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Abstract 

This is a research report that desired to carry out to find the software architecture issues and 

possible monitoring techniques to overcome those issues in DevOps practice. DevOps is a new 

philosophy that helps software organizations to innovate faster and to be more responsive to 

business needs, it promotes collaboration between developers and operations which improves 

quality of software development and more frequent software releases. 

Continues delivery in shorter development iterations and deploy a software system faster are the 

key practice of DevOps. And also because of that faster practice, there is huge risk of occurring 

a software failure unless the continuous monitoring. Therefore the DevOps teams use automated 

tools for monitoring functional criteria and the performance. But still, most of the teams are not 

monitoring the architecture of the application. 

Unless there need to be done a change intently, the architecture of the system need to pertain its 

initial designed and finalized architecture in DevOps culture, in shorter development iterations. 

Therefore it is more important to monitor the software architecture without leading to a software 

drift or erosion. Therefore this research objective is to build a Monitoring framework for 

architectural degradation in DevOps practice.  

The end goal is Continuous Testing and Continuous Monitoring. Testing and Monitoring are 

what will prove that the new built is the right required application, that functions and performs 

as designed and desired. 

As the main research objective it identified a missing area of software architecture monitoring 

methodologies and analyzed and identified a way to prevent software architecture erosion using 

that. This research is more focused on unconventional usability of the solution and project file 

contents and how it can be leveraged to capture the architecture of the application and how it can 

be used as an effective architecture design monitoring framework.  

This research states a methodology which uses project file and solution file content to detect the 

architecture specific information from the code base and a mechanism to capture them and 

compare them with a pre-defined architecture rule set. An empirical and theoretical evaluation 

has been done to prove this concept actually works in real life scenarios. It opened up a new area 

of architecture conformance checking to the future researchers of the field of software 

architecture. 

Keywords 

DevOps, Continuous integration, Continuous deployment, Defect warnings, Continuous 

monitoring, Software development lifecycle, Quality assurance, SDM 
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