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 ABSTRACT 

Currently the authorities in the field of water resource management for irrigation and 

hydro power electricity in Sri Lanka make use of basic forecasting methodology in 

order to make decisions with respect to water resource management. The results of 

this research would be useful to the relevant authorities as it would provide them an 

indication of the excepted water levels allowing them to make vital decisions 

regarding the competing needs such as water resource management for irrigation as 

opposed to water resource management for hydro power electricity generation during 

the monsoonal as well as inter-monsoonal periods with the use of the latest predictive 

framework with respect to artificial intelligence technology. 

Most of the current research in this area use models such as multi-linear regression, 

support vector machines and artificial neural networks such as adaptive neuro-fuzzy 

inference systems to provide predictions for hydrological models. The models are 

developed for varying levels of granularity with respect to time such as daily and 

weekly depending on the need to forecast water levels for reservoirs. 

This research will focus on the novel deep learning techniques of LSTM (Long Short-

Term Memory) and GRU (Gated Recurrent Unit) recurrent neural networks as 

opposed to the conventional machine learning approaches. Historical daily water 

levels will be used as inputs along with meteorological variables at other nearby 

reservoirs to do forecast future values. These methods will be benchmarked against 

traditional baseline machine learning techniques to validate how much of a predictive 

gain can be obtained by use of the deep learning techniques. Furthermore, this 

research will evaluate the suitability of the aforementioned techniques to make 

predictions regarding the water level input by the usage of various metrics such as 

mean square error as the cost function which can be used to validate the output of the 

above models. 
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Description 

ARMA Auto Regressive Moving Average 

MLR Multi Linear Regression 

ANN Artificial Neural Network 

AR Auto Regressive 

MLP Multi-Layer Perceptron 

MA Moving Average 

MSE Mean Square Error 

MAE Mean Absolute Error 

RBF  Radial Basis Function 

ANFIS Adaptive Neuro-Fuzzy Inference 

System 

SVM Support Vector Machine 

RNN Recurrent Neural Network 

LSTM Long Short-Term Memory 
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Chapter 1 

1. Introduction 
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1.1 Kotmale Reservoir 

The Kotmale hydro power project in Sri Lanka was aimed at utilizing the country’s 

major river, the Mahaweli Ganga, for power generation and irrigation. The Kotmale 

project includes a 90 meters high rock filled dam across the Kotmale Oya, which is a 

tributary of the Mahweli Ganga¸ a six kilometers long reservoir holding 175 million 

cubic meters of water and an underground power station to which water is fed through 

a seven kilometers long tunnel [1]. The Kotmale hydropower project was an integral 

part of the large scale Accelerated Mahaweli Programme, which was in turn based on 

the Mahaweli development programme. The Mahaweli programme was a multi-

purpose river development programme which included energy production, storage 

reservoirs, canals and irrigation projects as well as newsettlements. To reduce the 

completion time from implementation, in 1977, the Sri Lankan Government decided 

to concentrate on a few major reservoir projects under the Accelerated Mahaweli 

programme. With regards to the Kotmale project a full feasibility study was 

conducted from 1973 to 1976 by the Water Power Development Consultancy 

Services of India, and this provided the basis for the project [1].The initial plan was 

to construct a reservoir 2 km wide 10 km long with a storage capacity of 174 cubic 

million meters. The water impounded by the reservoir is conducted through a 7-km 

long headrace tunnel, down a sharply inclined high-pressure shaft and on to an 

underground tunnel, the first of its kind in Sri Lanka. [1]. It has a total installed 

capacity of 201 MW courtesy of three Francis turbines. After power generation, the 

water is discharged through a 645 meters long tailrace tunnel to the outfall at the 

Mahaweli Ganga at the Atabaga Oya confluence. In addition to the generation of 

power, the main purpose of the project, the regulated water will also increase the 

supply for water for irrigation purposes through the Polgolla tunnel and also improve 

power output at the Ukuwela and Bowatenne power stations (Figure 1.1). [1] 

The Kotmale Oya is one of the seven main tributaries of the Mahaweli Ganga. The 

headwaters of the Mahaweli Ganga rise in the core of the Central Highlands at 

Nuwara Eliya with the river originating from in the Hatton plateau which is situated 

southwest to the Central Highlands with elevations around 1400 meters.  The river  
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Figure 0.1: Water Distribution Diagram of the Accelerated Mahaweli Program 

 

flows north from this plateau until it curves around the city of Kandy in the Kandyan 

plateau at an elevation of 500 meters. From this plateau, it flows east towards the dry 

zone lowlands, crossing the wet zone boundary at an elevation of 100 meters. 

Afterwards the river turns north again and reaches the sea near Trincomalee about 

180 km north-north east of its origin. (Figure 1.3). Approximately 4 km upstream 

from the confluence of the Mahaweli Ganga and the Kotmale Oya, the latter has been 

impounded forming the Kotmale reservoir which has a catchment of about 554 square 

km upstream from the dam site (Figure 1.1) [1]. 
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Figure 1.2: The three physiographic regions of the catchment above the Kotmale Reservoir 

Figure 1.3: Mahaweli Ganga, Kotmale Oya and the location of some major reservoirs 
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When the catchment area of the Kotmale Reservoir is considered, it includes: 

 A high-level surface, which covers about 20 percent of the area. This surface 

lies at around an altitude of about 2,200 -2,300 meters, consisting of low 

undulating hills covered by dense montane forests. 

 A low-level surface at an altitude of about 1,400 meters. This surface of low 

undulating hills is used almost exclusively for tea cultivation and covers about 

40 percent of the catchment area. 

 A gorge region of steep slopes in an area of high relief where the three main 

tributaries, the Kotmale, the Pannu and Pundula Oya, flow at the bottom of 

the gorge region. Land use is complex in this region, with paddy on the 

mudslide aprons in the valley floors, home gardens and occasionally patches 

of semi-natural forest on the boulder tongues and steeper slopes and tea 

cultivations on the higher areas. The gorge region covers about 40 percent of 

the catchment area. [1]. 

When considering climatic conditions, it can be seen that the lowest part of the 

catchment lies at about 700 meters while highest point, the Totupolakanda Peak rises 

to 2,380 meters. The large difference in altitude are naturally reflected in the climatic 

parameters and a large variation of, for instance, temperature and rainfall may occur 

even for localities geographically closer to each other. 

The Kotmale catchment experiences a monsoonal distribution of rainfall during the 

Southwest monsoon or Yala, from May to September. The next wettest months are 

usually the intermonsoon periods, October, November and March and April.  The 

Northeast monsoon, or Maha, during December and January produces the least 

rainfall and the month of February is usually the driest of the year. However, large 

seasonal variations may occur from year to year [1]. Furthermore, the large seasonal 

variations in rainfall are strongly reflected in the inflow to the Kotmale reservoir since 

there are no lakes or swamps that retard the water flow whilst a large part of the 

catchment area is covered by tea plantations with low- water retaining capacity [1]. 
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The flooding of the narrow valley has resulted in an elongated shape of the reservoir, 

such that the main part of the reservoir is oriented in an east-west direction where at 

the inflow of the Kotmale river the direction is North to South. The length of the East-

West part is about 8.5 km and the Norht-South part about 3 km at full supply level. 

The width, which is about 1 km near the dam site, slowly decreases towards the inflow 

at Pannu (Puna) and Kotmale rivers. At full supply level, the surface area is about 

6.15 sq km. The greatest depth, about 75 meters, at full supply level is found at the 

dam site [1]. 

The relationships between water levels and storage volumes is shown in Figure 1.4 

whilst the relationships between water levels and surface area are given in Figure 1.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: Storage of the Kotmale Reservoir at various water levels 
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Figure 1.5: Surface area (ha) of the Kotmale Reservoir at various water levels 

 

 

 

 

 

  

 

 

1.2 Problem 

Reservoir water level prediction is important since reservoir input level fluctuations 

play an important role in the planning¸ designing and operating of the reservoir.  

Furthermore, reservoir water input level forecasting across time is an important issue 

in water resources planning. It should be noted that water resources planning includes 

the need for water resources to be utilized for a variety of competing needs from 

irrigation and farming to hydro-electric power generation. The variation in reservoir 

water levels can be attributed due to the complex outcomes of many environmental 

factors such as precipitations, direct and indirect runoffs from neighbor catchments, 

evaporation from free water body¸ air and water temperature, and interactions 

between the reservoir and low lying aquifers [1].The main research problem intended 

to be studied by this research is the prediction of reservoir water level for the Kotmale 

Reservoir utilizing some of the hydrological parameters mentioned above as input 

variables. 

In order to develop a viable solution for the identified research problem it is required 

to integrate knowledge from domain experts in the field of hydrological studies along 

with areas such as machine learning/deep learning to develop a model for forecasting 

the reservoir level input. 
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1.3 Objectives 

The main objective of this research is to explore the use of existing researches carried 

out for predicting reservoir input level in the field of hydrological sciences and to 

develop a forecasting tool using advanced machine learning/deep learning techniques, 

benchmarked against a baseline model which can then be used by the relevant 

authorities to predict the water input level for a rolling window of time steps of their 

choice depending on the quantity of data being collected. 

The second major objective of this research is to validate the forecasting tool to be 

developed by using a cost function/ metric which is common both to the baseline 

model and forecasting model which is to be developed.   

1.4 General Objectives 

 To develop a forecasting tool based on deep learning techniques which could 

be utilized by relevant authorities to within a reasonable degree of accuracy. 

1.5 Specific Objectives 

 To select the best deep learning algorithm which would be the most accurate 

given the selected feature set. 

 To benchmark the performance of the model relative to baseline models. 

 To engineer features which could prove to be most appropriate to the model 

to be developed. 

 

1.6 Prior Work 

When considering the prior research carried out in the field of predicting water input 

levels of reservoirs it can be seen that for decades a wide variety of methods have 

been proposed including statistical black box models to physical (conceptual) models. 

However due to the nonlinear, uncertainty and time varying characteristics of the 

measured hydrological parameters used in prediction it is difficult to point to any 

single model as being superior being compared to another. [2]. 
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In the recent past with the acceptance of artificial neural networks as a viable and 

potentially useful tool for predicting as well as modelling highly complex nonlinear 

systems has seen its adoption for the predicting of water input levels in reservoirs as 

well [2]. 

However, it can be seen that with respect to deep learning methods that relatively less 

amount of work is available in the public domain when considering the specific 

problem of predicting the water levels to reservoirs, which this study proposes to 

address. 
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Chapter 2 

2. Literature Review 
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2.1 Introduction 

Considering the previous work carried out by researchers in this domain it can be seen 

that as mentioned earlier a variety of methods including time series models such as 

Auto-Regressive Moving Average (ARMA) models, Multi-Linear Regression (MLR) 

models to Artificial Neural Networks (ANN) have gained increasing popularity [3]. 

Furthermore, it can be seen that in the use of these varying methodologies that there 

is a tradeoff between the parsimony of the models developed as opposed to the 

accuracy of the prediction (i.e. the tradeoff between simple models as opposed to 

black box models such as ANN’s.) [3]. 

The selection of input parameters for the development of a particular model is also 

important and can affect the outcome of the prediction being made [4]. Furthermore, 

with respect to ANN’s, the division of the available data in to training and validation 

sets along with data preprocessing also need to be handled carefully due to the “black 

box” nature of ANN’s.  

In this chapter, previous methodologies used in for predictions in the hydrological 

sciences along with the advantages and disadvantages of the proposed methodologies 

are discussed in detail.  

2.2 Multi-Linear Regression (MLR) model 

In Unes et.al [3], the writers use a fourfold methodology approach which includes 

multi-linear regression (MLR) for modelling daily reservoir levels in the Millers Ferry 

Dam on the Alabama River in the USA. MLR was introduced as a statistical model to 

map the linear relationship between a dependent variable and two or more independent 

variables. The MLR method is generally based on least squares (i.e. minimizing the 

squares of differences between the actual and forecasted values on the training set.) 

Although reservoir density flow problems are highly nonlinear the MLR model was 

developed to be used as a benchmark to compare the other models developed.     
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In general, the MLR model can be specified as follows. If there are 𝑚 independent 

variables and one dependent variable the multi-linear regression model can be 

specified as, 

𝑦 = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ + 𝑎𝑚𝑥𝑚 + 𝜀 

where  𝑦 is the dependent variable, 𝑎𝑖 is the coefficient of the 𝑖𝑡ℎ  variable and 𝜀 refers 

to the residual error term. 

It could be seen that in the studies carried out with respect to predicting the 

hydrological parameters of reservoirs that MLR was used as a baseline method against 

which models such as time series and artificial neural networks were benchmarked, as 

MLR is a simple model [3]. Furthermore, it could be seen that when compared with 

more complex models such as time series and artificial neural networks when MLR 

was evaluated using metrics such as Mean Square Error (MSE), Mean Absolute Error 

(MAE) and correlation coefficient (R) that the while the MLR models outperformed 

the time series models the artificial neural networks outperformed the MLR models. 

[3]. 

 

2.3 Auto Regressive (AR) model 

The Auto Regressive (AR) model is a simple univariate time series model, where the 

time series output is regressed on its previous values to develop a model which can 

then be used to predict future values. An AR (𝑝) model can be specified as follows, 

𝑦𝑡 = 𝜑1𝑦𝑡−1 + 𝜑2𝑦𝑡−2 + ⋯ + 𝜑𝑝𝑦𝑡−𝑝 + 𝑐 + 𝜀𝑡 

where 𝑐 is a constant, 𝜑𝑖 represents the weights or coefficients for the auto regressive 

terms indexed by time and 𝜀𝑡 represents a purely random process or white noise. The 

coefficients can be estimated using Yule-Walker equations. 
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This model was one of the approaches used by Unes et al. to forecast daily reservoir 

levels [3]. It could be seen with respect to predicting reservoir water level inflow that 

the AR models developed were marginally less accurate with respect to metrics such 

as MSE, MAE and R coefficient when compared with methods such as MLR and 

ANNs [3]. 

 

2.4 Auto Regressive Moving Average (ARMA) model 

The ARMA (Auto Regressive Moving Average) model is a univariate time series 

model, used to model a stationary stochastic process. consisting of two components 

which are namely the Auto Regressive (AR) and Moving Average (MA) components. 

The ARMA model is used to model time series due to its relative parsimony with 

respect to interpreting the model. It was used in the work of Unes et al. as one of the 

methods to model daily reservoir levels [3]. The ARMA (𝑝. 𝑞) model can be 

parameterized in terms of its coefficients as follows, 

𝑦𝑡 = 𝜑1𝑦𝑡−1 + 𝜑2𝑦𝑡−2 + ⋯ + 𝜑𝑝𝑦𝑡−𝑝 + 𝑐 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 + ⋯ + 𝜃𝑞𝜀𝑡−𝑞 

Where 𝑦𝑖  is, the predicted value indexed by time, 𝜀𝑖 represents the white noise due to 

the moving average terms and 𝜑𝑖 , 𝜃𝑖 represent the coefficients to be estimated for the 

autoregressive and moving average components respectively. The Box – Jenkins 

methodology, provides a systematic means of determining the optimal number of 

terms to be used. 

When considering the approach of using ARMA models to predict reservoir water 

inflow for the Millers Dam it could be seen that when considering criteria such as 

MSE, MAE and R coefficient that while the ARMA model was marginally better than 

AR models that it was outranked by the performance of the MLR and ANNs models 

developed [3]. 
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Figure 2.1- McCulloch and Pitt's mathematical model of a neuron. The inputs 𝒙𝒊 are multiplied by the weights  𝒘𝒊 , 

and the neurons sum their values. If their sum is greater than the threshold 𝜽 then the neuron fires, otherwise it does 

not. 

 

2.5 Artificial Neural Networks (ANNs) 

 

2.5.1 Introduction 

Artificial Neural Networks (ANNs) can be considered as an umbrella term used to 

describe computational models which are loosely based on the way biological brains 

solve problems by the use of connected neurons. The idea of ANNs for modelling non-

linear systems was first mooted by McCulloch and Pitts [5]. With respect to modelling 

hydrological reservoirs it can be seen that ANNs of different architectures have been 

used and will be examined in detail in the course of this literature review. [2], [3], [4], 

[6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17] 

 

2.5.2 Multi-Layer Perceptron (MLP)  

At its simplest form the mathematical model of a neuron as described by McCulloch 

and Pitts [5] consists of the following components. 

 A set of weighted inputs (𝑤𝑖), 

 An adder that sums the input signals, 

 An activation function (a threshold function) that decides whether the neuron 

fires(‘spikes’) for the current inputs. 
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The Perceptron can be considered as a collection of McCulloch and Pitts neurons 

combined together with a set of inputs and some weights to fasten the inputs to the 

neurons. 

 

 

 

 

 

 

Multi-Layer Perceptrons (MLPs) are a network of Perceptrons with hidden layers 

which were able to solve the two-dimensional XOR problem, which could not be 

solved by a model such as the single layer Perceptron. [18]. 

 

   

 

 

 

 

 

 

MLPs are also considered to belong to the category of feed forward networks as it is 

an example of an artificial neural network where connections between the units do not 

form a cycle. MLPs utilize a suitable algorithm which minimizes a loss function with  

Figure 2.2:The Perceptron network, consisting of a set of input nodes (left) connected to McCulloch 

and Pitts neurons using weighted connections. 

Figure 2.3:The Multi-Layer Perceptron (MLP) Network, consisting of multiple layers of connected neurons 
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respect to the predicted and actual outputs, to determine the values of the weights in 

the different layers. With respect to the use of MLPs in water resource management it 

can be seen that various algorithms such as the Levenberg-Marquardt backpropagation 

algorithm [3] and Output Weight Optimization – Hidden Weight Optimization (OWO-

HWO) algorithm [15], [19] were used for determining the weights corresponding to 

neurons in the network. 

When considering the application of MLPs with respect to the field of water resources 

management it can be seen that they have been used for diverse areas such as short and 

midterm reservoir inflow forecasting [17] to reservoir water level forecasting [15]. 

When compared with time series and MLR models it could be seen that MLPs tend to 

outperform these models, with respect to forecasting input water level in reservoirs, 

when metrics such as MAE, MSE and R coefficient are taken in to consideration. [3] 

 

2.5.3 Radial Basis Function (RBF) networks  

Radial Basis Function (RBF) networks are similar to MLPs, in that they are a form of 

feedforward networks, with the main differentiator being the type of activation 

functions used in the networks. While MLPs utilize sigmoid type functions for 

activation functions, RBF networks differ in that they use Radial Basis Functions. RBF 

networks have many uses across diverse domains and has been used for classification, 

system control, function approximation as well as time series forecasting.  

When considering the development of RBF networks to develop hydrological 

forecasting models, the learning algorithm of the RBF network is considered to be 

critical. The different types of learning algorithms used to determine network 

configuration and parameters have great influence on the performance of the derived 

RBF-based models. For instance, if the number of hidden neurons used in the RBF 

network is too large, it could lead to potential overfitting, whilst on the other hand, if 

the number of hidden neurons is too small it may fail to map input patterns onto output 

patterns. 
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Figure 2.4: The Radial Basis Function network consists of input nodes connected by weight to a set of RBF 

neurons, which fire proportionally to the distance between the input and the neuron in weight space. 

 

The usage of RBF networks with respect to the modelling of hydrological parameters 

can be seen in the work of Lin and Wu [8], where they developed a RBF-based model 

with a two-step learning algorithm to yield the hourly forecast of inflow to a Taiwanese 

reservoir during typhoons. The RBF network was combined with a two-step learning 

algorithms (unsupervised and supervised) in order to obtain the optimal configuration 

of the RBF network. Firstly, in the unsupervised learning step, using a data analysis 

technique a number of candidates for centers of the hidden neurons of the RBF network 

were obtained followed by the supervised learning step, where the optimal set of 

centers were selected from thee candidates and were then used as the centers of the 

hidden neurons of the RBF network. 

Furthermore, in the work of Lin and Wu [8], a RBF based model was evaluated along 

with a Self-Organizing Radial Basis Function (SORBF) network as well as Back-

Propagation Network (BPN). When the RBF model was compared with the other 

models it could be seen that when evaluated with metrics such as Mean Coefficient of 

Efficiency (MCE), Mean Coefficient of Correlation (MCC) and Mean Root Mean 

Square (MRMSE), that the RBF had a higher degree of accuracy. 
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2.5.4 Adaptive Neuro-Fuzzy Inference System (ANFIS)  

The Adaptive Neuro-Fuzzy Inference System can be considered as a multilayer 

feedforward network utilizing neural network learning algorithm and fuzzy reasoning 

to map an input space to an output space [2]. In the recent past, fuzzy logic has been 

highly recommended for modeling reservoir operation due to the inherent imprecision 

and vagueness which characterize problems related to reservoir operations. By 

augmenting neural networks with a fuzzy system ANFIS has been useful in modeling 

a variety of processes such power systems dynamic load, motor fault detection and 

diagnosis, forecasting system for the demand of teacher human resources and real-time 

reservoir operation. 

ANFIS has the advantage of allowing fuzzy rules to be extracted from numerical data 

or expert knowledge and thereby adaptively construct a rule base. In addition to this, 

it can also handle the complicated conversion of human intelligence to fuzzy systems. 

However, a major drawback of the ANFIS model is the time taken for training the 

structure as well as the time taken for determining the parameters which take a 

significant time interval. 

A Fuzzy Inference System usually consists of four steps. They can be described as 

follows: 

 Step 1: Fuzzification-  

At this stage the crisp inputs are transformed into fuzzy sets and the degree to which 

these inputs belong to each of the appropriate fuzzy sets are determined. The 

membership function determines how fuzzy the inputs are. 

 Step 2: Fuzzy rule base- 

The fuzzy rule base is where the system stores the relevant knowledge and information 

regarding the proposed problem.  

 Step 3: Fuzzy Inference Engine 
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Figure 2.5: Fuzzy Inference System 

 

The fuzzy inference engine can be considered to be the brain-like component of the 

entire system. Based on the fuzzy rule base defined in Step 2, this component can 

simulate human inference, thinking and decision-making abilities to solve problems. 

 Step 4: Defuzzification 

The final step of the fuzzy inference system is defuzzification, which consists of 

transforming the fuzzy outcome into a non-fuzzy output. 

 

 

 

 

 

 

 

A fuzzy rule, typically known as a rule of Sugeno’s model can be written as: 

𝐼𝑓 𝑥 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑦 𝑖𝑠  𝐵1 𝑇ℎ𝑒𝑛 𝑧 = 𝑓(𝑥, 𝑦) 

where 𝑥 and 𝑦 are inputs and 𝑧 = 𝑓(𝑥, 𝑦) is a crisp function in the consequent. When 

𝑧 is a first order polynomial then,  

𝑧 = 𝑓(𝑥, 𝑦) = 𝑝𝑥 + 𝑞𝑦 + 𝑟 

If there are two input variables, the rules will be as follows: 

𝐼𝑓 𝑥 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑦 𝑖𝑠  𝐵1 𝑇ℎ𝑒𝑛 𝑓1 = 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1 

𝐼𝑓 𝑥 𝑖𝑠 𝐴2 𝑎𝑛𝑑 𝑦 𝑖𝑠  𝐵2 𝑇ℎ𝑒𝑛 𝑓2 = 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2 

As a general case, the ANFIS model consists of a neural network with five layers. 

Given below is a diagram detailing the ANFIS architecture. 
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Figure 2.6: Architecture of Adaptive Neruor-Fuzzy Inference System 

 

 

 

 

 

 

 

 

 

 

 

The following description outlines in details the calculations carried out at each layer 

of the ANFIS model: 

 Layer 1: 

Layer 1 consists of the input and fuzzification layer as mentioned previously. 

 Layer 2: 

This is the rule layer, where a rule neuron receives inputs from the corresponding 

fuzzification neurons and calculates the firing strength of the rule it represents. The 

symbol 𝜋 in the previous figure represents the operator product, where the output of 

neuron 𝑖 in Layer 2 is obtained by, 

𝑂2,𝑖 = 𝑤𝑖 = 𝜇𝐴𝑖(𝑥). 𝜇𝐵𝑖(𝑦)  , 𝑖 = 1,2 
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 Layer 3: 

Layer 3 denotes the normalization layer. The capital letter N on the neurons in the 

previous figure denotes normalization. Each neuron in this layer calculates the 

normalized firing strength of a given rule. Thereby the output of neuron 𝑖 in Layer 3 

is determined as, 

𝑂3,𝑖 = 𝑤𝑖̅̅ ̅ =
𝑤𝑖

𝑤1 + 𝑤2
  , 𝑖 = 1,2 

 Layer 4: 

Layer 4 is the defuzzification layer where a defuzzification neuron calculates the 

weighted consequent value of a given rule as, 

𝑂4,𝑖 = 𝑤𝑖̅̅ ̅𝑓𝑖 = 𝑤𝑖̅̅ ̅(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟)     , 𝑖 = 1,2 

 Layer 5: 

 Layer 5 is designed to calculate the summation of outputs of all the defuzzification 

neurons in the previous layer. 

𝑂5,𝑖 = ∑ 𝑤𝑖̅̅ ̅𝑓𝑖𝑖 =
∑ 𝑤𝑖𝑓𝑖𝑖

∑ 𝑤𝑖𝑖
     , 𝑖 = 1,2   

 

It could be seen from prior work [11], that when comparing the ANFIS model to the 

MLP and RBF based ANN on the same feature set, that the ANFIS model outperforms 

the other two models with respect to evaluation metrics such as the Correlation 

Coefficient, Mean Absolute Prediction Error (MAPE) and Relative Root Mean Square 

Error (RRMSE).    



 

 
32 

 

 

2.6 Support Vector Machines (SVMs) 

Support Vector Machines were developed by Vapnik in 1995 for the supervised 

learning tasks of classification and regression. [20] Based on statistical learning theory 

it has been proven that SVMs tend to have certain advantages over backpropagation 

based ANNs. For instance, SVMs tend to have better generalization capabilities as 

opposed to Backpropagation Networks (BPNs) [21] . In addition to this the 

architecture and weights of the SVMs are guaranteed to be unique and globally optimal 

which tends to make SVM models more robust when compared to BPNs. Finally, 

SVMs can be trained more rapidly and this feature can prove to be very useful when 

constructing efficient forecasting models.  

With regard to the use of SVMs in hydrological forecasting it can be seen that studies 

have been carried out to evaluate both SVMs and BPNs with respect to forecasting 

hourly reservoir inflow forecasting during typhoon- warning periods. [21]. The 

findings of this study indicated that SVMs are better suited long lead time forecasting 

when compared with BPN based models due to its better generalization ability. In 

addition to this SVMs also proved to be more robust and efficient with regards to the 

predictions made. 

2.7 Deep Learning and Applications 

Deep learning at its core can be considered to be a sub class of machine learning that 

has come to prominence in the last few years with the growth of cores available on 

GPUs for computing. Machine Learning in turn can be defined as a sub field of 

Artificial Intelligence which is concerned with developing algorithms which can aid 

to make data driven predictions or decisions. In the field of deep learning currently 

there are several tools used by the industry to power applications such as self-driving 

cars to automatically generating captions for videos and images. 

Especially with respect to big data solutions it can be seen that deep learning is playing 

a pivotal role since it can harvest valuable insight from complex systems 

[22].Currently deep learning has become one of the most active research areas 

particularly in the machine learning community since its advent in 2006. Even though  
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the origins of deep learning can be traced back to the 1940s it could be seen that 

traditional training strategies for multi-layer neural networks either could not 

guarantee convergence or resulted in a locally optimal solution. It was due to this that 

the multi-layer neural networks did not receive widespread application even though it 

was realized that these networks could achieve better performance with respect to 

representation and feature learning. With Hinton’s proposal of a two-stage strategy for 

pre-training and fine tuning, in 2006, for deep learning in an effective manner the first 

breakthrough in deep learning was achieved.  Furthermore, the increase in computing 

power and size of datasets also contributed to the popularity of deep learning. With the 

advent of the era of big data a large number of sample could be collected to train the 

parameters of deep learning models. With the usage of GPU- based frameworks, the 

training time for deep learning models such as large-scale deep belief networks with 

more than 100 million free parameters and millions of training samples can range from 

several weeks to about one day. 

Considering the past few years it can be seen that deep leaning has made significant 

progress especially with respect feature learning. When compare to conventional 

shallow machine learning techniques such as Naïve Bayes and Support Vector 

Machines, deep learning models can take advantage of large number of samples to 

extract high level features as well learn hierarchical representations by leveraging the 

low-level input in a more efficient manner. 

Deep learning algorithms are constituted of Artificial Neural Networks with hidden 

layers, which in turn were inspired by biological neural networks [23]. Deep neural 

networks can be used to model complex non-linear relationships in both supervised 

(where historical data is used to make prediction about future outcomes) and 

unsupervised (clustering and finding new patterns and anomalies in data) settings [24]. 

Compared to traditional machine learning algorithms, deep learning models can 

provide significant improvement in areas such speech recognition and language 

translation as evidenced by the significant improvement in Google Translate after 

switching from Phrase Based Machine Translation (PBMT) to Neural Machine  
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Translation (NMT) [25] . The different type of Deep Learning models includes Deep 

Autoencoders, Restricted Boltzmann Machines (RBMs), Convolutional Neural 

Networks (CNNs), Recurrent Neural Networks and Long Short-Term Memory 

(LSTM) models depending on whether the application domain is for supervised or 

unsupervised learning [26].  

At the time of writing with respect to applications with regard to forecasting water 

levels in reservoirs there do not appear to be any literature which cite the use of deep 

learning techniques and as such the application of deep learning models in this research 

reflects the novel nature of the approach used, which is based on the success of this 

approach in other fields. 
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Chapter 3 

3. Methodology 
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Currently even though data regarding the water input level at the Kotmale Reservoir 

is being collected it can be seen that no active analysis of the data is being carried out. 

This research plans to remedy this issue by using novel deep learning techniques to 

give the decision makers better insight with regards to managing competing needs for 

water resources.  

It is evident there are several conventional methods existing for water level prediction 

currently and it is proposed to use a suitable parsimonious model as a baseline against 

which the deep learning techniques to be used in this research can be benchmarked 

against. However, improving upon the accuracy of an existing well-established 

technique could be a challenging research goal. 

This section is concerned about the proposed methodology and approach to implement 

deep learning. 

 

3.1 Proposed Methodology 

 

In order to implement the proposed deep learning-based technique on the collected 

data, the approach as depicted in Figure 3.11 is intended to be used. It can be seen that 

this is a high-level architecture, which broadly outlines the process where the model 

building will be carried out reiteratively until a suitable degree of accuracy is obtained. 

It should be noted that the metric for defining the accuracy of a model should be 

common to all the models to be compared. 

The various stages in the high-level architecture will be explained in detail in Chapter 

4 –Solution Architecture and Implementation. 
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Figure 3.1: Architecture of proposed solution 

 

3.2 Deep Learning  

 

The generally accepted key difference between deep learning and traditional machine 

learning is that traditional machine learning techniques exploited at most one or two 

layers of non-linear transformations. [26] While the shallow architecture based 

traditional machine learning techniques have been found to be effective in solving well 

constrained or simple problems, when dealing with more complicated real-world 

applications involving natural signals such as natural sound and language, natural 

image and visual scenes and human speech , difficulties tend to arise due to their 

limited representational and modelling capabilities. However, based on human 

information processing mechanisms such as audition and vision, the need of deep 
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architectures for extracting complicated structure as well as the building of internal 

representation from sensory inputs can be seen.  

Based on the literature review carried out it was found that the number of studies 

carried out in the field of reservoir level forecasting using deep learning is virtually 

nonexistent and this research hopes to address this issue by modelling the water level 

of the Kotmale Dam by utilizing a deep learning model detailed in the next sub-section 

to improve upon existing prediction models.  

3.2.1 LSTM (Long Short-Term Memory) Recurrent Networks 

 

Recurrent networks are neural networks which take as their input not just the current 

input example they see, but also what they perceived in the earlier time steps. The 

decision recurrent nets reach at time step t-1 affects the decision that they will reach 

later at time step t. Therefore, recurrent networks have two sources of input which are 

the present as well as the recent past. Recurrent networks are also said to have memory 

since compared to Feedforward networks it can be seen that, Recurrent networks retain 

information regarding the temporal structure of the data. This sequential information 

is preserved in the recurrent network’s hidden state, spanning many time steps as it 

cascades forward to affect the processing of each subsequent example. 

The purpose of Recurrent networks is to accurately classify or predict sequential input. 

Backpropagation and gradient descent is utilized in order to achieve this. Recurrent 

networks can be visualized as shown in Figure 3.12. 

 

Figure 3.2: An unrolled recurrent neural network 
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In Feedforward networks, Backpropagation moves backward from the final error 

through the outputs, weights and inputs of each layer, assigning those weights 

responsibility for a portion of the error by the calculation of their partial derivatives. 

These derivatives are subsequently used by the gradient descent algorithm to adjust 

the weights to decrease error specified by a loss function. Recurrent networks rely on 

an extension of backpropagation called Backpropagation Through Time (BPTT). 

Given below in Figure 3.13 illustrates the repeating module in a standard Recurrent 

Neural Network (RNN) which usually consists of a single tanh layer. 

 

Figure 3.3 :The repeating module in a standard RNN 

 

The vanishing gradient problem is a major obstacle that emerged with respect to 

recurrent net performance. Long Short-Term Memory units, or LSTMs, were proposed 

as a solution to the vanishing gradient problem. 

LSTMs help preserve the error that can be backpropagated through time and layers. 

By maintaining a more constant error, they allow recurrent nets to continue to learn 

over many time steps, thereby opening a channel to link causes and effects remotely. 

LSTMs contain information outside the normal flow of the recurrent network in a 

gated cell. Information can be stored in, written to, or read from a cell. The cell makes 

decision about what to store, and when to allow reads, writes and erasures, via gates 

that open and close. These gates act on the signals they receive, and similar to the 
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neural network’s nodes they block or pass on information based on its strength and 

import, which they filter with their own sets of weights. These weights, similar to the 

weights that regulate input and hidden states, are adjusted via the recurrent networks 

learning process. 

 

 

Figure 3.4:The repeating module in an LSTM consisting of four interacting layers 

 

In addition to traditional LSTMs there exists a variant known as a Gated Recurrent 

Unit (GRU) which is basically an LSTM without an output gate, and therefore fully 

writes the contents from its memory cell to the larger net at each time step. 

3.2.2 Proposed LSTM Model for Water Level Prediction 

 

This research proposes to implement a spatio-temporal LSTM model which can 

predict the water level, in feet, at the Kotmale Reservoir. This is proposed to be done 

in the form of namely a LSTM model which will forecast hourly average water level 

for a half a day ahead time window. This model will use the following variables from 

the 10 most adjacent hydroelectric dams. 

 Cloud Cover – The percentage of sky occluded by the sky, between 0 and 1, 

inclusive. 

 Dew Point – The dew point in degrees Fahrenheit. 

 Humidity – The relative humidity between 0 and 1 inclusive. 



 

 
41 

 

 Pressure – The sea-level air pressure in millibars. 

 Temperature – The air temperature in degrees Fahrenheit. 

 Visibility – The average visibility in miles, capped at 10 miles. 

 Wind Bearing – The direction that the wind is coming from in degrees, with 

true north at 00 and progressing clockwise. (If Wind Speed is zero, then this 

value will not be defined.) 

 Wind Speed – The wind speed in miles per hour. 

The hydroelectric dams for which data points under the above variable are collected 

for the given period are as follows in Table 3.1, 

Table 3.1: Latitude and Longitude of Reservoirs 

Dam Latitude (Decimal) Longitude (Decimal) 

Broadlands 6.980556 80.4525 

Laxapana 6.918889 80.489444 

Norton 6.913889 80.521667 

Upper Kotmale 6.946667 80.658056 

Castlereigh 6.873333 80.566389 

Canyon 6.871667 80.526111 

Maskeliya 6.843611 80.548889 

Nilambe 7.188333 80.631111 

Polgolla 7.321667 80.645 

Victoria 7.241389 80.784722 

 

  

Since the spatial element of the model is captured by incorporating the meteorological 

data across the various hydroelectric stations the temporal aspect is bought in to the 

model by stacking the last 1 day values for the different meteorological parameters 

across the different hydroelectric dams. 

This can be mathematically expressed as follows, 

𝑌�̂� = 𝐿𝑆𝑇𝑀(𝑌𝑡−1, 𝑋𝑖𝑗𝑘
) 
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Where,  

𝑌�̂� = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑊𝑎𝑡𝑒𝑟 𝐿𝑒𝑣𝑒𝑙  𝑓𝑟𝑜𝑚 𝐿𝑆𝑇𝑀 𝑀𝑜𝑑𝑒𝑙 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 𝑓𝑜𝑟 𝐾𝑜𝑡𝑚𝑎𝑙𝑒 𝐷𝑎𝑚 

𝑌𝑡−1 = 𝐴𝑐𝑡𝑢𝑎𝑙 𝑊𝑎𝑡𝑒𝑟 𝐿𝑒𝑣𝑒𝑙 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 − 1 𝑓𝑜𝑟 𝐾𝑜𝑡𝑚𝑎𝑙𝑒 𝐷𝑎𝑚 

𝐿𝑆𝑇𝑀 = 𝐿𝑆𝑇𝑀 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑤ℎ𝑖𝑐ℎ 𝑡𝑎𝑘𝑒𝑠 𝑌𝑡−1, 𝑋𝑖𝑗𝑘
𝑎𝑠 𝑖𝑛𝑝𝑢𝑡𝑠 𝑡𝑜 𝑜𝑢𝑡𝑝𝑢𝑡 𝑌�̂�   

𝑋𝑖𝑗𝑘
= 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑖 = 𝑡 − 1, &  𝑗 = 1,2, … 10 & 𝑘 = 1,2, … 6  

The subscript i denotes the time index while j denotes the various dams and k denotes 

the meteorological parameters measured for each of those dams. The developed LSTM 

models will be compared with linear regression models and XGBoost (Extreme 

Gradient Boost) models to verify the accuracy based on the Root Mean Square Error 

(RMSE) as the evaluation criteria.   

 

3.3 Baseline Models 

 

As mentioned earlier linear regression models and XGBoost will be used as the 

baseline models against which to compare the developed LSTM models. The 

following sections give an outline of how the features will be engineered to be 

incorporated in these two models. 

3.3.1 Baseline Regression Model for Water Level Prediction 

 

The regression model while being able to capture the spatial variation in the data would 

not be ideally suited to capture the temporal variation unless feature engineering is 

done on the data. In addition to the variables above, temporal variables such as the 

day, month and day of the week will be used as input for the baseline regression models 

to capture the temporal variation.  

3.3.2 Baseline SVM (Support Vector Machine) Model for Water Level 

Prediction 

 

As mentioned in Chapter 2, under Literature Review it was seen that Support Vector 

Machines (SVMs) represent the state-of-the art with regards to predicting water levels 

for reservoirs. 
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As in the case of the regression models, temporal variable will be used as input to 

incorporate the temporal variation across the data.  

 

3.3.3 Baseline XGBoost (XGBoost) Model for Water Level Prediction 

 

XGBoost is an implementation of gradient boosted decision trees designed for speed 

and performance that has recently been dominating applied machine learning and 

Kaggle competitions for structured or tabular data. 

As in the case of the regression models in addition to the variables used in the LSTM 

models, temporal variables will be used as input to capture the temporal variation 

across the data. 
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Chapter 4 

4. Solution Architecture & Implementation 
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4.1 Overview 

 

As illustrated in Figure 3.11, the following steps were followed during implementation 

of the solution architecture the details of which will be discussed in detail in this 

chapter. 

 Extract, Transform, Load (ETL) / Data Preprocessing 

 Knowledge Discovery 

o Data Understanding 

o Data Preparation 

o Modelling 

The evaluation of the developed models will be discussed in detail in Chapter 5 – 

Model Evaluation (Data and Analysis). 

4.2 Extract, Transform, Load (ETL) Process / Data Preprocessing 

 

Under the ETL process data from two separate sources were integrated. The first 

source was the data for the historical water levels at the Kotmale Reservoir which was 

available for a period of 546 days (from 30th July 2015 to 25th January 2017). The 

second was historical meteorological data which was obtained from the Dark Sky API, 

the details of which were outlined in Section 3.2.2. The Dark Sky API provides was 

chosen because it provides reliable information upon the supplying of the longitude 

and latitude co-ordinates of the location, provides a 7 day-ahead forecast and since it 

is trusted by enterprises such as Microsoft and Yelp. 

The entire ETL process was carried out using Python with the urllib2 and json modules 

being used for accessing the APIs while the pandas and csv module were used for 

reshaping and outputting the data in flat file format. 

Water level data at the Kotmale Reservoir was aggregated at 10 second intervals. The 

water level was aggregated at daily levels. The effective period of 546 days was arrived 

at by removing the consecutive days with missing values. 
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In addition to this, there were instances where values were not returned by the Dark 

Sky API for certain meteorological parameters. The case of missing values was 

handled by representing the missing values by the numerical value of -999, The 

handling of missing values in the model is discussed in detail in the following section 

under data preparation,  

 

4.3 Knowledge Discovery 

 

Knowledge Discovery consists of the process of understanding the data, preparing the 

data and developing a model on the prepared data. It consists of the following stages: 

 Data Understanding 

 Data Preparation 

 Modelling 

 

4.3.1 Data Understanding 

 

Data Understanding involves generating descriptive statistics of the data and obtaining 

insights based on them to infer properties regarding the data. These inferences can be 

then used to aid decisions in designing and fine tuning the models developed for 

analysis. 

This section is discussed in detail in Chapter 5 under Data and Analysis.  
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4.3.2 Data Preparation 

 

For the baseline models, the data was standardized by subtracting the average value 

for a predictor variable from an individual value and dividing it by the standard 

deviation of the values for that variable 

In the case of the proposed LSTM Recurrent Neural Network the values for a predictor 

variable normalized by using a Min-Max Transform to ensure that the transformed 

values lie between a minimum value of 0 and a maximum value of 1.  

For the LSTM model, the temporal aspect was incorporated by using time lagged 

observations of the spatial meteorological variables across the different reservoirs.  

 

4.3.3 Modelling 

 

For the baseline models, apart from multiple linear regression the hyper parameters for 

both the XGBoost and SVM models were determined using grid search. 

Similarly, for the LSTM model the hyperparameters of the model were also 

determined using grid search. 

It should be noted that for the model being both for the baseline and LSTM model 

Cloud Cover and Pressure were excluded were excluded from the analysis since they 

had a considerable number of missing values. It was seen that none of the other 

predictor variables had missing values. 

Root-Mean Square Error (RMSE) was used as the evaluation metric for assessing the 

performance of the models. The formula for RMSE is as given in the following page, 
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𝑅𝑀𝑆𝐸 =  √
∑ (𝑦�̂� − 𝑦𝑡)2𝑛

𝑡=1

𝑛
 

𝑤ℎ𝑒𝑟𝑒 𝑦�̂� = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

𝑦𝑡 = 𝐴𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 

𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
49 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 5 
5. Data & Analysis 
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5.1 Descriptive Analysis 

 

Descriptive Analysis was carried out by graphing the relationship of the various 

meteorological variables across the various reservoirs across time. 

5.1.1 Descriptive Analysis for Modelling 

 

The graphs obtained under this analysis are attached in the Appendix and include in 

detail the relationships. 

5.1.2 Evaluation and Analysis of Baseline Models 

 

5.1.2.1 Linear Regression Model 

The model coefficients for the Linear Regression Model created on the dataset were 

as given in Table 5.1: 

Table 5.1 - Coefficients for Linear Regression Model  

Coefficients Estimate Std. Error t value Pr(>|t|) 

(Intercept) 2.82E+02 5.01E+01 5.627 5.21e-08 

Broadlands_dewPoint 2.65E+02 4.41E+02 0.602 0.548079 

Broadlands_humidity -4.00E+02 1.03E+03 -0.388 0.698434 

Broadlands_temp 1.35E+02 3.66E+02 0.369 0.712204 

Broadlands_visibility 7.52E+02 7.04E+02 1.069 0.286267 

Broadlands_windbearing 2.13E-01 2.48E-01 0.861 0.390056 

Broadlands_windspeed -2.74E+02 2.92E+02 -0.941 0.347879 

Canyon_dewPoint -1.08E+02 9.00E+02 -0.12 0.904755 

Canyon_humidity -1.78E+03 1.41E+03 -1.264 0.207549 

Canyon_temp -5.07E+02 9.57E+02 -0.53 0.596631 

Canyon_visibility 2.15E+03 1.43E+03 1.506 0.133468 

Canyon_windbearing 6.36E-01 5.02E-01 1.267 0.206526 

Canyon_windspeed -3.25E+02 9.86E+02 -0.33 0.741704 

Castlereigh_dewPoint -3.36E+02 5.95E+02 -0.565 0.572473 

Castlereigh_humidity 6.33E+02 1.63E+03 0.388 0.698016 
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Castlereigh_temp 9.23E+02 5.84E+02 1.58 0.115489 

Castlereigh_visibility -5.40E+02 9.18E+02 -0.588 0.556871 

Castlereigh_windbearing 1.64E-01 3.36E-01 0.488 0.626246 

Castlereigh_windspeed 1.79E+02 5.96E+02 0.3 0.764085 

Laxapana_dewPoint -5.38E+02 9.09E+02 -0.592 0.554392 

Laxapana_humidity 2.01E+03 1.49E+03 1.347 0.179131 

Laxapana_temp 6.76E+01 8.63E+02 0.078 0.937587 

Laxapana_visibility 9.19E+02 1.37E+03 0.673 0.501892 

Laxapana_windbearing -9.45E-02 3.70E-01 -0.256 0.798442 

Laxapana_windspeed 9.44E+02 9.17E+02 1.03 0.304228 

Maskeliya_dewPoint 6.27E+02 6.87E+02 0.912 0.362631 

Maskeliya_humidity -5.41E+02 1.63E+03 -0.331 0.740789 

Maskeliya_temp 3.45E+02 7.32E+02 0.471 0.638169 

Maskeliya_visibility -6.25E+02 7.57E+02 -0.826 0.409639 

Maskeliya_windbearing -3.52E-01 4.84E-01 -0.726 0.468301 

Maskeliya_windspeed -8.41E+01 7.15E+02 -0.118 0.90639 

Nilambe_dewPoint 1.61E+02 1.72E+02 0.935 0.350636 

Nilambe_humidity -1.07E+03 1.50E+03 -0.714 0.476169 

Nilambe_temp 6.39E+02 1.75E+02 3.649 0.000325 

Nilambe_visibility -1.17E+03 2.95E+02 -3.954 0.000102 

Nilambe_windbearing 3.01E-01 2.29E-01 1.316 0.189385 

Nilambe_windspeed -3.10E+01 6.81E+01 -0.456 0.648951 

Norton_dewPoint -2.26E+01 9.67E+02 -0.023 0.9814 

Norton_humidity 2.60E+02 1.26E+03 0.206 0.83662 

Norton_temp -9.60E+02 1.13E+03 -0.852 0.395204 

Norton_visibility -2.87E+03 1.39E+03 -2.063 0.040174 

Norton_windbearing -5.63E-01 4.23E-01 -1.33 0.184754 

Norton_windspeed -4.65E+02 8.13E+02 -0.571 0.568459 

Polgolla_dewPoint -3.35E+01 2.62E+01 -1.276 0.20314 

Polgolla_humidity 3.97E+01 7.10E+02 0.056 0.955462 

Polgolla_temp -4.93E+01 2.66E+01 -1.855 0.064856 

Polgolla_visibility 1.60E+02 3.97E+01 4.026 7.67e-05 

Polgolla_windbearing -5.04E-02 1.08E-01 -0.465 0.642527 

Polgolla_windspeed -3.99E+00 8.40E+00 -0.475 0.63509 

UpperKotmale_dewPoint -1.50E+00 8.19E+01 -0.018 0.985417 

UpperKotmale_humidity 8.32E+02 9.46E+02 0.879 0.380204 

UpperKotmale_temp -7.81E+01 8.59E+01 -0.909 0.364126 

UpperKotmale_visibility 4.62E+02 1.42E+02 3.247 0.001339 

UpperKotmale_windbearin 8.393e-02 1.93E-01 0.434 0.664759 

UpperKotmale_windspeed 1.43E+01 4.68E+01 0.307 0.759309 

Victoria_dewPoint -1.41E+01 1.15E+02 -0.123 0.902456 

Victoria_humidity 1.80E+01 1.15E+03 0.016 0.987505 
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Figure 5.1 -Predicted Vs Actual Values Over Time using Linear Regression 

Victoria_temp -5.18E+02 1.18E+02 -4.383 1.77e-05 

Victoria_visibility 7.55E+02 2.08E+02 3.633 0.000344 

Victoria_windbearing -2.77E-01 2.10E-01 -1.319 0.188451 

Victoria_windspeed 4.55E+01 5.31E+01 0.857 0.392527 

 

As there was a significant outlier on the test data which was also a leverage point it 

was removed for the analysis of the RMSE metric. The Linear Regression Model had 

a RMSE of 45.36 on the training data and a RMSE of 11.39 on the test data.  

In addition to the above metrics, the predicted versus actual values were graphed along 

with the same values in time order as well as the standardized residuals versus the 

predicted values to perform model diagnostic checks. It was observed that because of 

the nonlinear relationship between the predictors and the dependent value that the 

standardized values do not appear to be completely random. At the same time, when 

plotting the predicted versus actual values in time order it could be seen that while 

there was difference in values the movement of the time series appeared to be in 

roughly the same pattern. 

These patterns can be observed in Figure 5.1 – Figure 5.5 given below. 
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Figure 5.2- Predicted Vs Actual Values Scatterplot for Training Data using Linear Regression 

Figure 5.3-- Predicted Vs Standardized Residual Values Scatterplot for Training Data using Linear Regression 
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Figure 5.4 -Predicted Vs Actual Values Scatterplot for Test Data using Linear Regression 

Figure 5.5 - Predicted Vs Standardized Residual Values Scatterplot for Test Data using Linear Regression 
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5.1.2.2 Support Vector Machines 

 

Since the prediction of the water level is a regression problem epsilon support vector 

regression and nu support vector regression were used with three types of kernels, 

namely linear, polynomial and sigmoid kernels. This resulted in 6 models being 

developed under the baseline category for Support Vector Machines (SVMs). The 

models were chosen after optimizing the hyperparameters of each model by using grid 

search. 

The Root Mean Square Errors (RMSEs) for the developed models on the training and 

test sets are given as follows in Table 5.2: 

Table 5.2 - SVR Model with Train and Test RMSEs 

SVR Model RMSE (Train) RMSE (Test) 

Epsilon SVR – Linear Kernel 12.48 12.85 

Epsilon SVR – Polynomial Kernel 14.99 15.24 

Epsilon SVR – Sigmoid Kernel 51.73 48.00 

Nu SVR – Linear Kernel 12.18 12.28 

Nu SVR – Polynomial Kernel 14.70 14.39 

Nu SVR – Sigmoid Kernel 45.36 40.25 

 

It can be that for both Epsilon and Nu SVRs when the Sigmoid kernel is used that the 

RMSE obtained for the train and test sets is significantly larger compared to the other 

SVRs. This could be due to an anomaly arising due to the type of kernel used.  

The predicted versus actual values in time order was plotted for all the SVR models. 

Furthermore, the predicted versus actual values for both the training and test sets were 

plotted for all the SVR models were plotted and are given in the Appendix. 
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Figure 5.6 - Predicted Vs Actual Values Over Time using XGBoost 

 

 

5.1.2.3 XGBoost 

 

The optimal XGBoost model had a RMSE of 0.00045 on the training data and a RMSE 

of 14.75 on the test data. The model which minimizes the RMSE was chosen after 

optimizing the hyperparameters of the models by using grid search. 

In addition to the above metrics, the predicted versus actual values were graphed along 

with the same values in time order. The scatterplot of predicted versus actual values 

was also graphed and is given below. 

The optimal value for the hyper parameters of the XGBoost model were found to be 

as follows: 

 Maximum Depth = 8 

 Eta = 1.0 

 Number of Rounds = 25 

The variation of predicted versus actual values across time and for the training and test 

data can be seen Figure 5.6, Figure 5.7 and Figure 5.8 respectively. 
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Figure 5.7 -Predicted Vs Actual Values Scatterplot for Training Data using XGBoost 

Figure 5.8:Predicted Vs Actual Values Scatterplot for Test Data using XGBoost 
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Figure 5.9- Variation of error in the train and test set for GRU RNN with 100 neurons in first layer 

 

 

5.1.3 Evaluation and Analysis of LSTM Model 

 

The LSTM models developed used both spatial and temporal variables. When 

developing the models, the validation error of the model oscillated which was probably 

due to the time ordering of the training and test data sets. The hyperparameters of the 

model were selected using grid search 

Different models were fitted and the RMSE of the models were assessed. Among the 

different type of Recurrent Neural Network models used both LSTM and GRU neural 

networks were fitted with the number of neurons in the first layer being modified after 

initial model tuning. Given below are graphs which illustrate how the error varies in 

the train and test set over different epochs for the different type of neural networks 

employed. 

  

 

 

 

 

 

 

 

As seen in Figure 5.9, it can be seen that the test set error oscillates and then decreases 

an converges to a lower value as the epochs increases. This could be attributed to the 

time ordering inherent in the data which is fed in to the GRU RNN. 
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Figure 5.10- Variation of error in the train and test set for GRU RNN with 150 neurons in first layer 

Figure 5.11- Variation of error in the train and test set for GRU RNN with 200 neurons in first layer 

 

 

 

 

 

 

 

Compared to Figure 5.9 it can be seen that in Figure 5.10 that the test set error oscillates 

in a similar manner across epochs and converges to a lower value.  

 

 

 

 

 

 

 

 

It can be seen from Figure 5.11 that it is once again similar to Figure 5.10 and that the 

test set error oscillates over epochs and converges to a lower value. 
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Figure 5.12- Variation of error in the train and test set for LSTM RNN with 100 neurons in first layer 

Figure 5.13- Variation of error in the train and test set for LSTM RNN with 150 neurons in first layer 

 

 

 

 

 

 

 

 

In Figure 5.12, it can be seen that the test error oscillates across epochs and converges 

towards a smaller value. 

 

 

 

 

 

 

 

 

It can be seen from Figure 5.13 that similar to Figure 5.14 that the test error and train 

error decrease and oscillate together converging towards a smaller value as the epochs 

increase.  
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Figure 5.14- Variation of error in the train and test set for LSTM RNN with 200 neurons in first layer 

Figure 5.15- Predicted Vs Actual Values Over Time using Optimal LSTM model 

Figure 5.15 - Predicted Vs Actual Values Over Time using Optimal LSTM Model 

 

 

 

 

 

 

 

 

From Figure 5.14 it can be seen that the test error oscillates across epochs and 

converges towards a smaller value as the number of epochs increase. 

The model which minimizes the RMSE was chosen after optimizing the 

hyperparameters. It was the model which had 150 neurons in the LSTM layer. The 

optimal LSTM model had a RMSE of 3.24 on the training set and a RMSE of 2.14 on 

the test set. This is indicative that the model has a low validation error when 

generalizing to unseen data. In addition, the predicted versus actual values were 

graphed along with the same values in time order. The scatterplot of predicted versus 

actual values was also graphed. These can be seen in Figure 5.15, Figure 5.16 and 

Figure 5.17 respectively. 
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Figure 5.16- Predicted Vs Actual Values Scatterplot for Training Data using Optimal LSTM Model 

Figure 5.17- Predicted Vs Actual Values Scatterplot for Test Data using Optimal LSTM Model 
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Chapter 6 
6. General Discussion & Conclusion 
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6.1 General Discussion on the Study 

 

For the purpose of this study to see whether deep learning could be utilized to improve 

on traditional machine learning and predictive analytics models, 8 baseline models 

were used to benchmark versus the performance of the LSTM Recurrent Neural 

Network developed. It was interesting to note that possibly due to the limited amount 

of data available in the dataset that while the LSTM model achieved the lowest RMSE 

value on the training set as well as the lowest RMSE value for the test set except for 

the XGBoost model when the baseline models which implies that it was the best among 

all models as the other models at predicting out of sample values. This was also 

evinced by the descriptive analysis on the predicted versus actual values of the model. 

It was interesting to note that for the XGBoost model that there was a significant 

difference between the training and test RMSE values and in addition from the 

predicted versus actual plot it could be seen that the predictions obtained from this 

model tended to fluctuate significantly as well. When considering the Linear 

Regression model it could be seen that the test set RMSE was significantly lower 

compared to the training set RMSE. In addition, it could be noted that while SVM 

regression models with Linear and Polynomial Kernels had similar values with respect 

to RMSE on the training and test set, the SVM model with Sigmoid Kernel that the 

training set and test set RMSEs were significantly higher. This could be attributed due 

to the parameterization of the Sigmoid Kernel resulting in these values.  

When considering the diagnostic plots of the models it could be seen that the variation 

in the predicted values of the LSTM model with the actual values it can be seen that 

most of them lie along the line oriented at 45 degrees in the first quadrant to both the 

horizontal and vertical axes. When considering the predicted values for XGBoost and 

Regression models it could be seen that they tended to fluctuate rapidly between 

values, while for the SVM Models a similar pattern could be observed.  

It was also interesting to note that for the different LSTM and GRU Recurrent Neural 

Networks developed that the train and test set error tended to oscillate across epochs. 

This could be attributed to the potential time ordering of data. In addition, it could be  
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seen that the error converged to a lower value as the number of epochs over which the 

model was trained increased. The optimal RNN which minimized the RMSE was 

found to be the LSTM RNN which used 150 neurons in its first layer. 
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6.2 Conclusions 

 

The findings of this study are summarized below: 

 Out of the models developed the LSTM and GRU models appeared to be the most 

stable with respect to time and both had the least RMSE on the test set and the 

model which optimized the RMSE on both the training and test sets was obtained 

from a LSTM model. 

 

 While the XGBoost model performed relatively well the values predicted by the 

optimal XGBoost model tended to fluctuate rapidly results in spikes and troughs 

for certain predictions. 

 

 Out of the SVM models developed while the SVM models with Linear and 

Polynomial Kernels had near similar performance with respect to the RMSE metric 

the SVM models with the Sigmoid Kernel had anomalously high values with 

respect to the RMSE metric. This could be attributed to the specific manner in 

which the Sigmoid Kernel is parameterized. 

 

 The Linear Regression model had the highest RMSE for the training set when 

compared to the other baseline models. 

 

6.3 Further Work 

 

The following are some areas which could be researched into, based on the knowledge 

gathered from this study: 

 Extend this research to the case where the number of observations collected from 

the Kotmale Reservoir was over an increased time span. 
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 Bring in more variables which could be used to derive more features during the 

feature engineering process. 
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  Figure A.1- Variation of Meteorological Variables with time (Broadlands Reservoir) 
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       Figure A.2- Variation of Meteorological Variables with time (Laxapana Reservoir) 
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       Figure A.3- Variation of Meteorological Variables with time (Norton Reservoir) 
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        Figure A.4- Variation of Meteorological Variables with time (Upper Kotmale Reservoir) 
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Figure A.5 - Variation of Meteorological Variables with time (Castlereigh Reservoir) 
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Figure A.6 - Variation of Meteorological Variables with time (Canyon Reservoir) 
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Figure A.7 - Variation of Meteorological Variables with time (Maskeliya Reservoir) 
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Figure A.8 - Variation of Meteorological Variables with time (Nilambe Reservoir) 
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Figure A.9 - Variation of Meteorological Variables with time (Polgolla Reservoir) 
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Figure A.10 - Variation of Meteorological Variables with time (Victoria Reservoir) 
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Figure A.11 - Histograms of Meteorological Variables (Broadlands Reservoir) 
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Figure A.12 - Histograms of Meteorological Variables (Laxapana Reservoir) 
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Figure A.13 - Histograms of Meteorological Variables (Norton Reservoir) 
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Figure A.14 - Histograms of Meteorological Variables (Upper Kotmale Reservoir) 
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Figure A.15 - Histograms of Meteorological Variables (Castlereigh Reservoir) 
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Figure A.16 - Histograms of Meteorological Variables (Canyon Reservoir) 
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Figure A.17 - Histograms of Meteorological Variables (Maskeliya Reservoir) 
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Figure A.18- Histograms of Meteorological Variables (Nilambe Reservoir) 
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Figure A.19- Histograms of Meteorological Variables (Polgolla Reservoir) 
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                         Figure A.20- Histograms of Meteorological Variables (Victoria Reservoir) 
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Figure A.21 - Correlation plot of Meteorological Variables (Broadlands Reservoir) 

Figure A.22- Correlation plot of Meteorological Variables (Laxapana Reservoir) 
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Figure A.23- Correlation plot of Meteorological Variables (Norton Reservoir) 

Figure A.24- Correlation plot of Meteorological Variables (Upper Kotmale Reservoir) 
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Figure A.25- Correlation plot of Meteorological Variables (Castlereigh Reservoir) 

Figure A.26- Correlation plot of Meteorological Variables (Canyon Reservoir) 
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Figure A.27- Correlation plot of Meteorological Variables (Maskeliya Reservoir) 

Figure A.28- Correlation plot of Meteorological Variables (Nilambe Reservoir) 
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Figure A.29- Correlation plot of Meteorological Variables (Polgolla Reservoir) 

Figure A.30- Correlation plot of Meteorological Variables (Victoria Reservoir) 
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Figure A.31 - Predicted Vs Actual Values Over Time using Epsilon SVR (Linear Kernel) 

Figure A.32- Predicted Vs Actual Values Scatterplot for Training Data using Epsilon SVR (Linear Kernel) 
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Figure A.33- Predicted Vs Actual Values Scatterplot for Test Data using Epsilon SVR (Linear Kernel) 

Figure A.34- Predicted Vs Actual Values Over Time using Epsilon SVR (Polynomial Kernel) 
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Figure A.35- Predicted Vs Actual Values Scatterplot for Training Data using Epsilon SVR (Polynomial Kernel) 

Figure A.36- Predicted Vs Actual Values Scatterplot for Test Data using Epsilon SVR (Polynomial Kernel) 
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Figure A.37- Predicted Vs Actual Values Over Time using Epsilon SVR (Sigmoid Kernel) 

Figure A.38- Predicted Vs Actual Values Scatterplot for Training Data using Epsilon SVR (Sigmoid Kernel) 
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Figure A.39- Predicted Vs Actual Values Scatterplot for Test Data using Epsilon SVR (Sigmoid Kernel) 

Figure A.40- Predicted Vs Actual Values Over Time using Nu SVR (Linear Kernel) 
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Figure A.41- Predicted Vs Actual Values Scatterplot for Training Data using Nu SVR (Linear Kernel) 

Figure A.42- Predicted Vs Actual Values Scatterplot for Test Data using Nu SVR (Linear Kernel) 
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Figure A.43- Predicted Vs Actual Values Over Time using Nu SVR (Polynomial Kernel) 

Figure A.44- Predicted Vs Actual Values Scatterplot for Training Data using Nu SVR (Polynomial Kernel) 
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Figure A.45- Predicted Vs Actual Values Scatterplot for Test Data using Nu SVR (Polynomial Kernel) 

Figure A.46- Predicted Vs Actual Values Over Time using Nu SVR (Sigmoid Kernel) 
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Figure A.47- Predicted Vs Actual Values Scatterplot for Training Data using Nu SVR (Sigmoid Kernel) 

Figure A.48- Predicted Vs Actual Values Scatterplot for Test Data using Nu SVR (Sigmoid Kernel) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


