

A MONITORING FRAMEWORK

FOR SOFTWARE ARCHITECTURE DEGRADATION

IN DEVOPS PRACTICE

Gonagala Withanage Piyumi Sampath Gunarathna

158216D

Degree of Master of Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

March 2019

i

Declaration

I declare that this is my own work and this thesis does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another person

except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and

distribute my thesis, in whole or in part in print, electronic or other medium. I retain the

right to use this content in whole or part in future works (such as articles or books).

Signature: Date:

The above candidate has carried out research for the Masters thesis under my

supervision.

 Name of the supervisor: Dr. Indika Perera

Signature of the supervisor: Date:

ii

Acknowledgement

I am deeply grateful to my supervisor Dr. Indika Perera from the University of

Moratuwa Department of Computer Science and Engineering whose help, motivation,

suggestions and encouragement helped me in all the time to complete this work. Dr.

Indika Perera inspired me greatly to work in this project.

I would like to thank my family and friends for their understanding during the period of

the project and gave me support. Without their help I would face many difficulties in the

time of the project. And finally my grateful thanks to all the people who help me during

the project.

iii

Abstract

This is a research report that desired to carry out to find the software architecture issues and

possible monitoring techniques to overcome those issues in DevOps practice. DevOps is a new

philosophy that helps software organizations to innovate faster and to be more responsive to

business needs, it promotes collaboration between developers and operations which improves

quality of software development and more frequent software releases.

Continues delivery in shorter development iterations and deploy a software system faster are the

key practice of DevOps. And also because of that faster practice, there is huge risk of occurring

a software failure unless the continuous monitoring. Therefore the DevOps teams use automated

tools for monitoring functional criteria and the performance. But still, most of the teams are not

monitoring the architecture of the application.

Unless there need to be done a change intently, the architecture of the system need to pertain its

initial designed and finalized architecture in DevOps culture, in shorter development iterations.

Therefore it is more important to monitor the software architecture without leading to a software

drift or erosion. Therefore this research objective is to build a Monitoring framework for

architectural degradation in DevOps practice.

The end goal is Continuous Testing and Continuous Monitoring. Testing and Monitoring are

what will prove that the new built is the right required application, that functions and performs

as designed and desired.

As the main research objective it identified a missing area of software architecture monitoring

methodologies and analyzed and identified a way to prevent software architecture erosion using

that. This research is more focused on unconventional usability of the solution and project file

contents and how it can be leveraged to capture the architecture of the application and how it can

be used as an effective architecture design monitoring framework.

This research states a methodology which uses project file and solution file content to detect the

architecture specific information from the code base and a mechanism to capture them and

compare them with a pre-defined architecture rule set. An empirical and theoretical evaluation

has been done to prove this concept actually works in real life scenarios. It opened up a new area

of architecture conformance checking to the future researchers of the field of software

architecture.

Keywords

DevOps, Continuous integration, Continuous deployment, Defect warnings, Continuous

monitoring, Software development lifecycle, Quality assurance, SDM

iv

TABLE OF CONTENT

Declaration i

Acknowledgement ii

Abstract iii

TABLE OF CONTENT iv

LIST OF FIGURES vi

LIST OF TABLES viii

1. INTRODUCTION 1

 1.1 Background 2

 1.2 Importance and novelty of the problem Background 3

 1.3 Research Problem 5

 1.4 Objectives 5

 1.5 Overview of the Document 6

2. LITERATURE REVIEW 8

 2.1 DevOps Practice 10

 2.2 Continuous Integration in DevOps 11

 2.3 Software Architecture in Practice, Architecture Issues, Software Erosion and

Software Drift 14

 2.4 Source Code to Architecture Mapping Tools 18

 2.4.1 Doxygen 19

 2.4.2 Architexa 20

 2.4.3 Code-maps 21

 2.5 Defect Warnings Techniques. 21

 2.6 Layered diagrams 23

3. METHODOLOGY 26

 3.1 Identify the Possible Solution 27

v

 3.2 Developing a Proof of Concept 28

 3.3 Evaluation of the Proof of Concept 29

4. IMPLEMENTATION 31

 4.1 Understanding the Solution File 32

 4.1.1 Solution File Contents 33

 4.1.2 Methodology of Observing the Solution Content 35

 4.2 Understanding the Project File 37

 4.2.1 Project File Contents 38

 4.2.2 Methodology of Observing the Project Content 47

 4.3 Generate Architecture Design 41

 4.3.1 Component Draw and Placement in Document 42

 4.3.2 Map Relationships of Project Components 44

 4.4 Design diagram 47

5. EVALUATION 48

5.1 Evaluate the Correctness of the Analysis of Solution Architecture by SDM 50

 5.1.1 Accuracy Validation 50

 5.2 Performance Testing Of SDM 52

 5.2.1 Performance Testing By the Complexity of the Solution Architecture and

Dependency Projects 53

 5.2.2 Performance Testing By Number of Project Included in the Solution 54

 5.3 Analytical Evaluation of the Impact of SDM When It Is Added To a Continuous

Integration Flow 56

6. CONCLUSION 58

 6.1 Research Contribution 59

 6.2 Research Limitations 60

 6.3 Future Work and Conclusion 61

REFERENCES 62

vi

LIST OF FIGURES

Figure 2.1.1: DevOps 10

Figure 2.2.1: Continuous Integration flow 13

Figure 2.6.1: Layered Diagram 24

Figure 2.6.2: Layered Diagram in Visual Studio 25

Figure 3.2.1: Visio Tool Usage for Design Documents 28

Figure 3.2.2: High Level Architecture Diagram of the Monitoring Framework 29

Figure 4.1.1: Properties of a Solution 33

Figure 4.1.1.1: Sample Solution View 34

Figure 4.1.1.2: Sample .sln File 35

Figure 4.1.2.1: Implementation of Solution File Observer 35

Figure 4.1.2.2: Implementation of Solution Project 36

Figure 4.1.2.3: Solution Directory Hierarchy 36

Figure 4.2.1.1: Overview of Project File 38

Figure 4.2.2.1: Overview of XML File Element Hierarchy 39

Figure 4.2.2.2: Implementation of Project Content Reader 39

Figure 4.2.2.2: Implementation of Project File Node Observer 40

Figure 4.2.2.3: Generated XML Structure 40

Figure 4.2.2.3: Observed Project Detail Hierarchy 41

Figure 4.3.1: Implementation of Design Helper 41

Figure 4.3.1.1: Implementation of Design Drawer 42

Figure 4.3.1.2: Implementation of Geometry for Design Document 43

vii

Figure 4.3.2.1: Implementation of Mapping Relationship 44

Figure 4.3.2.2: Component Placement in Document 45

Figure 4.3.2.3: Automates Unit Tests 46

Figure 4.4.1: Generating Architecture Document 47

Figure 5.1: Basic Flow of the Solution Design Monitor 49

Figure 5.2: Basic Components of Solution Design Monitor 50

Figure 5.3: Unit Test Summary 50

Figure 5.1.1: List of Used Projects 51

Figure 5.2.1.1: Average Execution Time with the Complexity of the Project

Dependencies 54

Figure 5.2.2.1: Change of the Average Execution Time with the Number of Projects in a

Solution. 55

Figure 5.3.1: Build Pipeline before Adding SDM 56

Figure 5.3.2: Release Pipeline before Adding SDM 56

Figure 5.3.3: Build Pipeline after Adding SDM 57

Figure 5.3.4: Release Pipeline after Adding SDM 57

viii

LIST OF TABLES

Table 5.1.1: Architecture Evaluation Results 52

Table 5.2.1.1: Average Execution Time of SDM with the Complexity of the Project

Dependencies 53

Table 5.2.2.1: Change of the Average Execution Time with the Number of Projects in a

Solution. 55

