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Abstract

Digital marketing and web analytics are two distinct areas that have captured the at-

tention of many industrial firms. There are a lot of tools developed and a lot of studies

carried out in each area separately. But still, a firms ability to harness web analytics to

optimize digital marketing elements is limited. This work focuses on evaluating previous

work in each of these areas and combine them to build a model that would define the

relationship between digital marketing and web analytics. Data captured through each

area is expected to be analyzed in the form of a time series forecasting problem. Time

series forecasting is a very popular area that captured a lot of firms attention in recent

years. This is due to the fact that most real-world problems are linked to a temporal

component, and thus can be considered as a time series. Furthermore, this work utilizes

cloud services for building and running the learning models.
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Chapter 1

Introduction

Time series forecasting is an important area of machine learning. It is important because

there are a lot of forecasting problems that involve a time component. Depending on

the problem nature there are different types of approaches to follow. These vary from

classical statistical approaches to neural network-based approaches. Web analytics is

a good measurement to observe the performance of anything running on the web. It

generates a lot of stationary data, that is time-dependent data which is often only used

for observation purposes. Digital marketing is an area which can make an impact on

data generated through web analytics. So, there is a relation between digital marketing

and web analytics. However, there is no proper model that identifies this relation and

optimize the usage of digital marketing activities to effectively improve the results from

web analytics. There are a lot of studies carried out in the domain of time series

forecasting, and it is proven that the selection of the approach has to be made based on

the nature of the problem domain. This work focuses on evaluating different approaches

for time series forecasting in the domain of web analytics using digital marketing as a

feature to the data set.

1.1 Background

Web analytics generate time series data and the measured values can be considered as

target values in a forecasting problem. Digital marketing activities also have a time

component which in most cases define the time that particular activity was performed.
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Here the marketing activities can be quantified and measured with respect to time and

thus it produces a time series dataset, but this time series has no meaning if analyzed

in isolation since its a human activity that is performed manually. However, when the

digital marketing events are combined with web analytics data, the forecasting problem

becomes feature rich and a model can be implemented to find the relationship between

web analytics and digital marketing and that model can be used to optimize the usage

of marketing activities to gain better results from web analytics.

Web analytics and digital marketing data can be combined to generate a single time

series dataset. This is a multivariate time series forecasting problem. There are several

works that have addressed these types of forecasting problems and among them, neural

network-based approaches very popularly since they produce more reliable and accurate

models. This work evaluates some of these approaches to find the best-suited approach

for the problem domain.

1.2 Problem statement

The role that digital marketing plays in a firms marketing strategy has been expanded

and the investments in digital marketing activities have increased[11]. Gartner reports[13]

state that industrial firms allocate approximately one quarter (26%) of the total mar-

keting budget for digital marketing activities. Web analytics data is often used by these

firms to measure the online customers responses and behaviors to digital marketing

stimuli[11][3]. These analytic observations can be used to optimize digital marketing el-

ements. But still, the firm’s ability to harness web analytics to improve the performance

of marketing strategies remains limited. So, on average web analytics is utilized on an

ad-hoc basis and the data captured are not used for strategic purposes[11]. There are a

lot of tools available for both digital marketing and web analytics, but the challenge in

most cases is that these are not linked and often operates separately.

Researches on digital marketing performance measurement with web analytics are the-

oretically underdeveloped[11]. Even though there are several other previous works done

by researchers on these two areas separately, there is no proper method that would mea-

sure and quantify the outcome of web analytics as a result of digital marketing activities.
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Thus there is no single model that would define the relationship between the web ana-

lytics and business strategy. So based on the literature this work focuses on building a

single model that would define the relationship between digital marketing activities and

web analytics to support making proper decisions on business strategy.

1.3 Research questions

In order to find a solution for the above-specified problem, in this research we raise the

following questions:

1. What is the most suitable model to reduce the gap between business strategy and

web analytics?

2. What is the best-suited model and the machine learning algorithm for reducing

the gap between business strategy and web analytics?

1.4 Objectives and output

The main objective of this research is to come up with a strategy to reduce the gap

between business strategy and web analytics. With this regard, this work tries to achieve

the following objectives.

• Analyze web analytics mechanisms, tools, and technologies

The main objective here is to identify the data sources which generate the data

related to the problem domain as stated in section 1.2

• Map business strategies to a machine-readable format to analyze

Digital marketing activities need to be converted to a time series dataset in order

to be analyzed and modeled as a forecasting problem.

• Analyze and evaluate learning algorithms and models for predicting analytics based

on the multiple features (business features)

The datasets collected through web analytics and digital marketing are combined

resulting in a time series dataset with multiple variables. Based on the problem
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domain and nature of the dataset, a proper learning approach need to be found to

build the most suitable forecasting model.

• Find the most suitable approach to reduce the gap between business strategy and

web analytics using the identified model.

The model generated above then needs to be used to derive an approach for mak-

ing digital marketing decisions which optimizes what the generated through web

analytics.

By achieving the above objectives this work focus on building a machine learning model

which can be used to reduce the gap between business strategy and web analytics.

1.5 Research strategy

In order to achieve the objectives and generate the expected output, this work was

executed according to the following steps.

1. Literature survey on web analytics methods, tools, and technologies

This work mainly built on top of the data generated through web analytics. So,

it is important to identify the sources from which these data can be collected and

effectively use them to extract the relevant datasets.

2. Literature survey on learning models for time series forecasting

The dataset collected in step 1 needs to be used to build a model that defines the

relationships between web analytics and digital marketing activities. Thus, it is

required to find a proper learning approach to derive the best-suited model

3. Transforming the data to the format required by the selected learning models

The dataset collected in step is expected to have unfiltered raw data, and the

learning models cant be applied to unfiltered data. Thus, it is required to filter

and normalize the data as required by the learning model selected in step 2.

4. Test and evaluate the performance and accuracy of the models after running on

the dataset.

Once a model is trained using the dataset generated from step 3, it is important
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to test it against similar datasets to evaluate the performance and accuracy of

the forecasted values. This is a costly process and needs to be carried out in a

specialized environment.

1.6 Thesis outline

The rest of the chapters of this document has been structured in the following man-

ner. Chapter 2 contains a literature survey on various web analytics methods, tools,

and technologies. And various machine learning algorithms and models for time series

prediction. Chapter 3 elaborates the methodology followed to set up the development

environment, transform the dataset to the format required, how the models were trained

and tuned for the context using the transformed data. Then Chapter 4 elaborates the

detailed steps carried out in order to build the solution and Chapter 5 elaborates a per-

formance evaluation done on the built model. Finally, it describes how the performance

and accuracy were measured.
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Chapter 2

Literature Survey

Web analytics is an important area of interest for anything running on the web. It

provides detailed reports on how the user behavior patterns. Digital marketing is also

an important area which is used to enhance and increase what is measured through web

analytics for business purposes. This chapter provides a survey of the previous works in

these areas.

2.1 Web analytics tools

Azim, M. and Hasan, N. in their study Web Analytics Tools[3] have done a survey among

Indian library professionals to analyze the usage of web analytics tools in library websites.

The main objective of their study was to investigate web analytics tools used by Indian

libraries and analyze their website metrics. Azim et al define web metrics/web analytics

as a measurement of web site metrics or web data for the purpose of understanding the

usage pattern of a website. Through a comprehensive survey, Azim et al have observed

that Google Analytics is the most popular and widely used tool for measuring site

analytics. However, its a time taking process and requires more people to analyze the

large data for further improvement and enhancement of the site. Web analytics data can

be used to understand online customer behavior, to measure online customer responses

to digital marketing stimuli[15]. Thus, the digital marketing elements can be optimized

to improve the customer behavior that benefits the business[15]. However, still, the firms

ability to harness web analytics to improve marketing performance remains limited[15].
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So still on average, the web analytics is utilized on an ad-hoc basis and the metrics are not

used for strategic purposes. Predicting website visiting patterns have a significant value

for every site owner to target their business for the right customers at right time[18].

However, most of the available web analytics tools dont support forecasting features,

and forecasting includes only in specialized tools like Business Intelligence (BI) tools

which are expensive and not affordable to small and medium-sized business owners[18].

2.2 Time series forecasting

A time series (TS) is a sequence of historical events of an observable variable at equal

time intervals[4]. Prediction of future behavior using these historical events is called

forecasting[18], and the forecasting knowledge helps in many ways in various domains

such as controlling load balance, predicting future marketing campaigns, allocating and

deallocating resources and caching, prefetching web pages for improve performance[18].

In a TS, ordering of the data points is important and thus the standard propositional

learning algorithms cant process them directly unlike in other forecasting problems where

the data points are independent[18]. One approach to overcome this challenge is to re-

move the temporal ordering from the TS and apply the so-called algorithms[18]. And

another approach is to use algorithms that preserve the temporal order of the TS. Gian-

luca B. et al in their study, Machine Learning Strategies for Time Series Forecasting[4]

have reviewed machine learning techniques that are being used for time series forecast-

ing. They state that linear statistical methods such as ARIMA models have influenced

the forecasting domain for a long time. However, since linear models were not adapted

to many real-world applications, non-linear models such as the bilinear model, thresh-

old autoregressive model, and autoregressive conditional heteroscedastic (ARCH) model

were proposed. But these models are still at their early stages. However, machine

learning models were introduced during the last two decades and captured a lot of at-

tention compared to statistical models. Gianluca B. et al state that it was found that

the Artificial Neural Networks (ANNs) outperforms the classical statistical models such

as linear regression. Later the models such as decision trees, support vector machines,

and nearest neighbor regression were introduced.
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2.3 Components of a time series

Time-series can be explained as an aggregation or combination of four primary components[5].

They are Trend, Seasonality, Level (Cyclical) and Noise[14]. Here the trend component

is the long-term tendency to rise or fall (upward or downward), seasonality component

is the periodic fluctuation which forms a pattern from one season to the other, level or

the cyclical component is the average of the time series and the noise component is the

random variation in the series. Trend, seasonality and level components have consis-

tency or recurrence and can be described or modeled and thus considered as systematic

components. Noise component cant be modeled directly and thus considered as a non-

systematic component[5]. The composition of these components can be denoted as an

additive model or a multiplicative model. The addictive model assumes the four compo-

nents are independent and the multiplicative model assumes that the four components

are dependent.

Additive model

Ut = Tt + St + Lt + Nt (2.1)

Multiplicative model

Ut = Tt ∗ St ∗ Lt ∗Nt (2.2)

Ut - Time Series, Tt - Trend, St - Seasonality, Lt - Level, Nt - Noise

An additive model is linear where the changes over time are consistently variated by the

same amount. Here the trend is a straight line and seasonality has the same frequency

and amplitude. And a multiplicative model is nonlinear where the changes increase or

decrease over time. In this case, the trend is a curved line and seasonality have increasing

or decreasing frequency and/or amplitude over time. Figure 2.1 below shows a sample

decomposition of an additive time series.
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Figure 2.1: Decomposed time series

2.4 Feature engineering

Feature engineering is the re-framing of time series data as a supervised learning dataset

to be used with learning algorithms[6]. There is no concept of input and output features

in a time series, so we have to choose the variable to be predicted and use feature

engineering to construct all of the inputs that can be used to make the predictions of

future time series steps of the selected variable[6].

Most of the time datasets contain irrelevant and/or redundant features. So pre-processing

techniques like Feature Subset Selection (FSS) need to be used to identify a subset of

original input features [24]. Feature Extraction (FE) on the other hand is the process

of deriving new features by linearly or non-linearly mapping the original input features
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into more effective ones[24]. Yoon H. et al in their work propose a new feature selection

technique for multivariate time series datasets where spatial features are much larger

than temporal observations.

2.5 Forecasting methodologies

Forecasting methodologies can be grouped into three main categories as classical and

statistical, machine learning based and as a hybrid.

2.5.1 Classical, statistical methodologies

Forecasting domain has been influenced by linear statistical models for a long time.

These models have been adapted to many real-world applications as well[4]. Mentioned

below are few such popular models that are widely used and attracted the attention of

many other types of research works.

• Autoregressive integrated moving average (ARIMA)

• Bayesian inferences

• K-Nearest Neighbor (K-NN) predictors

• Exponential smoothing methods (Holt-winters, Theta)

Classical statistical methodologies are often used for building linear forecasting models.

The predictions of the future values of these models are constrained to be linear functions

of past observations[25]. Autoregressive Integrated Moving Average is one such linear

forecasting model which gained popularity due to its statistical properties and the usage

of Box-Jenkins methodology during the model building process[25]. ARIMA models

can be used to build various exponential smoothing models[25]. However, due to the

pre-assumed linear correlation structure among the time series values, ARIMA models

are not capable of capturing nonlinear patterns. ARIMA is a generalization of the

simpler autoregressive moving average (ARMA) models, with an addition of the notion of

integrated. ARIMA modeling is a stochastic process coupling autoregressive component
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(AR) to a moving average (MA) component[21]. Its a class of model that captures a

suite of different standard temporal structures in time series data.

Bayesian inference is also a classical technique which uses evidence or observations to

update or newly infer the probability that a hypothesis may be true [21]. Bayes is a

useful theorem to estimate the probability that the time series is in the state yk at time

t[21].

The K-Nearest Neighbors algorithm (K-NN) is a method for classifying objects based

on the closest training examples in the feature space. K-NN is a type of instance-

based learning or lazy learning where the function is only approximated locally, and all

computation is deferred until classification. It can also be used for regression[21].

2.5.2 Machine learning methodologies

The real-world time series are often complex and nonlinear and thus make it hard to

be modeled using linear methodologies as mentioned in section 2.4.1. As a solution to

this limitation, machine learning models were introduced. These models are also called

black-box or data-driven models[4]. Mentioned below are a few popular examples of

machines learning models.

• Quantile random forest (QRF)

• Support vector regression (SVR)[22]

• Recurrent neural networks (RNN)

– LSTMs

– DeepAR

– GRUs

An Artificial Neural Network (ANN) is a network of computing units linked by directed

connections[12]. These connections normally have weights that correspond to how strong

two units are linked. Computation performed by a unit is separated into two stages as

aggregation and activation. Applying the aggregation function commonly corresponds

to calculating the sum of the inputs received by the unit through all its incoming con-

nections and applying the activation function corresponds to calculating the final result
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from the aggregated result. ANNs offer an attractive alternative by providing nonlin-

ear parametric models compared to conventional algorithms based linear models[21].

Christophe P. et al in their work state that Multi-Layer Perceptron (MLP) network

has been the most used ANN architecture in the renewable energy domain[21]. They

have used an ad hoc time series pre-processing step before using neural networks. MLP

or in other words feedforward neural networks is an extension of the linear regression

models[9].

Classical time-series models are popular for univariate forecasting[17]. When there

are exogenous variables, machine learning approaches like Quantile Random Forest are

used[17]. Even though QRFs are accurate, they are not flexible enough and does not

scale when there are a high retraining frequency[17]. To effectively deal with exogenous

variables Opitz T. et al have proposed a combination of univariate modeling and a ma-

chine learning model to handle residuals[19]. However, this approach requires manual

feature extraction and is hard to tune[17].

Deep learning is a part of the broader family of the machine learning methods. And

recently due to the groundbreaking successes in other areas, deep learning techniques

were applied to time series forecasting[9]. Recurrent Neural Networks (RNNs) is a deep

learning technique which gained a lot of attention and popularity due to its ability to

handle sequence dependence. The Long Short-Term Memory network (LSTM) is a type

of RNN which gained popularity due to its ability to end-to-end modeling, ease of incor-

porating exogenous variables and automatic feature extraction[2]. Nikolay L. et al have

proposed a new LSTM based architecture and train a single model using heterogeneous

time-series since the vanilla LSTM models performance is poor[17]. Neural networks are

sensitive to unscaled data, so it is important to normalize before feeding into a model[17].

Valentin et al[10] proposes a forecasting method named DeepAR which is based on

autoregressive recurrent neural networks. It tailors a similar LSTM based neural net-

work architecture to the probabilistic forecasting problem. Compared to the classical

approaches and other global method, DeepAR models learn seasonal behavior and de-

pendencies and gives covariates between time series. DeepAR requires a minimal feature

engineering to capture complex, group-dependent behavior[10]. It makes probabilistic

forecasts in the form of Monte Carlo samples that can be used to compute consistent
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quantile estimates for all sub-ranges in the prediction horizon[10]. DeepAR also able to

provide forecasts for an item with little or no history at all[10].

Multivariate time series data sometimes contain missing values, and this is referred

to as informative missingness[8]. These missing values and patterns might give rich

information about target labels in a supervised learning task [8]. Zhengping C. et al

in his work propose a novel deep learning model namely Gated Recurrent Unit (GRU)

which is a state-of-the-art RNN. GRU takes two representations of missing patterns and

effectively incorporate them into a deep model architecture so that it captures long-term

temporal dependencies and utilizes the missing patterns to achieve better prediction

results[8].

For complex real-world problems that require long term forecasting, Igor A. et al pro-

pose a multilayer neural network with multi-valued neurons (MLMVN)[1]. They state

that machine learning-based prediction models are especially good for time series gov-

erned by nonlinear dynamics. Here the main distinction from the classical feed-forward

neural network is that MLMVN consists of multi-valued neurons with complex-valued

weights[1].

2.5.3 Hybrid methodologies

It is difficult to know the exact characteristics of a real-world forecasting problem. So,

its not wise to apply a statistical method or a machine learning method blindly. How-

ever, it is reasonable to consider a time series is composed of a linear autocorrelation

structure and a nonlinear component[25]. Zhang and Kashei have proposed hybrid

methodologies[25][16] which combines ARIMA and ANNs for better performance with

modeling both linear and nonlinear forecasting problems. Combining different models

can increase the chance to capture different patterns in data improve performance. Deep

generative models are examples for hybrid models which combine the strengths of both

RNNs and classical probabilistic graphical models[9].
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2.6 Evaluation methodologies

Evaluation methodologies for time series can be grouped into three main areas as per-

formance evaluation, model evaluation, and uncertainty estimation.

2.6.1 Performance evaluation

There are different approaches to measure the performance of a model. Mentioned below

are a few methods can be used. Measure forecast performance

• The Mean Forecast Error (MFE)

• The Mean Squared Error (MSE)

• The Root Mean Squared Error (RMSE)

• The Normalized Mean Squared Error (NMSE)

• The Coefficient of Determination (R2)

• Theils U

Once the model is built the next obvious requirement is to measure the accuracy and

performance. There are several methods to measure the forecasting accuracy. Among

these methods, the popular ones are the Mean Squared Error (MSE) and Root Mean

Squared Error (RMSE). Mentioned below is how the MSE and RMSE are calculated[7].

Mean Square Error (MSE)

MSE = mean(forecast error2) (2.3)

Where;

forecast error = expected value− predicted value (2.4)

Root Mean Squared Error (RMSE)

This is calculated by taking the square root of the mean squared error

RMSE =
√
MSE (2.5)
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2.6.2 Model evaluation

Evaluating time series models is called backtesting or hindcasting. The methods used

here need to be aligned with the temporal components of the time series. The time

dimension of the observations means that we need to split the data up respecting the

temporal order in which the values were observed. Mentioned below are three different

methods that can be used to backtest machine learning models on time series problems.

1. Train-test split that respect temporal order of the observations

2. Multiple train-test split that respect temporal order of the observations

3. Walk-forward validation

In train-test split, an arbitrary split point is selected from the ordered dataset and all

data up to the split point is used for training and data after the split point is used for

testing. In the second method, multiple split points are selected and use different dataset

combinations for training and testing. In the third method, training is continuously

running as the new data points are collected. Selection of the training dataset window

can be done in one of the following ways[20],

1. Sliding window

2. Expanding window

In the sliding window approach, we decide a window size and move it along the temporal

component as the new data points are collected. So, the training dataset is selected from

the recent dataset. In the expanding window, we use all the data from the start until

the recent observation. Figure 2.2 below shows a graphical view of the window along

with the selection of training and test datasets.

Figure 2.2: Window selection in walk forward validation
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2.6.3 Uncertainty estimation

Time series problems which are probabilistic in nature require robust uncertainty es-

timation when using neural network-based approaches[17]. Combination of Bootstrap

and Bayesian approaches can be used to produce a simple, robust and tight uncertainty

bound with good coverage and provable convergence properties[17].

Figure 2.3: Uncertainty estimation

2.7 Summary

Time series forecasting has been an area of interest to many firms and researches. It

has been applied in various business domains. Since most of the real-world forecast-

ing problems are multivariate and dynamic in nature, machine learning approaches are

most popular compared to classical statistical methods. Machine learning models are

mainly based on artificial neural networks (ANN) and among them, the recurrent neu-

ral networks which are a type of ANN is very popular due to their ability to handle

sequence dependence. Both LSTM and DeepAR are RNN based learning models. How-

ever, DeepAR can be identified as an improved version of LSTM. And compared to

LSTM, DeepAR is capable of training a single model jointly over multiple target time

series. It makes probabilistic forecasts in the form of Monte Carlo sample and requires

minimal feature engineering to capture complex group dependent behavior. DeepAR

models learn seasonal behaviors and able to provide forecasts for items with no history

at all. Considering all these facts, DeepAR is the most suitable method for the problem

domain been addressed in this work.
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Chapter 3

Methodology

Based on the literature revision in Chapter 2, DeepAR forecasting algorithm was selected

to train a model that would define the relationship between digital marketing activities

and web analytics. For the purpose of training the model, a publicly available Google

analytics dataset which contained both digital marketing related data and web analytics

data was used. This dataset can be considered as a time series dataset since the data

points contain a temporal component.

Amazon Web Services (AWS) which is an Infrastructure as a Service (IaaS) provides

a Platform as a Service (PaaS) named Sagemaker for building, training and running

machine learning models in the cloud. This platform provides on-demand compute

resources which is a challenge in certain cases when running compute-intensive training

jobs in local environments. The trained models can be hosted within Sagemaker itself

to be used for making predictions. Furthermore, most importantly Sagemaker provides

a built-in implementation of the DeepAR forecasting algorithm which can be used out

of the box for training models.

Python was selected as the programming language and Jupyter notebook was selected

as the development environment. Sagemaker provides Jupyter hosted Jupyter notebook

instances as a service. However, since the cost of running the hosted Jupyter notebook

is high, a local installation of the notebook was used. So both cloud-hosted tools and

locally installed tools were used for the implementation. Figure 3.1 below shows a high-

level architecture of the components/tools that were used and how they were connected.
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Figure 3.1: High level architecture

3.1 Setting up the environment

The environment that was used for this work was a hybrid environment. Both the local

environment and cloud environment was used in combination to observe the results faster

and deploy the trained model to be used in production systems. Local environment was

used to analyze the data set, prepare the data set and initiate processing in the cloud.

And the cloud environment was used to train the model and deploy the trained model

for making predictions in production systems.

3.1.1 Setting up the local environment

Python was selected as the programming language for the implementation and Jupyter

notebook was selected as the development environment for python. Jupyter is a web-

based application which allows to create and share live code, equations, visualizations,

and narrative text. Anaconda navigator was used to installing Jupyter notebook since

18



it provides a desktop graphical user interface (GUI) for managing tools like Jupyter and

manage the required dependencies easily in an isolated environment.

3.1.2 Setting up the cloud environment

Amazon web services (AWS) was selected as the cloud infrastructure provider due to

the comprehensive platform as a service (PaaS) tools it offers especially for machine

learning and the attractive pricing model for on-demand resources. Sagemaker is a

PaaS platform in AWS which offers a fully-managed environment for building, training

and deploy machine learning models at any scale. In this work, it was used mainly for

training and deploying the model.

3.2 Finding the dataset

The problem domain considered in this work is an online business which has a website

to offer products/services for customers. Here the page visits of the company website is

a time series and the business strategies that carried out to increase the page visits can

be considered as the features (variables) of the time series. Google analytics dataset is

a public data set published by Google which contains the analytics data collected from

Google merchandise store which is an e-commerce platform that sells Google-branded

merchandise. This dataset contains information about the traffic source, type (organic,

paid or search) and the behavior of the users on the site. Dataset has been published as

a Google big query table which continuously gets updated with new data. For the scope

of this work, a subset of data was downloaded into CSV files using Google big query

driver package for python and pandas python package. For the rest of the process, these

downloaded CSV files were read again using the Pandas package.

3.3 Analyze and prepare the dataset

3.3.1 Filter the dataset

Filtering process was to remove the unwanted data attributes from the dataset and

shape the data into the format required for the rest of the operations. Python pandas
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library was used for this purpose. Table 3.1 below shows a sample of the dataset after

the filtering and transformation process.

Table 3.1: Transformed dataset

2017-06-27 07:00:00 72 8

2017-06-27 08:00:00 95 13

2017-06-27 09:00:00 86 5

2017-06-27 10:00:00 96 0

2017-06-27 11:00:00 76 2

2017-06-27 12:00:00 127 5

2017-06-27 13:00:00 104 5

2017-06-27 14:00:00 135 8

2017-06-27 15:00:00 166 7

2017-06-27 16:00:00 145 9

3.3.2 Visualize the dataset

The transformed dataset was then visualized using the Matplotlib python package. Fol-

lowing figure 3.2 shows the hourly campaign count variation over time.

Figure 3.2: Campaign count variation over time

Figure 3.3 below shows the hourly web site visits variation over time.
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Figure 3.3: Website visits variation over time

3.3.3 Transform the dataset

DeepAR algorithm provided within AWS Sagemaker requires the input to be in JSON

lines format as mentioned in Figure 3.4 below[23], for the training a model.

Figure 3.4: DeepAR input format
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The filtered dataset was transformed into the above format using Numpy and Pandas

python libraries. During this process, web site visits property was selected as the target

value and campaigns count was selected as a dynamic feature. Since the whole dataset

was from the same category, the property cat in the above input structure was not used

for training the model.

3.4 Training the learning models

The transformed dataset was then separated into two sub-datasets as training and test.

Figure 3.5 below show the separation of the dataset in time series plots.

Figure 3.5: Dataset separation as training and test
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In this work number of web site visits property has been selected as the target value

to be predicted and campaigns count has been selected as a dynamic feature. AWS

Sagemaker service provides pre-built images for time series forecasting using DeepAR,

and furthermore, it offers on-demand compute resources for faster training of the models.

As an added advantage Sagemaker facilitate to easily expose an endpoint for production

access using the trained models. So, its a convenient environment for training and

running machine learning models in production. Sagemaker uses Amazon Simple Storage

Service (S3) for reading input dataset and writing back the output and results generated

during the training process. So the transformed dataset was uploaded to an S3 bucket

from the local environment via the Jupyter notebook. Next using the Sagemaker python

Software Development Kit (SDK) via the local Jupyter notebook. Then a Sagemaker

estimator was initiated. DeepAR pre-built image support certain hyperparameters to be

configured to adjust the training process according to the use case. Table 3.2 shows the

tunable hyperparameters supported by DeepAR sorted according to the most to least

impact.

Table 3.2: DeepAR Tunable Hyperparameters

According to the use case, an initial set of hyper-parameters were selected and the model

training process was launched providing the path to the training and test set in S3.

DeepAR algorithm produce three types of metrics which are calculated during the train-

ing process as a measure of accuracy and model performance. Table 3.3 shows these

three metrics along with a description of what each metrics denotes.
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Table 3.3: Metrics Computed by DeepAR Algorithm

3.5 Hyperparameter tuning

In order to tune the model for best accuracy and performance Sagemaker provides

a feature called Automatic Model Tuning or in other words hyperparameter tuning

where the optimum values for the hyperparameters are selected by running multiple

training jobs using a range of hyperparameter values validating against a selected metric

(objective metric) from the three metrics mentioned in the table 3.3 above. For the

purpose of this work, Root Mean Squared Error (test: RMSE) between the forecast and

the actual target computed was selected as the objective metric and its optimization

direction Minimize was configured as the objective type. Figure 3.6 below shows the

hyperparameter ranges used for tuning as recommended for DeepAR algorithm.

Figure 3.6: Selected hyperparameters

Automatic tuning was launched with a total of 30 jobs, running 5 jobs parallelly at a

time. After running the tuning process, the following hyperparameters (Table 3.4) were

reported as the most suitable combination for the best results.
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Table 3.4: Best Training Job Hyperparameters

Name Type Value

tuning objective metric FreeText test:RMSE

context length Integer 140

dropout rate FreeText 0.05

early stopping patience Freetext 10

epochs Integer 932

learning rate Freetext 0.001

likelihood FreeText gaussian

mini batch size Integer 64

num cells Integer 181

num layers FreeText 3

prediction length FreeText 48

sagemaker estimator class name FreeText ”Estimator”

sagemaker estimator module FreeText ”sagemaker.estimator”

time freq FreeText H

3.6 Testing trained model

Sagemaker has a feature for creating endpoints using the trained models to use in a

production environment. So, the tuned model mentioned above was used to create a

predictor endpoint to test the model using datasets.

Figure 3.7 below shows the results received from the prediction.
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Figure 3.7: Prediction Results

Figure 3.7 above shows the target value and the prediction median along with a confi-

dence interval colored in yellow color.
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Chapter 4

Implementation

The high level architecture showed in figure 3.1 above can be further elaborated by

breaking in to the key activities. And the figure 4.1 below shows the activities sequence

that was performed to train the model.

The development environment used for the implementation was Jupyter notebooks run-

ning on a local computer. And as mentioned in Chapter 3, the programming language

was python. Jupyter python environment comes with several pre-packaged libraries and

modules to be used. However, in this case, there were certain libraries missing and they

were installed separately. They were mainly to interact with AWS Sagemaker environ-

ment, Google cloud environment, and scientific computations. The implementation of

the solution shown in the high-level architecture (figure 3.1) was broken into three main

components. The first component was the data loader, the second component was the

model builder and the third component was the evaluator. More details about each of

these components are elaborated below.
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Figure 4.1: Activities diagram of the process

4.1 Data loader

The datasets used had been stored in google big query which is a serverless data ware-

housing service offered by Google Cloud Platform (GCP). So the data loader is mainly

responsible for connecting to google big query, downloading the required datasets and
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storing them locally as files. The pseudocode in figure 4.2 below briefly explains the

implementation of the data loader.

Figure 4.2: Data loader pseudocode

Refer Appendix A for the complete code of the pseudocode give in figure 4.2.

4.2 Model builder

The model builder was mainly responsible for reading the files stored by data loader,

pre-process and filter removing the unwanted data attributes and upload them to an

AWS S3 bucket. The most importantly connect with AWS Sagemaker environment and

initiate the training process in the AWS cloud. Here the training process reads the input

dataset from the AWS S3 bucket. Once the model is trained, the hyperparameter tuning

job is initiated to determine the best hyperparameter combination for the best accuracy

of the model. Finally, a predictor endpoint is created using the tuned model for making

predictions with new datasets. The pseudocode in figure 4.3 below shows a summarized

view of the implementation.
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Figure 4.3: Model builder pseudocode

Refer Appendix B for the complete code of the pseudocode given in figure 4.3.

4.3 Model evaluator

The model evaluator was an additional component implemented which is mainly for

evaluating the created model by making predictions on different datasets which were not
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used for the training process. Endpoint created by the model builder is used here for

making the predictions. Evaluator uses a sliding window method for running predictions

on the new datasets. The pseudocode in figure 4.4 below shows a summary view of the

implementation.

Figure 4.4: Evaluator pseudocode

Refer Appendix C for the complete code of the pseudocode given in figure 4.4.
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Chapter 5

Performance evaluation

Performance of a machine learning model defines how accurately it can forecast and

how fast it can execute the model on datasets and produce results. For the purpose

of this work, the evaluation methodologies described under section 2.6 were used. The

trained model was used to create an endpoint in AWS Sagemaker environment for making

predictions for new datasets. And in order to effectively evaluate the performance of the

trained models, multiple datasets were used.

5.1 Workload

Here new datasets of similar nature were received for a different date range from the data

source where the initial dataset was received. Then the same data preprocessing process

was applied to transform the data into the format required by the model used. Figure

5.1 and 5.2 below shows variation of visits and campaign property of the preprocessed

dataset with time.
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Figure 5.1: Visits variation of the evaluation dataset

Figure 5.2: Campaigns variation of the evaluation dataset

Model evaluation was done using the walk-forward validation with a sliding window as

described in section 2.5.2. Here the window size was determined using the context length

and prediction length, and the equation below shows how it was calculated.

windowsize = contextlength + predictionlength (5.1)

Where context length = Number of data points the model should take into account when

making the prediction prediction length = Number of values the model should predict

Total of 17 sliding windows was used and Figure 5.3 and 5.4 show how these windows

were selected from the original dataset. Different colors represent the windows.
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Figure 5.3: Selection of visit dataset windows

Figure 5.4: Selection of campaign dataset windows

5.2 Experimental setup

Amazon Sagemaker was used for evaluating the performance of the model generated.

Sagemaker platform provides a feature for running the models generated in production

as an endpoint which can be accessed remotely to generate predictions. So the model

generated using the optimum hyperparameters that were found from the hyperparameter

tuning process, was used to create an endpoint. Next, the sliding windows extracted

from the dataset as described in section 4.1 were used to generate predictions using the

endpoint.
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5.3 Accuracy

Prediction results received from executing each of the sliding window datasets were then

aggregated back to a series and plotted with a confidence interval to observe the accuracy

of each prediction. Figure 5.5 below shows the aggregated result set visualization and

Figure 5.6 below show a zoomed in taken from visualizing three result sets.

Figure 5.5: Predictions from all sliding datasets

Figure 5.6: Predictions from three sliding datasets

5.4 Summary

Based on the observations in Figure 5.5 and 5.6. We can state that the trained model

performs well at forecasting future data points. However here we have to make assump-

tions on the future values of the dynamic features in order to make predictions for the

target variable.
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Chapter 6

Conclusions

6.1 Summary

Time series forecasting is a vastly improving area of interest in many domains. Many

studies have been carried out for different types of use cases. This work focused on

inlining web analytics with business strategy to determine the impact of business strategy

on web analytics and reduce the gap between these two components for better results.

Multiple time series forecasting approaches were analyzed and evaluated for the use

case mentioned above and finally, for the best results, DeepAR algorithm was selected

as the most suitable approach and AWS Sagemaker provided a built-in implementation

for DeepAR was used for training the model.

Using the Sagemakers auto tuning feature, the best hyperparameter combination for the

use case was determined. And the model was trained and tuned with those hyperpa-

rameters and deployed in Sagemaker itself to test and make predictions using different

datasets.

The dataset extracted from Google analytics contained both web analytics data and

business strategy related data. Here the web analytics data were considered as the target

variable and business strategy related data were considered as the dynamic features. So

the model trained using this dataset, was able to define a relationship between web

analytics and business strategy. It was able to make predictions of future data points
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with a satisfactory level of accuracy. So this model can be used to predict the future

web analytics observations based on the future business strategy related activities.

According to the results received, its clear that there is a clear impact of business

decisions on the web site metrics, and we can model this relationship using machine

learning. These models can be used to properly plan for the necessary business decisions

for the best results from the web metrics, reducing the gap between business strategy

and web analytics. On an additional note, AWS Sagemaker provides a great platform

for training and running machine learning models. It provides on-demand compute

resources as required for the use case we have. Its an ideal platform for cloud applications

to run machine learning models on the cloud.

6.2 Research limitations

This work uses DeepAR, a supervised learning algorithm which uses recurrent neural

networks for forecasting scalar time-series. This approach gives better results with fore-

casting the time series once the dynamic features are provided. So currently we have

to provide different combinations of dynamic features to find out the forecasting result

which adds the most business value.

6.3 Future work

To improve this work further, its planned to overcome the above-mentioned limitation

using reinforcement learning approaches where the dynamic features can also be pre-

dicted for the forecasting with the most business value.
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Appendix A

Data loader source

# Importing modules

import bq_helper

import pandas as pd

import os

# Establish Big Query Helper Object for data scanning

google_analytics = bq_helper.BigQueryHelper(active_project ="bigquery -public -data",

dataset_name =" google_analytics_sample ")

# Create list of tables to later assist with queries

tablelist = google_analytics.list_tables ()

# Export tables to files

for tablename in tablelist:

query_oneTable = """

#standardSQL

SELECT *

FROM

# enclose table names with WILDCARDS in backticks ‘‘ , not quotes ’’

‘bigquery -public -data.google_analytics_sample .""" + tablename +"""‘

"""

google_analytics.estimate_query_size(query_oneTable)

oneTable = google_analytics.query_to_pandas_safe(query_oneTable , max_gb_scanned =.5)

file_name = ’datasets -20190114/ ’ + tablename + ’.csv ’;

oneTable.to_csv(file_name , encoding=’utf -8’, index=False)
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Appendix B

Model builder source

# Importing modules

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import ast

import glob

import boto3

import s3fs

import json

import sagemaker

from sagemaker import get_execution_role

from sagemaker.tuner import HyperparameterTuner , ContinuousParameter , IntegerParameter

from sagemaker.amazon.amazon_estimator import get_image_uri

bucket = ’sagemaker -datasets ’

prefix = ’research/google -analytics ’

boto3_session = boto3.session.Session(region_name=’us-east -1’,profile_name=’academic ’)

sagemaker_session = sagemaker.Session(boto3_session)

role = ’arn:aws:iam ::206166443071: role/service -role/AmazonSageMaker -ExecutionRole -20171210 T153380 ’ # get_execution_role ()

s3_data_path = "{}/{}/ data". format(bucket , prefix)

s3_output_path = "{}/{}/ output ". format(bucket , prefix)

image_name = get_image_uri(boto3_session.region_name , ’forecasting -deepar ’)

# Loading data

path = ’./datasets -20181230 ’

allFiles = glob.glob(path + "/*. csv")

googledata = pd.DataFrame ()
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list_ = []

for file_ in allFiles:

df = pd.read_csv(file_ ,parse_dates=True)

list_.append(df)

googledata = pd.concat(list_ ,sort=False)

# Preparing data

googledata[’visitStartDateHour ’] = googledata[’visitStartTime ’]. apply(convert_to_date_hour)

googledata[’hits ’] = googledata[’totals ’]. apply(map_hits)

googledata[’visits ’] = googledata[’totals ’]. apply(map_visits)

googledata[’pageviews ’] = googledata[’totals ’]. apply(map_pageviews)

googledata[’campaign ’] = googledata[’trafficSource ’]. apply(map_campaign)

mapped_googledata = googledata.loc[:,[’ visitStartDateHour ’,’visits ’,’campaign ’]]

grouped_googledata = mapped_googledata.groupby([’visitStartDateHour ’]). agg({’visits ’:’sum ’,’campaign ’:’sum ’})

grouped_googledata = grouped_googledata.sort_values(by=’visitStartDateHour ’)

# Train model

estimator = sagemaker.estimator.Estimator(

sagemaker_session=sagemaker_session ,

image_name=image_name ,

role=role ,

train_instance_count =1,

train_instance_type=’ml.c4.2xlarge ’, # $0.279/ hour

base_job_name=’research -ga-deepar ’,

output_path ="s3://" + s3_output_path

)

data_channels = {

"train": "s3 ://{}/ train /". format(s3_data_path),

"test": "s3 ://{}/ test /". format(s3_data_path)

}

estimator.fit(inputs=data_channels)

# Hyperparameter tuning

# Configure HyperparameterTuner

my_tuner = HyperparameterTuner(estimator=estimator , # previously -configured Estimator object

objective_metric_name=’test:RMSE ’,

objective_type=’Minimize ’,

hyperparameter_ranges ={

’num_cells ’: IntegerParameter(min_value =30, max_value =200),

’epochs ’: IntegerParameter(min_value=1,max_value =1000) ,

’mini_batch_size ’: IntegerParameter(min_value =32, max_value =1028) ,

’context_length ’: IntegerParameter(min_value=1, max_value =200)
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},

max_jobs =30,

max_parallel_jobs =5)

data_channels = {

"train": "s3 ://{}/ train /". format(s3_data_path),

"test": "s3 ://{}/ test /". format(s3_data_path)

}

# Start hyperparameter tuning job

my_tuner.fit(inputs=data_channels)

# Create predictor endpoint

my_predictor = my_tuner.deploy(initial_instance_count =1, instance_type=’ml.m4.xlarge ’)
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Appendix C

Model evaluator source

# Importing modules

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import ast

import glob

import boto3

import s3fs

import json

import sagemaker

import collections

from collections import OrderedDict

from sagemaker import get_execution_role

from sagemaker.tuner import HyperparameterTuner , ContinuousParameter , IntegerParameter

from sagemaker.amazon.amazon_estimator import get_image_uri

bucket = ’sagemaker -datasets ’

prefix = ’research/google -analytics -evaluation ’

boto3_session = boto3.session.Session(region_name=’us-east -1’,profile_name=’academic ’)

sagemaker_session = sagemaker.Session(boto3_session)

role = ’arn:aws:iam ::206166443071: role/service -role/AmazonSageMaker -ExecutionRole -20171210 T153380 ’ # get_execution_role ()

s3_data_path = "{}/{}/ data". format(bucket , prefix)

s3_output_path = "{}/{}/ output ". format(bucket , prefix)

image_name = get_image_uri(boto3_session.region_name , ’forecasting -deepar ’)

# Data mapping functions

def convert_to_date_hour(data):
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converted_time = pd.to_datetime(data ,unit=’s’)

return converted_time.replace(minute=0,second =0)

def map_hits(data):

return ast.literal_eval(data).get(’hits ’)

def map_visits(data):

return ast.literal_eval(data).get(’visits ’)

def map_pageviews(data):

return ast.literal_eval(data).get(’pageviews ’)

def map_campaign(data):

campaign = ast.literal_eval(data).get(’campaign ’)

if campaign == ’(not set)’:

return 0

else:

return 1

path = ’./datasets -20190114 ’

allFiles = glob.glob(path + "/*. csv")

googledata = pd.DataFrame ()

list_ = []

for file_ in allFiles:

df = pd.read_csv(file_ ,parse_dates=True)

list_.append(df)

googledata = pd.concat(list_ ,sort=False)

googledata[’visitStartDateHour ’] = googledata[’visitStartTime ’]. apply(convert_to_date_hour)

googledata[’hits ’] = googledata[’totals ’]. apply(map_hits)

googledata[’visits ’] = googledata[’totals ’]. apply(map_visits)

googledata[’pageviews ’] = googledata[’totals ’]. apply(map_pageviews)

googledata[’campaign ’] = googledata[’trafficSource ’]. apply(map_campaign)

mapped_googledata = googledata.loc[:,[’ visitStartDateHour ’,’visits ’,’campaign ’]]

grouped_googledata = mapped_googledata.groupby([’visitStartDateHour ’]). agg({’visits ’:’sum ’,’campaign ’:’sum ’})

grouped_googledata = grouped_googledata.sort_values(by=’visitStartDateHour ’)

start_time = grouped_googledata.first_valid_index ()

end_time = grouped_googledata.last_valid_index ()

context_length = 72 # Length of context to look for when making predictions

data_length = len(grouped_googledata)

freq = ’H’ # Granularity

prediction_length = 48 # Predict next 48 points

index = pd.DatetimeIndex(start=start_time , freq=freq , periods=data_length)

grouped_googledata_indexed = grouped_googledata.reindex(index ,fill_value =0)
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data = np.array(grouped_googledata_indexed[’visits ’])

dynamic_feat = np.array(grouped_googledata_indexed[’campaign ’])

time_series = pd.Series(data=data ,index=index)

dynamic_feat_series = pd.Series(data=dynamic_feat ,index=index)

time_series_training = time_series [:- prediction_length]

dynamic_feat_series_training = dynamic_feat_series [:- prediction_length]

def series_to_obj(ts,dyf , cat=None):

obj = {"start ": str(ts.index [0]), "target ": list(ts)," dynamic_feat ":[ list(dyf)]}

if cat is not None:

obj["cat"] = cat

return obj

def series_to_jsonline(ts, cat=None):

return json.dumps(series_to_obj(ts , cat))

class DeepARPredictor(sagemaker.predictor.RealTimePredictor ):

def set_prediction_parameters(self , freq , prediction_length ):

""" Set the time frequency and prediction length parameters. This method **must** be called

before being able to use ‘predict ‘.

Parameters:

freq -- string indicating the time frequency

prediction_length -- integer , number of predicted time points

Return value: none.

"""

self.freq = freq

self.prediction_length = prediction_length

def predict(self , ts,dyf , cat=None , encoding ="utf -8", num_samples =100, quantiles =["0.1" , "0.5", "0.9"]):

""" Requests the prediction of for the time series listed in ‘ts‘, each with the (optional)

corresponding category listed in ‘cat ‘.

Parameters:

ts -- list of ‘pandas.Series ‘ objects , the time series to predict

cat -- list of integers (default: None)

encoding -- string , encoding to use for the request (default: "utf -8")

num_samples -- integer , number of samples to compute at prediction time (default: 100)

quantiles -- list of strings specifying the quantiles to compute (default: ["0.1" , "0.5", "0.9"])

Return value: list of ‘pandas.DataFrame ‘ objects , each containing the predictions

"""

prediction_times = [x.index [-1]+1 for x in ts]

req = self.__encode_request(ts,dyf , cat , encoding , num_samples , quantiles)

res = super(DeepARPredictor , self). predict(req)
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return self.__decode_response(res , prediction_times , encoding)

def __encode_request(self , ts,dyf , cat , encoding , num_samples , quantiles ):

instances = [series_to_obj(ts[k],dyf[k], cat[k] if cat else None) for k in range(len(ts))]

configuration = {" num_samples ": num_samples , "output_types ": [" quantiles"], "quantiles ": quantiles}

http_request_data = {" instances ": instances , "configuration ": configuration}

return json.dumps(http_request_data ). encode(encoding)

def __decode_response(self , response , prediction_times , encoding ):

response_data = json.loads(response.decode(encoding ))

list_of_df = []

for k in range(len(prediction_times )):

prediction_index = pd.DatetimeIndex(start=prediction_times[k], freq=self.freq , periods=self.prediction_length)

list_of_df.append(pd.DataFrame(data=response_data[’predictions ’][k][’quantiles ’], index=prediction_index ))

return list_of_df

# Create instance of the predictor

endpoint_name = ’forecasting -deepar -190113 -1413 -023 -1 e96cb06 ’

predictor = DeepARPredictor(

endpoint=endpoint_name ,

sagemaker_session=sagemaker_session ,

content_type =" application/json"

)

predictor.set_prediction_parameters(freq , prediction_length)

# Create sliding windows from the dataset

Input = collections.namedtuple(’Input ’, [’ts’, ’dyf ’])

def moving_window(x,y, length ,pred_length ):

return [Input(ts=x[i: i + length],dyf=y[i: i + length+pred_length ]) for i in range(0, (len(x)+1)-( length+pred_length), length )]

window_size = context_length+prediction_length

slices = moving_window(time_series ,dynamic_feat_series ,window_size ,prediction_length)

ts_array = []

dyf_array = []

for k in range(len(slices )):

ts_array.append(slices[k].ts)

dyf_array.append(slices[k].dyf)

# Make predictions

list_of_df = predictor.predict(ts_array [:], dyf_array [:])# predictor.predict ([ time_series_training ][:] ,[ dynamic_feat_series ][:])
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