UNIVERSITY OF MORATUWA

Predictive Model for Gap Reduction
Between Web Analytics and Business

Strategy

by
P.H.A. Nissanka (158230N)

A thesis submitted in partial fulfillment of the requirements for the
Degree of MSc in Computer Science specializing in Cloud Computing

in the
Faculty of Engineering
Department of Computer Science and Engineering

28th February 2019


https://www.mrt.ac.lk/web/
www.asankan.info
http://www.mrt.ac.lk/eugs/
http://cse.mrt.ac.lk/

Declaration

I declare that this is my own work and contains no material that has been published
previously in whole or in part for the fulfillment of any degree program. All the referenced

materials have been acknowledged in text.

Student: Supervisor:

P.H.A. Nissanka (158230N) Dr. Shantha Fernando



Abstract

Digital marketing and web analytics are two distinct areas that have captured the at-
tention of many industrial firms. There are a lot of tools developed and a lot of studies
carried out in each area separately. But still, a firms ability to harness web analytics to
optimize digital marketing elements is limited. This work focuses on evaluating previous
work in each of these areas and combine them to build a model that would define the
relationship between digital marketing and web analytics. Data captured through each
area is expected to be analyzed in the form of a time series forecasting problem. Time
series forecasting is a very popular area that captured a lot of firms attention in recent
years. This is due to the fact that most real-world problems are linked to a temporal
component, and thus can be considered as a time series. Furthermore, this work utilizes

cloud services for building and running the learning models.
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