DEMOGRAPHIC ATTRIBUTES BASED, COLD-START RECOMMENDATION OF MODULES IN ORGANIZATIONAL LEARNING

Peduru Hewage Suneth Dasantha Ekanayake

158213P

M.Sc. in Computer Science

Department of Computer Science & Engineering

University of Moratuwa

Sri Lanka

June 2019

DEMOGRAPHIC ATTRIBUTES BASED, COLD-START RECOMMENDATION OF MODULES IN ORGANIZATIONAL LEARNING

Peduru Hewage Suneth Dasantha Ekanayake

158213P

This dissertation submitted in partial fulfillment of the requirements for the

degree Master of Science in Computer Science

Department of Computer Science & Engineering

University of Moratuwa

Sri Lanka

June 2019

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works.

Signature:	
------------	--

Date:

Name : P.H. Suneth Dasantha Ekanayake

The above candidate has carried out research for the Masters Dissertation under my supervision.

Signature of the Supervisor: Date:

Name : Dr. H.M.N. Dilum Bandara

ABSTRACT

Organizational learning is the process of creating, transferring, and retaining knowledge within an organization. It is of high importance due to the highly dynamic nature of the modern employee base. Moreover, new employees perform sub-optimally and get frustrated when such knowledge and expertise are not readily accessible to them. While many organizations use an organization-learning platform to bridge the knowledge gaps, both for new and existing employees, their effectiveness is being questioned due to lack of relevance, incoherent order of modules to be followed, and lack of fit with the learning style of an employee. While recommendation systems could overcome these challenges, it is difficult to provide a fitting set of recommendations for new employs who do not have any history with learning management system (aka., cold start problem).

We address the cold-start problem in recommender systems for organizational learning using the demographic information of employees. First, similar employees are grouped together based on their demographic attributes. Second, the modules that they follow are clustered according to their similarity. Then the orders of modules and the employee clusters are linked together in such a way that the number of module orders related to a user cluster is maximized. When a cold-start employee enters in to the system, his closest employee cluster is identified based on the demographic features and recommendations are generated considering the module sequences which have the least dissimilarities to the other module sequences in the linked module order cluster. We then tested the proposed technique using a synthetic dataset generated considering a medium scale organization. The dataset consists of age, gender, department, designation, and the order of learning modules followed by the employees. The proposed recommendation system has good accuracy, e.g., 71% of the module recommendations were more than 90% similar to the actual module orders.

Keywords: Collaborative Filtering, Order Clustering, Recommender System, Cold-Start Problem

ACKNOWLEDGEMENTS

My sincere thanks go to my project supervisor Dr. H.M.N. Dilum Bandara for guiding me throughout the project and giving a clear vision and a mission to accomplish during this period. It is essential to mention Mr. Sampath Tilakumara who is the Head of Technology at LSEG Technology, Sri Lanka for encouraging me on the research work.

The interest in machine learning was enriched by following the online learning materials in Coursera. Special mention has to be made regarding the Machine Learning module conducted by Prof. Andrew Ng of Stanford University in Coursera. The learning material and exercises followed in that course helped me a lot in this research work.

I take this moment to thank my parents for the support and the encouragement given to follow the MSc. in Computer Science amidst this busy schedule at working place. Last but not least, my sincere thanks go to the Head of Department of Computer Science and Engineering and the members of the academic staff for advising and guiding me during project evaluations and presentations.

TABLE OF CONTENTS

DE	CLARATION	i
AB	STRACT	ii
AC	CKNOWLEDGEMENTS	iii
1	INTRODUCTION	0
	Background	0
	Problem Statement	2
1.1	Objectives	3
1.1	Contribution	4
1.3	Outline	4
$^{1.4}_{1.5}$ 2	LITERATURE REVIEW	5
1.5	Organizational Learning	5
2.1	Collaborative Filtering	6
2.2 2.2.1	Memory-Based Collaborative Filtering	7
2.2.1	Model-Based Collaborative Filtering	8
2.2.3	Hybrid Recommender Systems	8
2.3 2.4	Content-Based Filtering	8
2.4	Cold-Start Problem in Collaborative Filtering	9
2.4.2	User Cold-Start Problem	9
2.5	Item Cold-Start Problem	11
2.6 2.7	Clustering Algorithms	12
2.8	Clustering of Categorical Values	14
- 1	Clustering of Orders	15
3.1 3.2	Summary	17
3.231	METHODOLOGY	19
	Overall Architecture of the Proposed Recommender System	19
	Demographic Clustering of Users	20
	Clustering of Numeric User Data	21
	3.2.1.1 k-means Algorithm	21

Clustering of Categorical User Data			22	
	3.2.2.1	Dissimilarity Measure	22	
	3.2.2.2	Mode of a Set	22	
	3.2.2.3	k-modes Algorithm	23	
3.2.2	3.2.2.4	Selection of initial modes	23	
	Cluste	ering of Orders	23	
	De	efining Order Clusters	24	
	Μ	easuring the Similarity between Two Orders	24	
3.3	Calculating the Order Mean			
3.3.1 3.3.2	k-o' means Algorithm			
3.3.3			27	
3.3.4	Explanation Using a Sample Dataset		27	
3.4 3.5	Summary		35	
3.6 4	PERFORMANCE EVALUATION			
4.1	Synthe	etic Dataset Generation	37	
4.1 4.1.1	Er	nployee Demographic Information Dataset	37	
4.1.2	Le	earning Module Preference Sequence	40	
4.2	Evaluation Metrics		43	
4.3 4.3.1	Exper	iment on Synthetic Dataset	43	
4.3.2	RI	MSE Variation for the Synthetic Dataset 01	50	
4.3.3	RI	MSE Variation for the Synthetic Dataset 02	52	
4.4	Aı	nalysis of Results	54	
5.1	Summ	nary	56	
^{5.2} 5	CONCLUS	SIONS	57	
5.3	Summ	nary	57	
	Resea	rch Limitations	58	
	Future	e Work	59	

LIST OF FIGURES

Figure 2.1: Categorization of recommender systems 7		
Figure 2.2: Demographic based approach for new users 10		
Figure 2.3: Conditional restricted Boltzmann machine with binary hide and binary visual units 12		
Figure 3.1: Architecture of the proposed recommendation system20		
Figure 3.2: Order prediction algorithm.28		
Figure 3.3: User Clusters, k = 3 30		
Figure 3.4: Clustering of learning module sequences, $k = 3$ Error! Bookmark not defined.		
Figure 4.1: Dissimilarities of the prediction and the actual, user cluster count=2, order cluster count=2 44		
Figure 4.2: Dissimilarity distribution, user cluster count=2, order cluster count=2 44		
Figure 4.3: Dissimilarities of the prediction and the actual, user cluster count=2, order cluster count=5 45		
Figure 4.4: Dissimilarity distribution, user cluster count=2, order cluster count=5 45		
Figure 4.5: Dissimilarities of the prediction and the actual, user cluster count=3, order cluster count=2 46		
Figure 4.6: Dissimilarity distribution, user cluster count=3, order cluster count=2 46		
Figure 4.7: Dissimilarities of the prediction and the actual, user cluster count=3, order cluster count=5 47		
Figure 4.8: Dissimilarity distribution, user cluster count=3, order cluster count=5 47		
Figure 4.9: Dissimilarities of the prediction and the actual, user cluster count=4, order cluster count=2 48		
Figure 4.10: Dissimilarity distribution, user cluster count=4, order cluster count=2 48		
Figure 4.11: Dissimilarities of the prediction and the actual, user cluster count=4, order cluster count=5 49		
Figure 4.12: Dissimilarity distribution, user cluster count=4, order cluster count=5 49		
Figure 4.13: RMSE variation50		
Figure 4.14: RMSE variation52		

Figure 4.15: RMSE variation

LIST OF TABLES

Table 2.1: Rating distribution	16
Table 2.2: User Item rating matrix	16
Table 3.1: Demographic information of users	29
Table 3.2: Learning module sequences ordered according to the preference	31
Table 3.3: Dissimilarity values against each entry of cluster 0	32
Table 3.4: Dissimilarity sum values against each entry of cluster 0	33
Table 3.5: Common User Counts in User and Order Clusters	34
Table 3.6: Demographic information of the 41st employee	34
Table 3.7: Dissimilarity to user clusters	34
Table 3.8: Learning module sequence recommendations to the 41st employee	35
Table 4.1: Department wise employee distribution	38
Table 4.2: Designation wise distribution in Research and Development department	nt 38
Table 4.3: Designation wise distribution in Sales and Marketing department	39
Table 4.4: Designation wise distribution in General and Administration department	nent 39
Table 4.5: Designation wise distribution in Operations department	39
Table 4.6: Age categories	39
Table 4.7: Designation wise age distribution in departments	40
Table 4.8: Department wise module distribution	41
Table 4.9: Designation wise module completion percentage – mean value	42
Table 4.10: Learning module preference vector	43
Table 4.11: RMSE variation with user and order cluster sizes	50
Table 4.12: RMSE variation with user and order cluster counts	52
Table 4.13: Learning module sequence prediction and actual	55

LIST OF ABBREVIATIONS

Abbreviation	Description
CBF	Content-Based Filtering
CF	Collaborative Filtering
CRBM	Conditional Restricted Boltzmann Machine
MAE	Mean Absolute Error
RBM	Restricted Boltzmann Machine
RMS	Root Mean Square
RMSE	Root Mean Square Error