITHIKA systems. Since the STHITHIKA system is already performing better in query 

distribution according to Figure 4.1, only the VISIRI and STHITHIKA systems are compared 

in this scenario. 
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Figure 4.2 - Performance with increasing query count 

 

As shown in Figure 4.2 above, the STHITHIKA system gives better performance compared 

to the VISIRI system, with increasing query count.  

 

C. Handling event bursts 

 

Next evaluation scenario is handling event bursts. This analysis is important because this 

will reduce the need of dynamic query distribution. In this scenario, query count is kept 

constant (1000) and the input event rate is increased. As shown in Figure 4.3 below, the 

STHITHIKA system gives better performance in event bursts compared to the VISIRI 

system. 
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Figure 4.3 - Performance evaluation in event bursts 

D. Analysis of time taken to query distribution. 

 

In the STHITHIKA system, the query distribution algorithm has changed and query 

rewriting was introduced. Therefore, the time taken for initial query distribution can vary. 

This is the analysis done to identify the variations in time taken for query distribution due to 

the changes done to the STHITHIKA system. By increasing the query count, the time taken 

for the initial query distribution algorithm is measured. As shown in Figure 4.4 below, the 

time taken for query distribution has increased in the STHITHIKA system. 

 

 

 
Figure 4.4 - Analysis of time taken for query distribution 
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E. Handling event duplication 

 

Reduced multicast is a major enhancement in the VISIRI system over the other existing 

query distribution algorithm. The same scenario is tested with the STHITHIKA system to 

make sure that there won’t be network overhead due to the changes done in the 

STHITHIKA system. Figure 4.5 below, shows how event duplication changes in the 

system for the VISIRI and STHITHIKA algorithms for 1000, 5000, and 10000 queries. 

 

According to these observations, both VISIRI and STHITHIKA have the exact same 

results with respect to event duplication. 

 

 

Figure 4.5 - Event duplication analysis 

 

F. Cost Variance analysis 

 

Another important analysis done in the VISIRI system is cost variance analysis. As the 

execution cost variance, VISIRI measured how much variance the processing nodes have 

when the queries are distributed with respect to the estimated cost values [7]. In a balanced 

system, nodes should have low cost variance. The cost threshold value (highest total cost of 

the queries deployed in a CEP node) for algorithms was kept at 400 while keeping the query 

count threshold (highest number of queries deployed in a CEP node) at 80 for both VISIRI 

and STHITHIKA algorithms. Figure 4.6 shows the analysis of the cost variance.  

 



 
 

64 
 

According to Figure 4.6, the cost variance of the STHIHIKA system is lesser than the VISIRI 

system. This is an indication that the STHITHIKA system has a balanced cost distribution, 

better than in the VISIRI system. 

 

G. Query rewriting comparison 

Another important factor is making sure that the output with query rewriting, and without 

query rewriting produce the same result. This is analyzed using a single node CEP system 

because query distribution on multiple nodes has no impact for this analysis. As shown in 

Figure 4.7 below, the same set of queries were deployed in two scenarios. The triggered 

query count and output were analyzed and the exact same results were produced in both 

scenarios.  

 

Figure 4.6 - Cost variance analysis 
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Figure 4.7 - Compare query re-writing 

 

4.1 Result Analysis 

 

The following observations were made after the above experiments: 

 

A. Query rewriting, together with resource utilization and the event type in query 

distribution, give better performance 

According to the experimental results, by introducing query rewriting and introducing 

resource utilization and event type to query distribution, better performance was achieved. 

Supporting a large number of queries and handling event bursts is possible with these 

enhancements. Therefore, the possibility for costly dynamic distribution decreases with these 

improvements.  

 

B. Time taken for query distribution can increase with query rewriting and query distribution 

enhancements 

 

The drawback of adding more features to query distribution and introducing query rewriting 

is that the time taken for initial query distribution increases when the algorithm becomes 

more complicated. This will increase the time required for initial system start up. Since its 

one-time investment, compromising initial start-up time won’t be an issue. 
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C. Handling event duplication 

Event duplication is a key factor considered in the VISIRI system. The lesser the event 

duplication, the lesser the multicasts. It helps to reduce the bandwidth utilization. According 

to the observations, STHITHIKA performs exactly the same as VISIRI when handling event 

duplications. Therefore, the STHITHIKA system is effective in bandwidth utilization. 

 

D. Cost Variance analysis 

 

The system should have a balanced cost distribution in order to perform better, since query 

cost is an indication of the complexity of the query. Balanced cost distribution reduces the 

possibility of node overloading. When comparing VISIRI and STHITHIKA, STHITHIKA 

has better cost distribution with less cost variance compared to the VISIRI system. This is 

due to giving priority to cost variance over query count and using CPU utilization and free 

memory percentage for query distribution. 

 

It’s clear that the STHITHIKA system performs better compared to the VISIRI system 

according to the above observations. 

5 FUTURE WORK 

 

Even though the event source is independent from the system, the events used are not actual 

real-time data. As future work, integrating the system with real event source can be done. An 

actual event source should connect to the firebase cloud messaging service in order to support 

the cloud messaging service. Adding a firebase supported HTML component inside VISIRI is 

the next enhancement. This HTML component acts as a separate component now. But 

integrating this as a part of the VISIRI system will reduce the overhead of system 

initialization.   

 

Supporting heterogeneous event processing engines is another system enhancement that 

needs to be done. The existing system is tightly coupled with the Siddhi CEP engine. By 

providing multiple CEP engines support ex: Esper, it will increase the usability of the system 

since Siddhi focuses on a large number of query support, whereas support for complex 

queries is high in the Esper system. Different CEP engines have slightly different query 
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languages. Therefore, the query language needs to be uniform while supporting multiple CEP 

engines. Uniform meta language should be introduced, which will be converted to the 

respective CEP engine query language, since writing queries with different syntaxes is not 

helpful for the user. 

6 CONCLUSION 

 

     In a distributed CEP, queries used to identify useful patterns in event streams are 

distributed across the processing nodes. It is a Non-deterministic Polynomial-time (NP) hard 

problem because the number of parameters that affect query distribution is much higher. 

There is no specific optimal way to distribute queries efficiently across processing nodes.  

 

In query distribution, the proven solution is cost-based query distribution, which is used by 

the VISIRI system. STHITHIKA is an improvement to the cost-based distributed CEP 

systems. By optimizing the query distribution algorithm and reducing the execution time of 

queries by introducing query rewriting, the efficiency of the system was increased. 

Technology based restriction removing and usability enhancements were done by removing 

the tight coupling with Java language and the inbuilt event source. Usability has improved by 

introducing JSON messages for communication and Google firebase messaging service 

integration as the event source. With these changes, the overall efficiency and usability has 

improved in cost-based distributed CEP systems. 

 

With the mentioned changes, better performance is achieved in the STHITHIKA system over 

the cost-based query distributed CEP systems. The STHITHIKA system has better 

throughput and performance in event bursts and performance in large number of queries is 

higher in the STHITHIKA system. Event duplication, which causes higher bandwidth 

utilization, remains the same while maintaining a lesser cost variance across the CEP nodes.  

 

The other aspect of improving the system is improving the usability. Easy integration with 

event sources is required in order to increase the usability of the application. As an 

enhancement, a standard communication mechanism was developed using JSON messages 

for communication. By doing so, the STHITHIKA system has the ability to be used with any 

other technology that supports standard JSON message protocol. The system is integrated 

with the Google firebase messaging service in order to standardize the event source. In-built 
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event sources restricts system integration with third-party event providers. Therefore, 

standard Google messaging was introduced to the system. 

 

With the above improvements, performance improvements and usability improvements were 

achieved in the STHITHIKA system. Further improvements can be done to this system, such 

as supporting heterogeneous event processing engines. By providing multiple CEP engine 

support, further improvements in usability can be achieved. 
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