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Abstract 

 

Software artefacts traceability is an important factor during the process of software 

development to analyse changes occur in software components. Traceability 

improves the quality attributes of software systems such that strengthens the 

testability, maintainability, reusability and helps for the system acceptance by 

providing consistent system documentation to the users. Meanwhile, the concept 

DevOps motivates towards the reduction of the gap between development and 

operations requiring considerable organizational changes. In a DevOps 

environment, significant software artefact changes are expectable rapidly where 

continuous integration is essential. Continuous integration is a cornerstone practice 

in DevOps that frequently merges developer working copies into a single shared 

branch. There is a requirement of determining and analysing the resulted impact of 

the traceability in order to make accurate change acceptance decisions during 

software development. Therefore, the core research problem addressed is 

determining a methodology for change detection and impact analysis together with 

software artefact synchronization to preserve consistency across all artefacts in a 

DevOps environment. A rule-based methodology is followed with visualization 

and analysis techniques applied on a proof-of-work traceability management 

prototype tool: SAT-Analyser 2.0. The evaluation results and industry-level user 

study results have shown the significant usefulness and suitability of the approach 

to a DevOps environment as well as to any software development process model. 
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Section 1 

1 Introduction 

 

1.1 Overview of the research 

Software artefacts are the intermediate by-products used in each stage of the 

Software Development Life Cycle (SDLC) towards the successful outcome of the 

intended software product. That includes Software Requirement Specification 

(SRS), design diagrams, non-functional design reports, source code (Sommerville, 

2010). Additionally, test cases, test scripts, walkthroughs, inspections, bug reports, 

build logs, configuration files, project plans, risk assessments and user manuals are 

important artefacts in the latter stages of the SDLC. Nevertheless, there is a 

relationship between the primary artefacts involved during the SDLC with the 

final deliverables of a software product. Thus, software artefacts play an important 

role in fine-tuning the software products. 

 

The artefact management is essential to maintain adequate consistency in 

approaching towards a software product. Software artefact traceability has been 

defined as the ability to follow the life cycle of a particular software requirement 

both forward and backward and overcome the inconsistencies during software 

development (Cleland-Huang, Zisman, & Gotel, 2012). Thus, each alteration 

occurs in a particular artefact is traced among other artefacts and changed 

accordingly based on the impact. The relationship links among artefacts must be 

updated and maintained consistently. 

 

Software traceability is required to handle changes during the process of 

Continuous Integration (CI). CI is known as a software development practice 

where the work is integrated frequently leading to multiple integrations per day 

(Duvall, Matyas, & Glover, 2007). The integration verification is done using build 

automation by detecting integration errors as early as possible. The proper 

application of CI can reduce integration problems and allows developing cohesive 

software rapidly. 
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The concept of Development-Operations (DevOps) represents the integration of 

development environment and the operational environment when developing 

software systems with continuous planning, CI, continuous delivery and 

continuous testing (Bass, Weber, & Zhu, 2015)(Kim, Debois, Willis, Humble, & 

Allspaw, 2016)(Ghantous & Gill, 2017). DevOps ease the project management 

with communication, understandability, integration and relationships among the 

development teams and operational teams by bridging the gap between them. It 

increases the rate of change and deploys features into efficient development. 

1.2 Motivation for the research 

Software systems, in today’s context, are considered as critical business assets. A 

software system change is inevitable and hence must be updated continuously in 

order to maintain the value of these assets. Software evolution is preferred over 

building completely new software systems due to the cost and time benefits 

(Rajlich, 2014). Often, software evolution occurs in a software system life cycle at 

a stage where it is in active operation due to new requirements. Software evolution 

mainly depends on the type of software being maintained and cooperated 

development processes which continue the software system lifecycle. It is highly 

coupled with the components that are affected due to changes which allow the cost 

and impact of changes to be estimated (Pete & Balasubramaniam, 2015). 

 

The improper or outdated software artefacts and their inconsistencies result in 

misleading the intermediate software system development processes due to the 

high coupling among artefacts. Hence, software development and maintenance 

become time-consuming with many issues such as higher cost and effort. 

Moreover, the proper artefact management is essential in integrating artefacts 

continuously. The changes must be accurately propagated in the integrations 

which is challenging to be automated. Thus, the auditability and traceability are 

classified as challenges in DevOps. 

 

Therefore, changes in software artefacts cause software evolution (Rajlich, 2014). 

With the rapid generation of information, it is crucial to maintain the consistency 

between software artefacts. Well-Defined traceability management between 
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software artefacts is required to overcome the consequences of evolutions. Further, 

improper traceability management may lead to failures of a product. Thus, 

traceability management strengthens the software maintainability and helps for 

system acceptance (Cleland-Huang et al., 2012). 

1.3 Problem statement 

Among the existing traceability establishment systems, a prototype study 

‘Software Artefacts Traceability Analyser’ (SAT-Analyser) (Kamalabalan et al., 

2015)(Arunthavanathan et al., 2016) is selected to address the impact analysis 

during traceability in a DevOps environment with continuous integration. The 

existed traceability establishment system has addressed the traceability among 

textual requirements artefact, Unified Modeling Language (UML) class diagrams 

and Java source code artefact. Then, the traceability among them is established 

based on the attributes, methods using Natural Language Processing (NLP) and 

the results are visualized in a traceability graph. 

 

The existing prototype lacks impact analysis, immediate change propagation 

capabilities and support towards the continuous integration in DevOps 

environments. Thus, it requires a mechanism to evaluate the impact of an artefact 

change prior to the change propagation and consistency management in remaining 

phases such as testing, configuration, deployment and maintenance. We have 

addressed these limitations with the integration of appropriate DevOps tools. 

 

Accordingly, our study addresses the software artefact traceability for all the 

SDLC phases without expensive overheads. We have mainly focused on the 

notion of CI in software development with DevOps principles. Our methodology 

mainly consists of traceability establishment, change detection, impact analysis, 

change propagation, consistency management and visualization (Rubasinghe, 

Meedeniya, & Perera, 2017). Therefore, the traceability support for the entire 

SDLC is addressed in this research with automated tool support. 
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1.4 Research statement 

Core Research Question: How to enable software artefact traceability management 

in a way the changes made to an artefact at any point of the development lifecycle 

will preserve consistency across all artefacts in a DevOps environment? 

 

Research hypothesis: Current trend of emergent and changing requirements for 

software systems can be better supported by:  

 Identifying the true links between heterogeneous artefacts in SDLC to 

establish traceability and  

 Applying trace links, impact analysis for changes and synchronization by 

updating trace links to propagate artefact changes with impacts through all 

the phases in a DevOps environment. 

1.5 Research objectives 

The main limitation in the existing context of software traceability and continuous 

integration is the lack of sufficient tools and techniques. The current tools are 

limited to certain types of software artefacts and development environments 

depending on the used programming languages or the design notations. Therefore, 

the automation of traceability relations generation has become unachievable 

completely. The existing tools and techniques are identified to be containing strong 

semantic meanings and thus fail in satisfying requirements needed for system 

analysis in heterogeneous software artefacts. Further, the support of traceability 

and continuous integration is important to be available during the overall SDLC 

which is not completely preserved in current practices. 

 

The prime objective of this research is to extend the initial SAT-Analyser tool as 

proof-of-work to integrate with the latter phases of the SDLC in terms of 

traceability management and continuous integration adhering to DevOps practices 

as a complete solution. 
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The objectives of this research are to: 

 Identify, establish and maintain traceability links between all stages of 

SLDC 

 Detect the changes in trace links between software artefacts in a DevOps 

environment  

 Analyse the impact caused by the changes in software artefacts that 

interfere traceability  

 Accurately determine and visualize the consequences of a change with 

impacts in software artefacts  

 Enhance and visualize the traceability in a DevOps environment with 

continuous integration 

1.6 Research outcome 

The successful completion of this research would enable software artefact 

traceability support for all the key stages of SDLC such as requirement analysis, 

design, development, testing, configuration, deployment and operation. The 

intermediate software development process can be traced both backward and 

forward completely in a cycle of SDLC. Moreover, the successful DevOps tool 

integration into the traceability would facilitate continuous integration capabilities. 

Accordingly, the extended SAT-Analyser tool would be capable of applying into 

DevOps environments where the rapid changes, integrations and deployments are 

vital. 

 

Therefore, the outcome of this research work is expected to be able to increase the 

efficiency of the software process by tracing the changes in artefacts effectively. It 

would contribute to making the developers’ workload easier in order to proceed 

with software projects using the automated change tracing and impact analysing 

by maintaining an easy flow in software delivery pipeline. 
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Section 2 

2 Literature review 

 
 

2.1 Overview 

This chapter summarizes important aspects of the research scope related to 

traceability management in a DevOps environment. The existing research 

solutions and state-of-the-practice in software traceability management with their 

background definitions are discussed. Mainly, an overview of software artefact 

traceability, change detection, impact analysis, consistency management and 

continuous integration are analytically discussed together with the existing related 

works on traceability techniques and tools. 

2.1.1 Software artefacts in SDLC 

A software system is a combination of several software artefacts that evolves 

through a certain software development process model. Software artefacts refer to 

the intermediate by-products used in different phases of the SDLC. Some of the 

artefacts can be named such as SRS, design diagrams, architectural documents and 

quality attributes or the non-functional design reports, source code, test scripts, 

walkthroughs, inspections, bug reports, build logs, test reports, project plans and 

risk assessments (Sommerville, 2010). There are relationships and dependencies 

between these software artefacts and it is essential to manage these software 

artefacts in order to maintain adequate consistency towards a software product. 

The improper management and outdated artefacts can lead to inconsistency among 

artefacts, synchronization issues and lack of trust in artefacts by stakeholders. 

Therefore, the software artefact traceability is essential for being capable of 

describing and following the artefact life cycle. 

2.1.2 Traceability 

Traceability facilitates a logical layer across artefacts throughout the various 

phases in software development. At the beginning of a software development 

process, the ability to track the consistency in requirements along with their 

sources is essential in order to confirm or revise the initial set of requirements 

(Sommerville, 2010). Thus, traceability is first used as a method of managing 
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requirements artefact during the Requirements Engineering phase. Generally, 

traceability is following the life cycle of any particular software requirement both 

forward and backwards to overcome the inconsistencies during software 

development (Cleland-Huang et al., 2012). Each alteration occurs in a given 

requirement is traced among other requirements and changed based on the impact. 

These traces are used in the requirement validation and verification processes.  

 

The software artefact traceability definition of the professional body; ‘Center of 

Excellence for Software and Systems Traceability (CoEST)’ is declared as “the 

ability to interrelate any uniquely identifiable Software Engineering artefact to 

any other, maintain required links over time, and use the resulting network to 

answer questions of both the software product and its development process”. They 

have not been limited to requirement traceability and have declared traceability in 

terms of other artefact types including design documents, codes and test case files 

with the deployment of an experimental traceability environment for researchers 

called TraceLab (Keenan et al., 2012). 

 

Mohan et al. (Mohan, Xu, Cao, & Ramesh, 2008) have defined traceability as the 

ability to discover the dependent entities within a software model and trace their 

corresponding artefact elements in other software models. As a result, currently, 

traceability is used not only in requirements management, but also for other 

artefact types in different software development methodologies like Model-Driven 

Development (MDD) (Sommerville, 2010). This wide range of adaptation of 

traceability shows its importance in improving software quality, maintenance, 

evolution and reuse activities. 

 

For a given trace, there can be one or many possible trace paths, while each trace 

path has a source and target artefacts. In particular, an artefact may be a source for 

a given trace path and a target for another trace path simultaneously. A trace link 

or known by a traceability link is a relationship between a pair of artefacts. All 

such links generated in between two groups of software artefacts are referred as a 

trace relation (Cleland-Huang et al., 2012). A trace set is the sum of all generated 

traces and traceability graph is used to visualize all the relationships. A 
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traceability graph is a traceability network when the edges are directional or the 

nodes are embedded with a weight. Further, traceability maintenance is the 

consistency management of artefacts and trace updates for a given change. 

 

Some of the categorizations based on the different dimensions of traceability exist 

such as requirement to design, requirements to code base and to test case files 

likewise. Among different traceability types, requirement traceability addresses 

the dependencies between requirements and among the requirements to design/ 

source codes. It can be subcategorized as pre-requirements and post-requirements 

specification that details the life cycle of a software requirement in forward and 

backward directions. Design traceability is the ability to trace design and 

requirements to design rationale for the verification and maintenance of 

architecture design accurately (Tang, Jin, & Han, 2007). Having the ability to trace 

design traceability can be useful to determine trace design evolution, root causes, 

to relate architectural design objects and also to analyse the cross-cutting concerns, 

especially in a DevOps environment. 

 

Moreover, the different traceability classifications in the literature are shown in 

Figure 2-1. One such classification is automatic or manual, based on the 

automation level of the traceability process. Another classification is forward or 

backwards, based on the direction of the traceability path (Cleland-Huang et al., 

2012). Forward tracing follows subsequent steps such that from requirements to 

code; whereas backward tracing follows antecedent steps such that code to design 

or requirements artefacts. Artefact-level is another criterion that classifies 

traceability as horizontal or vertical. Horizontal tracing considers homogeneous 

artefacts as such artefacts in the equivalent levels of abstraction like tracing 

between different versions of requirement artefacts (Mäder, Gotel, Kuschke, & 

Philippow, 2008). Further, this can be sub-classified based on the direction such 

that horizontal forward tracing or horizontal backward tracing. Tracing artefacts in 

different levels of abstraction; heterogeneous artefacts, such as the requirement to 

code is considered as vertical tracing, which can be either vertical forward tracing 

or vertical backward tracing. Proactive and reactive tracing is another 

categorization based on the stimuli behaviour. In reactive tracing, the traces are 
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created on demand in accordance to a stimulus for capturing traces. Whereas in 

proactive tracing, traces are generated in the background without explicit response 

to any stimulus (Cleland-Huang et al., 2012). The traceability link generation 

techniques for these categories are selected by considering the aspects such as the 

problem domain and the behaviour of the software system. 

 

 

Figure 2-1 : Summary of traceability classification 

 

A major challenge in tracing software artefacts is the heterogeneity in software 

artefacts, different abstraction levels and lack of defined data formats for software 

artefacts (Wijesinghe et al., 2014). Therefore, it is essential to identify the key 

artefact elements from a given artefact input in order to establish relationships. 

2.1.3 Software artefact traceability in a DevOps environment 

The concept of DevOps represents the integration of the development environment 

and the operational environment that encourages developing systems rather than 

software. Primarily DevOps ease the project team management with 

communication, understandability, integration and relationships among the 

development teams and operational teams by breaking the gap between them. It 

increases the rate of change and deploys features into production faster (Kim et al., 

2016)(Ghantous & Gill, 2017). The demanding drivers for having DevOps can be 

identified as improving the quality of applications, enhancing customer 

experience, the ability for simultaneous deployment in different platforms and the 

need to reduce Information Technology (IT) costs. The technical benefits of a 

DevOps environment include identification of the problem earlier, reducing the 

error fixing time durations and reduction of the problem complexities due to its 
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cross-functionality behaviour. Similarly, the importance towards the business 

aspect is significant as DevOps shorten the development life cycle, increase the 

release velocity and improve the Return On Investment (ROI) by achieving a 

higher customer satisfaction (Bass et al., 2015). Furthermore, rich collaboration 

and performance-oriented culture encourage the ability to research and innovate 

within projects. However, the Internet of Things (IoT) and microservices 

architecture are identified to be challenging for DevOps. 

 

In the software development process, DevOps is applicable to various phases of 

software delivery such as continuous planning, continuous integration, continuous 

delivery and continuous testing (Bass et al., 2015). Consequently, the ability to 

trace the changes made to the code is essential in providing feedback at any 

integration failures. Therefore, the artefact traceability is a key challenge in 

achieving CI. Furthermore, the need for techniques and tools to recover 

traceability links in legacy systems is important for a variety of software evolution 

tasks. These include maintenance tasks, impact analysis, program comprehension 

and encompassing tasks such as systematic reuse of traceability types and Reverse 

Engineering for redevelopment (Cleland-Huang et al., 2012). 

2.2 Data pre-processing 

Software artefacts consist of different formats such as the requirements in natural 

language, design artefacts in different UML notations and source code artefacts in 

programming languages. Thus, pre-processing and extracting the required data is 

an initial task towards the development of traceability links. The textual contents 

in artefacts provide descriptive details about their informal semantics. The 

frequently involved pre-processing steps for artefacts in requirements are the NLP 

activities such as tokenization, text normalization, anaphora analysis, 

morphological analysis and stemming (Cleland-Huang et al., 

2012)(Arunthavanathan et al., 2016). It is assumed that if the textual contents of 

artefacts are similar, then those artefacts are conceptually related in resulting 

establishment of traceability links between them. The other types of artefacts can 

pre-process with different file readers, UML parsers and programming language 

specific parsers. 
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2.3 Information retrieval methods  

Information Retrieval (IR) methods enable extracting and analysing the embodied 

textual contents in artefacts with less pre-processing effort. The cost of traceability 

link recovery can be minimized since no predefined vocabulary or grammar is 

involved (Cleland-Huang et al., 2012). The use of meaningful identifiers and 

comments in the source code of documentation can be found helpful in applying 

IR methods. The key steps in a generalized IR process that follows a pipelined 

architecture can be listed as; (1) document parsing, extraction and pre-processing, 

(2) corpus indexing with an IR method, (3) ranked list generation and (4) analysis 

of candidate links. Vector Space Model (VSM), Term Frequency-Inverse 

Document Frequency (TF-IDF) metric and Latent Semantic Indexing (LSI) 

techniques are the mostly used IR techniques (Y. Zhang, Wan, & Jin, 2016). 

2.4 Traceability management 

The cost of managing a larger number of artefact relationships whenever a change 

occurs is identified as a major reason for rarely using traceability in practice. 

Moreover, it is signified that the effort of maintaining artefact relations is 

considerably high though the number of artefacts is minimal. Hence, ensuring the 

correctness of traceability over time is essential in traceability maintenance/ 

management and is a multi-step activity (Mäder & Gotel, 2012)(Maro, Anjorin, 

Wohlrab, & Steghöfer, 2016). The proper identification of a feasible traceability 

management approach could minimize the cost and effort during the SDLC. 

2.4.1 Evaluation of traceability support techniques 

Table 2.1 summarizes the features of traceability management techniques with 

a description, benefits and limitations.  
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Table 2.1 : Evaluation of software artefacts traceability management techniques 

Technique Functionalities Methods/ techniques followed Advantages Limitations 

Rule-based Define rules in 

traceability links 

generation. 

Rule set based on attributes of artefacts. 

Traceability management with rule re-

evaluation (Mäder & Gotel, 2012). 

Ideal for artefacts such as 

requirements, use cases and 

analysis of object models. 

Weakness in recognition of 

structural changes (Cleland-

Huang et al., 2012). 

Hypertext-

based 

Support traceability 

maintenance. 

XML. Markup specifications (Alves-

Foss, Conte de Leon, & Oman, 2002). 

Consider requirements and code 

artefacts (Cleland-Huang et al., 

2012). 

Weekly support for other types 

of artefacts. 

Event-

based 

Automate trace link 

generation and 

maintenance. 

Publish-subscribe relationship 

mechanism. Event-based subscriptions 

(Galvão & Goknil, 2007). 

Ability to maintain dynamic links. Scalability issues in 

maintaining the dynamicity of 

traceability. 

Constraint-

based 

Support traceability 

maintenance. 

Set of constraints are provided that 

should not get disobeyed by traceability 

links. 

Artefact types can be viewed as 

constraints on one another (Fockel, 

Holtmann, & Meyer, 2012). 

Difficulty in referencing all 

traceability links to constraints 

(Fockel et al., 2012). 

Transform

ation-based 

Support traceability 

maintenance. 

Incremental transformation approaches. 

Graph- transformation based 

methodologies. 

Beneficial for model-based 

software systems (Riebisch, Bode, 

Farooq, & Lehnert, 2011). 

Not all artefacts are generated 

by model transformations 

(Maro et al., 2016). 

Goal-

Centric 

(GCT) 

CIA over the non-

functional software 

requirements. 

Soft goal Interdependency Graph (SIG). 

Traceability matrix (Galvão & Goknil, 

2007). 

Finds the impact of functional 

changes over non-functional ones 

to ensure quality. 

Lack of scalability and tool 

support (Galvão & Goknil, 

2007). 

Model-

driven  

Support traceability 

maintenance in 

MDD 

Use of template-based models (Javed & 

Zdun, 2014). 

Support for different artefact types 

including source code (Javed & 

Zdun, 2014). 

Lack of support towards non-

model-driven systems (Javed 

& Zdun, 2014). 

Probabilisti

c model 

Manage traceability 

with uncertainty 

handling. 

Bayes' theorem (“Vector Space Model,” 

2017). 

Simplicity and ability to evolve 

with data science methods. 

Depend on probabilistic 

assumptions such as the 

artefacts are distributed 

differently. 
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The rule-based and hypertext-based traceability support techniques are identified 

to be not applicable to all types of software artefacts rather than requirements and 

source code (Mäder & Gotel, 2012)(Cleland-Huang et al., 2012). Event-based and 

constraint-based methodologies along with publish-subscribe mechanisms have 

been widely involved in traceability maintenance while scalability is the main 

problem in them (Galvão & Goknil, 2007)(Fockel et al., 2012). The 

transformational and model-driven approaches can be identified as more 

environment-oriented such as for model-based software systems. Thus, it can be 

difficult to obtain a more generic traceability solution via them (Javed & Zdun, 

2014). Moreover, the majority of IR related techniques such as VSM, LSI and TF-

IDF are involved due to their better performance outcomes (Hayes et al., 

2007)(Marcus, Xie, & Poshyvanyk, 2005). However, there is a lack of tool-

support for majority techniques with the compatibility for all types of software 

artefacts. The scalability is the main issue that has been a limitation in most related 

works following existing techniques having the inability to cater to traceability 

management among a larger number of software artefacts. 

2.5 Change detection 

Change is always inevitable in any software development process. It is necessary 

to cope with the changes properly to reduce the cost regardless of the used 

software development model (Sommerville, 2010). Figure 2-2 illustrates the 

software evolution process. The impact of a change is assessed prior further 

propagating the change. The evolving software systems potentially support for 

dynamic modifications and extensions.  

 

 

Figure 2-2 : The software evolution process (Sommerville, 2010) 
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2.5.1 Change detection techniques 

A. Edit history 

This approach keeps track of the alterations or the edits as a history. Each change 

is considered as an item for the history and records as another edit. This is already 

in use with most of the software and non-software related tools and methodologies 

such as text editors. The ‘Undo/ Redo’ and ‘Restore’ operators in most of the tools 

have used this technique. Accordingly, this has been used for traceability related 

change detections in the context of software artefacts as well (Omori & 

Maruyama, 2008)(Kitsu, Omori, & Maruyama, 2013). However, this technique is 

mostly used for change detection regarding the source code. 

B. Tree differencing 

Tree differencing represents elements as Abstract Syntax Tree (AST) and 

calculates the differences to extract detailed change information. AST is a tree 

representation of the abstract syntactic structure of source code, while each node 

represents a construct occurring in the code (Sager, Bernstein, Pinzger, & Kiefer, 

2006). Even in an older related work in (Chawathe, Rajaraman, Garcia-Molina, & 

Widom, 1996), has used the idea of a matching and a minimum cost edit script that 

transforms one tree to another for hierarchically structured data. The authors have 

split the change detection problem such as ‘Good Matching’ and ‘Minimum 

Conforming Edit Script’. However, the data format should be in a tree format for 

that algorithm and not in other formats such as graphs. 

C. Differencing algorithms  

The customized differencing algorithm is another technique for software artefact 

related change detection. It is used in software maintenance aspects such as 

program-profile estimation (stale profile propagation). Any type of software 

artefact can be generally taken as the input for a differencing algorithm though the 

source code artefact is heavily gone through this technique in related works 

(Apiwattanapong, Orso, & Harrold, 2004). However, implementing a general 

algorithm for all types of software artefacts is identified to be impractical rather 

than having a set of differencing algorithms for each type and category of software 

artefacts. 
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2.6 Change impact analysis  

The goal of Change Impact Analysis (CIA) in software development is detecting 

the consequences of an artefact alteration in other parts of the software system 

(Sommerville, 2010)(Lehnert, 2011). Traceability is a major supportive technique 

in the identification of affected artefacts and is a key notion in the software 

maintenance process. In areas such as Model-Driven Engineering (MDE), before 

changing a metamodel, it is crucial to measure the impact of the changes among 

the artefacts to understand whether the evolution is sustainable or not. 

 

Figure 2-3 illustrates the iterative process of CIA in software development. It starts 

with an analysis of a change request in source code to initially identify the set of 

changes in which the artefacts could be affected. It is also called as concept 

location or feature location with the meaning of finding a place in the source code 

that an initial change needs to be made. Then, the change impact analysis is 

conducted to estimate the effects in changes, resulting in an Estimated Impact Set 

(EIS). Afterwards, the change is implemented and the elements in the Actual 

Impact Set (AIS) are modified. The AIS is not considered to be unique for a 

particular change request as a change can be implemented in several ways. 

 

 

Figure 2-3 : Change impact analysis process (Li, Sun, Leung, & Zhang, 2013) 
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Generally, impact analysis is conducted before or/and after a change 

implementation. The advantages of conducting impact analysis prior to a change 

can be listed as for better program understandability, change impact prediction and 

cost estimations. Correspondingly, conducting impact analysis after 

implementation of a change can be beneficial in tracing ripple effects, selecting 

test cases and in performing change propagation (Li et al., 2013). 

2.6.1 Change impact analysis of heterogeneous software artefacts 

The heterogeneous software artefacts in different stages of SDLC are always 

following different types and formats. For instance, the requirement artefact can be 

in a natural language provided in a text file while the source code artefact in 

Python programming language as a set of .py files. Therefore, a change occurred 

in one artefact does not directly reflect for other artefacts due to that type and 

format mismatches. Due to this complexity, generally, an artefact change comes as 

a request for change without a direct action of alteration. Currently, a responsible 

resource person is in charge for coordinating change requests either by accepting 

the change or declining the change request depending on his/ her manual change 

interpretations which are subjected to human error. 

 

The artefact traceability acts as the main pillar for artefact change management. 

The inter-relationships and intra-relationships are established via the traceability 

establishment process by linking each other based on the dependencies. Therefore, 

the changes can be handled using those traces and paths. The traceability 

visualization techniques such as traceability matrix or traceability graphs that 

follow node edge connectivity can be used effectively. The graph theory 

techniques and algorithms are involved in finding the change impacts among 

traces (W.-T. Lee, Deng, Lee, & Lee, 2010). Moreover, the use of IR techniques 

and Machine Learning (ML) are trending in the research level to manage artefact 

changes with CIA (Zimmermann, Zeller, Weissgerber, & Diehl, 2005)(Dantas, 

Murta, & Werner, 2007). 

 

In considering the graph-based traceability results, the artefact changes can be 

mapped to the nodes and the change propagation would be mapped via the 
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connected links. However, all the endpoints of the links may not be subjected to 

changes. Thus, the impact of the propagated change at the linked endpoints has to 

be measured in finding the actual victims of the change. A CIA algorithm has to 

be implemented depending on the addressed artefact types in calculating the 

occurred impacts (Tóth, Hegedűs, Beszédes, Gyimóthy, & Jász, 2010). The 

features of the initial change would be highly influenced in the impact calculation 

since the linked endpoints have to be compared with the initial change. 

 

Accordingly, the proper identification of the initial change is essential. The IR 

techniques are associated to this aspect in the related works (W. Wang, He, Li, 

Zhu, & Liu, 2018)(Y. Zhang et al., 2016). Thus, based on the artefact type of the 

initial change the required data such as the scope of the change and the keywords 

in the change has to be identified. Then, the CIA algorithm must imply the 

consequences of the change in calculating the impact values in comparison with 

linked endpoint nodes. The probabilistic theorems such as association rules, Bayes 

theorem and Change History are widely involved in the literature (Lehnert, 

2011)(Mens, Buckley, Zenger, & Rashid, 2005). However, addressing the change 

ripple effects becomes a challenge after the initial impacted endpoint identification 

since the changes can propagate continuously from those endpoints too. 

2.6.2 Change impact analysis categories 

Change impact analysis methods are categorized as traceability-based CIA and 

dependence-based in determining the change effects in the literature (Li et al., 

2013). The traceability-based CIA is narrowed in recovering the traceability links 

among software artefacts. Dependence-based CIA is defined as estimating the 

change effects of a proposed change. It is relatively more biased towards 

analysing program syntax relations and in performing CIA of artefacts in the 

same level of abstraction such as in the level of software design or within the 

level of code. The higher level UML models and use case maps are mainly 

involved in requirement and design level impact analysis. In addition, the source 

code based CIA techniques are more capable of determining change impacts of 

the final software product with improved precision as directly analysing the 

implementation details. 
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Another categorization of CIA techniques is static impact analysis and dynamic 

impact analysis. The static CIA techniques encounter all behaviours and inputs 

(Sun, Li, Tao, Wen, & Zhang, 2010). Thus, contains a cost of precision though 

safe. Moreover, static CIA techniques analyse the program code syntax and 

semantic dependencies to construct intermediate representations using call graphs 

and program dependence graphs. Then, perform CIA on those representations 

resulting larger impact sets that are problematic to use in practice. Thus, lower 

precision remains a main drawback in the static impact analysis techniques. 

Besides, dynamic CIA methods overcome this disadvantage by considering only a 

partial set of the inputs. Hence, these impact sets are more precise although lack 

of safety. Furthermore, the impact sets computation process in dynamic impact 

analysis techniques depend on the types of analysis of the gathered data such as 

execution traces details, execution relation and coverage related information. 

 

Two of the sub-techniques in dynamic CIA are Coverage Impact and Path Impact 

(Apiwattanapong, Orso, & Harrold, 2005). Path Impact computes impact sets in 

the method level using compressed program execution traces. It processes 

forward and backward traces to determine the impact of changes. The forward 

traces determine all methods called after the changed method(s), while the 

backward traces identify methods into which the execution can return. The 

coverage impact technique uses the coverage information to identify the 

executions that traverse a minimum of one method in the changeset and marks the 

covered methods in each execution. Next, it computes a static forward trace from 

each change by considering the marked methods. Thus, the methods in computed 

traces become the impact set. Moreover, it is identified that the path impact 

technique is more precise compared to the coverage impact technique analytically 

due to the use of traces rather than the coverage (Apiwattanapong et al., 2005).  

 

However, in comparison, the time and space overhead in the path impact 

technique is high. The time consumption in path impact technique is dependent 

on the size of the analysed traces, while the coverage impact requires a constant 

time in updating bit vectors at each of the method entries. Besides, the space 
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complexity of coverage impact technique is linear over the size of the program, 

while it is proportional to the size of the traces in the path impact technique. 

 

 

Figure 2-4 : Change impact analysis categorization 

 

Figure 2-4 shows the categorization of change impact sets. Starting Impact Set 

(SIS) indicates the initially affected set of entities by a change. Candidate or 

Estimated Impact Set (CIS or EIS) is a subset of SIS, that denotes the potentially 

impact entities. However, that subset may or may not be the actual change 

impacted subset, which has to be clarified where AIS would be the outcome. The 

CIS tends to coincides with the AIS. Due to the challenging effect of artefact type 

mismatches, developer mistakes and artefact naming inconsistencies there may be 

artefacts that are actually impacted by the change, but have not been identified by 

CIS. Those are categorized as Discovered Impact Set (DIS). The manual or a 

knowledge-based identification can be useful in that aspect (Czibula, Czibula, 

Miholca, & Marian, 2017). False Positive Impact Set (FPIS) shows the artefacts 

that are overestimated as belong to the CIS, but which are not actually impacted. 

2.6.3 Change impact estimation and analysis techniques 

Table 2.2 presents s summary of techniques that can be applied for CIA. Among 

the techniques, the call graphs, dependence graphs are widely used in handling 

the changes that enable the backtracking ability for easier debugging. Most of the 

artefact types including design, source code and test cases are influenced by these 

call graphs related techniques and IR based: LSI, VSM and TF-IDF techniques. 

The formal semantics, first-order logic have mostly addressed the requirement 

artefacts. However, most of these techniques are semi-automated.  
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Table 2.2 : Summary of change impact analysis techniques  

2.6.4 Change impact analysis related frameworks and models 

Figure 2-5 shows an architecture of a Java source code impact analysis tool called 

‘Chianti’ which is a plugin in Eclipse Integrated Development Environment (IDE) 

(Ren et al., 2005). There are three main submodules in this tool. Initially, derive 

atomic code changes from pair of Java source code versions which is done via 

pairwise AST comparisons. Another module reads the test call graphs for original 

source code and edits code snippets. Also, it computes affecting code changes and 

Category Technique  Description  

Statistical 

analysis 

Data flow analysis, relational language, program 

slicing, static call graphs (Oliva, Gerosa, Milojicic, 

& Smith, 2013)(Maule, Emmerich, & Rosenblum, 

2008) 

Has identified that the string analysis is 

not precise for schema CIA. There is a 

precision versus computational cost 

trade-off in this analysis. 

Comparative analysis: Study on impact analysis 

algorithms, techniques using Precision, Recall and 

Harmonic mean (Kama, 2013)(Li et al., 

2013)(Galbo, 2010)(De Lucia, Oliveto, & Tortora, 

2008)(Y. Zhang et al., 2016)(Kabeer, Nayebi, 

Ruhe, Carlson, & Chew, 2017)(Déhoulé, Badri, & 

Badri, 2017)(Kchaou, Bouassida, & Ben-Abdallah, 

2017)(Czibula et al., 2017)(Shahid & Ibrahim, 

2016)(Borg, Wnuk, Regnell, & Runeson, 2017) 

Results certify that existing algorithms 

require enhancements and effective 

mechanisms to facilitate automated tools 

for CIA. Have identified required 

characteristics in impact analysis. 

Discovered the possibility of 

transferring impact analysis tools in 

academia to industry to help developers 

during maintenance and evolution 

activities. 

Probabili

stic-

based  

Change history and Bayes’ theorem (Sharafat & 

Tahvildari, 2007)  

Maintenance of object-oriented mission 

critical systems is addressed. Limited 

for object-oriented software. 

Call graphs, Entity Dependency Graph (EDG) 

(Oliva et al., 2013)(Ibrahim, Idris, Munro, & 

Deraman, 2005)(Ibrahim, Munro, & Deraman, 

2005)(Yiheng Wang, Zhang, & Fu, 2017)(Kchaou 

et al., 2017)(Ren, Ryder, Stoerzer, & Tip, 2005) 

Explain the concept of two dependency 

states; namely, persistent relationship 

state and immediate relationship state in 

change propagation. Better program 

understanding and debugging. 

Formal Semantics (Goknil, Kurtev, van den Berg, 

& Spijkerman, 2014). Logical dependencies and 

classification criteria (Lehnert, 2011)(Duarte, 

Duarte, & Thiry, 2016)(M. Lee & Offutt, 

2002)(Rempel & Mader, 2017) 

Removal of false positive impacts and 

consistency checking. Adds valuable 

information. Restricted for particular 

change and relation types. 

Rule-based (Lehnert, 2015)(Yiheng Wang et al., 

2017)(Lehnert, Farooq, & Riebisch, 2013) 

Allows developers to smoothly retrace 

the changes. 

Data mining, Apriori algorithm (Zimmermann et 

al., 2005)  

Useful in change predictions. 

History-

based 

Historical co-change analysis, change history 

(Sharafat & Tahvildari, 2007) 

Use version histories to identify logical/ 

evolutionary couplings between entities. 

Predict impact files after a change. 

ML (Mills, 2017)(Czibula et al., 2017)(W. Wang et 

al., 2018) 

Classification models to predict the 

validity of the candidate links. Use 

unsupervised learning to identify hidden 

dependencies. Less human involvement 

Logical coupling (Wong, Cai, & Dalton, 2011) Use logical coupling with a Markov 

model. Better accuracy. 
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affected tests. Besides, the third module visualizes the obtained change impact 

details to the user. Thus, this plugin model is mainly based on the call graphs and 

does not involve calculations for each impact in a quantitative value. 

 

 

Figure 2-5 : Chianti tool architecture (Ren et al., 2005)  

 

Arnold and Bohner present another impact analysis model in traceability (De 

Lucia, Fasano, & Oliveto, 2008). They consider the changes occurred in 

documentation and source codes in the identification of SIS. The dependency 

graphs are used to identify the CIS using direct impacts and reachability graph 

representations for indirect type of impacts. They have suggested to apply this 

incrementally for identifying CIS to minimize the false positive rate.   

 

Acharya and Robinson (Acharya & Robinson, 2011) present a static CIA 

framework that is developed as a tool named ‘Imp’. The scope has been the source 

code artefact impact analysis during frequent builds. Being a mathematical model, 

this work has used forward slicing consisting of three criteria namely; (1) range, 

(2) dependences and (3) summary edges to calculate the impact sets. Moreover, 

the Andersen’s algorithm along with pointer analysis is applied. The algorithm of 

this framework consists of two variations one for high setting impact analysis 

which is expensive and another for low setting impact analysis which can be 

performed more frequently faster with a lower cost.  

 

Another static CIA technique is presented in (Jashki, Zafarani, & Bagheri, 2008) 

that generates clusters of associated code files according to the co-modification 

history records in the source code repository. It has decreased the complexity to 
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accelerate the CIA with the aid of dimensionality reduction techniques. Initially, it 

mines the changed repository to find co-occurring source files and develops a 

matrix containing the degree of closeness in each pair of files. Then, it has 

performed an intrinsic dimensionality method based on Eigenvalues for estimation 

on that matrix and gets a low dimensional matrix. Further, Principle Component 

Analysis (PCA) is used for reduction. Finally, the matrix rows are taken as 

coordinates of files and distance between each pair of files is measured and passed 

to five different clustering methods. It identifies the clusters of associated files 

from source code modules and creates the impact sets. However, any quantitative 

measure is not adapted in measuring the severity of the impacts in this model. 

 

Table 2.3 summarizes some related work with their methodology, advantages and 

drawbacks of each. However, the majority has been limited only up to design level 

or source code artefact in considering the artefact types while operational level 

artefacts like build scripts are not addressed.  

 

Table 2.4 summarizes related work on CIA according to their scope. Many studies 

have based on estimating impact among homogeneous artefacts in the same level 

such as either on requirements, UML designs or source code artefacts. Among 

them, the majority of the studies have addressed requirement and source code 

artefacts. The Java programming language or the object-oriented aspects are the 

considered programming category in them. The call graphs, dependence graphs 

and treemaps are mainly used in requirements artefact, UML designs and source 

code artefacts while minor has involved data mining algorithms such as Apriori 

algorithm in source code artefact. A few have addressed the impact analysis 

between heterogeneous artefacts including requirements to test cases artefact. 

 

Accordingly, one of the major limitations is being restricted to one or two types of 

homogeneous artefacts mostly requirements or source code. The work that has 

addressed heterogeneous artefacts are also limited only up to test cases artefact 

without considering remaining stages artefacts such as build scripts, configuration 

files and user manuals. Also, the visualization aspects are stated as future works to 

be addressed in some of these existing related works. 
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Table 2.3 : Change impact analysis related work summary 

Reference Addressed scope Description Advantages Limitations 

(Lehnert, 

2015) 

Address heterogeneous 

software artefacts from 

different development 

stages.  

Based on a set of predefined CIA propagation rules. 

Heterogeneous artefacts are mapped on a common 

meta-model, dependencies are extracted as traceability 

links. A set of impact propagation rules recursively 

executed to compute the impact. Implemented as the 

prototype tool EMFTrace. 

Forecast the impacts prior to 

implementation and address a 

multitude of different change 

operations. Maintain the 

consistency in architecture and 

the code of the test system. 

Requirement artefact is 

not included. 

(Y. Zhang 

et al., 2016) 

Automatic recovery of 

requirement to code trace 

links. 

A tool; R2C is implemented which concatenates 

features to recovery links in requirements to source 

code. WordNet is used to find synonyms of terms. Part-

Of-Speech (POS) tagging, parsing, extracting verb 

object phrases and stemming applied. Comments are 

also used in the tracing process. Compare the text 

similarities based on IR techniques: VSM, TF-IDF. 

Traceability link recovery is 

addressed for requirement-to-

code artefacts. 

Only requirement-to-

code traceability links 

recovery is considered. 

Tool fails to recover all 

links. CIA is not 

considered. 

(Duarte et 

al., 2016) 

A body of knowledge on 

traceability is build named 

TraceBoK. 

Requirements are classified based on the target domain. 

Available as a web-based open source on internet to 

access. 

The transferring of the findings 

of researches on traceability 

from academia to the software 

industry is achieved via this 

knowledge body. 

Limit for requirements. 

CIA methods are not 

discussed. Not a 

straightforward impact 

analysis tool. 

(Goknil, 

Kurtev, & 

Berg, 2016) 

CIA between requirements 

and architecture. 

Formal semantics in requirements relations used. 

Implemented as an extension for existing tool called 

TRIC. 

Provide precise CIA in 

software architecture which is 

able to mitigate false positives. 

Only the requirements 

artefact is considered. 

(Rodrigues, 

Lencastre, 

& Filho, 

2016) 

A user interactive tool for 

traceability visualization. 

Used visualizing techniques: Sunburst and tree in radial 

layout, graphs, matrix and hierarchical. 

Evaluate traceability allowing 

domain independent data. 

Provide various visualization 

options via single tool.  

Only the requirements 

artefact is considered. 

Impact analysis is not 

addressed. 

(Shahid & 

Ibrahim, 

2016) 

Prototype tool, HYCAT to 

support CIA. 

First traceability matrix is generated between 

requirements and test cases. CIA integrates both types; 

static impact analysis and dynamic analysis together. 

Results have shown high 

accuracy and efficiency.  

Only a case study 

evaluation is performed 

on the tool application. 

(Yiheng 

Wang et al., 

2017) 

A rule-based CIA method 

for software lifecycle 

objects is designed. 

5 types of entity dependency and changes were defined 

and the corresponding change propagation rules were 

designed. CIA is based on change propagation rules.  

Explain the concept of two dependency states, (1) 

persistent relationship state and (2) immediate 

relationship state in change propagation.  

Experiments have shown the 

effectiveness of the introduced 

algorithm. 

No GUI support. 
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(Kabeer et 

al., 2017) 

Evaluates the applicability 

of textual similarity 

techniques for CIA 

following Bag of Words 

with topic modelling and 

file coupling. 

Finds the impact of textual similarity on altered files. A 

corpus is created using the summary of the change 

requests mined via Jira. Cosine similarity is applied to 

get the textual similarity between documents. TF-IDF is 

used to express Change Requests (CR) in the vector 

space. Used Leave-One-Out Cross Validation 

(LOOCV) to obtain model performance. 

The effort in CIA for can be 

minimised by extending its 

applicability to many 

dimensions such that to 

impacted files and duration. 

Existing CIA 

techniques are 

involved. No 

straightforward tool 

with a GUI. 

(Déhoulé et 

al., 2017) 

CIA model addresses 

AspectJ programs.  

Change Impact Model for Java (CIMJ) is involved, 41 

impact rules defined relevant to AspectJ programming 

rules as well. Three change impact categories were 

identified: (1) object code impacts on AspectJ code, (2) 

AspectJ code on AspectJ code and (3) AspectJ code on 

object code. Used precision and recall to evaluate. 

Allows better support for 

cascading impact analysis. 

Evaluation shows higher 

accuracy. 

Limited for source 

code artefact in Aspect-

Oriented Programming 

(AOP) language. 

(Kchaou et 

al., 2017) 

Impact analysis in UML 

class and sequence 

diagrams. 

Uses structural and semantic dependencies within and 

inter-UML diagrams. Uses graphs to map structural 

dependencies. IR techniques; TF-IDF and LSI used for 

semantic traceability.  

Have gained precision of 84% 

and a recall of 91% in the 

requirements CIA and 

management. 

Limited to design 

artefact in UML 

notation. 

(W. Wang 

et al., 2018) 

An approach to combine 

multiple existing IR 

techniques to facilitate 

CIA. 

Approach integrates a bag-of-words based IR technique 

and a neural network based IR technique to derive 

couplings from the code. Extract all identifiers, 

comments and other artefacts from the code and 

generates a corpus. Transform the corpus and change 

request into their corresponding matrix and vector 

forms by IR techniques. Use LSI and doc2vec. Employ 

a learning paradigm to generate a similarity metric. 

Results provide statistically 

significant improvements in 

accuracy across several cut 

points. A new method is 

introduced for measuring the 

similarity between source code 

and change request based on a 

learning paradigm in 

overcoming drawbacks 

associated with IR techniques. 

Only source code 

artefact is considered. 
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Table 2.4 : Scope-based change impact analysis related work 

2.7 Consistency checking and management 

In software development, different artefacts process through various phases of the 

SDLC. The changes and refinements that occur in artefacts do not happen at a 

same speed and pace. Therefore, the consequences of each artefact change or 

refinement may not result in a uniform pattern. Some refinements may reflect and 

impact on other artefacts immediately. Thus, the stability among artefacts can 

become inconsistent and can fail in representing the expected software system 

solutions. That can lead to stakeholder dissatisfaction and system failure. The 

Reference 
Artefact level 

Requirements Design Source code Testing Other 

(Maule et al., 2008)  X    

(Spijkerman, 2010) X      

(Oliva et al., 2013)   X   

(Li et al., 2013)   X   

(W.-T. Lee et al., 2010) X     

(Phetmanee & Suwannasart, 2014)    X  

(Goknil et al., 2014) X     

(Lehnert, 2015)  X X X  

(Y. Zhang et al., 2016) X X X   

(Duarte et al., 2016) X     

(Goknil et al., 2016) X X    

(Rodrigues et al., 2016) X     

(Shahid & Ibrahim, 2016) X   X  

(Yiheng Wang et al., 2017)     X 

(Kabeer et al., 2017) X     

(Déhoulé et al., 2017)   X   

(Borg et al., 2017)     X 

(Galbo, 2010)     X 

(Kchaou et al., 2017)  X    

(Mills, 2017)     X 

(Czibula et al., 2017)     X 

(Rempel & Mader, 2017) X     

(W. Wang et al., 2018)   X   

(Wong et al., 2011)   X   

(Lehnert et al., 2013)  X X X  

(Sharafat & Tahvildari, 2007)  X X   

(Zimmermann et al., 2005)   X   

(Tóth et al., 2010)     X 

(Dantas et al., 2007)  X    
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consistency management in software domain is defined as the capability to 

preserve the synchronization among artefacts along with the occurring changes 

(Pete & Balasubramaniam, 2015). Accordingly, an artefact alteration or the 

presence of outdated artefacts should consistently reflect on all the other affected 

artefacts before they are used in the software process. 

2.8 Change propagation in DevOps 

The change propagation is conducted after the sequence of activities; change 

detection and change impact analysis to monitor ripple effects and for the 

selection of test cases respectively (Li et al., 2013). When new alterations are 

made, it is essential to confirm that remaining software artefact elements in a 

system are synchronized and consistent.  

 

Thus, change propagation is the new changes necessary in a software system in 

order to validate the consistency of assumptions in the system after an artefact has 

been changed. This is mostly conducted during the incremental software changes. 

Firstly, CIA is done to predict the change effects before checking whether they 

need modifications. The tool ‘JTracker’ is popular for assisting change 

propagation along with CIA. When a programmer changes a class, it marks the 

potentially impacted neighbouring classes. The propagation is terminated if the 

changes of neighbouring classes are not necessary. Furthermore, ‘JRipples’ is 

another significant tool for change propagation throughout the incremental 

artefact changes (Lehnert, 2011)(Li et al., 2013)(Rajlich, 2014). 

2.8.1 Change propagation techniques 

A. Heuristic rules  

Heuristic rules use to aggregate the detected changes to propagate and to obtain 

an optimal solution with high performance (Cleland-Huang et al., 2012)(Cleland-

Huang, Gotel, Hayes, Mäder, & Zisman, 2014). Hence, it is essential to determine 

the best path for propagating any change in the context of software artefact 

traceability. There exist specific aggregation algorithms which have been based 

on the heuristic rules and the related work in (Kitsu et al., 2013) has discussed 

one for source code change propagation. 
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B. Distance-based 

In the distance-based option, the temporal distance and spatial distance are mainly 

involved. The time taken among changes and the location distance among two 

modifications are considered in propagating a change. The use of ASTs and other 

representations are involved in determining these distances (Kitsu et al., 2013). 

2.9 Continuous integration 

Continuous integration is the repetitive integration process of building software 

implementations and testing them during specifically an Agile software 

development process. It elaborates frequent merging of the sole components of a 

software system into a shared branch by preserving the healthiness of the code. 

The importance of CI is significant in reducing most of the risks in software 

development such as lack of deployable software, late discovery of defects and 

lower project visibility (Duvall et al., 2007)(Meyer, 2014)(Kim et al., 2016). The 

automation of the CI process has given significant importance in the literature. In 

CI, the working code is committed to the version control repositories by 

developers. And make build scripts on those frequently pushed code in the CI 

servers to integrate new changes to the software. Figure 2-6 illustrates the CI 

workflow conceptually. 

 

 

Figure 2-6 : Continuous integration process (Farcic, 2016) 
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The principal ‘Single Source Point’ is encouraged via version control repositories 

such as CVS, Subversion, Perforce and Visual SourceSafe that allow accessing all 

source codes from a single primary location. After each build script execution in 

CI servers, the feedback mechanism notifies the status of the build. The Short 

Messaging Service (SMS), Really Simple Syndication (RSSI), E-mail and Project 

Management (PM) tools are the main techniques used for feedback. Fixing the 

discovered pipeline failures sooner without delaying is recommended to continue 

well with CIs. Furthermore, CI and testing with Test-Driven Development (TDD) 

are intricately linked together (Eck, Uebernickel, & Brenner, 2014)(Farcic, 2016). 

The rationale of version controlling using the scripts to control the code rather 

than the individual commands is a key method in tracing the artefacts. The ‘Echo’ 

approach is an evolving tool-based solution that addresses traceability in 

requirements as tracking the artefacts using static or manual documentation is 

impractical in an Agile environment (C. Lee, Guadagno, & Jia, 2003). 

2.9.1 DevOps practices 

Being a cultural aspect DevOps broadens the view of Software Engineering 

paradigm by defining metrics that are understood across teams, sharing 

measurement methods, tools and by making performance part of Agile stories. 

CALMS approach is the principal notion followed in DevOps that describes to 

start with people (Culture), bring in Automation, stay in Lean, Measure 

everything and to Share among team members respectively. DevOps practices 

give equal priority to the operations team in the development environment while 

making developers responsible for incident handling towards faster code 

repairing, enforcing the deployment processes used by Devs or Ops, adhering to 

continuous deployment and developing infrastructure code as deployment scripts 

(Bass et al., 2015). The major four dimensions of the DevOps practices remain as 

plan/ track, dev/QA, release/deploy and monitor/optimize. This strengthens the 

Agile software development methodology that stands as an umbrella for many 

software process models such as SCRUM, XP, Lean and many more. 

 

DevOps engineer is a prominent role in a DevOps environment that can be an 

individual, team or even handled at an organizational level (Ghantous & Gill, 
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2017). The responsibility of a DevOps engineer is to manage the tool support that 

which automation, version control, configuration and maintenance tools to be 

used, when to use based on their performance and contribution for productivity. 

Thus, the level of automation in the development and deployment pipeline of a 

DevOps environment is basically controlled by the DevOps engineer. 

 

The coordination of human resources in a DevOps environment is important to 

maintain the manageability of collaborative nature. Similarly, there are separate 

team coordination mechanisms defined. They are human processes and automated 

processes. The frequently used stand-up meetings in Agile is an example of 

human processes-based team coordination while automated processes involve 

version control, configuration management and continuous integration to fasten 

the feedback to developers. 

 

Figure 2-7 : DevOps overview (“QASource DevOps Experts,” 2018) 

 

There are stages of a DevOps cycle with respect to SDLC phases as depicted in 

Figure 2-7. Some sources have defined as 5C’s of DevOps and some as 6C’s. 

Those include continuous planning, CI, continuous testing, Continuous Delivery 

(CD), continuous deployment and continuous monitoring (Kim et al., 

2016)(Ghantous & Gill, 2017). CD refers to the product-level software system 

releases through the continuous process of building, test and continuous 

deployment automation. Technically, the best practice to keep a successful 

DevOps environment is following CICD (Continuous Integration Continuous 

Delivery) pipeline (Farcic, 2016)(“DZone DevOps,” 2018) that combines DevOps 
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practices together. It ensures to have faster integrations, accelerates product 

delivery with more frequent deployments and releases. That eventually 

contributes to increase the productivity by bringing the best plus points in 

adapting to DevOps. 

2.9.2 DevOps tools 

DevOps is classified as a new way of testing strategies that heavily contribute to 

increase organization throughput. It has been a powerful selection for quality 

results and in speeding up even customer level query processing due to the 

evolving DevOps tool support. The tool support in a DevOps environment majorly 

helps in maintaining CI and traceability. Jenkins, Travis, Ansible, Docker, Sonar, 

Maven and OpenStack are few among many (Ghantous & Gill, 2017). The 

existing higher level plugins such as ‘Hudson post-build scripts’ enable automated 

analysis of CI operations carried out in CI tools like Jenkins.  

 

A common fact on most of these existing tools is that they have only concentrated 

on source code artefact integrations regardless of other artefact integrations such 

as a design diagram modification, test case alteration and a requirement addition. 

The reason for that is DevOps is emphasizing the practices on source code by 

assuming that a source code change is done only after considering other earlier 

stages artefact modifications such as design or requirements changes. Thus, the 

DevOps tools are performing on source code artefact according to CICD practices.  

A. Jenkins 

Jenkins being a leading build automation server is a prominent DevOps tool that 

supervises regularly executed jobs. It is an open source rapid CI server, which 

generates a scenario where errors can be captured at a very early stage in the 

SDLC. Figure 2-8 illustrates the basic workflow of building a software project on 

Jenkins automation server as a job. 

 

 

Figure 2-8 : Jenkins workflow 
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The functionality of the Jenkins server is conducting a definite set of activities or 

tasks invoked via a trigger. The trigger can be a change happened in a linked 

version control system or a temporal trigger such that a build in each 10 minutes. 

The possible tasks include performing a build with Maven or Gradle for instance, 

executing a pre-written shell script, archiving the build outcomes and starting any 

integration tests. Currently, Jenkins focuses on building or testing software 

systems continuously and supervising executions of jobs even though those are 

running on a remote machine. The simple configuration through the web-based 

GUI, the capability of deploying at a larger scale environment and the ability to 

call slaves from the cloud by adhering to a slave topology can be identified as 

major advantages of adhering to Jenkins (Berg, 2015). In addition, it offers a huge 

bundle of plugins to enhance the capabilities to support the CICD pipeline. Those 

plugins are usually integrated with other existing DevOps tool stack features such 

as for instance Jenkins has Docker deployment-related plugins where Docker itself 

is another DevOps tool. 

B. Docker 

Docker is an open platform for building, shipping and executing distributed 

software applications even on a Virtual Machine (VM) or a cloud environment. 

The existence of microservices is enriched by tools like Docker. It has made the 

containers/ objects that hold and transport data easily (Farcic, 2016)(Ghantous & 

Gill, 2017). Docker containers are happened to replace VMs as the preferable way 

to create immutable deployments due to the higher usage of it in the industry. The 

powerful utilization of Docker reduces the deployment efforts. 

 

 

Figure 2-9 : Docker workflow 
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Figure 2-9 shows the workflow of Docker. Dockerfile is the primary element in 

this process that encapsulates the instructions required to build a source project 

with its dependencies and depending on environmental features. The execution of 

Dockerfile results in a Docker Image that is a file comprised of a number of layers. 

Finally, Docker runs that image to obtain the outcome that is Docker Container 

known as a standardized software capable of delivering (“Docker,” 2018). They 

are accessible and easily usable to everyone. The relationship between a Docker 

image and a Docker container is similar to the difference between an object-

oriented class and an object where Docker image is depicting the class and Docker 

container representing the runtime instance or the object out of the image. 

C. Puppet 

Puppet is a configuration tool in DevOps environments, based on deploying 

microservices with less time (Farcic, 2016). Puppet comprised of a centralized 

configuration server accessed by clients (Ghantous & Gill, 2017). The 

configurations are described in the form of scripts defined in a Domain Specific 

Language (DSL). Puppet provides a unified platform for activities such as 

initiating system services or organizing packages that need various tasks in 

heterogeneous operating systems. 

D. Travis 

Travis is classified as a recognized distributed continuous integrations service that 

supports building and testing open source software projects. It encourages team 

workings by tightly coupling to DevOps practices. It can automate test scheduling 

with GitHub repositories (Redmiles et al., 2007)(“Travis CI,” 2018). 

2.9.3 DevOps related project management tools 

Project management tools have a significant contribution in any software 

development model especially in DevOps where collaboration is maximum. 

Hence, managing a larger number of smaller teams, tracking software changes and 

tasks allocation among teams are keep recorded using a PM tool by any software 

organization. Therefore, there is a huge number of PM tools available to fulfil the 

organizational and personal PM needs. Few of the most prominent PM tools 

having different capabilities are discussed in this section. 
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A. Trello 

Trello (“Trello,” 2018) is a prominent, web-based PM application currently owns 

by the company Atlassian which provides many software tools. It follows a board, 

list and card structure with a simpler GUI using JavaScript to manage tasks, assign 

among team members with deadlines, priorities and progress. It provides most of 

the functionalities freely being a reason for its wider usage in industry level and 

academia for projects management. Further, Trello is enriched with open source 

APIs to integrate with various environments and cloud-based integration services. 

B. Jira 

Jira is another leading product by Atlassian company for Agile PM tasks and issue 

tracking (“JIRA Software,” 2018). Being a proprietary tool, it is comprised of 

three main packages namely Jira Core for generic PM features, Jira Software 

specifically for Agile PM features and Jira Service Desk for IT/ business service 

desks. The organizations such as Skype, Twitter and NASA also rely on this tool 

due to its cross-platform supportability. 

C. Slack 

Slack (“Slack,” 2018) is a cloud-based team collaboration tool which stands for 

‘Searchable Log of All Conversation and Knowledge’ launched in 2013. It 

provides persistent chat rooms for software environment communication that can 

be organized by topic and searchable including files. Slack is a proprietary tool 

that provides basic functionalities free with cross-platform capabilities. 

D. Zoho sprints 

Being similar to Trello in structure, Zoho Sprints (“Zoho Sprints,” 2018) is a 

proprietary Agile PM tool that is built specially for Scrum teams to plan the 

workloads in Sprints. Thus, it provides features to add user stories to backlogs 

estimate and prioritize work items following a board-based GUI.  

E. Bitrix24 

This is categorized as a leading free cloud and mobile PM solution that provides 

extended features proprietarily. Tasks, Gantt charts, task dependencies, resource 

planning and invoice management can be conducted with Bitrix24 (“Bitrix24,” 

2018) in many languages such as English, Spanish, Russian and German.  
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2.10 Analysis of related work  

Table 2.5 summarizes some related work on traceability management. The work 

presented by Tyree (Tyree & Akerman, 2005) has used the decision-based 

traceability on the architectural artefact. Passos (Passos et al., 2013) has addressed 

up to the implementation level artefacts and its development environment is 

limited to feature-oriented software projects. A rule-based approach with multi-

level dependency modelling considering many artefacts including the testing 

phase is presented in (Lehnert et al., 2013). It has applied impact analysis over 

heterogeneous artefacts and has achieved significant precision and recall results 

though lacking support for dynamic UML models. Zhang (S. Zhang, Gu, Lin, & 

Zhao, 2008) has addressed the change detection and impact analysis with a 

framework implemented in AspectJ programs. The workspace awareness tool in 

(Sarma, Redmiles, & Van Der Hoek, 2012) has involved all the phases in 

continuous integration in an event-based approach, but it lacks the automation. 

The IR techniques VSM and LSI are used in (Lucia, Fasano, Oliveto, & Tortora, 

2007) though the change propagation and continuous integration are not 

addressed. However, this work has been not limited to a specific artefact type and 

has semi-automated traceability recovery. The tool Echo presented in (C. Lee et 

al., 2003) which is based on Agile practices have addressed requirements and 

design artefacts. Another event-based notification approach that supports 

heterogeneous and distributed development environments is used in (Cleland-

Huang, Chang, & Christensen, 2003) though it lacks CI support. 

 

Although there are a considerable amount of research has been done, most of the 

literature has certain limitations such as being addressing only a few artefact 

types, not focusing on complete SDLC, lack of support towards continuous 

integration and lack of automation. Further, it is observable that the IR methods 

are involved in requirement traceability, whereas event-based and rule-based 

approaches are used in change detection, impact analysis and change propagation. 

Accordingly, the lack of traceability management to cope with continuous 

integrations for the entire SDLC can be identified in the existing related works. 
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Table 2.5 : Evaluation of related work on traceability management 

Related 

work 

Traceability 

establishment 

Change 

detection 
CIA 

Consistency 

management 

Change 

propagation 
CI 

(Tyree & Akerman, 

2005) 

Template-based 

approach using 

architectural decision 

templates. 

Decision-based 

approach. 

Manual analysis by 

humans. 

- Decision-based 

approach require 

manual 

monitoring. 

- 

(Passos et al., 2013)  Feature-oriented 

approach. 

Feature-oriented 

manner. 

Calculate feature 

dependencies in artefacts. 

- - - 

(Lehnert et al., 2013) Rule-based approach. 

Dependency detection, 

Dependency relations. 

- Rule-based approach. 

Multi-level modelling. 

Depend on change 

propagation rules. 

Multi-perspective 

consistency 

checking. 

Analyse 

dependency 

relations.Recursiv

e algorithm. 

- 

(S. Zhang et al., 2008) - Atomic change 

representation, 

syntactic 

dependencies. 

Static AspectJ call graphs. - - - 

(Sarma et al., 2012) Event-based approach. Visualization. Event-based approach. 

Binary measurements. 

Manual 

visualizations. 

YANCEES 

notification 

service. 

Worksp

ace 

awarene

ss tool. 

(Lucia et al., 2007) Information retrieval 

methods. 

Matrix-based 

using VSM. 

Rule-based approach. Traceability 

recovery using LSI. 

- - 

(C. Lee et al., 2003) Text annotations. 

Conversation-centric 

model. 

Visualization. Manually via 

visualization. Forward, 

backward traceability. 

- Use of elaboration 

activities. 

Versioni

ng. 

(Cleland-Huang et al., 

2003) 

Event-based approach. Publisher-

subscriber. 

Event-based approach. 

Event logs for artefacts. 

- Update artefact 

event logs. 

- 

(Alves-Foss et al., 

2002) 

Data pre-processing 

XML, HTML. 

Visualization. Manually via 

visualization. 

Integrative 

approach. 

- - 
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2.11 Visualization of traceability links 

Visualizing software artefact traceability is useful in building, recovering the 

artefact relationships and in decision making. It is challenging to visualize a large 

number of traceability links and paths among artefacts in real time with inter-

relationships due to scalability and visual clutter related issues. 

 

Table 2.6 : Traceability visualization techniques 

Technique Features Advantages Limitations 
Related 

work 

Lists Represent data 

in a single 

dimension 

sequentially. 

Efficiency due to 

simplicity. 

Limited for a smaller 

amount of data due to 

single dimension. 

(Merten, 

Jüppner, 

& 

Delater, 

2011) 

Traceabilit

y matrix 

Store data with 

two-

dimensional 

grid structure. 

Capable of 

displaying artefacts 

in two dimensions. 

Recommended for 

a smaller number of 

artefacts. 

Impractical to represent 

a larger number of 

traceability 

relationships. 

(Chen, 

Hosking, 

& 

Grundy, 

2012) 

Cross-

reference 

Represent data 

in a table 

structure. 

Capable of 

providing a list of 

relevant trace links 

for artefacts. 

Inability to provide an 

inclusive structure of 

traces and to find 

individual trace links 

since strictly adhered to 

a table structure. Lack of 

scalability. 

(Chen et 

al., 2012) 

Treemap A tree data 

structure to 

represent data 

in a 2D 

manner. 

Display a large tree 

by using display 

space effectively. 

Inability in 

communication with the 

hierarchical structure. 

Complex for a larger 

number of links. 

(Shneide

rman, 

1992) 

Hierarchica

l tree 

Represent data 

in hierarchical 

structure with 

node-link 

style. 

Provide detailed 

dependency 

information about 

traces. Simplicity, 

understandability. 

Visual clutter in an 

excessive number of 

trace links. 

(Holten, 

2006) 

Traceabilit

y graph 

Graph 

representation, 

data in nodes 

and 

relationships 

in edges. 

Higher ability in 

visualizing 

structured data with 

relations. 

Limit the viewing of 

graph for excessive 

nodes. Performance 

issues. 

(Herman, 

Melanco

n, & 

Marshall, 

2000) 

Sunburst 

and 

Netmap 

A radial 

layout. 

Alternative for 

matrices and 

graphs. 

Effective in 

browsing and 

navigation with 

better user 

orientation. 

Not filtering the 

visualization links. 

(Merten 

et al., 

2011) 
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There are visualization techniques and tools that enable analysing large temporal 

data. The selection of an optimal technique depends on the various properties in 

trace links. Table 2.6 presents a summary of visualization techniques. Among 

different visualization techniques, traceability matrix is mostly used for 

requirements artefact with NLP aspects (Thommazo, Malimpensa, De Oliveira, 

Olivatto, & Fabbri, 2012)(Chen et al., 2012). The graph-based, tree-based and 

other techniques are also used in some related work (Chen et al., 2012)(Rodrigues 

et al., 2016). 

 

Table 2.7 analyses the related work on traceability visualization techniques. Most 

of them have slightly considered model driven features. It is a limitation in 

supporting to a range of software types (Kugele & Antkowiak, 2016)(Santiago, 

Vara, De Castro, & Marcos, 2014). Many works have addressed the visual clutter 

and scalability issues (Merten et al., 2011)(Filho & Lencastre, 2012) and several 

tools are integrated with a specific IDE. Moreover, many studies have considered 

only a certain type of artefacts such as either requirements or source code. Thus, 

there is a need for a generic software artefact visualization methodology. 

 

Table 2.7 : Evaluation of related work on traceability visualization techniques 

Related 

work 

Visualization technique 

List

s 

Trace

ability 

matrix 

Cross-

refere

nce 

Tree

map 

Hierar

chical 

tree 

Trace

ability 

graph 

Sunburst 

and Netmap 

visualization 

Other 

(Merten et 

al., 2011) 
√      √ 

 

(Chen et al., 

2012) 
 √ √     

 

(Holten, 

2006) 
   √ √   

 

(Rodrigues et 

al., 2016) 
 √  √  √ √ 

 

(Filho & 

Lencastre, 

2012) 

 √  √   √ 

 

(Thommazo 

et al., 2012) 
 √      

 

(Kugele & 

Antkowiak, 

2016) 

     √  

metapho

r-based 

(Santiago et 

al., 2014) 
     √  

MDE-

oriented 
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2.12 Tool support for tractability management and continuous integration 

One of the approaches for maintaining traceability is tool-based approaches where 

a specific tool is used for tracing purpose of that particular artefact. The tool 

support for artefact traceability and continuous integration is an evolving area 

with the use of existing and novel techniques. The representation and 

visualization of the identified traceability results is a major challenge for proper 

artefact management. Some existing traceability tools support the representation 

while some remain with limitations as stated in Table 2.8. 

 

Table 2.8 : Tool support for traceability management 

Tool Usefulness Limitations 

TraceME (Bavota et al., 

2012) 

Artefact traceability visualization 

in traceability dependency graphs. 

Limited to Eclipse IDE as 

a plugin. Research-level.  

ADAMS Re-Trace (De 

Lucia, Oliveto, et al., 

2008) 

Heterogeneous artefact 

traceability management and 

recovery.  

Limited to be used within 

Eclipse IDE as a plugin. 

Caliber-RM (Capterra, 

2019) 

Allow stakeholder collaboration 

with versioning. Impact 

identification and visualization of 

requirements. 

Proprietary. Limited for 

requirements artefact. 

Platform dependent with 

Windows OS. 

Cradle  

(“3SL,” 2018) 

Designed for Agile development. 

Scalable and multi-user 

accessible. 

Lack of CIA, Proprietary 

tool. Limited for 

requirements. 

RequisitePro (“Rational 

RequisitePro,” 2017) 

A collaborative requirements 

management tool. Support use 

case generation. 

Limited for requirements 

artefact. Proprietary. Lack 

of tool maintenance in 

updates. 

YAKINDU 

(“YAKINDU 

Traceability,” 2019) 

Support tool integration with the 

applicable artefacts. Visualize 

query and generate traceability 

coverage reports and impact 

analysis results.  

Limited for requirements 

artefact. Proprietary and 

patent pending tool. 

Palantír 

(Sarma et al., 2012) 

Notify artefact changes, CIA. 

Graphically display in a 

configurable and non-obtrusive 

way. Enforce continuous 

coordination. 

Changes related 

information is captured at 

the file level and user 

notification of conflicts at 

the code entity level. 

ReqView (“ReqView,” 

2017) 

Present structured requirements in 

a tabular way and visualize in a 

traceability matrix.  

Limited for requirements 

artefact. Proprietary tool.  

 

Table 2.9 summarizes the tool support for information retrieval techniques. The 

tool TraceME has addressed all the main artefact types and stands as an Eclipse 

plugin (Bavota et al., 2012). The tool RETRO can be identified as more towards a 
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case study biased to the requirements artefacts (Hayes et al., 2007). ADAMS Re-

Trace is another Eclipse plugin that has addressed the main types of artefacts and 

has used the LSI technique for IR (De Lucia, Oliveto, et al., 2008). 

 

Table 2.9 : Tool support for information retrieval 

Tool Artefacts 
Information retrieval technique 

VSM TF-IDF LSI Other 

IBM RequisitePro (“Rational 

RequisitePro,” 2017) 

Requirements    documen

t-based 

TraceME (Bavota et al., 2012) All X    

RETRO (Hayes et al., 2007) Requirements, 

design, bug reports 

X X X  

ReqAnalyst 

(“SERG :ReqAnalyst,” 2017) 

Requirements   X Extract-

Query-

View 

ADAMS Re-Trace (De Lucia, 

Oliveto, et al., 2008) 

All   X  

TraceTool (Mischler & 

Monperrus, 2014) 

SRS   X X  

 

Wider use of VSM, TF-IDF and LSI techniques for the purpose of information 

retrieval can be seen in this summarized commercial traceability related tools in 

Table 2.9. However, still, the major software artefact that most of the tools have 

addressed is only the requirements artefact where the test scripts, configuration 

files sort of artefact types are hardly addressed.  

 

The use of traceability management support along with CI, change impact 

analysis and consistency management in the existing tools is summarized in Table 

2.10. Some tools are platform dependent such as Caliber-RM is only supporting 

Windows environment (Borland, 2006). TraceMaintainer is an independent tool 

that supports any CASE tools in any heterogeneous environment. However, it is 

limited for the support towards the requirements and design artefacts (Mäder et 

al., 2008). LDRA-TBmanager is a significant tool that has addressed the artefacts 

related to testing activities in SDLC and it supports the applications developed 

using any programming language (“LDRA,” 2018). TraceME and ArchEvol are 

integrative tools with the Eclipse IDE as a plugin. An object-oriented Supply-

Chain Management (SCM) infrastructure is contained in the tool MolhadoArch 

that has addressed majority types of software artefacts (Nguyen, Munson, & 



 

40 
 

Boyland, 2004). Accordingly, a lack of tool support addressing all the types of 

heterogeneous artefacts together in SDLC with a minimum of dependencies such 

as depending on a particular IDE or a platform can be identified. 

 

Table 2.10 : Tool support for traceability management 

Tool Artefacts 

Traceability 

management approaches 

Continuous integration 

approaches C

I

A 

Consis

tency 

manag

ement 

Rule-

based 

Hypertext

-based 

Integ

rativ

e 

Versi

onin

g 

Colla

borat

ion 

visua

lizati

on 

Mo

deli

ng 

IBM DOORS 

(“IBM-Rational 

DOORS,” 2017)  

Requiremen

ts 

 X X X X X X X X  

RequisitePro 

(“Rational 

RequisitePro,” 

2017) 

Requiremen

ts 

  X  X X X X  

Caliber-RM 

(Borland, 2006) 

Requiremen

ts 

  X X X X  X X 

Cradle (“3SL,” 

2018) 

Requiremen

ts 

  X     X  

TraceMaintainer 

(Mäder et al., 

2008) 

Requiremen

ts, structural 

UML 

X  X       

TraceAnalyzer 

(Egyed, 2001) 

UML 

designs, test 

cases, code 

  X   X X   

TraceME (Bavota 

et al., 2012) 

All   X     X  

LDRA-

TBmanager 

(“LDRA,” 2018) 

Requiremen

ts, 

regression 

suites, test 

scripts 

   X X     

ReqView 

(“ReqView,” 

2017) 

Requiremen

ts 

  X X X     

ArchEvol (Nistor, 

Erenkrantz, 

Hendrickson, & 

van der Hoek, 

2005)  

Architectura

l aspects, 

code 

  X X  X    

ArchStudio 

(“ArchStudio,” 

2018) 

Architecture   X  X X X   

MolhadoArch 

(“Molhado 

Project,” 2017) 

All   X  X  X    
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2.13 Evaluation techniques of traceability management 

2.13.1 Quality measures 

A. Traceability coverage 

The correctly identified trace links in a traceability recovery process is known by 

traceability coverage. It is advantageous to determine the quality of established 

artefact traces such that well traced and poorly identified traces which helps to 

improve the traceability. Traceability coverage can be defined as in equation (2.1) 

(Cleland-Huang et al., 2012). 

 

                                
                   

         
                (2.1) 

Where, targets is the target artefacts and links_a (targets) denotes the links traced 

between a particular artefact a with the artefacts in the target set. 

B. Correctness measures 

Precision, recall and F-Measure are the highly applied accuracy measures. The 

accurate instance count among all the obtained instances regardless of their 

relevance is known by precision (2.2) and helps to save time when finding 

changes. Recall (2.3) that is also referred by sensitivity expresses the accurate 

instance count among the obtained related instances and contributes to confirm 

whether proposed changes are all considerable or not (Zeugmann et al., 2011). 

 

            
              

       
                              (2.2) 

         
              

       
                        (2.3) 

Where, EIS represents estimated impact set and AIS denotes actual impact list. 

 

In relation to both precision and recall, F-Measure (2.4) is defined by the 

weighted harmonic mean of both of them in a test having the values in range [0,1] 

which highlights the association of precision and the recall (Zeugmann et al., 

2011). F-Measure is also known by F1 score. 

 

                                                                      (2.4) 
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C. Reliability 

Reliability of traceability is important in safety-critical and high-reliability 

systems. The Hidden Markov Chain (HMC) algorithm can be used in measuring 

software reliability (J. Lee, Cho, Youn, & Lee, 2009)(Vrignat, Avila, Duculty, & 

Kratz, 2015). The UML artefact based reliability prediction in traceability also 

contains a significant value in the literature (Trung & Thang, 2009)(J. Lee et al., 

2009). Moreover, the proper maintaining of a traceability matrix is considered 

useful to preserve the reliability with respect to requirements artefact. 

D. Usability 

Usability is concerned with the user experience and the interactivity based on 

evolving user expectations. The usefulness, ease of use, learnability and likeability 

are treated as the general concepts of the usability (Winkler, 2008). A larger 

number of users sample is mainly considered in measuring the usability aspects of 

a traceability tool in the related works (Faulkner, 2003). Moreover, the degree of 

automatization by reducing human effort in reducing the trace link generation time 

and user interface improvements are considered as usability features 

(Sünnetcioglu, Brandenburg, Rothenburg, & Stark, 2016). 

 

There exist multiple criterion methods to evaluate usability quantitatively and 

qualitatively such as System Usability Scale (SUS), Likelihood to Recommend 

(LTR), Net Promoter Score (NPS) and the use of Tag Clouds. SUS is a Likert 

scale methodology found by John Brooke in 1986 to measure usability level of a 

software tool with the involvement of a set of users (Brooke, 2013). It provides a 

questionnaire consists of ten standard questions each with five options. The 

options which are scale-based ranging from ‘strongly agree’ to ‘strongly disagree’ 

remain the same for all questions and each contains a quantitative weight. Thus, 

the final outcome of SUS is a numerical value called SUS score. It assigns a 

usability level to the tool such as Average or Above Average.  

 

NPS is another user satisfaction evaluation method, but with a single question to 

the users that question how likely a user would recommend the tool to someone 

(Keiningham, Aksoy, Cooil, Andreassen, & Williams, 2008). It is known as LTR 

and is also defined as SUS score divided by 10 in relation with SUS methodology 
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(“MeasuringU,” 2018). The answerable 11 scale options range from ‘not at all 

likely’ to ‘extremely likely’ similar to SUS and results in a quantitative value as 

the final NPS value. In addition, a tag cloud is a novel visualization technique to 

represent weighted keyword-based textual contents (Sinclair & Cardew-Hall, 

2008). It can be used to represent user feedback with their response frequencies. 

2.13.2 Network analysis 

Network analysis combines several centrality measures to specifically assess 

network graphs. Thus, they are applicable to evaluate the accuracy of traceability 

links in traceability networks that are represented in a form of visualization graphs. 

The centrality measures include (Knoke & Yang, 2008), degree centrality: denotes 

the status of a node based on the number of adjacent links; (2.5) closeness 

centrality: gives the most nearer node to a maximum number of nodes; (2.6) 

betweenness centrality: states the number of times a node act as a bridge along the 

shortest path to others; Eigenvector Centrality (EVC): gives the most influential 

element. EVC measure is used to analyse the accuracy of the artefact traceability 

establishment (Borgatti, 2005). 

 

      
 

        
                                                     (2.5) 

      
      

        
                                               (2.6) 

 

EVC is defined as the principal Eigenvector of the adjacency matrix defining the 

network and has been used to analyse accuracy in previous work (Perera, Miller, 

& Allison, 2017). If an EVC measure of the artefact has a higher value, it can 

influence many other artefacts. An artefact is more influential if it affects other 

highly influential artefacts than an artefact which affects the same number of less 

influential artefacts (Perera et al., 2017). Thus, EVC is useful to find how the 

artefacts influence the linked artefacts, without necessarily being restricted to the 

shortest path etc in a node connectivity (Borgatti, 2005). 
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2.13.3 Traceability testing techniques 

A. Unit testing 

The unit testing verifies the fulfilment of the specification by each unit 

(Sommerville, 2010). The concept of Test-first development encourages to have 

automated unit test for each functionality, before the implementation of the 

function. It is essential to perform unit tests at each integration of the continuous 

integration process. 

B. Regression testing 

The regression test is important in confirming that the previously run tests and 

alterations have not introduced new defects (Sommerville, 2010). Hence, it is 

essential in applying for a traceability management tool as the traceability itself 

heavily gets changed based on artefact element alterations. Besides, regression 

testing is the main testing method in Agile-based software development. 

Traceability matrix technique can be used in regression testing (Athira & Samuel, 

2011). 

C. User acceptance testing 

The User Acceptance Testing (UAT) is one perspective in the final stage system 

testing that verifies the intended behaviour of the final software product and is a 

black box test (Hambling & Goethem, 2013). The version controlling features can 

be used to maintain the requirements and acceptance tests. UAT can be applied to 

different case studies and user samples. The alpha and beta tests are two subtypes 

of UAT. 

2.13.4 Supported testing tools 

A. Selenium 

Selenium is an open source, portable test automation suite that is capable of test 

management and reporting (“Selenium,” 2018). This can be applied for continuous 

integration servers, where the machine-readable test reports are essential to 

evaluate the accuracy of integrations. 
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B. JUnit 

JUnit stands as a prominent Java-based unit test automation tool which is 

integrated with most of the IDEs such as NetBeans (Sommerville, 2010). 

Therefore, it can be used in testing the Java involved source code artefact 

traceability. 

2.14 Discussion 

Software systems in every domain become highly complex and competitive 

requiring the ability to perform in high reliability in order to sustain without being 

replaced by a newer software system. The development of these systems requires 

strong traceability and consistency management for the correct functioning and 

maintenance of the product.  

 

Different types of intermediate software artefacts are involved during the 

development process. The main software artefacts include requirements, designs, 

source codes, test scripts, build scripts, configuration files and many more. The 

Agile software development model is identified to be the most evolving one in 

trend due to its highly collaborative and cost-effective nature. It is comprised of 

practices such as DevOps, continuous integration and continuous delivery. 

DevOps reduce the gap between development and the operations, whereas the 

continuous integration referrers frequent merging of developer working copies. 

The resulting rapid changes of artefacts are required to be traced in order to 

preserve the maintainability in DevOps. Furthermore, change impact analysis 

plays a significant role before and after each change detection process. 

 

The evaluation measures of traceability and impact analysis are more towards 

efficiency, performance and correctness measures. Evaluating the quality 

attributes is vital for the betterment of traceability management in a rapidly 

changing DevOps environment. Correspondingly, the uniqueness and the 

usefulness of the core research problem identified to be addressed in this research 

work; determining an approach of impact analysis for artefact traceability in a 

DevOps environment is justified in this conducted literature study. 



 

46 
 

2.14.1 Limitations in current practices 

The main limitation in the existing context of software traceability and continuous 

integration is the lack of sufficient tools and technique. The existing tools are 

limited to certain artefacts and development environments (C. Lee et al., 

2003)(Burgaud, 2006). Also, there is a lack of CIA methods associated with 

traceability especially in a quantitative approach. Moreover, traceability 

visualization and validation covering heterogeneous artefacts are hindrances in 

literature. Thus, the automation of traceability establishment has become 

unachievable and inapplicable into DevOps environments. Although the support 

of traceability and CI is important to be available during the overall SDLC, it is 

not completely preserved in the current practices (Chang, 2005). 

2.14.2 Future challenges and research directions 

The current software industry is still reluctant to adapt the traceability aspects into 

the environments due to the above-identified limitations and challenges. It is 

challenging to build a general framework that supports traceability management 

with a wide range of customizability. Another challenge is that currently, 

traceability does not provide tangible direct advantages to software development. 

Thus, there is a need of a tool that supports all the artefact types and development 

environments in managing traceability. On the other hand, DevOps practices 

support great collaboration between many functions engaged in the current 

software development processes. Therefore, a technically sound and feasible 

approach to manage software artefact traceability with impact analysis for a 

DevOps environment having continuous integrations is essential for software 

development as well as for maintenance (Rubasinghe et al., 2017). 
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Section 3 

3 Research methodology 
 
 
 

The solution space of the addressed research question is presented in this chapter. 

The system designs of extended SAT-Analyser system and the technical aspects 

of functionalities with their implementation are explored in this chapter. 

3.1 System design 

3.1.1 System overview 

 

Figure 3-1: Extended SAT-Analyser system overview 

 

Figure 3-1 depicts the abstract system overview of extended SAT-Analyser tool. 

The heterogeneous artefacts are handled by the presentation layer as inputs to the 

system. The business logic layer pre-processor component is responsible for the 

data pre-processing of the acquired artefacts, data extraction and storing the 

extracted items. Major functions related to overall traceability management; 

traceability establishment is handled by traceability generator component and 
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change detection, change impact analysis, change propagation and consistency 

management are managed by the continuous integrator component. Most of the 

algorithmic workflow is divided within the business logic layer for these 

functions. The traceability CI component is defined to be triggered with the 

continuous deployments in a DevOps environment. Hence, at a deployment task, 

pre-processor obtains the latest source code and build script artefacts via the 

Jenkins automation server’s most recent successful build. The data management 

required by the business logic layer is stored in the bottom data access layer. 

Finally, the results visualization in three enhanced methods such as informative, 

analytical and interactive graph is a responsibility of the presentation layer’s 

visualization manager while providing a notification back to Docker Deployer. 

The delivery manager in presentation layer then proceeds to complete the 

deployment task with deployable software prior to CD. 

3.1.2 Research model 

In designing the extended SAT-Analyser, an industry level survey is conducted 

among the DevOps practitioners. The purposes of the survey are to; 

 Identify software artefacts that are highly subjected to changes, 

 Continuous integration techniques and frequencies, 

 Traceability management methods used in practice, 

 Visualization mechanisms in DevOps environments, 

 Change detection, change impact analysis, change propagation and 

methods used to ensure artefact consistency. 

 

Accordingly, unit test scripts are selected with respect to source code artefact 

based on the analysis of obtained survey responses. The major activity of the 

configuration phase within a DevOps environment is to build the implemented 

codebase. Build automation is associated to compile the source code and to 

transform into a binary code form. Build automation ensures that the tested code is 

executable. The tools like Jenkins, buildbot, Apache Ant, Ninja, MSbuild and 

Puppet support it with many options such as make-based, make-build, build script 

generation and make-incompatible. Correspondingly, the build script generation 

approach is used in this research. The Java-based Apache Maven is selected as the 
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configuration artefact while Jenkins as the build automation server. In the build 

scripting method, the source code related dependencies, dependant plugins and 

repositories are provided in a scripting format which is executed when a build is 

necessary that can be either continuously or periodically through Jenkins. 

 

 

Figure 3-2 : SAT-Analyser tool research model 

 

Figure 3-2 illustrates the research model of the extended SAT-Analyser. It shows 

the integration of SAT analyser with a practical software development process in 

DevOps practice. A DevOps environment differs from a traditional development 

process by the means of continuity in testing, integrating, deploying, delivering 

and due to the collaborative workforce of different roles together. The developers 

who are denoted as Devs, Quality Assurance (QA) engineers who perform testing 

and other operational level team members denoted by Ops who are responsible for 

monitoring, deployment, delivery and maintenance tasks work hand in hand than 

performing their duties in isolation. 

 

This research model is designed to perform the artefact traceability in CICD 

pipeline. Initially, SAT-Analyser obtains all artefacts; requirement, design 

diagram, source codes, test scripts, build script and establishes a traceability model 

among them with visualization and validation. Then, SAT-Analyser’s invokes 
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scheduler during continuous integration. To ensure the traceability before 

delivering, SAT-Analyser obtains the latest source code and build script via the 

most recent successful build from Jenkins server. Accordingly, SAT-Analyser re-

establishes a traceability model based on obtained new source code and build 

script artefact with change detection, change impact analysis, change propagation 

and visualizes the traceability results. Simultaneously, notifies the teams via the 

project management tool Trello about the change propagation. Consequently, 

DevOps teams can decide on proceeding with CD. SAT-Analyser supports the 

synchronization within the software process in this approach. Table 3.1 lists the 

addressed software artefacts and the features existed in the initial SAT-Analyser 

prototype tool. The limitations in the initial tool and the possible improvements for 

the considered aspects in this research work are also summarized.  

 

Table 3.1 : Analysis of existed SAT-Analyser 

Existed SAT-Analyser 
Considerations for 

the tool extension 

SDLC 

phase 

Software 

artefacts 
Possible improvements for limitations 

 

Require

ment 

analysis 

Natural 

language 

requiremen

t 

description 

The data pre-processing is currently 

error-prone. Only the requirements 

given in the simplest raw text is 

considered in a .txt format. The other 

types of artefacts can be considered. 

NLP data pre-processing can be 

enriched with IR techniques for better 

data extraction. Does not support 

continuous integration. 

Will not be 

considered as the 

area is more into 

Natural Language 

Processing and 

information 

retrieval. Not 

within the research 

scope. 

Design  

UML class 

diagram 

Only the structural view class 

diagrams are considered. Can be 

extended to behavioural models.  In a 

class diagram, only the inheritance is 

considered. The aggregation, 

composition types of relationships 

have not considered.  

Other UML design 

diagrams are not 

within the research 

scope, as we focus 

on CICD pipeline.  

Implem

entation 

Java source 

code 

Only the source files in Java language 

are processed using Java Grammar 8. 

Can be extended to other Object-

Oriented or functional programming 

languages such as C++, Python. 

Impact analysis is not included 

significantly after the change 

detection. 

Other programming 

languages are not 

within the research 

scope. Source code 

will be considered 

as it is used in CI to 

integrate the code 

to a shared 

repository. 
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Table 3.2 summarises the software artefacts considered with respect to phases in 

DevOps, the importance of the selected artefact types and possible techniques for 

the proposed SAT-Analyser tool.   

 

Table 3.2 : Analysis of the SAT-Analyser with DevOps extension 

Proposed research for SAT-Analyser with DevOps environment 

Phases Artefacts  Description Possible techniques 

Development 

Java source 

code 

The source code 

changes are prominent 

in continuous 

integration. Many 

changes occur in the 

codebase and the proper 

consistency 

management is 

essential. 

Java Grammar 8 and 

ANother Tool for 

Language Recognition 

(ANTLR) are used to pre-

process Java code. The 

version controlling can be 

done via GitHub. Jenkins 

can be integrated for 

change management.   

Testing 

Unit test 

script 

Unit tests automate the 

testing process by 

verifying individual 

units. It refactor easily 

instead of changing 

already tested codes 

which is costly and 

risky.   

Event-based traceability 

can map with the previous 

code version. Tree-

differencing with Edit 

history can use for change 

detection. 

 

Configuration 

Dependency 

files in 

Maven 

Maven repository build 

automation by 

concatenating artefact 

dependencies. All 

prominent CI servers are 

supportive to the 

packaging structure used 

in the Maven 

dependency 

management and Maven 

is highly supported 

within the IDEs 

involved in industry 

level. 

Maven files follow an 

XML data structure such 

as pom.xml file. XML 

based data pre-processing 

can be done using DOM 

parser. Tree-differencing 

with Edit history can apply 

for change detection. 

Tools such as Puppet and 

Chef can be used for 

configurations and Jenkins 

can be used to automate 

the source code repository 

compilation into an 

executable code base. 

Deployment 

Deployment 

scripts  

The cloud technologies 

are used for efficient 

productivity in DevOps. 

The deployment scripts 

can be used for cloud 

integrations with cloud 

hosts. Thus, the build-

deploy-test-release 

pipeline in CD aspect of 

DevOps can be 

facilitated. 

The deployment scripts 

can be created based on 

the build outcomes using 

Docker that create a 

deployment script called 

Dockerfile and 

containerize it to deploy as 

a standard software unit to 

a cloud or local repository. 
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3.1.3 System architecture 

Figure 3-3 depicts the extended SAT-Analyser system architecture that follows a 

layered behaviour having presentation, business logic and a data access layer. The 

artefact manager provides the input interaction by intaking requirement in textual, 

design in UML, source code in Java, test script in JUnit and build script in Maven 

files. The visualization manager provides the output interaction with different 

graph representation types such as informative, interactive and analytical by 

involving JSON, JavaScript and Python to facilitate flexibility for decision 

making. The delivery manager fulfils the deployment with deployable software 

before continuous delivery. 

 

 

Figure 3-3 : Extended-SAT-Analyser system architecture 
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The business logic layer is responsible for artefact data conversion into processed 

artefact elements, traceability establishment and continuous integration 

management. The CI manager is associated with the Jenkins automation server 

and Docker deployer. The pre-processor component has a separate data extraction 

module for each type of artefacts due to the heterogeneity of them. Once pre-

processed, XML converter brings them into a single common XML format using 

XML parsers like DOM and SAX parser. Traceability generation with the aid of 

XML readers, string comparison and traceability results validation using both 

statistical and network analysis techniques are responsibilities of the traceability 

establisher component.  

 

The continuous integration component is considerably important as it is 

responsible for change detection and impact analysis that involves mathematical 

models such that scheduler algorithms, XML comparison algorithms, weight 

calculation, impact assignment and change propagation using graph traversal 

algorithms. It is triggered by the delivery manager at a continuous deployment 

activity that could be twice a day or more frequent. Then, pre-processor obtains 

the latest development artefact; source code and associated build script artefact via 

the Jenkins latest successful build job. Jenkins server is comprised of a 

relationship with multiple source code management systems like GitHub, a build 

job triggering to perform project build activities and a notifier to inform the build 

results whether a success or a failure. After completing the traceability and CI 

process with change propagation results visualization, SAT-Analyser notifies to 

teams via project management tool Trello. Next, the Docker deployer can proceed 

with deployment by creating Dockerfile, Docker image and containerization to let 

the delivery manager in presentation layer have deployable software. 

 

The bottom layer is providing the database storage and access for all the purposes 

such as for artefact storage, graph storage involving ontology dictionary manager, 

WordNet manger, relation manager and graph database manager. 



 

54 
 

3.1.4 Abstract system workflow 

Figure 3-4 illustrates the abstract workflow design of extended SAT-Analyser tool. 

It starts by input artefacts such that requirements in the text, design in UML class 

diagram, source code in Java, unit test in JUnit and build script in Maven 

pom.xml. Then, preprocesses each type, converts into an intermediate XML 

format, generates traces, visualizes and analyses them. The remaining CI part has a 

scheduler to initiate the CI process and detects changes based on XML versions of 

artefacts by managing versions. Thereafter, calculates impact and propagates 

changes accordingly. Finally, updates changed artefact XMLs and notify deployer 

via a project management tool to bring the system into a stable stage. 

 

 

Figure 3-4 : Extended SAT-Analyser abstract workflow 
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3.1.5 Detailed system workflow 

The detailed system workflow of extended SAT-Analyser is shown in Figure 3-5. 

The application of the technical aspects shown and discussed in Figure 3-3 is 

illustrated in this diagram. The leftmost side shows the data/ information elements 

such as artefacts, Java Grammar, JSON parser, artefact elements, XML writer, 

WordNet, dictionary ontology, thresholds, Neo4j graph database and Gephi open 

graph platform. The activities are shown by the other type of rectangular shapes 

while arrows depict the activity flow with directions. The notations IN, V1/2/3, 

CP, CIA, CD, CM represent inputs, versions, change propagation, change impact 

analysis, change detection and consistency management to categorize the activities 

for better readability. The workflow ends when consistency is managed with 

traceability project stability. 

 

Figure 3-5 : Extended SAT-Analyser detailed workflow 
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3.1.6 System class structure 

The class diagram of SAT-Analyser tool is shown in Figure 3-6. The classes 

GUI_Manager and DB_Controller handle user interface and database, 

respectively. The superclass Artefact_Manager intakes the artefacts from the user 

and initiates the data Pre_Processor and Data_Extractor classes. There exist 

subclasses inherited from Artefact_Manager for each type of artefacts. There can 

have many pre-processor and extractor sub-modules as the inputs are in 

heterogeneous. The extracted artefact elements and sub-elements are handled by 

the Artefact_Elements class. Traceability establishment is done by class 

Traceability_Generator which has a composition relationship with 

Relation_Manager which manages the established trace relations among artefact 

elements. Traceability visualization is based on the established relations and is 

provided in three different kinds of views namely; informative view, interactive 

view and analytical view. Traceability evaluation is performed by class 

Trace_Validator that is related with analytical visualization type. The 

Change_Detetor class monitors the database changes of artefact elements. It 

triggers Impact_Management class whenever a change is identified for impact 

analysis of affected items. Change_Propagator is used to propagate the changes 

for affected artefacts by mandatorily using the class Graph_Traversal. 

 

 

Figure 3-6 : Extended SAT-Analyser class structure 
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3.2 Traceability establishment 

3.2.1 Data pre-processing of SAT-Analyser tool 

The requirements, design, source code, unit test script and build script artefacts are 

considered for the artefact traceability process of this system. Therefore, those 

artefacts are addressed in the data pre-processing component as the input items. 

The, requirement documents are in document format (.docs) or text file format 

(.txt), design diagrams in metadata-JSON file format (.mdj) following UML 

notation, source codes in Java programming language (.java), unit test artefact in 

JUnit unit test script files (.java) and Maven build script is in a pom file (.xml). 

The pre-processing of up to source code artefact is from the existed initial version 

of the SAT-Analyser tool.  

 

The NLP module is responsible for pre-processing data and extracting information 

from requirement documents, story cards that are written in generic natural 

language English. It is designed to extract the artefact elements such as classes, 

methods, attributes and relationships from the stated requirements. The Stanford 

CoreNLP is used to process the natural language statements to produce a base 

form of text. Thus, its submodules Part-of-Speech tagger, parser, Named Entity 

Recognizer (NER) and Anaphora analysis (coreference resolution) are also 

involved for better pre-processing of the requirement data.  

 

Initially, the NLP module tokenizes the pronouns of a given requirement 

document as the task of tokenization. Then, Anaphora analysis is conducted to 

identify the coreferences in given sentences before extracting the artefact 

elements. Consequently, the extraction of nouns is performed in order to detect the 

artefact elements among the processed requirement statements. A parse tree is 

internally generated with the aid of used Stanford CoreNLP to obtain detailed 

granularities of sentences by using POS tagging.  

 

Correspondingly, the classes, methods, attributes and the relations among them are 

extracted as the major artefact elements. A set of identification rules are involved 

since differentiating among classes and attributes is problematic as both are nouns. 
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Therefore, if a verb phrase is following noun phrases in a sentence those nouns are 

extracted as class names. Thus, attributes are extracted from nouns and adjectives 

if the nouns and adjectives in a sentence are not following a verb phrase. Also, 

methods are extracted from the noun phrases associated with class names. 

Moreover, the relationship identification is defined to extract the association and 

generalization type of relationships. Accordingly, a rule-based approach is 

followed in the requirements data extraction. Then, the morphological analysis is 

performed to convert the contents into a root form for redundancy elimination 

purpose. Hence, the stemming analysis and redundant elimination are conducted in 

retrieving a unique set of requirement data. 

 

The design tools StarUML and Modelio are selected based on their ability to store 

design diagram files as a model file (.mdj) and the export capability to generate 

XMI (.xmi) and UML (.uml) formats respectively. Thus, it can be used to data 

extraction via a JSON reader since diagram information and class diagram 

concepts are well stored in a JSON format in those selected design tools. 

Additionally, two pre-defined dictionaries are also integrated with this parsing 

module in order to fine-tune the data extraction process by eliminating non-

realistic extractions in the context of class diagrams.  

 

The source code parsing module pre-processes the source code artefact data from 

the project workspace. The tool ANTLR is used to generate lexers, tokens and 

relevant listener classes for the Java language. An abstract syntax tree of a source 

code file is generated by ANTLR and is further processed using the Java 

Grammar. The source code data extraction is done by traversing through the 

syntax trees using the tree walker integrated with ANTLR in identifying class 

declarations, methods, attributes, generalization and association relationships. 

Moreover, they are designed to be stored in a temporary Neo4j database. 

 

The goal of Algorithm 3:1 is to pre-process the input artefact resources and extract 

the data accurately. The supportive input artefact types are requirements, UML 

design class diagram, Java source code, JUnit test files and Maven build script at 

this stage of the SAT-Analyser. 
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Algorithm 3:1 Data pre-processing 

Require: Software artefacts (requirements, design, source code, test script, build 

script)  

Ensure: associating input data to a traceability project 

1. input: artefact: a 

2. if (a== requirements) 

3.  a_req = NLP_module(a) 

4. if (a== design) 

5.  a_uml = UML_parser(a) 

6. If (a== source code) 

7.  a_src= SRC_parser(a) 

8. If (a== unit test) 

9.  a_ut= UT_parser(a) 

10. If (a== build script) 

11.  a_bs= BS_parser(a) 

12. axml = Convert_to_XML(a)  

13. If (all 5 axml exists) 

14.   Build project structure module 

15.   Make folder structure 

16.   Initiate graph files 

17. Else 

18.   Notify failure  

19. output: new artefact traceability management project 

 

 

Accordingly, if the type is ‘requirements’, the artefact is forwarded to process via 

NLP_module algorithm and if the artefact type is ‘design’ it is forwarded to 

UML_parser algorithm. Else, the artefact is forwarded into the SRC_parser if the 

input artefact type is ‘Java source code’. Similarly, if the artefact is a ‘unit test’ 

type as a set of JUnit test script files, then UT_parser is used and if the artefact is a 

build script in the form of a Maven pom.xml file, BS_parser is invoked. The 

extracted artefact data are processed through the Convert_to_XML algorithm to 

convert the data into a common format using XML writers. A new SAT_Analyser 

project is created only if all artefact elements containing XML files are 

successfully found. Thus, the expected final outcome in this algorithm is the 

creation of a new SAT-Analyser project. 

 

The goal of Algorithm 3:2 is to process the requirements artefact data provided in 

English natural language via the .txt or the .doc file formats. The input is processed 

through NLP activities to extract the requirements related artefact elements. 
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Algorithm 3:2 NLP_module 

Require: Software artefacts: requirements in natural language  

Ensure: pre-process requirements artefact data 

1. input: requirements artefact: a 

2. while (a) 

3.  tokanization  

4.  Anaphora analysis 

5.  Data extraction 

6.   Return classes, methods and attributes 

7. if (classes, methods, attributes exists) 

8.  morphological analysis 

9.  Stemming analysis 

10. Redundant elimination  

11. output: pre-processed requirements artefact 

 

The tokenization is performed to clear the statements by segmenting the running 

text into words and sentences. The anaphora analysis is done to achieve 

coreference identification. Thus, the pronouns are identified and re-organise the 

requirement statements. The names of classes, methods, attributes and 

relationships are extracted. A rule-based approach is designed such as class rules, 

method rules, attribute rules and relationship rules. Once a certain set of elements 

are collected, the morphological analysis along with stemming analysis is 

conducted on the outcome. The motive is to transform the extracted requirements 

artefact elements into a further base form to eliminate redundancies due to 

plurality. 

 

Algorithm 3:3 UML_parser 

Require: Software artefacts: design in UML class diagram  

Ensure: pre-process design artefact data 

1. input: design artefact: a 

2. if (a== UML class file) 

3.  process via StarUML reader  

4.  Process via Modelio reader 

5. Data extraction 

6.  Return classes, methods and attributes 

7. output: pre-processed design artefact 

 

The motive of Algorithm 3:3 is to pre-process the design artefacts such that the 

class diagrams designed in UML notation. Only the diagrams origin from the tools 
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StarUML and Modelio are processed since they highly contained the class diagram 

details in JSON or the model based formats which eases the processing. Therefore, 

a StarUML reader and a Modelio reader are designed to identify encoded details in 

a class diagram file. The identified details such as class names, methods and 

attributes are extracted as the design elements. 

 

Algorithm 3:4 SRC_parser 

Require: Software artefacts: source code in Java programming language 

Ensure: pre-process source code artefact data 

1. input: source code artefact: a 

2. if (a== Java source files) 

3.  process via ANother Tool for Language Recognition 

4.  Process via Java grammar 

5. Data extraction 

6.  Return object-oriented classes, methods and attributes 

7. Store in Neo4j DB 

8. output: pre-processed source code artefact 

 

The pre-processing of source code artefacts is the goal of the Algorithm 3:4 and 

the input must be a set of Java source code files. The ANTLR tool is involved to 

generate Java Grammar based syntax trees, to traverse the tree using its tree 

walker and to make use of the listeners for tracking. Hence, the class declarations, 

methods, attributes are extracted with the aid of the ANTLR capabilities. The 

extracted source code elements are stored in a Neo4j graph database temporarily. 

 

Algorithm 3:5 UT_parser 

Require: Software artefacts: unit test in JUnit test scripts 

Ensure: pre-process unit test artefact data 

1. input: unit test artefact: a 

2. if (a== JUnit test script) 

3.  process via ANother Tool for Language Recognition (ANTLR) 

4.  Process via Java and JUnit grammar 

5. Data extraction 

6.  Return JUnit classes, methods and attributes 

7. Store in Neo4j DB 

8. output: pre-processed unit test artefact 

 

The pre-processing of unit test artefact provided in JUnit test scripts is the motive 

of the Algorithm 3:5. The input to this algorithm must be a set of JUnit test script 
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files. Similar to the SRC_parser, ANTLR tool is involved in the process to 

generate Java Grammar. The extracted unit test artefact elements are stored as the 

output of this algorithm in a Neo4j graph database. 

 

Algorithm 3:6 BS_parser 

Require: Software artefacts: build script in Maven dependency pom.xml file 

Ensure: pre-process build script artefact data 

1. input: build script artefact: a 

2. if (a== build script file) 

3.  process using XML data extraction 

4.  Return build script name, plugin dependency names 

5. Store in Neo4j DB 

6. output: pre-processed build script artefact 

 

The pre-processing of build script artefact in Maven dependency file as a pom.xml 

file is the intention of the Algorithm 3:6. The Maven build script; pom.xml files 

are in a .xml tag structure. Therefore, directly the XML data extraction is 

performed on pom.xml file to extract build script (project) name and 

dependencies/ plugins names as data. Then, the extracted build script artefact 

elements are stored as the output of this algorithm in a Neo4j graph database. 

3.2.2 Input to XML conversion 

The all five artefact processing modules write the pre-processed and extracted 

artefact data in XML format using XML writers separately. A new traceability 

project is created only if all processed requirement, design, source code, test script 

and build script artefact XML formats are available. The extracted artefact data are 

processed through the Convert_to_XML algorithm in order to convert the data into 

a common format using XML writers. 

 

The primary motive of this Algorithm 3:7 is the common format conversion of 

pre-processed and extracted artefact related data. Therefore, the input to this 

algorithm is designed to be the pre-processed requirements, design, source code, 

unit test and build script artefact elements. The XML format is selected as the 

common conversion format as XML structures are helpful in building complex 

graphs with readability over others. Hence, all pre-processed artefact element data 
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are written using XML writers. The outcome of this algorithm is a separate XML 

file for each artefact type that contains relevant extracted artefact data. 

 

Algorithm 3:7 Convert_to_XML 

Require: pre-processed artefact data 

Ensure: Convert pre-processed software artefact to a common format 

1. input: pre-processed artefact: a 

2. if (a== requirements OR design OR source code OR unit test OR build script) 

3.  XML writer (pre-processed classes, methods, plugins, attributes) 

4.  Return a.xml 

5. output: XML conversion of an artefact 

3.2.3 Traceability generation 

The pre-processed and extracted artefact elements are used for the traceability link 

building among the addressed artefact types that are software requirements, 

design, source code, unit test and build script. The WordNet is heavily involved in 

the mapping purpose in this trace process (Kamalabalan et al., 2015). Moreover, a 

self-generated dictionary is used for similarity calculations between artefact 

elements which are helpful to manage the traceability links. The similarity is 

calculated among two strings at a time where the strings represent the extracted 

artefact element data and data stored in the WordNet. The Levenshtein algorithm is 

applied for that purpose and it outputs a distance value called ‘Edit Distance 

Value’. It denotes the minimum number of edit operations required for 

transforming a string into the other string which signifies the similarity among two 

strings. The most prominent edit operations performed include the insertion of a 

character into a string, deletion of a character from a string and character 

replacements. Accordingly, a threshold value is defined as 0.85 for the similarity 

calculation based on the edit distances. Thus, the artefact elements that exceed the 

defined threshold are considered as having a higher similarity and are mapped 

together. Here the above mentioned self-generated dictionary fine-tunes the 

performance of the matching artefact elements. The threshold-based mapping 

refers to the relationship building process where the traceability links are 

generated and established. 
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Correspondingly, a semantic network is created for word matching through the 

build relationship module of this traceability link generation component of the 

SAT-Analyser. The distance between nodes is measured in the semantic network 

to identify the matching percentage. Importantly, the process so far is designed to 

be automated. Also, the nodes are allowed to be manually adjusted if an 

inappropriate lower matching percentage is achieved among two artefact elements. 

Thus, a user can generate a new traceability link for the appropriate relevant 

elements manually in the interface level. Nevertheless, the manual link creation in 

every project is time-consuming and inefficient. Hence, the self-generated 

dictionary is triggered to resolve this issue. It keeps track of the artefact element 

words in the built semantic network continuously. For an example, the following 

network shown in Figure 3-7 would be created in considering the words Bank, 

Library, Online, Offline, Student and Cashier. 

 

 

Figure 3-7 : Semantic network for words 

 

Each word is stored with its relevant similar words and properties. The properties 

include name-value pairs and a word’s parent class information. An API provided 

by the Apache Jena Library is involved to build the ontology model in 

implementations. Next, RDF is identified as a data format that more accurately 

describes a metadata data model. Thus, it is used to record information as one of 

the building block standards of the semantic web. However, RDF can be 

represented in various different formats like JSON and XML. Hence, the artefact 

specific XML file conversions are also mapped into a pre-defined relationship 

XML model as shown in Figure 3-8. 
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Figure 3-8 : Pre-defined relationship XML model 

 

The XML artefact models are separately generated for all supported three types of 

software artefacts namely, requirements, UML class diagrams, Java code, JUnit 

test files and Maven build script. The relationships among artefact elements are 

recorded and modified based on change detections and change propagation results 

during the software development. 

 

Algorithm 3:8 Traceability link generation 

Require: Software artefacts 
Ensure: Building relationships among artefacts 

1. input: artefacts: a 
2. for (a ) 
3.  get synonyms from WordNet 
4.  String comparison for classes, attributes, methods, relationships 
5.     matchDistance = Jaro Winkler algorithm similarity (element1,element2)  
6.      If (matchDistance > = 0.8 and < = 1.0) 
7.            Build trace link among two artefact elements 
8.      Else 
9.            editDistance= Levenshtein Distance algorithm 
10.      distance (element1,element2) 
11.            matchDistance = 1 - editDistance 
12.            If (matchDistance > = 0.8 and < = 1.0) 
13.                   Build trace link among two artefact elements 
14.  XML Writer (nodes, links) 
15. output: XML conversion of artefact traceability links (Relations.xml) 

 

Algorithm 3:8 handles the pre-processed artefact data towards the traceability link 

generation. It ensures the relationship creation among the extracted artefacts that 

are input for the algorithm. Then, a string similarity computation is performed via 

the Jaro-Winkler algorithm (“Jaro Winkler Distance,” 2017) and Levenshtein 

Distance algorithm (“Levenshtein-Algorithm,” 2017) using the WordNet 

synonyms and pre-defined dictionary ontology. The Jaro-Winkler algorithm 

considers that the differences in the start of the strings are more significant than 

differences close to the end of the strings, while Levenshtein algorithm computes 
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the number of modifications needed to transform a string to another. Therefore, 

the Jaro-Winkler algorithm is selected due to its efficiency compared to the 

Levenshtein distance algorithm. Fixed threshold values are associated for both 

algorithms and Levenshtein is used for deep comparison if the Jaro-Winkler 

similarity measure is not in the range of 0.8 and 1.0. Additionally, the WordNet 

synonym selection is done using the Levenshtein Distance algorithm with a 

threshold of 0.85. 

 

Figure 3-9 : Traceability link generation component 

 

Figure 3-9 illustrates the abstract processes involved in the traceability 

establishment process. A similarity is marked if either threshold is met by 

triggering a relationship among those two artefact elements. Next, the artefacts and 

their established trace links are parsed through the Document Object Model 

(DOM) parser (Olsson, 2015) and converted into a predefined XML structure. 

3.3 Traceability visualization 

Visualization of the established traceability links is essential in decision making 

during the SDLC. It allows users to browse, explore and manage the relationships 

among software artefacts which are useful in recovering from artefact degradation. 

However, the number of artefact elements to be represented is a major challenge in 

this context of visualization due to high visual clutter. Another challenge is the 

instant modification facility of a built visualization schema based on the change 

detection and change propagation outcomes. 
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Algorithm 3:9 Visualization 

Require: Software artefact traceability links 

Ensure: Visualise and represent artefact traceability links 

1. input: artefact traceability links: k 

2. Store relation nodes in Graph DB 

3. while (DB is Not Null) 

4.  Graph generator (Graph DB) 

5.  Visualize default traceability graph 

6. XMLR =Obtain Relations.xml 

7.  JSONR=XML to JSON convertor (XMLR) 

8.  D3 visualization graph generation (JSONR) 

9.  PythonR=XML to Python list convertor (XMLR) 

10.  Python visualization graph generation (PythonR) 

11. output: Artefact traceability graphs 

 

 

The visualization Algorithm 3:9 is responsible for generating the representation 

outcomes of established traceability links among artefacts. The outcomes of the 

traceability link generation component are mainly involved as the input for this 

component along with the change detection components results. Thus, the artefact 

relationship links are obtained as the direct input. The extracted and traceability 

established artefacts and relationships are stored as nodes and links in a Graph 

Database. The Neo4j database is selected in this purpose as it is supportive for 

graph-based representations. The graph generator module is triggered to process 

the relation nodes obtained from the graph database into graph-friendly formats 

such as Gexf (Graph Exchange XML Format) files. The visualization module 

represents the artefact elements as nodes and the relationships or the built 

traceability links among them as edges among the nodes. Concurrently, the 

relations XML version that consists of all traceabilities is obtained and converted 

into a JSON format and Python list format for two variations of visualizations. 

 

The visualization component is responsible for providing the output of the system. 

It is based on the graph representation techniques following the insights from 

literature. The traceability visualization enhancement in this research is performed 

in two additional aspects such as analytical and interactive representations apart 

from the existed static informative visualization type in the initial version of SAT-

Analyser. The component is modularized as depicted in Figure 3-10. 
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Figure 3-10 : Visualization component 

 

The established traceability links in the traceability link generation component are 

used in this visualization component. The inner modules are designed to manage 

each type of artefact intra-relations. Thus, relationship management is defined for 

each requirement, UML class diagram related design, source code, test files and 

build script. Finally, all the finalized relation nodes that consist of the artefact 

elements relationships are stored in the Neo4j graph database. Additionally, the 

relations are stored in JSON format for the use of enhanced visualization 

methodologies such that one for the interactivity purpose and one for traceability 

analysis purpose that are described in this section.  

3.3.1 Default SAT-Analyser informative traceability visualization 

The default traceability visualization of SAT-Analyser contains the Neo4j graph 

database (“Graph Visualization-Neo4j,” 2018) and Gephi graph generation 

platform (“Gephi,” 2017). The Neo4j database is selected for this purpose due to 

its support towards graph-based visualizations. It is identified to be capable of 

handling a larger number of nodes, relationships among them with properties. 

Moreover, the graph structure of it is flexible and not a defined schema that 

follows a semi-structured schema. It follows a simple set of rules in a key-value 

pair based manner. The graph generator module then obtains the relation nodes 

and converts them into graph-friendly formats including Gexf files. The Apache 
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Lucene Indexing API is involved for the purpose of searching and locating nodes 

and edges among relation nodes in the Neo4j graph database since the Neo4j lacks 

the ability of indexing. Then, the visualization is performed with the node and 

links using the Java library called Gephi-toolkit API (“Gephi,” 2017).  

 

This view facilitates a general representation with colour codes for nodes and 

edges to reduce the scalability issues provided with a separate information pane on 

the right-hand side of the window to elaborate details of each node. Hence, this 

can be categorized more as an informative visualization type. The naming 

conventions used in this traceability graph visualization are as follows; RQ-

Requirement, D -Design, SC-Source Code, UT-Unit Test, BS-Build Script, _M-

Method/ Function, _F-Field/ Attribute. Each artefact type is illustrated and used 

with a unique number next to each artefact element or sub-element for unique 

referencing. In addition, results can be filtered based on artefact types or edge 

types from the menu as shown in Figure 3-11. Those options are as follows; 

 Full graph view with artefacts and their links. 

 Edge filtered view for the relationship among the identified classes, 

attributes, operations for each of the artefacts in requirements, design, 

code, test script and build script.  

 Artefact filtered views for each one of 5 artefact types separately.  

 

 

Figure 3-11 : Default SAT-Analyser Traceability visualization menu 
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The artefact level representations are offered with each artefact. Different filtered 

views are facilitated to avoid huge visual clutter. Figure 3-12 illustrates a selected 

section of the generated graph view. The length of the edges denotes the strength 

of the similarity between every two nodes. Larger the string comparison value 

means shorter the length of the corresponding edge. For example, in Figure 3-12, 

the edit distance value among RQ1 and D4 is 0.916 which denotes Normal Order 

class in requirement artefact and design, respectively. Similarly, the value among 

RQ1_M2 and D4_M3 is 1.0, which represents Cash On Delivery method in 

requirements artefact and UML design artefact, respectively. Thus, the length of 

the edge between RQ1 and D4 is comparatively lengthy as the UML class diagram 

artefact has used the class name with naming conventions. Figure 3-13 shows a 

portion of artefact filtered view for requirement artefact type that illustrates a 

particular requirement and its associated methods, fields’ relationships. 

 

 

Figure 3-12 : Default SAT-Analyser visualization full graph view 

 

Figure 3-13 : Default SAT-Analyser visualization requirement artefact filtered view 
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3.3.2 Analytical traceability visualization 

The analytical traceability visualization is mainly targeted for the purpose of 

traceability outcome validation that is in detail described in the subsection 3.6.2. 

Traceability results validation is important to proceed with decision making. On 

the other hand, visualization is vital to convey validation results when the number 

of items to be validated increases. Therefore, analysing the traceability outcomes 

and visualizing the analysed traceability outcomes is added to the SAT-Analyser.  

 

The existed SAT-Analyser default traceability visualization mechanism was not 

supportive to traceability validation techniques used in this research such as 

network analysis. Thus, a newer traceability visualization module is added as 

Python-based analytical traceability visualization. The XML relations file is 

involved in this variation. The network analysis functions in Python NetworkX 

libraries (“NetworkX,” 2018) that are used for the traceability results validation in 

this work are mapped with matplotlib.pyplot libraries to render into a graph in 

Python. NetworkX is widely used for the creation, manipulation and analysing 

structure dynamics, and function of complex networks due to its ability of 

painlessly slurp in large non-standard data sets. Also, Matplotlib is a recognized 

Python 2D plotting library capable of producing quality figures and 

the pyplot module provides a MATLAB-like interface via a set of functions 

familiar to MATLAB users (“Matplotlib,” 2018).  

 

This analytical visualization is also used in the change impact analysis and change 

propagation process (see section 3.4) as it’s based on the network analysis 

techniques involved in traceability validation. Figure 3-14 shows a general 

analytical graph view obtained during a SAT-Analyser validation task. The basics 

of artefact category naming convention of default informative visualization 

technique and the colour codes for nodes are preserved in this view too. In 

addition, zooming, recording zoom levels, moving, saving as image features are 

facilitated in this view. The more analytical aspects of this view based on the 

network analysis results are described in the subsection 3.6.2 and chapter 4. Figure 

3-15 shows a visualization of traceability results based on Eigenvector centrality 

measure by applying heat maps. The darker nodes depict lesser important nodes 
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and lighter nodes represent the higher importance nodes in the network. Figure 3-

27 in subsection 3.4.5 illustrates an example of change propagated analytical 

traceability graph view based on impact values. 

 

 

Figure 3-14 : General analytical traceability graph 

 

Figure 3-15 : Analytical traceability graph in traceability validation 

3.3.3 Interactive traceability visualization 

The purpose of another lightweight interactive traceability visualization module is 

as an enhancement for the SAT-Analyser tool. The XML relations file is involved 

in this variation by converting it into JSON format. The JavaScript library D3.js 

(Data-Driven Documents) technology, well recognized for manipulating 

documents based on data is used in generating the interactive behaviour on a 

browser view (“D3.js,” 2018). It visualizes data using HTML, SVG, and CSS by 

emphasizing on web standards. It provides full capabilities of modern browsers by 

combining powerful visualization components using DOM manipulation based on 

a data-driven approach instead of depending on a proprietary framework.  
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Figure 3-16 represents a part of an interactive traceability graph view that has 

preserved basics of colour codes and artefacts category naming conventions to 

maintain the consistency among all visualization types in SAT-Analyser. Mainly, 

the hovering features on nodes and edges that encapsulates more details of nodes/ 

edges without colliding with the view, double-clicks on nodes to highlight 

neighbours for better readability, re-positioning of nodes/ edges on the network via 

dragging are facilitated in this view. This interactive visualization is also 

facilitated at CIA, change propagation results representation and at traceability 

results validation results. Additionally, Figure 3-28 illustrates a change propagated 

interactive traceability graph view in subsection 3.4.5. 

 

Figure 3-16 : Interactive traceability graph view 

3.4 Impact analysis and change propagation 

3.4.1 Identification of strengths of artefacts and relationships 

The list of affected nodes can be obtained from the outcome of the change 

detection process (see subsection 3.5.1). For, example if a new node is added, then 

there can be new links created with it and other nodes. Thus, for each change, 

there can be impacts in different degrees. The impacts can be explored using graph 

representations.  

 

There can be highly affected artefact elements which are highly impacted and 

lesser ones. Thus, a measure is required to identify that. For that purpose, the 

graph nodes and edges can be assigned with weights. In assigning weights, a 

particular measurement is required with a pre-defined static or a dynamic one that 
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differs from one traceability project to another according to the node-link count. 

The concept of centrality is widely used in Social Network Analysis and has found 

different realizations regarding proper measures. One of the centrality measures; 

Eigenvector centrality also known as Eigencentrality (Borgatti, 2005) that 

expresses the influence level or the importance of nodes in a network is identified 

as a useful measure in this purpose (Jashki et al., 2008). Google search engine also 

uses this to rank the search results (Fernández, 2008). In definition, the EVC for 

node i as in the equation (3.1), 

                                                        (3.1) 

Where   represents the adjacency matrix of the graph network G having 

Eigenvalue  . There is an identical solution if Eigenvalue   is the largest 

associated with the Eigenvector of the adjacency matrix   according to the Perron-

Frobenius theorem (Newman, 2010). 

 

A fixed scale is defined with three margins using the EVC values of nodes and 

edges in designing the weight system of CIA component of SAT-Analyser (Iresha 

D. Rubasinghe, Meedeniya, & Perera, 2018). The designed weight assignment 

system consists of two sections; one for nodes using an Influential Factor and 

weights for edges using that Influential Factor. The base for this mathematical 

model is EVC. 

                                                                    

                                                                                    

                                                                            

   
 =                                            

 =                                

                                                                           (3.2) 

          =                                                                  (3.3) 

          =  
        

 
   

 
                                                     (3.4) 

 

A node’s weight is defined based on its EVC value. The lowest weight on the 

scale is the minimum EVC value across all the nodes (3.2). Similarly, the 

maximum weight is the largest EVC value (3.3). Also, the average on the scale is 

decided by considering the average EVC value with respect to the total EVC value 
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of all nodes and the node count (3.4). Thus, for any i
th

 node, the influential factor 

is assigned low if having the weight in the range of [     ,      ) and otherwise, 

the influential factor can be assigned high if the weight is within the range of 

[          ] as derived in the conditional equation (3.5). 

    

     (                          ) 

       = ‘Low’                                                                               (3.5) 

     (                          ) 

      = ‘High’ 

 

Similarly, the weight system of the trace links or the edges is based on the 

influential factor definition of nodes. Each edge is mandatorily associated with a 

source node (starting point) and a target node (endpoint) as the traceability 

management of the tool SAT-Analyser is output as a directed graph. An 

assumption is made based on the directed behaviour of the traceability declaration.  

 

Assumption 01: The weight of an i
th

 edge (Ei) is identical to the weight of the 

source node (Ni
source

) of that particular edge as shown in Figure 3-17 and equation 

(3.6). 

 

Figure 3-17 : Node-edge direct connectivity 

              
                                                 (3.6) 

 

Thus, the Influential Factor of edges can be defined as the conditional equation 

(3.7). 

    

     (  
          ) 

     
   = ‘High’                                                                  (3.7) 

     (  
         ) 

     
   = ‘Low’ 



 

76 
 

The influential factor of any edge can be obtained by its source node’s influential 

factor where the edge starts from. If any node has a higher influential factor, its 

outgoing edges have a high influential factor value. Consequently, the scale 

system for the edge weight can be obtained similarly to nodes in determining the 

weight of edges (3.8), (3.9), (3.10).  

                                                       (3.8) 

          =                                                        (3.9) 

          =  
        

 
   

 
                                         (3.10) 

There can be at most two scenarios for any pair of artefact nodes that are 

associated with a traceability edge. 

I Scenario 1: Outgoing traceability edge from a low influential artefact node 

 

Figure 3-18 : Node-edge scenario 1 

 

In the scenario illustrated in Figure 3-18, the target artefact can become either 

a low influential or a high influential node. Adhering to the stated assumption 

01, whenever the starting point is a low influential node, then the outgoing 

edges of it get a low influential factor resulting a lower impact. For instance, if 

the source artefact node is a Maven build script file which certainly would 

hold a low EVC value, the outgoing trace links from it are certainly the 

declared dependant plugins which also have a low influential factor value. In 

that case, a traceability link between the Maven build script file and it’s any of 

the plugins contains a low impact such that any change applied to a build 

script is not crucial to forward propagation. In contrast, if the target artefact 

node is high, then an incoming change from a low influential artefact cannot 

generate a significant impact. Thus, the traceability link gets assigned a low 

influential factor in accordance with the assumption 01 which becomes true 

for this scenario 1. 
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II Outgoing traceability edge from a high influential artefact node 

 

Figure 3-19 : Node-edge scenario 2 

 

In the second scenario illustrated in Figure 3-19, the target artefact is either a 

low influential or high influential node. Adhering to assumption 01, the trace 

links starting from a high influential artefact node contain a high influential 

factor value with a considerably higher impact. For instance, if the starting 

node is type of a source code artefact class which most probably holds a high 

value of EVC, the outgoing trace links from it can reach to source code 

artefact attributes/ methods/ unit test artefact/ build script artefact which would 

mostly have a high influential factor value by creating a parent-child 

dependant nature. Hence, the traceability link between this source code class 

artefact and its attribute/ method/ unit test artefact/ build script artefact gets a 

significant high impact because any change applied to the source code class is 

having a higher possibility of affecting to its dependant natured endpoint 

artefacts. Similarly, if the target artefact is a high node, then an incoming 

change from a high influential artefact can considerably impact on it. Thus, the 

trace link can be assigned with a high influential factor according to the stated 

assumption 01 that becomes true for this scenario 2 as well. 

 

Accordingly, the impact is designed to be measured and would propagate 

forward through direct edges until a low impact node is reached. As the 

outgoing edge of a lower node is also low, the change impact propagation 

would terminate there without further moving forward. 
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3.4.2 Impact analysis process: workflow 

 

Figure 3-20 : Impact analysis component workflow 

 

Figure 3-20 represents the designed change impact analysis component of the 

SAT-Analyser tool. This resides as a sub-component within the CI component 

with the change detector and change propagator. The outcome of the change 

detector that is changesets becomes an immediate input for this CIA component. 

Also, the outcome of the traceability establishment component within the business 

logic layer is another input for this where the relations with their source and target 

are obtained. Accordingly, the Impact Data Collector gathers all the required sets 

of nodes and edges. Impact Generator is the core of this CIA overall component 

where the mathematical model is handled. The Weight Calculator assigns a weight 

to each node and edge using Eigenvector centrality value of each node and edge. 

The sorter module finds the minimum and maximum valued EVCs and based on 

that the Weight Scale Manager declares the weight scale. The Influence Factor 

Calculator provides a two-level influence factor for each node and edge that is 

solely considered for impact analysis. Impact Analyser performs the impact results 

representation as change impact sets and their respective values. Also, the 

Decision Manager module triggers that impacted results to Change Propagator 

component to further navigate the changes to other remaining nodes and edges. 

3.4.3 Impact analysis process: pseudo code and implementation details 

Impact analysis process can be initiated only through change detection as they are 

sequential activities in this problem domain. Therefore, once change detection is 
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performed the impact analysis option is available in the changesets window. If the 

change set is null, still the impact analysis option helps to make the system to a 

more consistent level by producing an updated Relations.xml file. 

 

Algorithm 3:10 elaborates the flow of events in the impact analysis process among 

the modules in the impact analysis workflow diagram. A changeset must exist for 

this to proceed. Then, the Relations.xml that concatenates all types of artefact 

relationships together in the SAT-Analyser must be prepared for the current 

version of the integration.  

 

Algorithm 3:10 Impact analysis 

Require: Detected change set among two versions 

Ensure: Impact value of a change in changeset 

1. input: A changeset 

2. If change set node is not null 

3.  Relation Manager(current version) 

4.   If change set contain Additions 

5.    Prepare Relations.xmlNEW_VERSION  via traceability re- establishment 

6.   Else 

7.    Start preparing Relations.xmlNEW_VERSION  using Relations.xmlPREVIOUS_VERSION 

8.   Generate analytical traceability graph (Gnode,edge) 

9.  Weight Calculator (nodes) 

10.   If change set node not in G (nodes) 

11.    Add change set node to G (nodes) 

12.   For each node in G 

13.    Weightnode=EigenvectorCentralitynode 

14.  Max_weight= max from all Weightnode 

15.  Min_weight= min from all Weightnode 

16.  Avg_weight= Sum of all weightnode / Node count (G) 

17.  Influential Factor Calculator (nodes, edges) 

18.   For each node in G 

19.    If (Weightnode >= Min_weight And Weightnode < Avg_weight) 

20.     InflencialFactornode= Low 

21.    Else if (Weightnode >= Avg_weight And Weightnode < = Max_weight) 

22.     InflencialFactornode= High 

23.   For each edge (source, target) in G 

24.    If (InflencialFactorsource == Low) 

25.     InflencialFactoredge = Low 

26.    Else 

27.     InflencialFactoredge = High 

28.  Obtain influential factor of change set nodes 

29. output: Influential factor of each change in changeset 
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In this case; if the current integration has contained only a few types of artefacts, 

there would be only those types of intermediate XML versions prepared. Thus, 

establishing a proper Relations.xml is not possible. Therefore, the remaining 

missing artefact types’ XML versions that have not been affected in the current 

integration are copied from the previous version of integration. Once all types of 

artefact intermediate XML files are collected and if the change set contains the 

change type ‘Additions’, the SAT-Analyser’s traceability re-establishment is 

performed in the back-end to prepare the new Relations.xml. Otherwise, if the 

change set does not contain any ‘Additions’ and only include ‘Modifications’ 

and/or ‘Deletions’; then the previous version’s Relations.xml is taken. Thereafter, 

it is altered via the change propagation process based on the CIA results. 

 

Once the Relations.xml is prepared successfully for the current integration the 

nodes and links are extracted from it and fed into the analytical traceability graph 

type which is powered by Python NetworkX libraries. There, the Weight 

Calculator gets triggered and applies the Eigenvector centrality measure on all 

nodes and assigns a value for each node as its weight. The minimum, average and 

maximum weight values are calculated as the weight scale by analysing all the 

values of all nodes. Thereafter, the Influential Factor Calculator gets invoked and 

converts the node weights into either a low or a high value according to the 

criteria. Also, assigns a low or high value to each edge based on an edge’s source 

node’s influential factor value.  

 

Figure 3-21 evidently shows a code snippet of weight and influential factor 

calculator implemented in Python. The nodes in the changeset are located in the 

analytical traceability graph and obtain the influential factor of change set nodes to 

decide which ways to start propagating the changes depending on the impact of 

change set nodes. For instance, when a changeset node holds a low influential 

factor value, then the outgoing trace links of that artefact node are discarded. 
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Figure 3-21 : Code snippet of weight and influential factor calculators 

3.4.4 Impact analysis process: user modifiability 

In the practical scenario, the CIA results are subjected to vary beyond the 

described SAT-Analyser CIA calculations. For instance, a change on a least 

important artefact node may cause the whole project to be failing which will be 

only among the awareness of developers and operations team members who are 

actively involved in that particular project. Thus, the CIA results are provided with 

user modifiability capability to strengthen the accuracy and to avoid 

inconsistencies. The user can alter the impacted nodes by adding newer, modifying 

and deleting if any unnecessary node(s) that do not require change(s) to be 

propagated.  

 

Figure 3-22 and Figure 3-23 show the SAT-Analyser tool automatically identified 

CIA results and the user altered CIA results respectively. Then, the final altered 

CIA result is considered in propagating the changes further in visualization, PM 

and CIA validation. 

 

... 

evc=nx.eigenvector_centrality_numpy(UG) 

nx.set_node_attributes(UG, evc, 'EVC') 

node_labels = nx.get_node_attributes(UG,'EVC') 

weights=nx.get_node_attributes(UG,'EVC') 

Wmax=evc[max(evc, key=evc.get)] 

Wmin=evc[min(evc, key=evc.get)] 

for node in UG: 

    Wtot=Wtot+weights[node] 

Wavg=Wtot/len(UG) 

InfluenceFactor=[] 

for node in UG: 

    if (weights[node]>=Wmin and weights[node]<Wavg): 

        UG.node[node]['IF'] = 'Low' 

    elif (weights[node]>=Wavg and weights[node]<=Wmax): 

        UG.node[node]['IF'] = 'High' 

node_if=nx.get_node_attributes(UG,'IF') 

for s, t, d in UG.edges(data=True): 

    if (UG.node[s]['IF'] == 'Low'): 

        d['IF'] = 'Low' 

    else: 

        d['IF'] = 'High' 

edge_if=nx.get_edge_attributes(UG,'IF') 

... 
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Figure 3-22 : SAT-Analyser generated CIA 

results 

 

Figure 3-23 : User altered CIA results 

3.4.5 Change propagation of the impact 

Firstly, the change impact analysis is declared as the first level dependencies such 

that for a given node; its connected intermediate nodes are considered for the 

impact set. Secondly, the impact analysis is presented with a quantitative impact 

value based on their assigned node and edge weights. Thus, the graph traversal is 

minimal for this one level consideration. 

 

However, the changes are possible to continue affecting remaining nodes until 

reach a leaf node or root. Therefore, the change propagation is required to be 

managed from first level impact analysis onwards. The weight system is applied in 

order to provide a quantitative value for them too.  

 

The graph traversal is highly required at this stage to identify the nodes that are 

subjected to propagate changes. The graph traversal algorithms in finding paths 

can be applied for this purpose. The algorithms; Dijkstra algorithm, Bellman-Ford 

algorithm and Floyd & Warshall algorithm are identified to be having a potential 

in applying for this SAT-Analyser tool suitably. The Dijkstra algorithm can be 

used for stepwise routing with weights. Bellman-Ford algorithm which is powerful 

in handling negative edge weights and Floyd & Warshall algorithm that supports 

both negative and positive weights are useful in propagating changes across the 

graph representation of traceabilities. 
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A. Graph traversal model for change propagation 

Once the changeset is obtained by the Impact Analyser component it assesses the 

weights and influential factor of each node and edge for the items in the given 

changeset. Thus, the changeset items and all the remaining nodes and edges 

contain a certain impact value depending on each other relationships. Identifying 

the impact of each changeset item on other remaining nodes and edges is the 

primary task of this change propagation model. This works in collaboration with 

the Impact Analyser component as the impact value of each node is required to be 

accessed during the propagation.  

 

The Dijkstra algorithm is selected for the graph traversal as the weights are non-

negative. For each item in changeset, graph traversal model gets applied. 

However, if there exist any ‘Addition’ change type items in the changeset, then the 

change propagation results are only for the displaying purpose. Because according 

to the constraint defined in the impact analysis process if a CI activity includes any 

artefact ‘additions’ the developer must update all the other artefact types and insert 

at the same moment. Otherwise, if the changeset only includes ‘Modifications’ 

and/or ‘Deletions’ the change propagation results are used to alter the overall 

Relations.xml that concatenates all the artefact types’ relationships. 

B. Change propagation process: workflow 

 

Figure 3-24 : Change propagation workflow 
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Figure 3-24 illustrates the designed workflow of the change propagation model in 

this SAT-Analyser tool. The Change Set Filter module pre-processes the 

changeset that is associated with impact values assigned in Impact Analyser based 

on the change types such that additions, modifications and deletions. Then, each 

type of change set is parsed into the Dijkstra Graph Traverser to identify the 

complete impact path sets until reaches a leaf node. The Impact Path Filter is 

responsible for applying the conditional constraints on those complete impact path 

sets based on change artefact types and filters the relevant portion of impact path 

from each complete impact path. Each of those filtered impact path is parsed 

through the Impact Edge Extractor submodule to express path in edges to be 

helpful in change propagation. Finally, Change Propagator module applies that 

impact path edge sets on Graph Manager to update traceability graph and to 

Relation Manager sub-module to update Relations.xml file for the continuation of 

SAT-Analyser tool. Simultaneously, the DevOps teams get notified about the 

change propagation via the project management tool Trello for each change 

propagation activity as a separate card in associated company Trello board. 

 

C. Change propagation process: pseudo code and implementation details 

Algorithm 3:11 describes the change propagation model associated with Dijkstra 

graph traversal algorithm and artefact type based path filtering conditional process. 

The single source Dijkstra algorithm helps to find the cheapest path of a given 

starting node which is each node item in changeset in this scenario. The Python 

analytical NetworkX library’s single source Dijkstra function is used in the 

implementation purpose (“NetworkX,” 2018).  

 

The weights are supposed to be in numerical form for the Dijkstra traversal and 

hence the textual influential factor system in High and Low levels is converted 

temporarily into 1 and 0 respectively. Then, an artefact type oriented conditional 

algorithm is applied for each complete impact path obtained through Dijkstra 

algorithm path traversal. That captures the level of affecting based on artefact 

type; such as if the changeset item is a sub-element like a method, attribute or 

plugin, then only that node is declared to be considered as affected. If the 

changeset item is a main requirement element the design, source code and unit 
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test, then the paths up to unit test are considered as the relevant impact path 

portion. 

 

Algorithm 3:11 Change Propagation 

Require: Impact value assigned changeset 

Ensure: Change propagation of changeset 

1. input: An impact assigned changeset 

2. For each item in impacted changeset 

3.  Dijkstra single source graph traverser (G, item, influential factor value) 

4.   Impact path set = Impact_PathComplete 

5. For each Impact_PathComplete in Impact path set 

6.  Impact path filter (Impact_PathComplete) 

7.   If itemchange_set = a sub element 

8.    Impact_PathRelevant = itemchange_set 

9.   If itemchange_set = a requirement element 

10.    Impact_PathRelevant = itemchange_set & itemreq_sub & itemdesign & itemsource  & itemunittest 

11.   If itemchange_set = a design element 

12.    Impact_PathRelevant = itemchange_set & itemdesign_sub & itemsource & itemunittest 

13.   If itemchange_set = a source code element 

14.    Impact_PathRelevant = itemchange_set & itemsource_sub & itemunittest 

15.   If itemchange_set = a unittest element 

16.    Impact_PathRelevant = itemchange_set & itemunittest_sub 

17.   If itemchange_set = a build script element 

18.    Impact_PathRelevant = itemchange_set & itembuildscript_sub 

19. Propagate changes (Impact_PathRelevant Set) 

20.  Extract edges (Impact_PathRelevant Set) 

21.  Update graph manager 

22.  Update relation manager 

23.  Project management notifier 

24. output: Relevant Impact path sets 

 

Similarly, if the changeset item is a design element; its sub-elements along with 

source code and unit test are taken as affected. If the changeset item is a source 

code element only the unit test items are declared to be affected along with that 

particular source code elements’ sub-elements if any. Also, if the changeset item is 

of type unit test or build script, then only their sub-elements are declared as 

affected. Accordingly, the relevant impact set paths are captured from the 

complete impact paths and are extracted into edges format in order to update the 

traceability graph and Relations.xml. 
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Figure 3-25 shows a Python NetworkX involved code snippet that contains the 

Dijkstra algorithm and conditional algorithm applications. 

 

 

Figure 3-25 : Code snippet of change propagation implementation 

 

... 

for delitem in CDdeleteNodeList.CDdeleteNodeList: 

    delete_node=delitem 

    path2 = nx.single_source_dijkstra(UG, delete_node,weight='IF') 

    nodesetdict=path2[0] 

    pathsetdict=path2[1] 

    for i in nodesetdict: 

        if UG.node[i]['IF'] == 0: 

            nodesetdict[i]="Low" 

            #print i,nodesetdict[i] 

        elif UG.node[i]['IF'] == 1: 

            nodesetdict[i]="High" 

            #print i,nodesetdict[i] 

    print "---------Deletion of ",delete_node," Impacts:---------" 

    ##for SUBELEMENTS ## 

    if ('_' in delete_node): 

        for i in nodesetdict: 

            if '_' in i: 

                print i ,"-->", nodesetdict[i] 

                f2.write("\""+i+"\",") 

        print "Edges:" 

        for i in pathsetdict: 

            if '_' in i: 

                ind=0 

                for s in range(len(pathsetdict[i])): 

                    if ind+1 <=len(pathsetdict[i])-1: 

                        print "(",pathsetdict[i][ind],",",pathsetdict[i][ind+1] ,")" 

                        f.write("("+pathsetdict[i][ind]+","+pathsetdict[i][ind+1] +"),") 

                        ind=ind+1 

    ##for DESIGN  ELEMENTS ## 

    if ('D' in delete_node and '_' not in delete_node): 

        for i in nodesetdict: 

            if delete_node+"_" in i or 'SC' in i or 'UT' in i: 

                print i ,"-->", nodesetdict[i] 

                f2.write("\""+i+"\",") 

        print "Edges:" 

        for i in pathsetdict: 

            if delete_node+'_' in i or 'SC' in i or 'UT' in i: 

                ind=0 

                for s in range(len(pathsetdict[i])): 

                    if ind+1 <=len(pathsetdict[i])-1: 

                        print "(",pathsetdict[i][ind],",",pathsetdict[i][ind+1] ,")" 

                        f.write("("+pathsetdict[i][ind]+","+pathsetdict[i][ind+1] +"),") 

                        ind=ind+1 

    ##for SOURCECODE  ELEMENTS ## 

    if ('SC' in delete_node and '_' not in delete_node): 

... 
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The GUI level impact analysis results are shown in Figure 3-26. It shows the 

changeset, affected nodes with their influential factor and the edges of identified 

paths. The user has the option to edit the impact results in the window as necessary 

and the ‘Info’ button helps with the artefact details for ease of alteration. Once the 

confirmation button in that window is clicked, the graph updating and relations 

manager updating get triggered by completing the change propagation process. 

 

 

Figure 3-26 : Impact analysis results window 

 

Accordingly, when the button ‘Confirm Change Propagation’ is invoked, it 

propagates the displayed impact results to Graph Manager and Relations Manager 

to update artefacts. Thus, the updated traceability graph displayed in both 

interactive graph mode and analytical graph mode. Figure 3-27 shows an example 

of the overall updated analytical traceability graph. Figure 3-28 shows the 

interactive graph preview based on D3.js and localhost server. This view is 

provided as optional since the localhost (Apache wampserver) is required to be 

started. The modified node and impacted nodes by modification are shown with 

larger node size for better readability while the deleted node and impacted nodes 

by deletion are completely deleted from both of these graph views. Additionally, 
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the influence factor values of edges are shown on top of edges and influential 

factor of nodes can be seen by keeping the cursor on any nodes (hovering) in the 

interactive graph mode in Figure 3-28. Moreover, the neighbourhood highlighting 

facility for any particular node is facilitated by double-clicking any node for better 

interactivity in this interactive graph mode. Simultaneously, the notification 

approach gets triggered to make awareness about the change propagation to 

project teams as described in subsection 3.4.6. Thus, relevant requirement 

engineers, design teams, developers and QA teams can update their responsible 

raw artefact types such as requirements document, design diagrams, source codes, 

unit test scripts and/or build script files. 

 

 

Figure 3-27 : Change propagated analytical traceability graph view 

 

Figure 3-28 : Change propagated interactive traceability graph view 
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Simultaneously, the Relations Manager also gets triggered at the back-end. The 

artefact XML files of changes propagated artefact types get updated with deletion 

and/or modification impact results and set them as the artefact XML files of the 

current version. However, according to the constraints in this extended SAT-

Analyser, if there are any ‘Addition’ type changesets, then the overall traceability 

gets re-established. Thus, the overall graph is shown in the SAT-Analyser’s 

default graph format without requiring above-described change propagation steps. 

In that case, all artefacts’ XML files along with the Relations.xml file also gets re-

generated during that traceability re-establishment without requiring any separate 

XML file updating as described above. 

3.4.6 Notification approach 

SAT-Analyser’s each traceability change propagation result is notified to DevOps 

teams via one of the industry-level project management applications Trello 

(“Trello,” 2018). Trello is selected for the SAT-Analyser integration due to its 

open source availability and industry level popularity as a PM tool.  

 

The Trello Java API is used to integrate it with the SAT-Analyser tool to signify 

the SAT-Analyser’s ability to integrate with industry level PM tools. For each 

change propagation confirmation, a newer Trello card is created automatically in a 

dedicated list in the Trello board. The Trello card name is generated with the 

particular change propagated traceability project name along with the date and 

time for unique identification as shown in Figure 3-29. The CIA results that 

contributed to that particular change propagation activity are also embedded into 

each Trello card in its card description. Once, the change propagation is confirmed 

the overall Trello board is automatically loaded in the browser with the new card 

instance as shown in Figure 3-30. Accordingly, the teams get notified about the 

SAT-Analyser change propagation for them to alter their responsible raw artefacts 

that are affected by the change propagation based on traceability. 
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Figure 3-29 : Trello change propagation card instance 

 

Figure 3-30 : Trello board with change propagation notification 

3.5 Traceability management 

A scheduler is implemented to trigger the artefact changes to the extended 

traceability management tool SAT-Analyser. The scheduler is designed to get 

triggered based on the CD timelines prior to a CD activity on a project such that 

along with a continuous deployment task. Thus, once the scheduler is triggered it 

displays a window to fetch all the types of artefact changes corresponding to all 

phases in the form of an input window except the source code and build scripts 

which are fetched automatically via the Jenkin’s latest successful build job as 

described in the section 3.5.3: Continuous Integration. The remaining process 

items of the traceability management process in this extended SAT-Analyser 

except CIA are discussed in this section that consists of change detection, 

consistency management and CI. 
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3.5.1 Change detection 

The change is vital during the software development process throughout all the 

stages. All the phases in SDLC such as requirements engineering, design, 

implementation, testing and maintenance can be changed in different frequencies. 

The changes occurred in one phase of the development process can evolve through 

all or most of the other phases based on the dependencies among them. 

Accordingly, the changes are evolved via the artefacts involved in each phase. The 

change detection component relies on the established traceability links among 

those artefacts in the traceability link generation component. 

 

The extracted artefact elements are stored and maintained in a common XML 

format based on a predefined XML relation model using customized tags. 

Therefore, the comparison of artefacts is performed via those common format 

versions of them, specifically as an XML comparison. The relation model is 

compared among each and checked whether the artefact elements are compatible 

with each other. A change can be in three types, edit, deletion and addition.  

A. Change detection process: workflow 

 

Figure 3-31 : Design diagram: change detection component 

 

Figure 3-31 illustrates the module and subcomponent organization of the change 

detection component. The artefact changes are allowed to occur in any type of five 

artefacts supported in the tool SAT-Analyser such that requirement changes, 

design diagram changes, source code changes, unit test case changes or build 

script changes. A developer can integrate any one or many types of artefacts in the 
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form of a continuous integration task. That new artefact integration may contain 

either element additions, element alterations of removals. Whenever a new 

artefact input is received by the tool SAT-Analyser, it starts its intermediate XML 

format generation task for that particular artefact category using the data pre-

processor, element extractor and XML converter modules. As a result, an XML 

format representation is created for that particular artefact(s) integrations. For 

instance, if the integration included a new requirement document and a new source 

code, then two different intermediate XML files are generated one for requirement 

and one for source code.  

 

Then, as depicted in Figure 3-31, the bottom layer holds a database to store the 

newly created intermediate XML versions corresponding to a performed 

continuous integration task. The XML Version Recorder module is responsible for 

adding the correct version suffix to those newly created XML versions based on 

the previously generated XML version suffix numbers. The actual change 

detection is initiated there onwards in the XML Comparison module that compares 

the newly found intermediate XML files and the last previous XML version of 

those corresponding artefact types. Regarding the above stated example, the old 

requirement XML file versus new requirement XML file and the old source code 

XML file versus newly created source code XML file would be used by this XML 

comparison module to encounter the occurred changes. Finally, the identified 

changes are the outcome of this change detection component. 

B. Change detection process: pseudo code  

The change detection Algorithm 3:12 is designed to ensure the identification of 

artefact related changes. The traceability management must be altered based on the 

changes since each phase of the SDLC is lightly or tightly coupled with other 

phases. That leads to a change in one artefact affects the other dependent artefacts. 

Therefore, the change detection having high performance is crucial in order to 

minimise the number of concurrent conflicts that can lead to artefact 

inconsistencies. The input considered to this change detection algorithm can be 

any type of artefact change such as an edit, addition or deletion. 
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Algorithm 3:12 Change Detection 

Require: Software artefact intermediate XML versions 

Ensure: Identify changes in continuous artefact integrations 

1. input: artefact integrations 

2. If input=Requirement OR Design OR Source Code OR Test case OR Build Script 

3.  Change Detection Component 

4.   Invoke artefact pre-processor (input artefact) 

5.    Artefact element extractor 

6.    XML Convertor (pre-processed artefact input) 

7.     Return XML new version 

8.   Store XML new 

9.   If XML version recorder(XML new) fetches corresponding XML old 

10.    Invoke diffmk comparison engine 

11.     Diffartefact=XML comparison (XML new , XML old) 

12.     Return XMLdiff 

13.   Store XMLdiff 

14.  XML extractor (XMLdiff) 

15.   Return all changes 

16.  String pre-processor (changes) 

17.   Return Changes Added, Changes Modified, Changes Deleted 

18. Display changesets 

19. output: Detected changesets 

 

The scheduler can be triggered either to invoke in any given specific time slot or to 

invoke whenever the SAT-Analyser traceability tool is executed which means a 

change has occurred. For an example, if a class called ‘shop’ is identified in the 

requirements artefact element, it must be available as an artefact element in both 

other UML class diagram and source code related artefacts. Accordingly, if the 

‘shop’ class is removed from the requirements specification or from the XML 

relation model, that and all dependent items such as ‘bookshop’, ‘bakery shop’ 

must not be available in the other two types (design, source code) of artefact 

related files. If an existence is identified, it is marked as an incompatibility 

situation. Hence, a change is declared and the change detection points are 

triggered. 

 

Accordingly, the change detection is technically based on XML version 

comparison in the SAT-Analyser system model. The XML comparison algorithms 

such as BULD (Bottom-Up Lazy-Down propagation) and Diff (Cobena, 

Abiteboul, & Marian, 2002) that match nodes and construct a delta in a linear 
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time, X-Diff algorithm (Yuan Wang, DeWitt, & Cai, 2003) that does comparison 

by generating trees with a minimum cost edit script and Johnson’s algorithm that 

detects changes of documents are in active research. As the SAT-Analyser is 

mainly on a Java-based platform, performance wise it is ideal to stay in the same 

technological domain. Therefore, the Java friendly XML comparison modules 

such as XMLUnit (“XMLUnit,” 2018) are especially experimented to find useful 

in this process. 

C. Change detection process: implementation details 

Studying the existing open source XML comparison algorithms, frameworks and 

research works, the generalized tool for XML named ‘diffmk’ (“diffmk,” 2018) 

from Oracle Sun developers is selected to be incorporated with the SAT-Analyser 

tool. It is provided with the license type BSD-3-Clause and is allowed for 

productivity or publishing. The origin of this tool diffmk is from the tool ‘diff’ and 

is in the language Perl though currently, Java supported binary versions are also 

available.  

 

The diffmk operates in the sequence domain as it encodes changes by annotating 

the input document. It expresses diffs by inlining them into the d1 document, so no 

size comparison is available for that tool and is actively involved in the XML 

based research works (Suzuki, 2002)(Lindholm, Kangasharju, & Tarkoma, 2006). 

Diffmk compares the previous version of a file with the current version and creates 

a file that includes nroff/troff ‘change mark’ commands. Accordingly, diffmk 

generates markfile which contains all the lines of the current file plus inserted 

formatter ‘change mark’ requests. When markfile is formatted, changed or inserted 

text is shown by a | character at the right margin of each line. The position of the 

deleted text is shown by a single *. If the characters | and * are inappropriate, a 

copy of diffmk can be edited to change them as the original version of diffmk is a 

shell script. 

 

Considering the limitations of diffmk, it does not differentiate between changes in 

text and changes in formatter request coding. Thus, file differences involving only 

formatting changes with no change in the actual text can produce change marks. 

But regarding the tool SAT-Analyser, its XML intermediate files are properly 
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generated according to a predefined format structure. Therefore, unnecessary 

formatting changes do not exist by not being affected with this limitation of 

diffmk. As diffmk uses diff, it has the same limitations on file size and performance 

that diff may impose. In particular, the performance is nonlinear with the size of 

the file and very large files (over 1000 lines) may take longer to process. Also, 

diffmk uses the ‘ed’ editor (“GNU ‘ed,’” 2018). If the file is too large for ed, ed 

error messages may be embedded in the file. As a precaution for these limitations, 

breaking the file into smaller pieces is technically advisable. However, a single 

artefact file such as a corresponding to single requirement file, design diagram 

may not exceed 1000 lines practically in a normal Agile based software project 

where non-critical projects are addressed. Therefore, this limitation is also not 

affecting the purpose of SAT-Analyser tool in incorporating the diffmk engine for 

XML comparison module. 

 

Consequently, the diffmk based XML comparison module implemented in Java is 

more aligned with the tool SAT-Analyser. The two latest versions of XML files 

are considered such as the current version and the latest previous version. It checks 

for the mutual XML artefact file types in two selected version directories. For an 

instance, if both directories have requirement artefact’s XML files, source code 

artefact type XML files; then those artefact types from each version directory are 

taken as the input in .xml file format. Then, the diffmk starts its comparison 

process for two files and creates another XML file with the content of newer XML 

file content and the change points marked as changed (modified), added and 

deleted as evidently shown in the following code snippet in Figure 3-32. 

 

The outcome XML file that contains the marked change points is used in the 

remaining process to extract those changes as suitable to the SAT-Analyser tool. 

Once a traceability project is created, initial traceability is established and should 

have at least single continuous integration activity occurred to be eligible for 

proceeding with this change detection process. 

 

A menu item is available for each traceability project in SAT-Analyser tool to 

invoke that as shown in Figure 3-33. 
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Figure 3-32 : Diffmk based change types declaration 

 

Figure 3-33 : Change detection menu item 

 

There must be at least one integrated CI version to proceed and else an error is 

shown indicating insufficiency of integrations as shown in Figure 3-34. Otherwise, 

a new directory named ‘xml_CD’ gets created to the folder structure as shown in 

Figure 3-35. That xml_CD directory holds all the diffmk change points marked 

XML files. The XML Extractor sub-module is called for each of those files in the 

xml_CD directory corresponding to artefact types and all the marked change 

points that are either changed, added or deleted are extracted as string from each 

XML file. Then, that data string is pre-processed and categorized as additions, 

modifications and deletions to be more user-friendly and readable. Finally, the 

categorized change detection results are presented as shown in Figure 3-36. 
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Figure 3-34 : Insufficient CI versions for change detection 

 

 

Figure 3-35 : Change detection results xml_CD directory 

 

 

Figure 3-36 : Change detection results in outcome window 
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The continuous integrations may or may not have all types of artefact integrations. 

For example, a CI may only integrate a set of code files to a source code repository 

in a particular integration resulting in a newer version of intermediate XML file 

generated only for source code artefact. Thus, the change detection will be 

conducted only for the source code artefact in that scenario as in above Figure 3-

36. The unique artefact ID and the artefact element or sub-element name are 

displayed as the change content. The colour code scheme of green for added 

changes, blue for modified changes and red for deleted changes is adapted for 

better readability. Thereafter, the Impact Analysis can be initiated from this 

window to identify the encountered impacts due to the detected changes. 

3.5.2 Consistency management 

In frequent changes during a DevOps environment, the risk of artefact 

inconsistency tends to be high. The changes may need to be propagated to 

maintain the consistency level, but should be propagated based on the impact 

analysis outcomes. Because propagating a non-impacted change across the 

artefacts can become an unnecessary overhead.  

 

SAT-Analyser establishes traceability with traceability visualization. Whenever an 

artefact alteration; add/ edit/ delete occurs, the inconsistencies arise. The SAT-

Analyser’s process of change detection, change impact analysis, change 

propagation is designed in handling this inconsistency issue. 
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A. Consistency management process: workflow 

 

Figure 3-37 : Consistency management workflow 

 

A rule-based consistency management approach is followed in this extended SAT-

Analyser system to ensure consistency. Figure 3-37 shows the inter-component 

and intra-component wise handling of consistency management. The version 

management is a major part in ensuring the consistency related to continuous 

integration which is the core of this extended SAT-Analyser in order to cope with 

DevOps environments. There, the version numbers are separately handled in a 

textual file format to maintain consistency. Also, the version directory structure 

creation is monitored and roll backed properly in any unsuccessful integration 

attempt to avoid inconsistencies. In the change detection, a module called Artefact 

XML Comparator performs to ensure a consistent input to Change Detector 

component. The outcome of the Change Detector is also handled in a separate 

directory structure named ‘CD’ by this consistency manager. A module named 

Artefact Stabilizer executes during the impact analysing to make the current 

version always stable by transferring non-altered artefact types XML files from the 

immediate previous version to the current version. That highly helps to Impact 

Analyser, Change Propagator and Traceability Validator components. 
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B. Consistency management process: pseudo code and implementation details 

Algorithm 3:13 Consistency Management 

Require: SAT-Analyser to be started 

Ensure: Consistency of SAT-Analyser 

1. input: Scheduler strike 

2. For each successful Continuous Integration  

3.  Invoke Version Manager 

4.   prepare CI directory structure (version) 

5.    CICurrent= version 

6.    CIPrevious=version-1 

7.    CINew=version+1 

8.    Create CIVersionManager.txt to xml directory 

9.     Write to CIVersionManager.txt (CICurrent) 

10.    Create xml_CI(CIPrevious) directory 

11.    CICurrent= CINew 

12.    CIPrevious= CICurrent 

13. For each Change Detection initiation 

14.  Invoke artefact XML comparator (CICurrent , CIPrevious) 

15.   Mutual_XMLs=Extract mutual artefact types XMLs current and previous versions 

16.  Continue Change Detection (Mutual_XMLsCurrent , Mutual_XMLsPrevious) 

17.   Create xml_CD directory 

18.    Store/ replace detected changes output files 

19. For each Impact Analysing initiation 

20.  Invoke artefact stabilizer (CICurrent , CIPrevious) 

21.   If CICurrent does not contain all artefact types 

22.    Transfer missing artefact type from CIPrevious 

23.   Continue Impact Analysing 

24.   Change propagation  

25.   Confirm consistency of validator   

26. output: Maintenance of consistency in SAT-Analyser 

 

Algorithm 3:13 describes the workflow of rule-oriented consistency management 

approach. This ensures the consistency of Continuous Integration, Version 

Manager, Change Detector, Impact Analyser, Change Propagator and Traceability 

Validator components throughout the SAT-Analyser execution.  

 

Artefact XML Comparator intakes the current XML directory content and 

previous XML directory at the moment and identifies the mutual XML artefact file 

types. Because there must be similar artefact type XML files available in both 

versions to avoid any inconsistencies during the change detection process. Mainly 

the Artefact Stabilizer module ensures the current XML directory’s stability before 
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proceeding of the impact analysis process. Because if all artefact types XML files 

does not exist in the current XML directory before the impact analysis, that would 

lead to an incomplete Relations.xml where some artefact types are missing, thus 

the system can become inconsistent there onwards. 

3.5.3 Continuous integration 

Due to the frequent software changes, the continuous integrations can occur in 

dynamic frequencies in a DevOps software development environment. According 

to the survey conducted among industry experts, they are currently coping with no 

traceability support or schedulers. Hence, it is identified that scheduling 

traceability is required to be managed in this SAT-Analyser tool to make it 

synchronized with the usual DevOps workflow of the environment without being 

an overhead. Therefore, a scheduling algorithm is needed to invoke the traceability 

process at CI activities. The initially identified options are; 

 Fixed intervals: office starting time (8.00AM) and office finishing time 

(6.00PM) or 

 User-defined intervals in a customizable manner or else  

 Whenever continuous deployment occurs in CICD pipeline prior delivery 

(CD). 

to trigger starting the traceability management process. 

A. Scheduler: workflow  

The fixed intervals scheduling option is provided at one point in the SAT-Analyser 

as most of the local software development companies are still not functioning 24 

hours continuously. Therefore, the office starting time and the ending time that is 

approximately after about 10 hours is applied in the scheduler design. Thus, if the 

office start time is 8.00AM, then once the SAT-Analyser is opened, first 

integration triggering will be prompted. After 10 hours which means at 6.00PM on 

the same working day, another triggering will occur automatically. Accordingly, 

mandatorily two CI traceability triggering are designed to be occurred 

automatically with the option either to proceed with or to cancel if there is nothing 

to be integrated for traceability monitoring based on the productivity of the 

company teams on a particular day.  
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Also, it is allowed to manually trigger at any time enhancing the immediate CI 

traceability capabilities apart from the defined scheduling intervals. Therefore, it is 

possible to look for traceability whenever continuous deployment occurs in CICD 

pipeline prior to delivery (CD). 

 

 

Figure 3-38 : Scheduler workflow 

 

The scheduler is designed based on an executor framework. Figure 3-38 represents 

the workflow of the scheduler that consists of three main components. There is a 

scheduled thread pool where the number of tasks and the number of threads is 

defined as necessary. As there is only one task (task of triggering CI) to be 

triggered for the requirement of SAT-Analyser, only one task and one thread are 

queued. The CI Trigger object in Figure 3-38 represents the functionality of CI 

artefact fetching window. The Scheduled Executor Service component handles the 

periodical behaviour of the scheduler. A fixed delay of each 10 hours is applied 

there as the scheduler frequency to invoke CI Trigger via the thread. The Executor 

Service component represents the used executor framework that holds the runnable 

interfaces corresponding to threads. 

B. Scheduler: pseudo code and implementation details 

Algorithm 3:14 elaborates the CI scheduler process pseudo code that ensures the 

CI automation. As it is highly coupled with the main tool SAT-Analyser, the 

execution of SAT-Analyser tool is essential. When the SAT-Analyser is started at 

the beginning of the working day, simultaneously a responsible person can 

confirm the stable projects that are ready to accept integrations continuously. 
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Algorithm 3:14 Continuous Integration Scheduler 

Require: SAT-Analyser to be started 

Ensure: Continuous Integration Automation 

1. input: Project Stability Confirmation 

2. If project is stable after first traceability establishment 

3.  CI initial = Invoke first CI task 

4.  Scheduler Starts (CI initial) 

5.   Thread starts 

6.    Timer = T0 

7.    CI version number generator starts 

8.    Task ()  = CI window prompts 

9.    Do  

10.     Runnable Timer 10hours  

11.     If Timer = T10hours 

12.      CI automatic = Invoke CI task 

13.      Assign CI version number 

14.      Task ()  

15.    Loop Until SAT-Analyser shuts down 

16.   Thread shuts down 

17.  Scheduler terminates 

18. output: Automated Continuous Integration window prompting 

 

Accordingly, the responsible person in-charge can initiate the first CI task (CI 

initial) as a way of confirming that particular project created in SAT-Analyser is 

capable of successfully accepting continuous integrations. That CI initial 

automatically becomes an input to the scheduler to start immediately. Then, the 

thread starts soon after initiating the timer (T0) to the current time and the task of 

prompting CI window to input artefact integrations executes. The CI version 

management subprogram also starts parallel and generates version numbers 

starting from version 1 to each project. Thereafter, the runnable interface of that 

started thread runs with the timer counting to 10-hour intervals from T0 until the 

SAT-Analyser shuts down. After each successful CI task submission, when the 

timer reaches a 10-hour interval (T10hours), automatically the CI task gets invoked, 

get assigned a CI version number and CI window prompts to input artefact 

integrations. The running thread and scheduler terminate when the SAT-Analyser 

tool shuts down.  

 

The implementation of this CI scheduler algorithm is performed using Java as the 

core development of the SAT-Analyser depends on Java. The Java Executor 
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framework’s Scheduled Executor Service is adapted in implementation that 

supports interfaces and methods for scheduled or repeated periodic executions of 

tasks (“Priority Blocking Queue,” 2018). Figure 3-39 is an evident code snippet 

regarding the implementation of this CI scheduler in SAT-Analyser. 

 

 

Figure 3-39 : Scheduler code snippet 

 

The Java concurrent libraries associated with the Executor framework are included 

to use their methods and runnable interfaces. Only one thread pool is declared 

since it is guaranteed not to be reconfigurable to use additional threads as only one 

task to be executed. The scheduleWithFixedDelay( ) method creates and executes 

a periodic task that runs periodically until cancelled. It becomes enabled first after 

the given initial delay, that is declared as 10 as we want the scheduler to start after 

10 hours from initial CI task. Then, it runs subsequently with the given period 

which is 10 hours. Thus, executions will commence after initialDelay+period, next 

initialDelay + 2 * period and so on. The task of prompting CI window and the 

integration version number generation is defined inside a runnable as a repetitive 

task. CI window prompting is declared in a separate method by enhancing code 

modularization where the integration number and project path is passed as 

parameters. That helps to bind the generated version number of that particular 

integration with the opening CI window and its file intakes. 

package com.project.traceability.Scheduler; 

import java.util.concurrent.TimeUnit; 

import java.util.concurrent.ScheduledExecutorService; 

import java.util.concurrent.Executors; 

import com.project.traceability.GUI.ProjectIntegrateWindow; 

public class SchedulerService { 

    public static int versionNumber; 

    public static void main(String ProjectPath, int PrevVersionNumber) { 

        ScheduledExecutorService execService = Executors.newScheduledThreadPool(1); 

        execService. scheduleWithFixedDelay (new Runnable() { 

        //The repetitive task 

             @Override 

             public void run() { 

             //Continous Integration Version Number Generation 

             versionNumber=PrevVersionNumber+1; 

             Flag(ProjectPath, versionNumber);} 

         }, 10, 10, TimeUnit.SECONDS); }   

public static void Flag(String ProjectPath, int integrationVersion) throws IOException{ 

        ProjectIntegrateWindow.main(ProjectPath, integrationVersion); 

        System.out.println("CI V"+integrationVersion+" for "+ProjectPath+" Triggered at: "+ new 

 java.util.Date()); }} 
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Further, a log is printed each time a CI is triggered for later inspections. The code 

is configured to pass the corresponding project location and name to this scheduler 

once an initial CI task is invoked by a person-in-charge. Thus, the scheduler gets 

triggered for each project separately by invoking CI windows separately for each 

project. The corresponding relevant project path and the time snippet that CI is 

triggered is included in each CI log entry. 

 

After a traceability project creation, can synchronise each project with the DevOps 

environment’s CI process by configuring the local source code, unit test script and 

build script paths that are used for versioning via the menu item shown in Figure 

3-40. Figure 3-41 depicts the intermediate configuration settings to set those paths 

to obtain the latest source code, test, build script artefacts from the DevOps 

process’s involved Jenkins build servers and versioning tools such as GitHub. 

 

 

Figure 3-40 : Continuous integration configuration menu item 

 

Figure 3-41 : Continuous integration configuration window 
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Figure 3-42 shows the first CI task ((CI initial)) initiation towards the confirmation 

for a stable project that is ready to accept integrations continuously. By right-

clicking the project and selecting ‘Integrate’ option, Figure 3-43 is prompted with 

CI window. This gets triggered by scheduler that accepts all types of input artefact 

integrations. The corresponding project name, path, CI task and the integration 

number are shown on the top of that window for accuracy when there are multiple 

traceability projects being monitored through the SAT Analyser. There includes a 

toggle button to indicate whether the integration includes any new artefact element 

‘additions’ or not. A click on it considers as only artefact ‘modifications’ and 

‘deletions’ would be included in the particular integration task. Figure 3-44 

represents the artefact ‘addition’ mode where that all artefact inputs must be 

provided to enable the ‘Finish’ button. Also, the artefact ‘modification’ or 

‘deletion’ attempts, at least one artefact must be input to proceed.  

 

 

Figure 3-42 : Continuous integration menu item 

  

Figure 3-43 : Continuous artefact 

integration window 

 

Figure 3-44 : Continuous artefact integration 

window with disabled forward option 
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C. Version control system: implementation details 

Along with a scheduler having an integration version management mechanism is 

essential to save and keep track of each individual CI task. Therefore, the CI 

version management is done using a folder structure. The CI version number 

generated through the scheduler is linked with this version control for unique 

identification of each integration. The raw artefact contents in each CI task such as 

requirement and design always replace the previous corresponding artefact items. 

In the existed initial version of SAT-Analyser, the intermediate XML formats of 

all the artefacts are generated into a separate directory called ‘xml’. Thus, version 

control is designed around that. The corresponding version number of each 

integration is physically saved in a text file dedicated for that particular version 

content to avoid version number resetting when the SAT-Analyser is restarted.  

 

Initially, the Version Control Manager looks for ‘CIVersionManager.txt’ file 

containing a version number. If does not exist, that indicates it as the traceability 

project’s first CI task where the version number is one. If exists, reads that file’s 

version number, increments it by one and labels the current CI version with that 

number, while writing it into a new version text file. Considering, the CI content 

management of these each integration; a new directory is created in the same level 

of default ‘xml’ directory with the name ‘xml_CIn’ where ‘n’ denotes the current 

version number minus one. The existed content inside the ‘xml’ directory is 

moved to the new directory by leaving the ‘xml’ directory empty. Thus, always the 

current CI version’s intermediate XML file content is saved into ‘xml’ directory. 

The previous version can be found in the ‘xml_CIn’ directory. 

 

Figure 3-45 evidently presents a part of the code used in creating this Version 

Management module. It shows how each previous version storage directory gets 

created and move the existed content into that by leaving ‘xml’ directory empty 

and by deleting each moved file. Although this gets executed whenever a CI task 

is triggered, this moving and deletion get rollbacked if a CI task is cancelled 

without being a successful submission. Thus, each file is moved back into ‘xml’ 

directory and deletes the created previous version ‘xml’ directory. 
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Figure 3-45 : Code snippet of version control management 

 

Figure 3-46 and Figure 3-47 show the Version Management directory structure in 

the GUI level. In Figure 3-46, the first CI task is performed with UML and build 

script artefacts by moving default traceability project’s initial XML file content to 

‘xml_CI0’ folder. The generated XML files of UML and build script files with 

version number text file are stored in the ‘xml’ directory. Similarly, after the given 

interval (10 hours) when the 2
nd

 CI occurs and submitted successfully with a build 

script artefact integration, the 1
st
 CI task’s content in ‘xml’ directory moved into 

‘xml_CI1’ directory. The XML content and version number text file of 2
nd

 CI task 

get stored in ‘xml’ directory as shown in Figure 3-47. 

 

 

Figure 3-46 : CI version 1 of a 

project 
 

Figure 3-47 : CI version 2 of a project 

... 

File oldxmlFolder = new File(ProjPath+File.separator+"xml_CI"+(versionNumber-

1)+File.separator); 

            File currentxmlFolder = new File(ProjPath+File.separator+"xml"+File.separator);  

            oldxmlFolder.mkdir(); 

            if(currentxmlFolder.isDirectory()) { 

                File[] contents = currentxmlFolder.listFiles(); 

                for(int k = 0; k < contents.length; k++) { 

                    File sourceFile=new File 

(ProjPath+File.separator+"xml"+File.separator+contents[k].getName()); 

                    Path sourceFilepath= 

FileSystems.getDefault().getPath(ProjPath+File.separator+"xml"+File.separator+contents[k].ge

tName()); 

                    File destFile = oldxmlFolder; 

                    FileUtils.copyFileToDirectory(sourceFile, destFile); 

                    Files.delete(sourceFilepath); } } 
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3.5.4 Multi-user supportability 

DevOps environments function in combination of small-size teams in achieving 

faster developments and delivery simultaneously. Therefore, the DevOps tools 

stack mostly consists of multi-user features with shared access through a 

dashboard in order to facilitate team coordination and work allocations properly. 

Accordingly, the SAT-Analyser tool also powered with multi-user accessibility 

through a web-based version in addition to the stand-alone desktop version with 

equal features discussed in previous sections. 

 

Figure 3-48 : Multi-user accessible SAT-Analyser web version 

Figure 3-48 shows the implemented main GUI of the web-based SAT-Analyser 

prototype. The web deployment platform AjaxSwing (“AjaxSwing,” 2018) is 

integrated into the implementation that creates HTML and JavaScript at runtime 

by transforming Java Swing to HTML. It performs with the open-source Java 

Servlet container Apache Tomcat server. Thus, SAT-Analyser is featured with 

cross-browser compatibility where one machine in the DevOps environment can 

act as the server while other team members can access the SAT-Analyser in real-

time using their own client device browsers. User session timeouts, update 

intervals and auto-refreshing are defined to enable dynamic multi-user 

accessibility in similar to DevOps tools stack. The features; traceability 

visualization, validation, CI, change detection, CIA with user modifiability using 

asynchronous monitor updates for controlling single session input at a time, 

change propagation, PM notification and SAT-Analyser performance monitoring 

all equally render in the browser itself. 
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3.6 Extended SAT-Analyser evaluation 

The SAT-Analyser tool validation components are implemented into the tool itself 

as three different modules for the purposes of measuring resource utilization, 

traceability accuracy analysis and network analysis of traceability results. The 

implementation details of the three modules are described in this section. 

3.6.1 Implementation of the accuracy analysis module 

Traceability establishment and CIA accuracy analysis module is based on 

statistical measures precision, recall and F-measure (Zeugmann et al., 

2011)(Rubasinghe, Meedeniya, & Perera, 2018b). The traceability establishment 

process of SAT-Analyser depends on the artefact elements and sub-elements 

extraction results since the traceability is generated according to string comparison 

among extracted artefact outcomes. Thus, the accuracy of artefact extraction 

results is implemented to be measured specifically under the traceability 

establishment accuracy. The accuracy of CIA process is implemented around the 

outcomes obtained in the CIA as described in section 3.4. The mathematical 

calculations of precision, recall and F-measure following their definitions are 

applied using the Java calculations into the development. The example output 

windows of implemented accuracy measure application are shown in Figure 3-49 

and Figure 3-50 for traceability artefact extraction and CIA respectively. 

 

 

Figure 3-49 : SAT-Analyser traceability establishment accuracy analysis window 
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Figure 3-50 : SAT-Analyser CIA accuracy analysis window 

 

The outcome of artefacts extraction in a current version of a project for each 

artefact type is shown in Figure 3-49. The identified count denotes the automated 

count of the items in the table for each artefact type. The user can select the 

correctly identified items with left mouse click and CTRL key on the keyboard 

together on a correct cell. Similarly, clicking twice on the same cell deselects a 

selection. Accordingly, the correctly identified count is a subset of the total 

identified count. Then, the actual total count of artefacts elements/ sub-elements is 

extracted based on expert knowledge and inserted manually in the text boxes next 

to the actual count. A click on the ‘Calculate’ button automatically counts the 

number of selected items in the table and computes the accuracy measures. 

 

The latest CIA outcome of a selected software traceability project containing 

impacted artefact element/ sub-elements for the three change types ‘addition’, 

‘modification’ and ‘deletion’ are displayed to increase the usability as shown in 

Figure 3-50. The CIA accuracy calculation uses the CIA categorization sets (see 

Subsection 2.6.1) EIS/ CIS, AIS and DIS. Thus, the count of estimated or the 

candidate artefact items shown in text areas is automatically displayed. The 

remaining AIS count which is a subset of EIS count has to be manually identified 

by an expert from the results shown in text areas and manually entered. Similarly, 

the total real impact set count which is the sum of DIS count and AIS count is 

entered based on expert knowledge before proceeding with the ‘Calculate’ button. 
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3.6.2 Implementation of the network analysis module 

The traceability validation module is developed by applying network analysis 

concepts over the traceability visualization graph. This is implemented using  

Python NetworkX libraries (“NetworkX,” 2018) with Java-based GUIs. Python 

Matplotlib based and JavaScript D3.js based two traceability graph visualization 

extensions are also integrated into this module as described in the traceability 

visualization Subsection in 3.3.2 and 3.3.3 (Rubasinghe, Meedeniya, & Perera, 

2018a). Figure 3-51 shows a Python code snippet used for obtaining centrality 

measures summary from a traceability graph. 

 

Figure 3-51 : Network analysis centrality measures code snippet 

 

The main network analysis window facilitating analytical, interactive traceability 

visualization extensions, separate centrality measure options, overall measure 

summaries and centrality measure visualizations is shown in Figure 3-52. The 

output of the button ‘Centrality Measures Textual Summary’ that summarizes the 

... 

import networkx as nx 

import matplotlib.patches as mpatches 

import matplotlib.pyplot as plt 

import numpy as np 

UG=nx.read_gexf(GexfPathForValidation.path, node_type=None, relabel=True) 

ddd=nx.degree(UG) 

bt=nx.betweenness_centrality(UG) 

ebt=nx.edge_betweenness_centrality(UG) 

ec=nx.eigenvector_centrality_numpy(UG) 

cc=nx.closeness_centrality(UG) 

dc=nx.degree_centrality(UG)  

idc=nx.in_degree_centrality(UG)  

odc=nx.out_degree_centrality(UG) 

print "Traceability Graph Info: #Nodes=", 

nx.number_of_nodes(UG),' #Edges=',nx.number_of_edges(UG) 

print "Max degree centrality:", 

max(dc.iterkeys(), key=(lambda key: dc[key])),'=',dc[max(dc, key=dc.get)]  

print "\t Max in-degree centrality:", 

min(idc.iterkeys(), key=(lambda key: idc[key])),'=',idc[min(idc, key=idc.get)] 

print "\t Max out-degree centrality:", 

max(odc.iterkeys(), key=(lambda key: odc[key])),'=',odc[max(odc, key=odc.get)]  

print "Max closeness centrality:", 

max(cc.iterkeys(), key=(lambda key: cc[key])),'=',cc[max(cc, key=cc.get)] 

print "Min betweenness centrality node:", 

min(bt.iterkeys(), key=(lambda key: bt[key])),'=',bt[min(bt, key=bt.get)] 

print "Max betweenness centrality edge:", 

max(ebt.iterkeys(), key=(lambda key: ebt[key])),'=',ebt[max(ebt, key=ebt.get)] 

print "Max eigenvector centrality:", 

max(ec.iterkeys(), key=(lambda key: ec[key])),'=',ec[max(ec, key=ec.get)] 

... 
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maximum and minimum values of degree centrality, closeness, betweenness and 

Eigenvector centrality is shown in that example. Similarly, in detail analysis of 

each individual centrality measure is embedded into the left side centrality button 

series. The ‘Info’ button provides the artefact details of involved traceability 

project graph as shown in Figure 3-53. 

 

 

Figure 3-52 : SAT-Analyser network analysis main window 

 

Figure 3-53 : Network analysis artefact information view 

3.7 Tool performance analysis 

We have measured the SAT-Analyser tool performance for its core functionalities 

traceability establishment and CIA process. The resource utilization is monitored 

in terms of elapsed time, memory consumption and CPU processing power 

consumption, where the tool contains a menu item for performance analysis. The 

in-built Java library classes; runtime and ManageemntFactory are used for the 
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implementation. The output is provided in both textual and graphically for the 

elapsed time, memory usage and CPU usage percentage. The Java-based 

JFreeChart (“JFreeChart,” 2018) is used for graph creation with features such as 

zooming, saving and manual alterations are provided for better analysis. 

 

 

Figure 3-54 : SAT-Analyser traceability establishment performance analysis window 

 

Figure 3-55 : SAT-Analyser CIA performance analysis outcome window 

 

An example performance analysis output for traceability establishment activities 

of software projects and CIA activities are provided in Figure 3-54 and Figure 3-
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55 respectively. Evidently, the initial execution of the tool has consumed a larger 

elapsed time in both traceability establishment and CIA as initially, it requires 

collecting dependencies, repositories and libraries.  

 

The elapsed time, memory consumption and CPU usage percentage depend on the 

performance of used machine such that the SAT-Analyser would be executed 

more smoothly when the machine is in an idle state without any other heavy 

applications and background processes running. Furthermore, the size and 

complexity level of the software project used in SAT-Analyser for traceability 

establishment and CIA also affect the resource utilization such that tool execution 

would consume a larger amount of elapsed time, memory and CPU if the project 

contains a larger amount of artefact elements/ sub-elements/ trace relationships. 

3.8 Conclusion 

The context of software artefact traceability is strengthened with continuous 

integration capabilities in order to be compatible with the evolving DevOps 

environments. The existed SAT-Analyser tool is extended to support DevOps 

environments by addressing software artefacts related to the remaining phases of 

SDLC such as testing and maintenance phases that were not included in the initial 

tool. The artefact data pre-processing, traceability establishment and visualization 

is performed for DevOps related software artefacts based on the justifications 

obtained from current industry level employee feedback and literature. The 

existed traceability visualization is further enhanced with two additional 

variations for better interactivity and for the purpose of traceability analysis with 

better usability. Besides, change impact analysis model is designed with change 

detection and change propagation with the aid of a mathematical and weight 

system mainly based on the centrality measure; Eigenvector centrality and graph 

traversal algorithms. Moreover, multi-user accessibility is featured in the SAT-

Analyser tool as a web-based version to improve the team-based usability in 

DevOps environments. The implementation of change impact analysis model and 

traceability validation along with traceability establishments are further evaluated 

on a heterogeneous case study basis in chapter 4. 
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Section 4 

4 Evaluation 
 
 
 

A case study based approach is used for evaluation of the proposed methodology, 

using a data set of heterogeneous software projects. The remaining subsections 

describe the data set, experimental results and analysis for the evaluation metrics. 

4.1 Datasets and materials 

A data set of 20 software engineering projects where the underlying technology is 

Java programming language is selected in different domains and scales as the 

dataset. Table 4.1 provides an overview of the considered software projects. 

 

Table 4.1 : Dataset summary 

 

Project title Description 

Software product measures 

Scale #Req. #Design 

classes 

LOC function 

calls 

S1 Virtual 

historical 

site guide 

Application to guide historical 

sites in Sri Lanka using 

virtual reality. 

15 

Large 

9 

Mediu

m 

3185 

Medium 

742 

Medium 

Medi

um 

S2 Workout 

manager 

Application to manage 

exercise routine using 

smartwatch and gamification. 

9 

Medium 

11 

Large 

1333 

Small 

313 

Small 

Small 

S3 Employee 

performance 

tracker 

Mobile application to measure 

employee performance during 

professional travelling duties. 

9 

Medium 

12 

Large 

2415 

Medium 

515 

Medium 

Medi

um 

S4 Medical 

appointment 

manager 

An android application to 

manage doctor/patient 

medical appointments. 

9 

Medium 

6 

Small 

2362 

Medium 

529 

Medium 

Medi

um 

S5 Task planner 

- PlanIt 

Personal daily-tasks 

organizing system. 

8 

Small 

4 

Small 

2977 

Medium 

662 

Medium 

Small 

S6 Interactive 

book reader  

A mobile app with augmented 

reality to visualize characters 

and scenarios in kid’s books. 

12 

Medium 

4 

Small 

5491 

Large 

939 

Large 

Large 

S7 MyDrive 

multimedia 

library 

Personal media content 

management system. 

7 

Small 

7 

Mediu

m 

2646 

Medium 

571 

Medium 

Medi

um 

S8 E-School 

manager 

An MIS to ease the activities 

of students and teachers. 

10 

Medium 

6 

Small 

3460 

Medium 

490 

Small 

Medi

um 

S9 Graphical 

password 

strategy 

A system to maximize the 

user password space using 

memorable information. 

6 

Small 

5 

Small 

1466 

Small 

475 

Small 

Small 

S10 Hotel 

management 

Android app  

An Android application to 

handle all hotel activities via a 

mobile. 

19 

Large 

8 

Mediu

m 

5579 

Large 

1141 

Large 

Large 

S11 Expenses 

tracker 

Mobile application to track 

daily income and expenses. 

17 

Large 

12 

Large 

3355 

Medium 

782 

Medium 

Large 

S12 Online 

developer 

A system to generate a 

complete insight of a software 

8 

Small 

10 

Mediu

2269 

Small 

162 

Small 

Small 
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profile 

analyser 

developer based on the 

profile. 

m 

S13 Computer-

based 

psychothera

py 

A system to identify and 

reduce the effects of mental 

health disorders with self-

guided treatment. 

16 

Large 

7 

Mediu

m 

3712 

Large 

602 

Medium 

Large 

S14 Child 

monitoring 

system 

A monitoring system with 

play sound, voice over, listen, 

watch the child and call a 

neighbour. 

10 

Medium 

12 

Large 

2288 

Small 

502 

Medium 

Medi

um 

S15 PDF content 

search 

system 

Desktop application to search 

through PDF files. 

8 

Small 

7 

Mediu

m 

3638 

Large 

873 

Large 

Large 

S16 Disease 

management 

system 

Integrated digital health 

system to manage patients 

with chronic disease, 

remotely using SMSs. 

12 

Medium 

10 

Mediu

m 

3700     

Large 

802 

Large 

Large 

S17 HTTP2 

support for 

Apache 

JMeter 

Software plugin to adopt and 

implement HTTP2 support for 

performance measuring of 

JMeter application. 

18 

Large 

19 

Large 

2649 

Medium 

628 

Medium 

Large 

S18 Point of 

sales system 

System for customer and 

order management in sales. 

5 

Small 

5 

Small 

97 

Small 

16 

Small 

Small 

S19 GuideME - 

smart tour 

guide 

Tour guide system to display 

locations, accommodations, 

routes in Sri Lanka. 

7 

Small 

11 

Large 

3208 

Medium 

676 

Medium 

Medi

um 

S20 Tour 

management 

system 

Tour booking management 

system for passengers and 

drivers and guides. 

8 

Small 

9 

Mediu

m 

2298 

Medium 

494 

Small 

Medi

um 

 

The software product measures are prominent aspect in measuring software 

projects scale. Especially, Line of Code (LOC) and number of associated function 

calls of a software project are two common measures (Hattori, Guerrero, 

Figueiredo, Brunet, & Dam, 2008)(Li et al., 2013). However, these cannot be 

solely used as a metric in deciding a scale of an overall software project as they 

both are associated only with source code. For example, basic software problem 

having a smaller number of requirements may be complex to implement due to 

lack of technologies, coding abilities and refactoring methods, which may 

eventually increase the LOC or/and function calls count. Thus, the functional 

requirements count, number of classes in UML class diagram and LOC along with 

the number function calls of a project is considered as software product measures 

when deciding the project scale (“Measuring Requirements,” 2018).  

 

We have followed the Interquartile Range (IQR) methodology to scale the projects 

based on the overall median (Q2), the median in the lower half of data (Q1) and 

median in the upper portion of data (Q3) with respect to each selected software 
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product measure. Thus, a minimum, Q1, Q2, Q3 and a maximum value exist for 

requirements count, design classes count, LOC and function call count. Firstly, 

each project is assigned a subscale (small/ medium/ large) for each of that product 

measure such as a single project gets four subscales as described in Table 4.1.  

 

The subscale is determined as small, if the value is greater than or equal to the 

minimum and less than or equal to Q1. Similarly, subscale medium is defined, if 

the value is greater than Q1 and less than Q2 while subscale is assigned as large if 

the value is greater than or equals to Q3 and also less than or equals to the 

maximum. Figure 4-1 boxplot illustrates the scale ranges according to Q1, Q2 and 

Q3 measures. The final scale of the project is obtained based on the highest 

subscale probability. Further, if any two subscales are similar and the remaining 

two subscales also similar which results in an equal probability; the final scale is 

decided manually based on project area, scope and codebase development effort. 

 

 

Figure 4-1 : Project scale 

4.1.1 Pre-defined categorization of change types 

We have defined 17 change types for artefact changes and three-to-five unique 

change types are applied for a given case study, covering all 17 change types for 

the testing purpose. These changes are selected based on the possibilities in a 

practical software development. Based on the survey among DevOps practitioners, 

currently, there exists no mechanism to track the heterogeneous artefact level 

changes covering every phase of SDLC. Following are the defined change types. 

 C1: Add a main requirement  

 C2: Add a moderate importance requirement 

 C3: Add a low importance requirement 

 C4: Modify a requirement 

 C5: Delete a requirement 

 

Q3 

Max 

Q2 

Q1 

Min 

Large 

Medium 

Small 
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 C6: Add a design component 

 C7: Modify a design component 

 C8: Delete a design component 

 C9: Add a source code artefact 

 C10: Modify a source code artefact 

 C11: Delete a source code artefact 

 C12: Add a unit-test artefact 

 C13: Modify a unit-test artefact  

 C14: Delete a unit-test artefact 

 C15: Add a configuration artefact 

 C16: Modify a configuration artefact 

 C17: Delete a configuration artefact 

4.1.2 Evaluation environment specification 

The SAT-Analyser tool performance depends on the execution environment as any 

other software tool. Thus, the evaluation results presented in this chapter depends 

on the used environment parameters. SAT-Analyser is evaluated in an 

environment specification with Core i5-321M CPU @ 2.50GHz processor, 700GB 

storage, 4GB RAM and Windows 8.1 Pro operating system. 

4.2 Experimental results: case study 1 (POS system) 

This section presents an overview of the selected case study, S18: Point of Sales 

system for a shop, where a customer can place orders consisting of items. An order 

can be either a special order having the online ordering feature or a normal order 

having only the cash on delivery facility. The system records the customer details 

with name and location for delivery purposes. Also, the system facilitates the 

ability to record item details with an item number and price. A customer can send 

and receive orders using the system. These requirements are stated in the software 

requirement specification in natural language. Figure 4-2 shows the natural 

language requirements considered for this study. The corresponding design in 

UML class diagram is shown in Figure 4-3. The main classes are identified as 

Customer, Order and Item. An Order is specialized into SpecialOrder and 

NormalOrder. Since the entity Order is composed of a set of Item entities, there is 
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an aggregation relationship. There is a composition relationship as a strong 

aggregation between the classes Customer and Order. Thus, if the Customer entity 

is deleted, then Order (part) entity is deleted as well.  

 
Figure 4-2 : POS system description 

 

Figure 4-3 : POS system design diagram 

 

The relevant source code artefacts are given in Java programming language as a 

set of class files and unit test scripts are provided in JUnit test files. Further, as 

configuration file, a Maven build script file used for building the POS system is 

considered. The artefact files are provided in the SAT-Analyser tool web site 

(“SAT-Analyser,” 2018). 

 

 

Figure 4-4 : SAT-Analyser main artefact summary for POS system 

 

The identified main artefact elements by the tool SAT-Analyser are listed in 

Figure 4-4 followed by the tool generated unique identifier of each artefact. 

Further, there exists artefact sub-elements for methods, attributes (fields) and 

In a shop, a customer can place more than one order. An order can have more than one item. 

Customer details must record the name and location.  Item details must record the item number 

and price. A customer can send and receive the order using the system. The customer can 

order in two types. Orders are special order and normal order. An order can be confirmed and 

closed by the customer. The special order can order items online. Normal order can order 

items in cash on delivery. An item can be added and removed. 
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plugins as partially shown in Figure 4-4 with _F, _P and _M notations. Table 4.2 

summarises the manual artefact identification and categorization of the POS 

system based on expert knowledge such as by a requirement engineer. 

 

Table 4.2 : Artefact categorization: POS system 

Artefact type Low Medium High 

Requirement RQ1, RQ2 RQ3 RQ4, RQ5 

Design D1, D2 D3 D4, D5 

Source code S1, S2 S3 S4, S5 

Test script UT1, UT2 UT3 UT4, UT5 

Configuration files - - BS1 

4.2.1 Evaluation of traceability establishment component 

Figure 4-5 represents a part of the final traceability established relations file in 

XML format. It contains a source to target format depicting directed traceability 

relationships. For example the D4: Normal Order is connected to SC1: Customer 

as one of the traces, showing that any alteration occurred in Normal Order design 

class would affect the Customer source code class.  

 

 

Figure 4-5 : POS system Relations.xml instance 

 

Figure 4-6 provides a section of the full traceability graph for the POS system. 

Nodes denote the heterogeneous software artefacts and edges represent the 

traceability relationship links. Colour codes are applied for each category of nodes 

to enhance the usability aspects. The node BS1 in black shows the Maven 

pom.xml build script file and each source code (SC) class is visualized in red 

coloured nodes. The notations D, RQ, UT stand for the design diagram, 

<?xml version="1.0" encoding="UTF-8"?> 

<Relations> 

     <Relation id="1"> 

         <SourceNode>D4</SourceNode> 

         <RelationPath>UMLClassToSourceClass</RelationPath> 

         <TargetNode>SC1</TargetNode> 

</Relation> 

     <Relation id="2"> 

         <SourceNode>D4_F1</SourceNode> 

         <RelationPath>UMLAttributeToSourceField</RelationPath> 

         <TargetNode>SC1_F1</TargetNode> 

</Relation> 

<Relation id="3"> 
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requirement item and unit test class item respectively. Moreover, this interactive 

traceability graph is customizable. 

 

 

Figure 4-6 : Part of the traceability visualization graph - POS system 

 

Figure 4-7 : Network analysis summary - POS system 

 

Figure 4-7 states the SAT-Analyser tool computed centrality measures summary 

for the network analysis based traceability validation. The Maven build script 

artefact (BS1) holds the maximum betweenness and closeness centrality measure 

values since this POS case study has one Maven build script file that is linked with 

every source class artefact by verifying the centrality result as accurate. 
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4.2.2 Evaluation of continuous integration process 

Among the defined 17 change types for the impact analysis process, five change 

types are applied to this POS case study project as follows. 

 C4: Modify a requirement 

 C9: Add a source code artefact 

 C10: Modify a source code artefact 

 C12: Add a unit-test artefact 

 C15: Add a configuration artefact 

 

Figure 4-8 shows the detection of the five change types in the tool’s Change 

Detection results window for each particular artefact category listed according to 

addition, modification and deletion. The corresponding impact analysis results of 

the five change types are calculated and summarized in the Impact Analysis 

Results window as shown in Figure 4-9. The impacted nodes/ edges are listed 

using the influential factor values obtained through EVC. For example, the 

addition of unit test artefact element (UT5_M3: InvokeTest method) has not 

affected any other since its own influential factor has been a low value. 

 

 

Figure 4-8 : POS system change detection window 
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Figure 4-9 : POS system impact analysis window 

 

Figure 4-10 : POS system change propagation instance 

 

The propagation of changes is visualized in the traceability graph with impact 

analysis results such as 1 for high and 0 for low. The node impact analysis results 

are shown when hovered on each node in real-time. In this artefact change 

example, the scenario is relevant to one constraint defined in the SAT-Analyser 

tool CIA process. As this scenario contains artefact additions as change types 

(source code addition, test script element addition, build script element addition), 
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all artefact types must be submitted with relevant affecting results of newer 

artefact additions. Thus, the system considers this type of a change integration as a 

re-establishment of traceability. Figure 4-10 shows a part of the change propagated 

traceability graph where the newly added build script artefact plugin (BS1_P4: 

jfreechart) can be seen as a new node linked with its mother artefact node BS1. 

4.2.3 Performance analysis 

Figure 4-11 provides the statistical analysis results for the CIA process conducted 

on the POS system. The AIS count is completely same as the EIS count based on 

SAT-Analyser’s impact analysis, signifying the identified impacts are accurate. 

However, there are two impacts that have not been identified by the tool that is 

relevant to the DIS set. The addition of SC5_M2 must impact on a corresponding 

unit test (UT) item and the modification of SC4_F2 may impact on a UT item 

which is missing in the obtained EIS. Thus, the recall and F-measure are more 

than 0.95 while precision is 1.0 successfully. 

 

 

Figure 4-11 : CIA statistical analysis results: POS system 

 

The performance of CIA process of the case study POS with respect to time 

consumption, CPU and memory consumption is shown in the Figure 4-12 for the 

above demonstrated 5 changes one at a time such as C4, C9, C10, C12 and C15 

respectively. According to the variations in the results, it is observable that the 
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performance of the CIA process depends on the change type and that particular 

changed artefact item’s nature on the traceability network.  

 

Thus, the time, memory and CPU consumption is higher for the C4 in this scenario 

which represents a modification done to a requirement artefact item such that 

RQ4: Customer has been modified into RQ4: the Foreign Customer. It has been 

occupied more resources since it is having a higher number of trace links with 

design, source code and unit test artefacts that result in having a larger number of 

affected items. According to the defined CIA rule-based Algorithm 3:11, a 

requirement artefact is supposed to check the maximum number of paths in 

calculating the impact sets. Therefore, the graph traversal consumes a higher 

resource amount during the CIA process of such a change done on a significant 

artefact item. Remaining four changes C9, C10, C12 and C15 have occupied lesser 

similar amounts of resources since they all are later stages artefacts like source 

code, unit test and build script that are having a lesser number of relationships. 

According to these results, the modifications are requiring a considerably higher 

amount of resources compared to artefact additions. 

 

 

Figure 4-12 : CIA performance analysis results: POS system 
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4.3 Experimental results: case study 2 (Tour management system) 

This section presents the considered artefacts and the evaluation results obtained 

by SAT-Analyser. The selected case study, S20: Tour Management System 

manages tours that mainly address the types of employees, namely manager, 

driver, tour guide and a passenger who books a tour. The system records both 

employees’ details and passenger details. The system provides a list of available 

tours along with a date. The manager can reserve a tour for a passenger, can assign 

the route to a tour, assign a driver for each tour, create a bill to the passenger and a 

passenger can book a tour using this application. Figure 4-13 represents the 

requirements description of this Tour Management case study. 

 

 

Figure 4-13 : Tour management system description 

 

 

Figure 4-14 : Tour management system design diagram 

 

In a tour management system there are three types of employees, namely manger, driver and 

guide. An employee must record the employee code, name, address and a contact number. A 

tour is identified by a unique tour ID and a date. The manager reserves a tour for a passenger. 

This is one of the main requirements of the system. When a passenger registers for a tour, he/ 

she provide the name, address, contact number, birth date, gender and preferences. Another 

main task of the manager is that manager assigns route to a tour. A route has a route length, 

tour duration and town names. Moreover, manager assigns a driver for each tour. Additionally, 

when a passenger makes the payment for a tour, the manager creates bill to the passenger. A 

bill consists of the date, passengers count and tour ID. Furthermore, a guide elaborates each 

tour for the passengers during a tour. Further, a route has one or more towns. For each route, a 

town records its overnight stay details. 
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Figure 4-14 shows the corresponding UML class diagram of the Tour 

Management case study consisting of nine classes. There is an inheritance 

relationship in Guide, Driver and Manager with Employee class. An aggregation 

relationship between Town and Route classes and a composition between Tour 

and Route classes exist in the design with other association relationships. The 

relevant Java source code artefact, JUnit test artefact and the used Maven build 

script artefact file of the case study are provided in the SAT-Analyser tool web 

portal (“SAT-Analyser,” 2018). 

 

The identified main artefact elements by the tool SAT-Analyser are listed in 

Figure 4-15 followed by the tool generated unique identifier of each artefact. 

Further, there exists artefact sub-elements for methods, attributes (fields), and 

plugins as partially shown in Figure 4-15 with _F, _P and _M notations. Table 4.3 

summarises the manual artefact identification and categorization of Tour 

Management system based on expert knowledge such as by a requirement 

engineer/ software engineer involved in the project. 

 

 

Figure 4-15 : SAT-Analyser main artefact summary for tour management system 

 

Table 4.3 : Artefact categorization: tour management system 

Artefact type Low Medium High 

Requirement RQ1, RQ3 RQ2, RQ6, RQ8 RQ4, RQ5, RQ7 

Design D2, D4 D1, D3, D5, D6 D7, D8, D9 

Source code S7, S9 S2, S3, S4, S5 S1, S6, S8 

Test script UT7, UT9, UT10 UT2, UT3, UT4, UT5 UT1, UT6, UT8, 

UT9 

Configuration files - - BS1 
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4.3.1 Evaluation of traceability establishment component 

 

Figure 4-16 : Tour management system Relations.xml instance 

 

A part of the tool generated traceability relations wrote down in the XML format 

is shown in Figure 4-16. For instance, a relation between RQ1: Route to D6: 

Manager can be seen as a directed relationship since Manager is the person who 

assigns a Route to each Tour. Figure 4-17 provides a section of the full traceability 

graph for the Tour Management system. 

 

Figure 4-17 : Traceability visualization - tour management system 

 

Figure 4-18 states the SAT-Analyser tool computed centrality measures summary 

for the network analysis based traceability validation. The build script artefact 

(BS1) holds the maximum values for betweenness and closeness centrality 

measures. This case study has only single Maven build script and it is related with 

each and every source class artefact, hence the result is acceptable. One of the 

maximum Eigenvector centrality is held by the node SC6_M4 that denotes the 

method setPreferences () in the Java Tour class which can be considered as one of 

the highly important artefacts in this case study. 

<Relation id="155"> 

        <SourceNode>RQ2_F2</SourceNode> 

        <RelationPath>ReqFieldToUMLOperation</RelationPath> 

        <TargetNode>D9_M11</TargetNode> 

</Relation> 

<Relation id="156"> 

        <SourceNode>RQ1</SourceNode> 

        <RelationPath>ReqClassToUMLClass</RelationPath> 

        <TargetNode>D6</TargetNode> 

</Relation> 



 

130 
 

 

Figure 4-18 : Network analysis summary - tour management system 

4.3.2 Evaluation of continuous integration process 

From the defined 17 change types for the impact analysis process, another five 

change types are applied to this Tour Management case study. 

 C2: Add a moderate importance requirement 

 C5: Delete a requirement 

 C6: Add a design component 

 C13: Modify a unit-test artefact  

 C17: Delete a configuration artefact 

 

Figure 4-19 shows the corresponding change detection results obtained by the 

SAT-Analyser tool. The performed five changes are accurately detected by 

displaying the affected artefact ID and name. The performed CIA results are 

shown in Figure 4-20. For example, for C13, the modified unit test artefact (UT5: 

ManagerTest) has impacted on its two child nodes UT5_M1:setUpClass method 

and UT5_M2:tearDownClass method which has a lower impact value. The 

propagated changes are re-visualized and a part of the traceability graph is shown 

in Figure 4-21. For instance, the newly added D9_M15 is newly represented in the 

graph while BS1_P2 has removed and earlier BS1_P3 has become BS1_P2 by 

making the IDs consistent. 



 

131 
 

 

Figure 4-19 : Tour management system change detection window 

 

Figure 4-20 : Tour management system impact analysis window 

 

Figure 4-21 : Tour management system change propagation instance 
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4.3.3 Performance analysis 

The CIA accuracy of the Tour Management example is shown in Figure 4-22. The 

modification and deletion change types related impacts are completely identified 

by the tool. However, there are five missing impact items in the addition change 

type since the corresponding artefact elements are not modified according to the 

added changes during CI. Thus, the addition of RQ9 must impact on a design (D), 

source code (SC) and a UT item while the addition of D9_M15 must impact on an 

SC sub-element and may impact on a UT item. The CIA process has obtained 0.86 

recall, 0.93 F-measure and 1.0 precision. 

 

 

Figure 4-22 : CIA statistical analysis results: tour management system 

 

The resource consumption of the CIA process for each change type is shown in 

Figure 4-23. The bar instances in each graph show five changes C2, C5, C6, C13 

and C17. The memory consumption of each change is the same, since all are 

additions and deletions while C13 has been a modification, but on a later stage unit 

test artefact has fewer trace relations. Moreover, the highest CPU consumption is 

taken by the C5 where a requirement RQ1: Route has been deleted which affects a 

larger number of related trace links. The second highest CPU consumption occurs 

for the other artefact deletion C17 where a build script artefact item is deleted. It is 

observable that modifications and deletions tend to consume more resources 

compared to additions. 
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Figure 4-23 : CIA performance analysis results: tour management system 

4.4 Experimental results: case study 3 (MyDrive multimedia library) 

As the third case study, we have selected, S7: MyDrive Multimedia Library, 

which is a personal media content management system. A user can store and 

manage own favourite media contents such as music, video or pictures. It ensures 

user privacy rather than storing in any content management system. The 

requirements of the Multimedia Library system are provided in a text format as 

shown in Figure 4-24 where it describes the major functionalities required such as 

managing multimedia file contents and altering metadata of files by a user. 

 

Figure 4-24 : MyDrive multimedia library system description 

 

The UML class diagram is shown in Figure 4-25. There exists an inheritance 

relationship in Image, Video and Audio classes with the class MultimediaFile 

which is the parent class of them. Further, an aggregation and a composition 

relationship exist for MultimediaFile class with Folder and Metadata classes 

respectively. The corresponding Java source code artefacts, unit test script artefact 

in JUnit test file format and the Maven build script associated with the case study 

building are listed in the SAT-Analyser tool web site (“SAT-Analyser,” 2018). 

User has to create user accounts in the system and login to the system. User can edit 

profile and logout anytime. Each multimedia file contains a file ID, original name, 

publicity and file type. Then user can upload multimedia files, search multimedia files, 

manage uploaded files, download and delete files. Multimedia files can be in three 

kinds such as image, video or an audio. Each multimedia file has at least one metadata 

associated. A user's all multimedia files have a folder to storage. That folder must have 

a folder ID and some metadata. Further, user can edit metadata of a multimedia file. 
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Figure 4-25 : MyDrive multimedia library system design diagram 

 

Figure 4-26 : SAT-Analyser artefact summary for MyDrive multimedia library system 

 

The identified main artefact elements by the tool SAT-Analyser are listed in 

Figure 4-26 followed by the tool generated unique identifier of each artefact. 

Further, there exist artefact sub-elements for methods, attributes (fields) and 

plugins as partially shown in Figure 4-26 with _F, _P and _M notations. Table 4.4 

summarises the manual artefact identification and categorization of MyDrive 

Multimedia Library system based on expert knowledge. 

 

Table 4.4 : Artefact categorization: MyDrive multimedia library system 

Artefact type Low Medium High 

Requirement - RQ2 RQ1, RQ3 

Design D3, D2 D4 D1, D2, D5, D6, D7 

Source code S4, S3, S7, S11, S12, 

S13 

S2, S6, S9, 

S10 

S1, S3, S5, S8, S14 

Test script UT4, UT5, UT6 UT2, UT7 UT1, UT3, UT8 

Configuration files - - BS1 
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4.4.1 Evaluation of traceability establishment component 

According to Figure 4-27, the established trace relationships are written down into 

the pre-defined XML format. For instance, it shows two intra-relationships among 

SC11: FolderInfo with its source methods SC11_M8 and SC11_M9. Figure 4-28 

provides a section of the full traceability graph for the Multimedia Library system. 

 

  

Figure 4-27 : Multimedia library system Relations.xml instance 

 

Figure 4-28 : Traceability visualization - multimedia library system 

 

Figure 4-29 : Network analysis summary - multimedia library system 

<Relation id="112"> 

        <SourceNode>SC11</SourceNode> 

        <RelationPath>SourceClassToSourceMethod</RelationPath> 

        <TargetNode>SC11_M8</TargetNode> 

</Relation> 

<Relation id="113"> 

        <SourceNode>SC11</SourceNode> 

        <RelationPath> SourceClassToSourceMethod </RelationPath> 

        <TargetNode>SC11_M9</TargetNode> 

</Relation> 
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Figure 4-29 states the tool computed centrality measures summary for the network 

analysis based traceability validation. The Maven build script artefact (BS1) shows 

the maximum closeness and the highest in-degree centrality measures. As this case 

study also has only one Maven build script which is linked with all Java source 

class artefacts, the validation result is verifiable. One of the maximum EVC 

among all types of artefacts is taken by SC9_M6 that represents the Java method 

setFolderName () in the Folder Java class as one of the highly influenced artefacts. 

4.4.2 Evaluation of continuous integration process 

We have considered three change types as follows.  

 C7: Modify a design component 

 C11: Delete a source code artefact 

 C14: Delete a unit-test artefact 

The change detection results are shown in Figure 4-30 and the corresponding CIA 

results are given in Figure 4-31. The modification of D4_F2 artefact sub-element 

has impacted on itself and associated source code artefacts. Also, the deletion of 

SC5, UT8 has impacted many artefact items, but with a lower influential factor. 

 

 

Figure 4-30 : Multimedia library system change detection window 

 

Figure 4-32 provides a section of the change propagated traceability graph 

visualization. The modified design artefact sub-element D4_F2 can be seen in a 

larger size signifying the modification while SC5 has been removed. Regarding 

the D4_F2 design sub-element’s impacted artefact set, there exist two highly 



 

137 
 

influential artefact items as SC9_M6 and SC9_M5. But they have not been 

propagated with the impact since the modified node D4_F2 itself contains a low 

influential value. Thus, the outgoing traces of a low influential impact node are 

discarded without further change propagation according to the defined CIA model. 

 

 

Figure 4-31 : Multimedia library system impact analysis window 

 

Figure 4-32 : Multimedia library system change propagation instance 

4.4.3 Performance analysis 

The corresponding accuracy results of the CIA process of this Multimedia Library 

system case study is shown in Figure 4-33. The impact set of deletion changes are 

completely identified by the SAT-Analyser tool. There is one missing item as a 

DIS element in the modification impacts as the alteration on D4_F2 may impact on 

a UT item. Accordingly, the final precision has been 1.0, recall is 0.98 and the F-

measure is 0.99. 
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Figure 4-33 : CIA statistical analysis results: multimedia library system 

 

Figure 4-34 : CIA performance analysis results: multimedia library system 

 

The performance analysis results of the CIA process for change types C7, C11 and 

C14 are given in Figure 4-34. The maximum time, memory and CPU usage has 

been reported for the C7, which is a modification change type on a design artefact 

such that D4_F2: metadata modified into D4_F2: folder metadata. The remaining 

C11 and C14 have consumed a lesser amount of resources since they both are later 

stage artefact deletions on source code and unit test artefact items, respectively, 

where a  minimum number of trace links are associated. Although the deletion of 

SC5 in C11 change type has impacted on many items, the number of paths to be 

checked in graph traversal is lesser, compared to C7 where a design artefact is 
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modified. According to the defined rule-based graph traversal for CIA, the design 

level artefacts check design level, source code level and the unit test level, whereas 

source code artefacts are only subjected to check source code level and unit test 

level paths. Hence, it is justifiable that the artefact modifications tend to consume 

more resources, when the artefact belongs to an earlier stage. 

 

4.5 Experimental results: case study 4 (Disease management system) 

This section presents an overview of the software artefacts in case study 4 with the 

obtained evaluation results by SAT-Analyser. The selected case study, S16: C-

CARE is a digital health system for chronic disease management and prevention. It 

helps health centres to manage admitted patients remotely by use of bulk SMS and 

also other citizens can subscribe to get health tips and monitor their patients 

without the patients availing themselves physically. The doctors can send SMS 

notifications to their patients either giving them appointments, advice the drugs 

they should take, food and exercises. The patients can attend to their daily jobs at 

the same time receiving treatment. Hence, this contributes to the economic growth 

of the country as opposed to when they are hospitalized. The provided text-based 

requirements are shown in Figure 4-35.  

 

 

Figure 4-35 : Disease management system description 

 

The design level class diagram in UML notation for the Disease Management system 

is illustrated in Figure 4-36. Two composition relationships among classes Doctor and 

DoctorRecords and between Patient and PatientRecords can be seen in the design 

while other relationships being associations and inheritance. 

The chronic disease management system has three types of users such as Admin, Doctor and 

Patient. Admin, each doctor and each patient has an associated login to system. There should be 

a username and a password to login. Every doctor who sign up with system must provide first 

name and last name. Each doctor has doctor records in a doc table. Every patient who sign up 

with system must provide full name and system generates an ID for each patient. Each patient 

has patient records in a table inside the system. Doctor and admin can access patient records 

and admin can access doctor records too. There is a SMS facility named healthSMS. Every 

patient can send SMS to doctors via the system's healthSMS. Doctors can view patient 

messages via the system's healthSMS. The healthSMS needs receiver, phone number and 

message to process. Each patient can be in two types such as a selected patient or an admitted 

patient. Admitted patients can prefill doctors. Also, admitted patients have admission details 

separately. Admin can access healthSMS. 
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Figure 4-36 : Disease management system design diagram 

 

Moreover, the associated source code, unit test and Maven build script artefacts of 

the case study are provided in the SAT-Analyser tool web portal (“SAT-

Analyser,” 2018). The tool identified artefact elements are listed in Figure 4-37 

with the unique identifier of each artefact. Further, there exists artefact sub-

elements for methods, attributes and plugins as partially shown in Figure 4-37 with 

_F, _P and _M notations. Table 4.5 summarises the manual artefact identification 

and categorization of Disease Management system based on expert knowledge. 

 

 

Figure 4-37 : SAT-Analyser main artefact summary for disease management system 

 

Table 4.5 : Artefact categorization: disease management system 

Artefact type Low Medium High 

Requirement RQ3 RQ5 RQ1, RQ2, RQ4 

Design - D6, D10 D1, D, D3, D4, D5, D7, D8, D9 

Source code SC11 SC5, SC6, SC7, SC10 SC1, SC2, SC3, SC4, SC8, SC9 

Test script UT11 UT5, UT6, UT7, UT10 UT1, UT2, UT3, UT4, UT8, UT9 

Configuration  - - BS1 
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4.5.1 Evaluation of traceability establishment component 

 

Figure 4-38 : Disease management system Relations.xml instance 

 

Figure 4-38 shows a part of the established relations in XML predefined format in 

the source to the target structure. Three of the source classes to unit test class 

relations are shown therebetween Login-LoginTest, Selectedpatient-

SelectedPatientTest and PatientRecords-PatientRecordsTest. 

 

 

Figure 4-39 : Traceability visualization - disease management system 

 

Figure 4-39 shows a part of the traceability graph for the Disease Management 

system. The relationship between RQ5, SC5 and D6 can be clearly seen that 

denotes the HealthSMS feature’s requirement, source class and design class. 

<Relation id="77"> 

        <SourceNode>SC6</SourceNode> 

        <RelationPath>SourceClassToUnitTestClass</RelationPath> 

        <TargetNode>UT6</TargetNode> 

</Relation> 

<Relation id="78"> 

        <SourceNode>SC9</SourceNode> 

        <RelationPath>SourceClassToUnitTestClass</RelationPath> 

        <TargetNode>UT9</TargetNode> 

</Relation> 

<Relation id="79"> 

        <SourceNode>SC8</SourceNode> 

        <RelationPath>SourceClassToUnitTestClass</RelationPath> 

        <TargetNode>UT8</TargetNode> 

</Relation> 



 

142 
 

 

Figure 4-40 : Network analysis summary - disease management system 

 

Figure 4-40 states the SAT-Analyser tool computed centrality measures summary 

for the network analysis based traceability validation. One of the minimum 

betweenness and closeness centrality are obtained by the RQ4: Admin as its 

having a lack of attributes and methods in each artefact category that results in 

having a lesser number of relationships comparatively. 

4.5.2 Evaluation of continuous integration process 

Following two change types are applied to this Disease Management case study. 

 C1: Add a main requirement  

 C3: Add a low importance requirement 

 

A newer main requirement is added as requiring a Nurse and a lower importance 

requirement is specified as having a Timetable for a Nurse. The other remaining 

artefact types such that design, source code, test files and build script artefacts are 

supposed to be modified accordingly when an artefact addition is integrated. 

Figure 4-41 shows the detection of added main and lower requirement elements. 

Accordingly, the calculated change impact analysis results are shown in Figure 4-

42. Due to not modifying the other artefact types along with the requirement 

artefact addition, it accurately shows that currently no impact of the newly added 

two requirements on others.  
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Figure 4-41 : Disease management system change detection window 

 

Figure 4-42 : Disease management system impact analysis window 

 

The change propagation results of this scenario are shown in Figure 4-43. It can be 

clearly seen that RQ6: Nurse and RQ6_F1: timetable have intra-relationships. 

Also, there are no inter-relationships since no modifications are submitted on other 

artefact types along with these two requirement additions. 

 

Figure 4-43 : Disease management system change propagation instance 
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4.5.3 Performance analysis 

The accuracy of the CIA process in the Disease Management system case study is 

shown in Figure 4-44. As the modifications on other artefact types are not 

incorporated during the CI activity of the added changes, there exist missing 

impact identifications. Hence, the addition of RQ6 and RQ6_F1 must impact on a 

design, source code and a unit test item. The final precision has been 1.0 since the 

identified EIS is accurate though the recall and F-measure are lower due to 

missing DIS items which would be higher when adding all the artefacts during an 

addition change type following the SAT-Analyser’s CI constraint.  

 

 

Figure 4-44 : CIA statistical analysis results - disease management system 

 

The performance analysis of the applied change types C1 and C3 on Disease 

Management system are provided in Figure 4-45. Since C1 is about adding a main 

requirement artefact item such as RQ6: nurse it has shown a higher resource 

consumption than the other C3: lower importance requirement item addition such 

as RQ6_F1: timetable. The reason for the significant difference in these two 

changes though both are the same change type is in accordance to the CIA 

algorithm 3:11. Accordingly, if the changed artefact item is a sub-element it is 

supposed to check a lesser number of paths than a main artefact element. 

Therefore, the RQ6 addition is consuming a considerable resource amount while 

RQ6_F1 is lesser as an artefact sub-element. 
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Figure 4-45 : CIA performance analysis results: disease management system 

4.6 Experimental results: case study 5 (E-School management system) 

As the fifth case study, we have selected, S8: E-School Management system that 

handles the student, teacher and subject courses workload within a domain of a 

school. It helps for data management in the school’s management level activities 

and student activities by allowing to store student, teacher, course details and 

letting students enrol in courses. The requirements are shown in Figure 4-46.  

 

Figure 4-46 : E-School management system description 

 

The corresponding UML class diagram is shown in Figure 4-47. It contains six 

classes with inheritance for Person categorized as Student and Teacher. Two 

composition relationships exist between PersonList, Person and CourseList, 

Course. The remaining artefacts involved in the case study such that source code, 

unit test script and build script are provided via the SAT-Analyser web site (“SAT-

Analyser,” 2018). The identified main artefact elements by the tool SAT-Analyser 

are listed in Figure 4-48 followed by the tool generated unique identifier of each 

artefact. Further, there exist artefact sub-elements for methods, attributes (fields) 

and plugins as partially shown in Figure 4-48 with _F, _P and _M notations.  

eSchool management system handles a person list and a course list. There are two main 

types of person in the system as teacher and student. System checks whether a person is 

logged. Admin can handle person list, delete users and search users. Each person must 

provide name, dob and address. Then, a person can login, see profile, set password, and get 

new course details. A teacher has a staff main page to view and a student has a student main 

page to view. Student can enroll to courses. System checks the eligibility of a student and 

grant permission to enroll to requested course. The course list contains courses. Admin can 

update courses, delete courses and check course fees. A course contains a course name, 

course Id, beginning date, finishing date and a fee. Teacher can enroll to subjects to teach. 
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Figure 4-47 : E-School management system design diagram 

 

 

Figure 4-48 : SAT-Analyser main artefact summary for E-School management system 

 

Table 4.6 summarises the manual artefact identification and categorization of E-

School Management system based on expert knowledge such as by a requirement 

engineer/ software engineer. 

 

Table 4.6 : Artefact categorization: E-School management system 

Artefact type Low Medium High 

Requirement RQ1 RQ7, RQ8 RQ2, RQ3, RQ4, RQ5, 

RQ6 

Design - D5, D6 D1, D2, D3, D4 

Source code SC10 SC1, SC3, SC4, SC5, 

SC9 

SC2, SC6, SC7, SC8, SC11 

Test script UT10 UT1, UT3, UT4, UT5, 

UT9 

UT2, UT6, UT7, UT8, 

UT11 

Configuration files - - BS1 
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4.6.1 Evaluation of traceability establishment component 

The established traces are first written into a Relations.xml file as represented in 

Figure 4-49 having a source-target tag structure. For example, it shows two 

relations from SC8: Enroll and SC10: MyProfile source classes to the BS1: 

project’s Maven build script artefact. Figure 4-50 provides a section of the 

traceability graph for the E-School Management system.  

 

 

Figure 4-49 : Relations XML format of traceability establishment - E-School system 

 

Figure 4-50 : Traceability visualization – E-School management system 

 

Figure 4-51 shows the SAT-Analyser tool computed centrality measures summary 

for the network analysis based traceability validation. The node RQ6 (admin) has 

got the minimum betweenness centrality which is acceptable since it is isolated 

without relationships with other heterogeneous artefacts; design and source code 

as in Figure 4-50 evidently. 

<Relation id="97"> 

        <SourceNode>SC8</SourceNode> 

        <RelationPath>SourceClassToBuildscriptClass</RelationPath> 

        <TargetNode>BS1</TargetNode> 

</Relation> 

<Relation id="98"> 

        <SourceNode>SC10</SourceNode> 

        <RelationPath>SourceClassToBuildscriptClass</RelationPath> 

        <TargetNode>BS1</TargetNode> 

</Relation> 
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Figure 4-51 : Network analysis summary – E-School management system 

4.6.2 Evaluation of continuous integration process 

We have considered two change to analyse the impact in the E-School 

Management case study; C8: Delete a design component and C16: Modify a 

configuration artefact. The change detection results are shown in Figure 4-52 

while the corresponding CIA results are provided in Figure 4-53. The deletion of 

D4: Teacher design artefact has impacted on its existed own method (D4_M1). 

However, the modification performed on BS1_P6 plugin name has not impacted 

on any other as it’s a leaf node having no outgoing edges to propagate even though 

its own influential factor is high. 

 

 

Figure 4-52 : E-School management system change detection window 
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Figure 4-53 : E-School management system impact analysis window 

 

The part of the change propagated traceability graph is shown in Figure 4-54. The 

nodes D4 and its impacted D4_M1 has been removed while BS1_P6 is modified. 

 

 

Figure 4-54 : E-School management system change propagation instance 

4.6.3 Performance analysis 

The impact sets accuracy of the E-school Management case study are measured 

using the statistical metrics as shown in Figure 4-55. The precision has been 

obtained as 1.0 since the identified all impact items are accurate. However, there is 

a lower recall and F-measure due to lacking two impact items with respect to the 

deletion impact items. The deletion of D4 must impact on an SC and a UT item 

though they have not been identified by the SAT-Analyser tool due to missing 

traceability establishments which can be improved with more rigorous NLP and 

name entity recognition techniques.  
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Figure 4-55 : CIA statistical analysis results: E-School management system 

 

Figure 4-56 shows the performance analysis results with respect to time, memory 

and CPU consumption occupied by the change types C8 and C16 applied on E-

School Management system. The C16 modification change type performed on a 

build script artefact item has occupied a higher elapsed time while the memory and 

CPU consumption remains equivalent for both C8 deletion and C16. It is again 

noticeable that artefact modification is requiring a higher resource allocation 

comparing to deletion and addition as further justified in previous case studies 

performance results. 

 

Figure 4-56 : CIA performance analysis results: E-School management system 
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4.7 SAT-Analyser performance analysis 

This section provides an overall evaluation of the SAT-Analyser tool considering 

all five case studies’ results in summary. 

4.7.1 Traceability establishment performance 

The overall traceability generation performance for the five case studies is shown 

in Figure 4-57 in terms of elapsed time, memory and CPU consumption. The total 

artefact count of each project is shown beneath each bar in the graphs.  

 

 

Figure 4-57 : SAT-Analyser traceability establishment performance 

 

The third case study Multimedia Library system has occupied the maximum time 

and CPU consumption since it lacks many possible traces due to naming 

differences in artefact types. For instance, there exists a design class called User 

but lacks a source class with any similar name. Thus, the traceability establishment 

of the tool which relies on the string comparison consumes more time and CPU by 

performing string matching rigorously. However, it consumes less memory since a 

smaller amount of matching traces is resulting due to the same reason of naming 

differences. The least number of artefacts included two projects POS: 90 artefacts 

and Disease Management: 128 total artefacts are consuming the least amount of 

resources. Further, the second highest resource consumption is occupied by the 

maximum number of total artefacts holder, E-School Management: 252 project. 
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4.7.2 Accuracy evaluation of change detection component 

Table 4.7 provides a summary for the accuracy of XML comparison based change 

detection process in SAT-Analyser, where the applied change types versus tool 

identified change types are listed. All the applied change types have been 

accurately detected by the tool ranging from 5 to 2 change counts at a time. 

 

Table 4.7 : Change detection component accuracy evaluation 

 

Project title 

The actual number of 

occurrences of 

artefact- changes/ 

commits within the 

CI process 

Number of changes 

detected by the tool 

(automated by SAT-

Analyser) 

1 POS system C4, C9, C10, C12, C15 C4, C9, C10, C12, C15 

2 Tour management system C2, C5, C6, C13, C17 C2, C5, C6, C13, C17 

3 Multimedia library system C7, C11, C14 C7, C11, C14 

4 Disease management system C1, C3 C1, C3 

5 E-school management 

system 

C8, C16 C8, C16 

 

4.7.3 Accuracy evaluation of impact analysis component 

The statistical analysis results of CIA process in each case study project are 

summarized in Table 4.8.  

 

Table 4.8 : Change impact analysis component accuracy evaluation 

Project title 
Change 

type 

Identifi

ed 

impact 

set by 

the tool 

(EIS) 

Actual 

impact 

set 

(AIS) 

Non 

identified 

correct 

impact 

set (DIS) 

Statistical analysis for the 

accuracy of impact analysis 

Preci

sion 

Recall F-

Measure 

POS system Addition 3 3 1 

1.0 0.95 0.97 Modification 34 34 1 

Deletion 0 0 0 

Tour 

management 

system 

Addition 3 3 5 

1.0 0.86 0.93 Modification 2 2 0 

Deletion 27 27 0 

Multimedia 

library 

system 

Addition 0 0 0 

1.0 0.98 0.99 Modification 4 4 1 

Deletion 36 36 0 

Disease 

management 

system 

Addition 2 2 3 

1.0 0.4 0.57 Modification 0 0 0 

Deletion 0 0 0 

E-school 

management 

system 

Addition 0 0 0 

1.0 0.5 0.67 Modification 1 1 0 

Deletion 1 1 2 
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The POS, Tour Management and Multimedia Library system ranging from Small 

to Medium scale have shown a higher accuracy in terms of precision, recall and F-

measure. The Disease Management and E-School Management system have 

shown a reduction in recall and F-measure due to not following the SAT-

Analyser’s defined CI constraint and lack of applied NLP capabilities respectively 

which can be improved in future. The advanced NLP features, information 

retrieval techniques and deep learning capabilities can be applied to handle the 

situations with meaningless artefact names and inconsistent naming conventions 

which currently affect the results according to String comparison approach in 

traceability. Nevertheless, the precision has been 1.0 in all five case studies 

successfully. 

4.8 Usability of the extended SAT-Analyser tool 

The usability of a tool has to be assessed with practitioners in the considered 

domain (Bangor, Kortum, & Miller, 2009). We have used the System Usability 

Scale (Brooke, 2013) that is a researched usability assessment Likert scale, to 

evaluate the usability of prototype tool SAT-Analyser involving DevOps 

practitioners in the industry from various software companies as listed in 

Appendix E. 

 

SUS is a standard reliable tool to measure a system usability with a pre-defined set 

of questions along with a provided set of answers for each. Participants’ every 

single response is quantified based upon the selected answer option following a 

pre-defined fixed scale and output a final average score in the range of 0-100. 

Scores above 68 are considered as having an above average usability level while 

below 68 as an average usability level.  

 

SAT-Analyser prototype tool in this research work is highly focused on the CIA in 

software artefact traceability for DevOps based on a novel theoretical model that 

supports CICD pipeline. Thus, SAT-Analyser can be categorized as a prototype-

level support tool for DevOps tool stack having unique features that the existing 

tools in DevOps tool stack do not facilitate. The tool is live demonstrated 

interactively with Q/A sessions and given the standard SUS questionnaire among a 
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total of 20 DevOps practitioners. The questionnaire consists of 10 items consisting 

of 5 positive statements and 5 negatives. Each has 5 level options to respond 

ranging from strongly disagree to strongly agree as provided in appendix B with 

all received individual responses.  

 

Figure 4-58 shows a summary of the responses for 5 positive SUS statements and 

Figure 4-59 depicts the analysis of the responses obtained for 5 negative 

statements. Consequently, a final overall SUS score of 62.5 is obtained signifying 

the tool SAT-Analyser usability level as Average in terms of user experience at 

front-end which is mainly based on Human-Computer Interaction (HCI) aspects. 

 

Majority participants in the usability study experienced the notion of traceability 

and CIA for the first time. They had a new experience of the features including 

traceability creation, visualization, validation, change detection, CIA, change 

propagation and PM all in a single tool that supports continuous integration in 

DevOps practice. Figure 4-58 indicates the highest value for Well integration and 

least for Confidence in using the tool accordingly. Moreover, their lack of 

awareness in the traceability aspects depicts in Figure 4-59 as the highest agreed 

percentage is for the statement of Need prior learning.  

 

 

Figure 4-58 : SUS positive responses analysis 
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Figure 4-59 : SUS negative responses analysis 

 

In addition, an extra option is provided in the same survey for the participants to 

respond as a selection of three most relevant words that best describe their own 

perspective about SAT-Analyser among 20 tool related term choices as in 

appendix B. A tag cloud which stands as a methodology to visualize user feedback 

attractively is generated based on those user selections. As shown in Figure 4-60, 

the most emphasized terms about SAT-Analyser tool by participants are 

Traceability, Supportive and Improvable which derive a positive level of user 

satisfaction about the tool SAT-Analyser denoting a future direction to enhance 

the usability beyond a prototype-level with more HCI aspects. 

 

 

Figure 4-60 : SAT-Analyser usability tag cloud 
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Section 5 

5 Discussion 
 

 

5.1 Feature analysis of SAT-Analyser in practice 

The industry level software development environments highly embrace Agile 

principles and transform into DevOps practices. The nature of CICD in DevOps 

practices drives software projects in any domain and any scale towards successful 

ROI benefits. However, adapting to operational level in DevOps practice is 

challenging due to the lack of formalism compared to traditional software models. 

Therefore, the requirement of having traceability support in a DevOps 

environment is significant than in a traditional software development environment 

which is addressed in this research work further with CIA.  

 

The feature selection of the proposed SAT-Analyser tool is based on an initial 

survey conducted among DevOps practitioners. We can consider the requirements 

written in natural language as it is the industry practice. UML class diagrams were 

selected as the code base is dependent on that. Unit testing is used, as it tests the 

individual functionalities for errors. Considering the continuous integration tasks, 

we have set up the scheduler with different options: automated fixed intervals, 

dynamically and manually to detect the changes as necessary, to avoid overhead 

and reduce the cost. In current practice, change detection is defined mainly for 

source code changes and no proper tools to automated detectors for other artefact 

changes. Source code change detection tools that industry is aware of are Jenkins 

Cron Job, ServiceNow, JIRA Service Desk, ServiceNow. SAT-Analyser detects 

changes of all artefacts not being limited to the source code. We also gave 

prominence to source code changes, since it is the most affected artefact. Github 

repository paths, Jenkins are configured with the tool for that. Also, we have 

performed change detection for rest of the artefacts as any artefact can be changed 

in DevOps such as a requirement and design change. Thus, our tool supports 

traceability management for all the major artefact types and can be extended for 

remaining sub artefacts as well. 
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According to the survey, 66.7% accepts that traceability handling might be useful 

while rest is unaware of the concept of traceability. Thus, we have represented 

traceability with graph-based interactive and analytical visualization. Traceability 

graph is the most used trace representation mechanism according to the literature.  

 

Many analytical approaches can be conducted on graphs using graph theories and 

mathematical models which we have used for CIA. 33.3 % reported that they do 

not use an impact analysis for changes and rest is having a vague idea about CIA 

methods due to lack of knowledge. CIA limitations that lead to not practising in 

the industry are suggested as being time consuming and hardship in calculating the 

exact impact. We have used a dependency-based CIA with a mathematical 

weighting scheme model using EVC based on the influential factor of an artefact. 

Dependency-based methods are discussed in the literature and ideal for graph 

calculations. Network analysis centrality measures are selected due to the 

significant performance and variety of metrics. We have calculated the CIA with a 

minimal cost and complexity with a rule-based algorithm. CIA rules are defined 

considering the practical dependency scenarios by avoiding calculation overhead 

and only proceeding with higher impact artefact items to increase performance. 

 

In practice, change propagation methods are automatically deployed to the Jenkins 

server and used pre-defined protocols and policies specific to the company. 

Change propagation is crucial for decision making and hence traceability graphs 

are re-visualized for every change propagation. Continuous integration is 

performed frequently using tools such as Jenkins, CodeDeploy, CodePipeline, 

Puppet, Jira, TravisCI, and TeamCity. In order to support it, SAT-Analyser is 

integrated with Jenkins and Docker for deployment activities due to wide usage of 

them and with the GitHub repository with opensource facilities. Additionally, our 

tool is integrated with the popular project management tool Trello, as it provides 

free Agile Kanban boards, thus support CICD pipeline. Finally, we have shown 

the applicability of the tool for different project scales and domains, using case 

study evaluation.  
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Since the software industry mainly uses Jenkins to support continuous integration, 

Table 5.1 gives a comparison of Jenkins with the proposed tool SAT-Analyser. 

 

Table 5.1 : Comparison between Jenkins and SAT-Analyser for CI 

Jenkins SAT-Analyser Tool 

Pros Cons Pros cons 

Source code change 

detection. 

Consider only 

source code. 

Source code, requirement, 

design, unit test, build 

script change detection. 

Pre-processing 

time complexity. 

Build automation 

with scheduling. 

No traceability 

support. 

Traceability support for 

all artefacts.  

- 

Open source. No impact 

analysis. 

CIA for every change 

detection. 

Prototype level 

tool. 

Support any scale 

projects. 

- Better performance with 

small to medium scale 

projects. 

Scalability issues 

in artefact pre-

processing. 

Project deployment 

with many integrated 

plugins support. 

Lack traces, 

change 

propagation 

visualization. 

Traces, changes with 

impact are visualized in 

graph format. 

- 

 

The existing industry perspectives in DevOps practice for traceability, change 

detection, change impact analysis, change propagation and CI over the SAT-

Analyser solutions are summarized in Table 5.2.  

 

Table 5.2 : Industry level traceability management vs. SAT-Analyser tool 

Feature Industry practice SAT-Analyser tool 

Traceability 

establishment 

and 

visualization. 

No proper tools. String similarity based traceability 

establishment with graph-based 

visualization. Network analysis 

and statistical analysis based 

traceability validation. 

Change 

detection. 

No proper tools to auto-detect 

changes of every artefact. Use 

monitoring tools to detect failures in 

Jenkins for source code building. 

Detect changes for every artefact 

for every integration using XML 

based comparison. 

Impact 

analysis. 

Manually decide the range of 

affected artefacts in code level, 

Lacks CIA. Time-consuming and 

hard to calculate the exact impact. 

Calculate the level of impact as 

high or low for every change 

detection using Eigenvector 

centrality. 

Change 

propagation. 

Automatically deploy to the server 

with Jenkins. Use pre-defined 

protocols to manage code. 

Propagate changes according to 

impacts and re-visualize in a 

traceability graph. 

Continuous 

integration. 

Jenkins as an ideal solution for 

source code integration with build 

automation.  

Integrated with Jenkins and source 

code management repository 

(GitHub) integrated CI along with 

PM facility using Trello. 
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According to Table 5.2, change detection and CI are addressed in tool level in the 

industry, mainly with Jenkins and source code management without considering 

other artefact types. The industry perspective of traceability management is less 

and they believe impact analysis as a challenge. In contrast, SAT-Analyser tool 

provides the ability in each activity integrated with DevOps tools stack. Table 5.3 

validates the SAT-Analyser capabilities over mostly cited traceability management 

tools encountered in literature as discussed in Chapter 2. Thus, the limitations in 

those tools such as lack of heterogeneous artefact support, change detection, CIA 

for heterogeneous artefacts, change propagation, IDE independency are 

successfully solved in the SAT-Analyser prototype tool. 

 

Table 5.3 : Existing traceability management tools vs. SAT-Analyser 

Tools Tra

ce

ME 

IBM 

DO

ORS 

Trac

eAna

lyzer 

LDRA-

TBman

ager   

Arch

Evol 

SAT-

Analy

ser Features 

Requirement traceability √ √  √  √ 

Design level traceability √  √  √ √ 

Heterogeneous artefact traceability √  √ √  √ 

Traceability visualization  √ √  √ √ 

Traceability validation      √ 

CI/ scheduling/ versioning  √  √ √ √ 

Change detection      √ 

Change impact analysis √ √    √ 

Change impact analysis validation      √ 

Change propagation visualization      √ 

Consistency management, Project 

management 
 √    √ 

DevOps tools stack supportability      √ 

IDE independence      √ 

Tool performance analysis      √ 

 

The approach we designed and developed as SAT-Analyser tool, supports 

traceability management of software projects in both traditional and Agile based 

process. It is specifically, designed to facilitate requirements in DevOps 

environment with CICD concepts. The identified major differences in traditional 

software re-development versus DevOps environments are acceptance of artefact 

changes and collaborative behaviour. In traditional software development, the 

frequency of artefact changes is minimal due to the sequential nature, where the 

artefact changes are not accepted at a later stage of SDLC. Thus, in general 

software development, the traceability and impact analysis process are required 
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only at the beginning and end of the process. Hence, the requirement of 

incorporating the CI features with scheduling and versioning included in this 

research work would be lesser significant in a traditional software development 

process, while the traceability model would be equally important as for DevOps. 

Hence, the frequency of change detection, their impact analysis and change 

propagation, visualization, team collaboration and validation features included in 

this research work are uniquely useful and supports continuous integration in 

DevOps practice. Thus, these features of the research work SAT-Analyser are 

actively useful for the daily usage of CICD pipeline in a DevOps environment 

since any artefacts change is always welcomed at any stage of SDLC.  

 

In contrast, the features of CI, change detection, CIA, change propagation, PM 

notifications are uniquely useful for DevOps environments as the artefacts 

management is having the utmost importance due to collaborative team-based 

nature. Thus, these features of the research work SAT-Analyser are actively useful 

for the daily usage of CICD pipeline in a DevOps environment since any artefacts 

change is always welcomed at any stage of SDLC. 

5.2 Analysis of the usability study based evaluation 

The theoretical traceability and CIA model are mainly focused in this research 

work while usability aspects are scoped into the prototype SAT-Analyser tool. The 

usability of the research outcome SAT-Analyser prototype is evaluated based on 

standard SUS score methodology with the involvement of DevOps practitioners in 

the software industry.  

 

An overall 62.5 SUS value is obtained from 100.0 representing the SAT-Analyser 

prototype tool usability level as Average. Usability is important in deploying the 

SAT-Analyser tool as an industry tool since it contributes to the DevOps tools 

stack consists of a large number of dynamic tools evolving rapidly. Thus, the 

usability features of SAT-Analyser can be refined more with better performance 

parameters such as speed, memory consumption, as well as by integrating HCI 

principles in front-end for both stand-alone desktop version and web-based version 

in transforming it from prototype-level to a standard industry-level tool. 
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5.3 Mapping of the objectives and the methodology 

The research problem addressed in this research project is to obtain software 

artefact change impact analysis in traceability especially for DevOps environments 

having frequent continuous integrations, where Agile principles are practically 

applied deviating from traditional sequential software development patterns. The 

research statement was defined consisting of several research questions;  

 how to enable software artefact synchronization since multiple artefacts are 

highly affected all the time in a DevOps environment and  

 how to maintain consistency among all artefacts with CIs. 

  

Therefore, the research objectives are defined into each unique milestone in the 

research, each having a detailed technical methodology for, traceability 

management, artefact change detection in CIs, CIA and change propagation in 

DevOps as illustrated in Figure 5-1. Thus, the research milestones are achieved in 

the form of a prototype traceability tool SAT-Analyser as the proof-of-work. 

 

 

Figure 5-1 : Research objectives-methodology-results mapping 

5.4 Limitations 

The traceability establishment and traceability visualization remain challenging in 

large scale software projects, where a large number of artefacts and relationships 

are expectable. The JavaScript D3.js based interactive visualization shows a 

lighter weight compared to the other two visualizations used in this research 

namely Neo4j, Gephi based visualization and Python network analysis based 
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visualization. The traceability establishment in this research work faces the main 

limitation due to restrictions in NLP over practical issues such as meaningless 

artefact naming, different naming conventions. That limitation exists even in the 

use of NLP with dictionary ontologies and WordNet databases. 

 

Moreover, the computation of CIA is limited to Eigenvector centrality in this 

research work that is subjected to be contradictory with expert-based impact 

values. As one of the solutions, we have provided the user alteration capability in 

CIA results. Furthermore, the performance of the SAT-Analyser traceability tool 

of this research work is limited due to the intermediate use of XML for the artefact 

data extraction process that also affects the CI scheduling capabilities of the tool. 

Hence, more dynamic CI scheduling features can be supported to improve the 

artefact pre-processing and traceability establishment performance. 

5.5 Future work 

This study can be extended in many directions. Performance and accuracy of the 

traceability establishment can be enriched with advanced NLP features, 

information retrieval techniques and deep learning capabilities. This would be a 

significant future improvement to facilitate traceability support regardless of 

project scale. Traceability visualization with better scalability is another promising 

future work. Also, integrating the three visualization variations provided in SAT-

Analyser together would be useful. Moreover, the supported artefact types can be 

extended with more sub artefact categories such as support for other programming 

languages other than Java as the tools stack in DevOps environments are more 

dynamic with latest technologies. Another major future research direction would 

be improving the CIA model, which is based on eigenvector centrality in network 

analysis that shows the influential value of a node or a link. Further, SAT-

Analyser can be extended for a function such as a software quality assessment tool 

that assesses the quality of the design and code. In addition, the usability aspects 

of the tool can be improved into an industry-level DevOps supportive tool by 

integrating HCI concepts along with refined performance parameters. 
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5.6 Conclusion 

This research has addressed traceability management of heterogeneous software 

artefacts covering all the stages of SDLC, with change impact analysis to cope 

with continuous integrations in DevOps practices. Initially, the raw artefacts were 

processed using string comparison and NLP, and traceability links were 

established between the extracted artefacts. The traceability visualization is 

developed in three views, Gephi-based informative, Python-based analytical and 

JavaScript-based interactive. The traceability validation process is based on the 

network analysis centrality measures and statistical accuracy measures. The 

continuous integration tasks are combined with supporting processes including 

collaboration with DevOps tool stack, scheduling algorithms, versioning, XML-

based artefact change detection, weighting scheme based CIA model for artefact 

impact computation, graph-based change propagation and project management to 

maintain the artefact consistency.  

 

The DevOps support is ensured in traceability establishment by providing 

heterogeneous artefact support for each major stage in SDLC such that 

requirements artefact, design, code, unit test and build script artefacts. Traceability 

visualization is enhanced in three variations to overcome scalability issues and to 

fasten decision making since time is critical in a more collaborative DevOps 

environment. Due to the extra cost of traceability management, the validation of 

traceability results is identified to be important in DevOps, where a higher number 

of tools stack is always actively in use.  

 

Change impact analysis, which is a result of artefact changes accepted during 

software development in a DevOps environment in following continuous 

integration is a core part of this research work. Hence, it supports the CICD 

pipeline concept following change detection, change impact analysis, change 

propagation and consistency management with project management features.  The 

weighting scheme based on a mathematical model is used for CIA. It has used 

eigenvector centrality measure that captures the level of importance in each 

artefact with respect to all artefacts. A rule-based scenario is adapted for graph 
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traversal paths and further user alteration is used to improve the accuracy. 

Traceability is re-visualized based on impact values according to the CIA.   

 

The research work is evaluated using real software projects based case studies in 

different scales and user acceptance interview and survey among industry DevOps 

practitioners. The results have shown the usefulness of the research outcome for 

the software engineering domain as a migration from theoretical principles to 

practical use since there is a hindrance of the awareness about CIA and traceability 

in the current industry. Further, the SAT-Analyser tool is featured with web-based 

with multi-user accessibility to allow DevOps teams to use the tool actively along 

with DevOps tools stack. 
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Appendix A: Initial survey 

 
 

Questionnaire 

 

1. Please indicate your gender 
o Female 

o Male 

o Prefer not to say 

2. What is your age group? 
o 18 - 24 years 

o 25 - 29 years 

o 30 - 34 years 

o 35 - 39 years 

o 40+ years 

3. Please indicate your highest educational level 
o Diploma 

o Bachelor Degree 

o Master Degree 

o Professional 

o Other 

4. Which of the following best describes your role?  
o Programmer/ Junior level 

o Quality Assurance level 

o Deployment level 

o Operational level 

o Other:____________ 

5. How long you have been working with DevOps?  
o Less than 1 year 

o 1 - 3 years 

o More than 3 years 

6. What are the involved software artefacts for stages in SDLC?  

7. Please specify other artefacts you use if any:_______________ 

8. What is/are the involved programming language(s)?  
o Java 

o Python 

o C/C++ 

o Other:____________ 

9. What types of tests are conducted?  
o Unit tests 

o Integration tests 

o Functional tests 

o Regression tests 

o Other:____________  
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Change Management: Regarding the change management in your 

DevOps environment. 

10. How often do you check for software artefact (source code/ design etc) 

changes? 

11. What is/are the tool(s) used for change detection/ change management?  

12. How do you handle the traceability? (Manually/ Tools used/ Do you visualize 

traceability?)  

13. Is it helpful to have a traceability tool with visualization?  

14. What are the limitations you experience in detecting changes? 

15. How do you propagate changes and limitations (if any)?  

16. How do you analyse the impact of changes?  
o Dependency-based calculation 

o Traceability-based calculation 

o Static analysis 

o Dynamic analysis 

o Manually 

o We don't do 

o Other:____________ 

17. What are the limitations you experience in analysing impacts? 

Continuous Integration: Regarding Continuous Integration in 

your DevOps environment. 

18. How often do you perform continuous integrations?  
o Very frequently-anytime 

o Hourly 

o Daily-Once in a day 

o Other:____________ 

19. How do you perform Continuous Integration process and limitations (if any)?  

20. What are the Continuous Integration/ Continuous Delivery/ DevOps tools you 

use?  
o CVS: Github/ Bitbucket 

o Jenkins 

o Puppet 

o Jira 

o Travis CI 

o Docker 

o Other:____________ 

21. What types of projects are done with DevOps practices?  
o Small scale projects (i.e. less than 5 OOP classes) 

o Any scale project 

o Any domain project 

o Other:____________ 

22. What is the maximum number of classes involved in a project you have done 

using DevOps? (eg. number of classes in the class diagram/ number of classes 

in the source code)  

23. What are the difficulties you face in working with DevOps?  
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Summary of responses for the initial survey 

Involved artefacts: 

Artefact 
Requirement

s engineering 
Design 

Develop

ment 
Testing 

Configur

ation 
Deployment Operations 

SRS 

document 

X       

User stories X X      

Story cards X X      

Class 

diagram 

X X      

Use case 

diagram 

X X      

sequence 

diagram 

X X      

Other design 

diagrams 

X X X     

Source code   X     

Build scripts   X  X X X 

Test cases    X    

Test scripts    X    

Configuratio

n/ 

dependency 

files 

    X   

Deployment 

scripts 

    X X X 

Cloud 

integration 

scripts 

    X X X 

User manuals     X X X 

Containerize

d images 

     X  

KB articles       X 

Monitoring/ 

synthetics 

      X 

  

Programming languages: 
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Testing types: 

 
 

Change detection frequency: 

 Automatically Hourly 

 Manually Weekly 

Change detection tools: 

 Jenkins Cron Job 

 ServiceNow 

 JIRA Service Desk 

 ServiceNow - to manage tickets 

Traceability handling methods: 

 Jenkins 

 Custom audit tools/ CloudTrail 

Usefulness of Traceability and Visualization: 

 

Change detection limitations:  

 With Jenkins this is done automatically 

 No proper tools to auto detect changes, Just monitoring tools to detect 

failures 

Change propagation methods: 

 Automatically deploy to the server with Jenkins 

 Using pre-defined protocols and policies defined by the company 
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Impact analysis methods: 

 

Impact analysis limitations: 

 Time consuming 

 It’s hard to calculate the exact impact 

CI frequency: 

 Very frequently-anytime 

CI methods: 

 Jenkins - No limitations encountered as we do CI/CD  

 Tools: Jenkins, CodeDeploy, CodePipeline, TravisCI, TeamCity 

 

CI / CD / DevOps tools chain: 

 CVS: Github, BitBucket; Jenkins; Puppet; Jira; Travis CI; Docker; Code 

Pipeline; OpsWorks; Octopus; TeamCity 

 

DevOps suitability: 

 

DevOps limitations: 

 Adapting to Operational role at times is difficult 

 Broader domain. You need to have excellent knowledge in programming, 

networking, OS and storage domains to practice 
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Appendix B: User acceptance survey 
 

Questionnaire for the interview (post-interview) 

 

 Strongly  

Agree 

Strongly 

Disagree 

1. I think that I would like to use this system 

frequently  

2. I found the system unnecessarily complex 

 

3. I thought the system was easy to use                      

  

4. I think that I would need the support of a 

technical person to be able to use this system  

 

5. I found the various functions in this system were 

well integrated 

6. I thought there was too much inconsistency in 

this system     

 

7. I would imagine that most people would learn to 

use this system very quickly    

 

8. I found the system very cumbersome to use 

    

9. I felt very confident using the system 

  

10. I needed to learn a lot of things before I could 

get going with this system   

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5  

11. Please underline 3 words that best describe your impression/ idea/ quality of the tool 

Poor Average Usable Efficient  Novelty 

Prototype Good Adaptable Accuracy Originality 

Slow Excellent Decision-making Analysis Simplicity 

Improvable Innovative Supportive Traceability Collaborative 
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Summary of responses for the interview 

The SUS calculation values (SUS score) for all the responses obtained from 20 

participants (P) for each question (Q) averaged to a final SUS score of 62.5.  

 

Participant Q 1 Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Q 8 Q 9 Q 10 SUS score 

P1 4 4 3 3 5 2 3 3 4 3 60.0 

P2 4 1 3 1 3 4 2 3 3 2 60.0 

P3 4 1 3 1 3 2 4 3 4 4 67.5 

P4 4 2 4 3 4 2 4 1 3 2 72.5 

P5 4 2 4 1 5 1 2 3 2 4 65.0 

P6 4 3 4 2 4 1 4 3 3 5 62.5 

P7 4 2 3 4 5 2 4 2 2 3 62.5 

P8 3 1 4 3 3 2 4 2 3 3 65.0 

P9 4 2 4 4 5 2 5 4 3 4 62.5 

P10 4 2 3 1 4 2 4 3 3 3 67.5 

P11 4 2 3 4 4 2 4 3 2 2 60.0 

P12 3 2 4 3 4 3 4 3 4 3 62.5 

P13 3 2 3 3 4 3 3 2 3 3 57.5 

P14 3 4 3 3 3 3 2 3 3 2 47.5 

P15 3 3 3 2 4 2 3 1 3 2 65.0 

P16 4 3 4 2 4 2 4 2 3 3 67.5 

P17 3 4 4 3 4 3 3 4 2 2 50.0 

P18 4 3 3 3 4 3 3 3 3 2 57.5 

P19 4 2 4 3 4 2 4 4 3 2 65.0 

P20 4 2 3 2 4 1 3 1 4 3 72.5 

Average 62.5 
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Appendix C: Research tool configuration settings 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Note: user.home means the PC’s logged in account’s user directory where you can find the 

Documents, Desktop etc directories listed. i.e C:\Users\User\ or C:\Users\cse\ 

1. Make sure these software are installed; 

a. JDK 1.8 and JRE both with environment variables set to JDK bin 

b. WordNet 2.1 into PC’s user home directory (user.home\WordNet\bin) 

c. Python 2.7 into PC’s C:\ drive (C:\Python27\python.exe) 

d. Microsoft visual C++ 2010 redistribution x64 or x32 (https://www.microsoft.com/en-

us/download/confirmation.aspx?id=15336) 

e. Wampserver x64 or x32 into C:\ drive (C:\wamp\www) 

f. D3.js (C:\wamp\www\d3\d3.js) 

g. Google chrome browser  

2. Install following Python packages (using pip-Win tool: 

https://sites.google.com/site/pydatalog/python/pip-for-windows) 
Package Name pip-Win tool Command 

networkx pip install networkx 

numpy pip install numpy 

matplotlib pip install matplotlib 

scipy pip install scipy 

3. Copy these directories and files into exact following local locations in PC; 

a. SATAnalyzer  user.home\SATAnalyzer 

b. Resources  user.home\Resources 

c. SAT_CONFIGS  user.home\SAT_CONFIGS 

d. Files within www directory  C:\wamp\www (For any existing files don’t copy or replace and 

skip) 
e. SAT_Analyser_2_0  D:\ SAT_Analyser_2_0 
 

4. Stand-Alone Desktop Access:- 

A. Run the JAR file sat-0.2-jar-with-dependencies.jar in path 

D:\SAT_Analyser_2_0\ SAT_Analyser_2_0\target\ 
a. Can double click on the file (Not-recommended as cannot track any exceptions since this 

is a prototype level tool) 

b. Open command prompt (Recommended method) 

i. Change the drive to D:\ by typing D: and hit enter 

ii. Type the following command and hit enter 

java -jar "D:\SAT_Analyser_2_0\SAT_Analyser_2_0\target\sat-0.2-jar-with-

dependencies.jar" 

Else double click on the exe file SAT_Analyser_2_0.exe in path 

D:\SAT_Analyser_2_0\ SAT_Analyser_2_0\target\  

5. Multi-User Web Access:- 

A. Install AjaxSwing application with built-in Apache Tomcat server on one PC 

as Server_Machine (http://creamtec.com/products/ajaxswing/install/index.html).  

B. Copy file SAT2.properties file in path D:\SAT_Analyser_2_0\ 

SAT_Analyser_2_0\target\ to AjaxSwing installed path’s conf directory (i.e. 

C:\AjaxSwing4.6.0\conf\SAT2.properties) 

a. Go to http://localhost:8040/ajaxswing/apps/SAT2 in browser (Server_Machine) 

b. Client machine(s) connected within same local area network; go to 

<Server_Machine’s_IP_Address>:8040/ajaxswing/apps/SAT2 in a browser 

https://www.microsoft.com/en-us/download/confirmation.aspx?id=15336
https://www.microsoft.com/en-us/download/confirmation.aspx?id=15336
https://sites.google.com/site/pydatalog/python/pip-for-windows
http://creamtec.com/products/ajaxswing/install/index.html
http://localhost:8040/ajaxswing/apps/SAT2
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Appendix D: SAT-Analyser 2.0 user guide overview 
 

 

Initializing SAT-Analyser 

Once the SAT-Analyser is executed for the first time, the workspace selection 

window will be prompted as below. 

 

   

 

You can provide a location in your machine and click Ok. Then, SAT-Analyser 

main window will be loaded. 

 

In the stand-alone desktop version; It consists of four main subsections for listing 

any existing traceability projects’ directory structure vertically on the left-hand 

side corner, file opening section on the top, traceability results default visualization 

section on the bottom center and bottom right-hand side for listing the details of 

traceability results. Moreover, there is a top main menu for selecting further 

functionalities. 
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In the multi-user accessible web version; It consists of two main subsections for 

listing any existing traceability projects’ directory structure on the top horizontally 

and file opening section on the bottom. The top main menu for selecting further 

functionalities is the same as in the desktop version. 

 

 

Creating a software traceability project 

In the top menu bar, select File  New  Project to start creating a software 

project for traceability generation. Then, the following artefact input window will 

be prompted to provide traceability project name and to insert the artefact inputs. 

First, you must give a project name which is not null and click Ok for the rest of 

the form items to be enabled. Once a valid project name is given and clicked Ok, 

the Import Artefact Files section will be activated to provide artefact input files. 

Provide each artefact separately by clicking on the Browse button and finally click 

Finish to create the project or click Cancel for the cancellation of the process. 
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Generating traceability outcomes 

The requirement artefact element extraction process is set visible via a 

Requirement Artefact Confirmation window for the user to have a generic idea 

about the traceability items etc. Click on each of the elements listed to expand, 

edit, add or delete the element items as necessary. Then, click Confirm for the 

confirmation to start the traceability establishment process.  

 

The project main window will be loaded with the newly created project file tree 

visible on the left-hand side corner section. The  

 folder bs lists the Maven build script artefact file, 

 property folder contains the intermediate traceability graph related files, 

 folder src contains the source code Java file set, 

 folder txt includes the SRS artefact text document file, 

 folder uml consists of the UML class diagram artefact file, 

 folder ut includes the set of JUnit unit test class files, 

 folder xml holds all the SAT-Analyser tool generated intermediate XML 

format files of each artefact type such as; 

o Requirement Artefact File.xml, 

o UML Artefact File.xml, 

o Source Code Artefact File.xml, 

o Unit Test Artefact File.xml, 

o Build Script Artefact File.xml, 

o XML conversion of artefact traceability links: Relations.xml. 

 

Select any of the files and double click on it to view the contents which will be 

opened in the top section. 

Traceability visualization 

Right click on the project name to view the traceability outcomes. Select 

Visualization and click a visualization type. 
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For instance, in the view option Full Graph: - overall traceability graph including 

all the types of artefacts as nodes and their relationships as links will be visible in 

the Graph section of the window. Zoom the view by scrolling the mouse pointer in 

and out. The naming conventions used in this traceability graph visualization is as 

follows; RQ - requirement, D – design, SC - source code, UT - unit test, BS - 

build script, _M - method/ function, _F - field/ attribute  

Continuous integration 

Frequent occurrences of integrations take place in a DevOps environment. It is 

featured with the traceability results in the SAT-Analyser tool. Whenever a 

continuous integration is to be submitted, the project source code path that is 

integrated with the build automation such as with Jenkins/ Github must be 

specified via the configuration as a prerequisite at the time of traceability project 

creation.  

 

Right-click on the project and click on Project  select Configure. Insert the 

source path, unit test path and build script locations corresponding to the 

associated build automation repositories. Then, right-click on any project name 

and click on the option Continuous Integrate. Once the first integration task is 

triggered, an artefact input window pops up with the project path and an assigned 

integration ID number to submit each type of individual artefact inputs. 

    

 

As a constraint of the SAT-Analyser tool if the integration contains additions of 

artefact elements/ sub-elements, then you must update all the artefact types to be 

tallied with the new additions and upload all types of artefact inputs. If your 

integration contains only modifications and/ or deletions of artefacts, you can 

specify that by clicking on a button named Include Only Artefact Modifications 

and Deletions. Then, you are allowed to upload only that particular type(s) of 

artefacts. 
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Change detection, change impact analysis and change propagation 

There must be more than one successfully completed integration to proceed with 

the Change Detection option in the menu, by right-clicking the project name. 

Then it will be prompted with any changes artefact type and change type wise. 

 

A click on the Impact Analysis button in the change detection window to proceed 

or else click Cancel to terminate the change analysis process. The impact analysis 

results window lists the impact of detected artefact changes on remaining artefact 

items with the manual editing feature. Then, click on the Change Propagation 

button at the bottom of the window to confirm the impact results. That will load 

the updated traceability graphs highlighting the changed/ modified artefact items. 

 

For complete user guide: - https://sites.google.com/cse.mrt.ac.lk/sat-analyser/tool-

support 

  

https://sites.google.com/cse.mrt.ac.lk/sat-analyser/tool-support
https://sites.google.com/cse.mrt.ac.lk/sat-analyser/tool-support
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Appendix E: List of companies involved in the surveys/ interviews 
 
 

 

1.  Pearson Lanka 

2.  Metatechno Lanka Company (Pvt) Ltd 

3.  Typefi Colombo 

4.  Apigate Sri Lanka Ltd 

5.  Creative Software  

6.  Sysco Labs 

7.  HNB IT 

8.  Epic Lanka (Pvt) Ltd 

9.  John Keells Holdings 

10.  Zone24x7 (Pvt) Ltd 

11.  Tiqri (Pvt) Ltd 
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