

TRACEABILITY MANAGEMENT IN A DEVOPS

ENVIRONMENT WITH CONTINUOUS

INTEGRATION

Iresha Dilhani Rubasinghe

(178020N)

Degree of Master of Philosophy

Department of Computer Science and Engineering

University Of Moratuwa

Sri Lanka

April 2019

TRACEABILITY MANAGEMENT IN A DEVOPS

ENVIRONMENT WITH CONTINUOUS

INTEGRATION

Iresha Dilhani Rubasinghe

(178020N)

Degree of Master of Philosophy

Department of Computer Science and Engineering

University Of Moratuwa

Sri Lanka

April 2019

i

Declaration

I declare that this is my own work and this thesis does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in

any other University or institute of higher learning and to the best of my

knowledge and belief it does not contain any material previously published or

written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to

reproduce and distribute my thesis, in whole or in part in print, electronic or other

medium. I retain the right to use this content in whole or part in future works (such

as articles or books).

Signature: ………………………… Date: …………….....

 I. D. Rubasinghe

The above candidate has carried out research for the MPhil thesis under my

supervision.

Name of the supervisor: Dr. D. A. Meedeniya

Signature of the supervisor: ……………………….. Date: …………….....

Name of the supervisor: Dr. G. I. U. S. Perera

Signature of the supervisor: ……………………….. Date: …………….....

ii

Abstract

Software artefacts traceability is an important factor during the process of software

development to analyse changes occur in software components. Traceability

improves the quality attributes of software systems such that strengthens the

testability, maintainability, reusability and helps for the system acceptance by

providing consistent system documentation to the users. Meanwhile, the concept

DevOps motivates towards the reduction of the gap between development and

operations requiring considerable organizational changes. In a DevOps

environment, significant software artefact changes are expectable rapidly where

continuous integration is essential. Continuous integration is a cornerstone practice

in DevOps that frequently merges developer working copies into a single shared

branch. There is a requirement of determining and analysing the resulted impact of

the traceability in order to make accurate change acceptance decisions during

software development. Therefore, the core research problem addressed is

determining a methodology for change detection and impact analysis together with

software artefact synchronization to preserve consistency across all artefacts in a

DevOps environment. A rule-based methodology is followed with visualization

and analysis techniques applied on a proof-of-work traceability management

prototype tool: SAT-Analyser 2.0. The evaluation results and industry-level user

study results have shown the significant usefulness and suitability of the approach

to a DevOps environment as well as to any software development process model.

Keywords:

Consistency management, Continuous integration, DevOps, Change impact

analysis, Traceability management

iii

Acknowledgements

I would like to offer my heartfelt gratitude to supervisors, Dr. D. A. Meedeniya

and Dr. G. U. I. S. Perera for the immense guidance provided throughout the

research project. Their valuable feedback and extremely kind advices motivated

me to complete the research work as well as moulded my academic competencies.

I ever appreciate their knowledge sharing and flexibility that made the research

work an interesting and pleasant experience that would not have been possible

without them.

I would also like to thank my project advisory panel members; Prof. N. D.

Kodikara at University of Colombo School of Computing, Dr. A. C. De Silva at

Department of Electronic and Telecommunication Engineering, University of

Moratuwa, Dr. M. J. Walpola and Dr. K. Gunasekara at Department of Computer

Science and Engineering, University of Moratuwa for the thoughtful comments

and suggestions that helped me to achieve my research goals.

I highly appreciate the financial support received from Senate Research Council

Grant, University of Moratuwa to complete this work.

I am thankful to my family and colleagues at the Department of Computer Science

and Engineering, University of Moratuwa for the unfailing support.

iv

Table of Contents

Declaration .. i

Acknowledgements ...iii

Table of Contents .. iv

List of Figures .. vii

List of Tables .. xi

List of Appendices ... xii

List of Abbreviations ..xiii

Section 1... 1

1 Introduction .. 1

1.1 Overview of the research.. 1

1.2 Motivation for the research .. 2

1.3 Problem statement .. 3

1.4 Research statement ... 4

1.5 Research objectives .. 4

1.6 Research outcome .. 5

Section 2... 6

2 Literature review .. 6

2.1 Overview .. 6

2.1.1 Software artefacts in SDLC... 6

2.1.2 Traceability.. 6

2.1.3 Software artefact traceability in a DevOps environment 9

2.2 Data pre-processing .. 10

2.3 Information retrieval methods .. 11

2.4 Traceability management ... 11

2.4.1 Evaluation of traceability support techniques ... 11

2.5 Change detection .. 13

2.5.1 Change detection techniques ... 14

2.6 Change impact analysis .. 15

2.6.1 Change impact analysis of heterogeneous software artefacts 16

2.6.2 Change impact analysis categories .. 17

2.6.3 Change impact estimation and analysis techniques 19

2.6.4 Change impact analysis related frameworks and models.......................... 20

2.7 Consistency checking and management ... 25

2.8 Change propagation in DevOps ... 26

2.8.1 Change propagation techniques .. 26

2.9 Continuous integration ... 27

2.9.1 DevOps practices... 28

2.9.2 DevOps tools ... 30

2.9.3 DevOps related project management tools .. 32

v

2.10 Analysis of related work .. 34

2.11 Visualization of traceability links .. 36

2.12 Tool support for tractability management and continuous integration 38

2.13 Evaluation techniques of traceability management 41

2.13.1 Quality measures ... 41

2.13.2 Network analysis ... 43

2.13.3 Traceability testing techniques .. 44

2.13.4 Supported testing tools .. 44

2.14 Discussion .. 45

2.14.1 Limitations in current practices ... 46

2.14.2 Future challenges and research directions ... 46

Section 3... 47

3 Research methodology ... 47

3.1 System design ... 47

3.1.1 System overview ... 47

3.1.2 Research model ... 48

3.1.3 System architecture ... 52

3.1.4 Abstract system workflow ... 54

3.1.5 Detailed system workflow ... 55

3.1.6 System class structure ... 56

3.2 Traceability establishment.. 57

3.2.1 Data pre-processing of SAT-Analyser tool ... 57

3.2.2 Input to XML conversion .. 62

3.2.3 Traceability generation .. 63

3.3 Traceability visualization ... 66

3.3.1 Default SAT-Analyser informative traceability visualization 68

3.3.2 Analytical traceability visualization .. 71

3.3.3 Interactive traceability visualization ... 72

3.4 Impact analysis and change propagation .. 73

3.4.1 Identification of strengths of artefacts and relationships 73

3.4.2 Impact analysis process: workflow ... 78

3.4.3 Impact analysis process: pseudo code and implementation details........... 78

3.4.4 Impact analysis process: user modifiability .. 81

3.4.5 Change propagation of the impact .. 82

3.4.6 Notification approach .. 89

3.5 Traceability management ... 90

3.5.1 Change detection ... 91

3.5.2 Consistency management .. 98

3.5.3 Continuous integration .. 101

3.5.4 Multi-user supportability ... 109

3.6 Extended SAT-Analyser evaluation ... 110

3.6.1 Implementation of the accuracy analysis module 110

3.6.2 Implementation of the network analysis module 112

3.7 Tool performance analysis ... 113

3.8 Conclusion .. 115

Section 4... 116

vi

4 Evaluation... 116

4.1 Datasets and materials .. 116

4.1.1 Pre-defined categorization of change types .. 118

4.1.2 Evaluation environment specification ... 119

4.2 Experimental results: case study 1 (POS system) 119

4.2.1 Evaluation of traceability establishment component 121

4.2.2 Evaluation of continuous integration process ... 123

4.2.3 Performance analysis... 125

4.3 Experimental results: case study 2 (Tour management system) 127

4.3.1 Evaluation of traceability establishment component 129

4.3.2 Evaluation of continuous integration process ... 130

4.3.3 Performance analysis... 132

4.4 Experimental results: case study 3 (MyDrive multimedia library) 133

4.4.1 Evaluation of traceability establishment component 135

4.4.2 Evaluation of continuous integration process ... 136

4.4.3 Performance analysis... 137

4.5 Experimental results: case study 4 (Disease management system) 139

4.5.1 Evaluation of traceability establishment component 141

4.5.2 Evaluation of continuous integration process ... 142

4.5.3 Performance analysis... 144

4.6 Experimental results: case study 5 (E-School management system) 145

4.6.1 Evaluation of traceability establishment component 147

4.6.2 Evaluation of continuous integration process ... 148

4.6.3 Performance analysis... 149

4.7 SAT-Analyser performance analysis ... 151

4.7.1 Traceability establishment performance ... 151

4.7.2 Accuracy evaluation of change detection component 152

4.7.3 Accuracy evaluation of impact analysis component 152

4.8 Usability of the extended SAT-Analyser tool .. 153

Section 5... 156

5 Discussion .. 156

5.1 Feature analysis of SAT-Analyser in practice.. 156

5.2 Analysis of the usability study based evaluation 160

5.3 Mapping of the objectives and the methodology 161

5.4 Limitations ... 161

5.5 Future work .. 162

5.6 Conclusion .. 163

References .. 165

vii

List of Figures

Figure 2-1 : Summary of traceability classification ... 9

Figure 2-2 : The software evolution process (Sommerville, 2010) ... 13

Figure 2-3 : Change impact analysis process (Li, Sun, Leung, & Zhang, 2013) 15

Figure 2-4 : Change impact analysis categorization .. 19

Figure 2-5 : Chianti tool architecture (Ren et al., 2005) .. 21

Figure 2-6 : Continuous integration process (Farcic, 2016) .. 27

Figure 2-7 : DevOps overview (“QASource DevOps Experts,” 2018) 29

Figure 2-8 : Jenkins workflow ... 30

Figure 2-9 : Docker workflow ... 31

Figure 3-1: Extended SAT-Analyser system overview ... 47

Figure 3-2 : SAT-Analyser tool research model .. 49

Figure 3-3 : Extended-SAT-Analyser system architecture .. 52

Figure 3-4 : Extended SAT-Analyser abstract workflow .. 54

Figure 3-5 : Extended SAT-Analyser detailed workflow .. 55

Figure 3-6 : Extended SAT-Analyser class structure .. 56

Figure 3-7 : Semantic network for words .. 64

Figure 3-8 : Pre-defined relationship XML model .. 65

Figure 3-9 : Traceability link generation component .. 66

Figure 3-10 : Visualization component .. 68

Figure 3-11 : Default SAT-Analyser Traceability visualization menu 69

Figure 3-12 : Default SAT-Analyser visualization full graph view .. 70

Figure 3-13 : Default SAT-Analyser visualization requirement artefact filtered view 70

Figure 3-14 : General analytical traceability graph ... 72

Figure 3-15 : Analytical traceability graph in traceability validation 72

Figure 3-16 : Interactive traceability graph view ... 73

Figure 3-17 : Node-edge direct connectivity ... 75

Figure 3-18 : Node-edge scenario 1 ... 76

Figure 3-19 : Node-edge scenario 2 ... 77

Figure 3-20 : Impact analysis component workflow ... 78

Figure 3-21 : Code snippet of weight and influential factor calculators 81

Figure 3-22 : SAT-Analyser generated CIA results .. 82

Figure 3-23 : User altered CIA results ... 82

viii

Figure 3-24 : Change propagation workflow ... 83

Figure 3-25 : Code snippet of change propagation implementation .. 86

Figure 3-26 : Impact analysis results window ... 87

Figure 3-27 : Change propagated analytical traceability graph view 88

Figure 3-28 : Change propagated interactive traceability graph view 88

Figure 3-29 : Trello change propagation card instance ... 90

Figure 3-30 : Trello board with change propagation notification .. 90

Figure 3-31 : Design diagram: change detection component .. 91

Figure 3-32 : Diffmk based change types declaration ... 96

Figure 3-33 : Change detection menu item .. 96

Figure 3-34 : Insufficient CI versions for change detection .. 97

Figure 3-35 : Change detection results xml_CD directory .. 97

Figure 3-36 : Change detection results in outcome window.. 97

Figure 3-37 : Consistency management workflow .. 99

Figure 3-38 : Scheduler workflow ... 102

Figure 3-39 : Scheduler code snippet ... 104

Figure 3-40 : Continuous integration configuration menu item .. 105

Figure 3-41 : Continuous integration configuration window .. 105

Figure 3-42 : Continuous integration menu item ... 106

Figure 3-43 : Continuous artefact integration window .. 106

Figure 3-44 : Continuous artefact integration window with disabled forward option 106

Figure 3-45 : Code snippet of version control management .. 108

Figure 3-46 : CI version 1 of a project ... 108

Figure 3-47 : CI version 2 of a project ... 108

Figure 3-48 : Multi-user accessible SAT-Analyser web version ... 109

Figure 3-49 : SAT-Analyser traceability establishment accuracy analysis window 110

Figure 3-50 : SAT-Analyser CIA accuracy analysis window ... 111

Figure 3-51 : Network analysis centrality measures code snippet ... 112

Figure 3-52 : SAT-Analyser network analysis main window ... 113

Figure 3-53 : Network analysis artefact information view .. 113

Figure 3-54 : SAT-Analyser traceability establishment performance analysis window 114

Figure 3-55 : SAT-Analyser CIA performance analysis outcome window 114

Figure 4-1 : Project scale ... 118

ix

Figure 4-2 : POS system description ... 120

Figure 4-3 : POS system design diagram ... 120

Figure 4-4 : SAT-Analyser main artefact summary for POS system 120

Figure 4-5 : POS system Relations.xml instance ... 121

Figure 4-6 : Part of the traceability visualization graph - POS system 122

Figure 4-7 : Network analysis summary - POS system ... 122

Figure 4-8 : POS system change detection window .. 123

Figure 4-9 : POS system impact analysis window... 124

Figure 4-10 : POS system change propagation instance .. 124

Figure 4-11 : CIA statistical analysis results: POS system .. 125

Figure 4-12 : CIA performance analysis results: POS system ... 126

Figure 4-13 : Tour management system description.. 127

Figure 4-14 : Tour management system design diagram ... 127

Figure 4-15 : SAT-Analyser main artefact summary for tour management system 128

Figure 4-16 : Tour management system Relations.xml instance ... 129

Figure 4-17 : Traceability visualization - tour management system...................................... 129

Figure 4-18 : Network analysis summary - tour management system 130

Figure 4-19 : Tour management system change detection window 131

Figure 4-20 : Tour management system impact analysis window ... 131

Figure 4-21 : Tour management system change propagation instance 131

Figure 4-22 : CIA statistical analysis results: tour management system 132

Figure 4-23 : CIA performance analysis results: tour management system 133

Figure 4-24 : MyDrive multimedia library system description ... 133

Figure 4-25 : MyDrive multimedia library system design diagram 134

Figure 4-26 : SAT-Analyser artefact summary for MyDrive multimedia library system 134

Figure 4-27 : Multimedia library system Relations.xml instance .. 135

Figure 4-28 : Traceability visualization - multimedia library system.................................... 135

Figure 4-29 : Network analysis summary - multimedia library system................................. 135

Figure 4-30 : Multimedia library system change detection window 136

Figure 4-31 : Multimedia library system impact analysis window.. 137

Figure 4-32 : Multimedia library system change propagation instance 137

Figure 4-33 : CIA statistical analysis results: multimedia library system 138

Figure 4-34 : CIA performance analysis results: multimedia library system 138

x

Figure 4-35 : Disease management system description ... 139

Figure 4-36 : Disease management system design diagram .. 140

Figure 4-37 : SAT-Analyser main artefact summary for disease management system 140

Figure 4-38 : Disease management system Relations.xml instance 141

Figure 4-39 : Traceability visualization - disease management system 141

Figure 4-40 : Network analysis summary - disease management system 142

Figure 4-41 : Disease management system change detection window 143

Figure 4-42 : Disease management system impact analysis window 143

Figure 4-43 : Disease management system change propagation instance 143

Figure 4-44 : CIA statistical analysis results - disease management system 144

Figure 4-45 : CIA performance analysis results: disease management system 145

Figure 4-46 : E-School management system description .. 145

Figure 4-47 : E-School management system design diagram .. 146

Figure 4-48 : SAT-Analyser main artefact summary for E-School management system 146

Figure 4-49 : Relations XML format of traceability establishment - E-School system 147

Figure 4-50 : Traceability visualization – E-School management system 147

Figure 4-51 : Network analysis summary – E-School management system 148

Figure 4-52 : E-School management system change detection window 148

Figure 4-53 : E-School management system impact analysis window 149

Figure 4-54 : E-School management system change propagation instance 149

Figure 4-55 : CIA statistical analysis results: E-School management system 150

Figure 4-56 : CIA performance analysis results: E-School management system 150

Figure 4-57 : SAT-Analyser traceability establishment performance 151

Figure 4-58 : SUS positive responses analysis .. 154

Figure 4-59 : SUS negative responses analysis ... 155

Figure 4-60 : SAT-Analyser usability tag cloud .. 155

Figure 5-1 : Research objectives-methodology-results mapping ... 161

xi

List of Tables

Table 2.1 : Evaluation of software artefacts traceability management techniques 12

Table 2.2 : Summary of change impact analysis techniques ... 20

Table 2.3 : Change impact analysis related work summary .. 23

Table 2.4 : Scope-based change impact analysis related work .. 25

Table 2.5 : Evaluation of related work on traceability management 35

Table 2.6 : Traceability visualization techniques .. 36

Table 2.7 : Evaluation of related work on traceability visualization techniques 37

Table 2.8 : Tool support for traceability management ... 38

Table 2.9 : Tool support for information retrieval ... 39

Table 2.10 : Tool support for traceability management ... 40

Table 3.1 : Analysis of existed SAT-Analyser .. 50

Table 3.2 : Analysis of the SAT-Analyser with DevOps extension .. 51

Table 4.1 : Dataset summary ... 116

Table 4.2 : Artefact categorization: POS system ... 121

Table 4.3 : Artefact categorization: tour management system .. 128

Table 4.4 : Artefact categorization: MyDrive multimedia library system 134

Table 4.5 : Artefact categorization: disease management system ... 140

Table 4.6 : Artefact categorization: E-School management system 146

Table 4.7 : Change detection component accuracy evaluation .. 152

Table 4.8 : Change impact analysis component accuracy evaluation 152

Table 5.1 : Comparison between Jenkins and SAT-Analyser for CI 158

Table 5.2 : Industry level traceability management vs. SAT-Analyser tool 158

Table 5.3 : Existing traceability management tools vs. SAT-Analyser 159

xii

List of Appendices

Appendix A: Initial survey ... 173

Appendix B: User acceptance survey .. 178

Appendix C: Research tool configuration settings .. 180

Appendix D: SAT-Analyser 2.0 user guide overview ... 181

Appendix E: List of companies involved in the surveys/ interviews 186

Appendix F: Published papers ... 187

xiii

List of Abbreviations

AST Abstract Syntax Tree

AIS Actual Impact Set

ANTLR ANother Tool for Language Recognition

AO Aspect-Oriented

AR Augmented Reality

AWS Amazon Web Services

CIA Change Impact Analysis

CD Continuous Delivery

CI Continuous Integration

CIP Change Impact Prediction

CR Change Request

DAG Directed Acyclic Graph

DSL Domain Specific Language

EDG Entity Dependency Graph

EIS Estimated Impact Set

GCT Goal-Centric Traceability

GPS Global Positioning System

HMC Hidden Markov Chain

IR Information Retrieval

IDE Integrated Development Environment

IoT Internet Of Things

IT Information Technology

IQR Interquartile Range

LSI Latent Semantic Indexing

LTR Likelihood To Recommend

MDD Model Driven Development

MDE Model Driven Engineering

ML Machine Learning

NER Named Entity Recognizer

NLP Natural Language Processing

NPS Net Promoter Score

PCA Principle Component Analysis

xiv

PM Project Management

POS Part-Of-Speech, Point Of Sales

RCM Requirement Change Management

RSSI Really Simple Syndication

ROI Return On Investment

SCM Supply-Chain Management

SMS Short Message Service

SVD Singular Value Decomposition

SIG Soft Goal Interdependency Graph

SDLC Software Development Life Cycle

SRS Software Requirement Specification

SUS System Usability Scale

TF-IDF Term Frequency–Inverse Document Frequency

TDD Test Driven Development

UAT User Acceptance Testing

UML Unified Modeling Language

VM Virtual Machine

VSM Vector Space Model

1

Section 1

1 Introduction

1.1 Overview of the research

Software artefacts are the intermediate by-products used in each stage of the

Software Development Life Cycle (SDLC) towards the successful outcome of the

intended software product. That includes Software Requirement Specification

(SRS), design diagrams, non-functional design reports, source code (Sommerville,

2010). Additionally, test cases, test scripts, walkthroughs, inspections, bug reports,

build logs, configuration files, project plans, risk assessments and user manuals are

important artefacts in the latter stages of the SDLC. Nevertheless, there is a

relationship between the primary artefacts involved during the SDLC with the

final deliverables of a software product. Thus, software artefacts play an important

role in fine-tuning the software products.

The artefact management is essential to maintain adequate consistency in

approaching towards a software product. Software artefact traceability has been

defined as the ability to follow the life cycle of a particular software requirement

both forward and backward and overcome the inconsistencies during software

development (Cleland-Huang, Zisman, & Gotel, 2012). Thus, each alteration

occurs in a particular artefact is traced among other artefacts and changed

accordingly based on the impact. The relationship links among artefacts must be

updated and maintained consistently.

Software traceability is required to handle changes during the process of

Continuous Integration (CI). CI is known as a software development practice

where the work is integrated frequently leading to multiple integrations per day

(Duvall, Matyas, & Glover, 2007). The integration verification is done using build

automation by detecting integration errors as early as possible. The proper

application of CI can reduce integration problems and allows developing cohesive

software rapidly.

2

The concept of Development-Operations (DevOps) represents the integration of

development environment and the operational environment when developing

software systems with continuous planning, CI, continuous delivery and

continuous testing (Bass, Weber, & Zhu, 2015)(Kim, Debois, Willis, Humble, &

Allspaw, 2016)(Ghantous & Gill, 2017). DevOps ease the project management

with communication, understandability, integration and relationships among the

development teams and operational teams by bridging the gap between them. It

increases the rate of change and deploys features into efficient development.

1.2 Motivation for the research

Software systems, in today’s context, are considered as critical business assets. A

software system change is inevitable and hence must be updated continuously in

order to maintain the value of these assets. Software evolution is preferred over

building completely new software systems due to the cost and time benefits

(Rajlich, 2014). Often, software evolution occurs in a software system life cycle at

a stage where it is in active operation due to new requirements. Software evolution

mainly depends on the type of software being maintained and cooperated

development processes which continue the software system lifecycle. It is highly

coupled with the components that are affected due to changes which allow the cost

and impact of changes to be estimated (Pete & Balasubramaniam, 2015).

The improper or outdated software artefacts and their inconsistencies result in

misleading the intermediate software system development processes due to the

high coupling among artefacts. Hence, software development and maintenance

become time-consuming with many issues such as higher cost and effort.

Moreover, the proper artefact management is essential in integrating artefacts

continuously. The changes must be accurately propagated in the integrations

which is challenging to be automated. Thus, the auditability and traceability are

classified as challenges in DevOps.

Therefore, changes in software artefacts cause software evolution (Rajlich, 2014).

With the rapid generation of information, it is crucial to maintain the consistency

between software artefacts. Well-Defined traceability management between

3

software artefacts is required to overcome the consequences of evolutions. Further,

improper traceability management may lead to failures of a product. Thus,

traceability management strengthens the software maintainability and helps for

system acceptance (Cleland-Huang et al., 2012).

1.3 Problem statement

Among the existing traceability establishment systems, a prototype study

‘Software Artefacts Traceability Analyser’ (SAT-Analyser) (Kamalabalan et al.,

2015)(Arunthavanathan et al., 2016) is selected to address the impact analysis

during traceability in a DevOps environment with continuous integration. The

existed traceability establishment system has addressed the traceability among

textual requirements artefact, Unified Modeling Language (UML) class diagrams

and Java source code artefact. Then, the traceability among them is established

based on the attributes, methods using Natural Language Processing (NLP) and

the results are visualized in a traceability graph.

The existing prototype lacks impact analysis, immediate change propagation

capabilities and support towards the continuous integration in DevOps

environments. Thus, it requires a mechanism to evaluate the impact of an artefact

change prior to the change propagation and consistency management in remaining

phases such as testing, configuration, deployment and maintenance. We have

addressed these limitations with the integration of appropriate DevOps tools.

Accordingly, our study addresses the software artefact traceability for all the

SDLC phases without expensive overheads. We have mainly focused on the

notion of CI in software development with DevOps principles. Our methodology

mainly consists of traceability establishment, change detection, impact analysis,

change propagation, consistency management and visualization (Rubasinghe,

Meedeniya, & Perera, 2017). Therefore, the traceability support for the entire

SDLC is addressed in this research with automated tool support.

4

1.4 Research statement

Core Research Question: How to enable software artefact traceability management

in a way the changes made to an artefact at any point of the development lifecycle

will preserve consistency across all artefacts in a DevOps environment?

Research hypothesis: Current trend of emergent and changing requirements for

software systems can be better supported by:

 Identifying the true links between heterogeneous artefacts in SDLC to

establish traceability and

 Applying trace links, impact analysis for changes and synchronization by

updating trace links to propagate artefact changes with impacts through all

the phases in a DevOps environment.

1.5 Research objectives

The main limitation in the existing context of software traceability and continuous

integration is the lack of sufficient tools and techniques. The current tools are

limited to certain types of software artefacts and development environments

depending on the used programming languages or the design notations. Therefore,

the automation of traceability relations generation has become unachievable

completely. The existing tools and techniques are identified to be containing strong

semantic meanings and thus fail in satisfying requirements needed for system

analysis in heterogeneous software artefacts. Further, the support of traceability

and continuous integration is important to be available during the overall SDLC

which is not completely preserved in current practices.

The prime objective of this research is to extend the initial SAT-Analyser tool as

proof-of-work to integrate with the latter phases of the SDLC in terms of

traceability management and continuous integration adhering to DevOps practices

as a complete solution.

5

The objectives of this research are to:

 Identify, establish and maintain traceability links between all stages of

SLDC

 Detect the changes in trace links between software artefacts in a DevOps

environment

 Analyse the impact caused by the changes in software artefacts that

interfere traceability

 Accurately determine and visualize the consequences of a change with

impacts in software artefacts

 Enhance and visualize the traceability in a DevOps environment with

continuous integration

1.6 Research outcome

The successful completion of this research would enable software artefact

traceability support for all the key stages of SDLC such as requirement analysis,

design, development, testing, configuration, deployment and operation. The

intermediate software development process can be traced both backward and

forward completely in a cycle of SDLC. Moreover, the successful DevOps tool

integration into the traceability would facilitate continuous integration capabilities.

Accordingly, the extended SAT-Analyser tool would be capable of applying into

DevOps environments where the rapid changes, integrations and deployments are

vital.

Therefore, the outcome of this research work is expected to be able to increase the

efficiency of the software process by tracing the changes in artefacts effectively. It

would contribute to making the developers’ workload easier in order to proceed

with software projects using the automated change tracing and impact analysing

by maintaining an easy flow in software delivery pipeline.

6

Section 2

2 Literature review

2.1 Overview

This chapter summarizes important aspects of the research scope related to

traceability management in a DevOps environment. The existing research

solutions and state-of-the-practice in software traceability management with their

background definitions are discussed. Mainly, an overview of software artefact

traceability, change detection, impact analysis, consistency management and

continuous integration are analytically discussed together with the existing related

works on traceability techniques and tools.

2.1.1 Software artefacts in SDLC

A software system is a combination of several software artefacts that evolves

through a certain software development process model. Software artefacts refer to

the intermediate by-products used in different phases of the SDLC. Some of the

artefacts can be named such as SRS, design diagrams, architectural documents and

quality attributes or the non-functional design reports, source code, test scripts,

walkthroughs, inspections, bug reports, build logs, test reports, project plans and

risk assessments (Sommerville, 2010). There are relationships and dependencies

between these software artefacts and it is essential to manage these software

artefacts in order to maintain adequate consistency towards a software product.

The improper management and outdated artefacts can lead to inconsistency among

artefacts, synchronization issues and lack of trust in artefacts by stakeholders.

Therefore, the software artefact traceability is essential for being capable of

describing and following the artefact life cycle.

2.1.2 Traceability

Traceability facilitates a logical layer across artefacts throughout the various

phases in software development. At the beginning of a software development

process, the ability to track the consistency in requirements along with their

sources is essential in order to confirm or revise the initial set of requirements

(Sommerville, 2010). Thus, traceability is first used as a method of managing

7

requirements artefact during the Requirements Engineering phase. Generally,

traceability is following the life cycle of any particular software requirement both

forward and backwards to overcome the inconsistencies during software

development (Cleland-Huang et al., 2012). Each alteration occurs in a given

requirement is traced among other requirements and changed based on the impact.

These traces are used in the requirement validation and verification processes.

The software artefact traceability definition of the professional body; ‘Center of

Excellence for Software and Systems Traceability (CoEST)’ is declared as “the

ability to interrelate any uniquely identifiable Software Engineering artefact to

any other, maintain required links over time, and use the resulting network to

answer questions of both the software product and its development process”. They

have not been limited to requirement traceability and have declared traceability in

terms of other artefact types including design documents, codes and test case files

with the deployment of an experimental traceability environment for researchers

called TraceLab (Keenan et al., 2012).

Mohan et al. (Mohan, Xu, Cao, & Ramesh, 2008) have defined traceability as the

ability to discover the dependent entities within a software model and trace their

corresponding artefact elements in other software models. As a result, currently,

traceability is used not only in requirements management, but also for other

artefact types in different software development methodologies like Model-Driven

Development (MDD) (Sommerville, 2010). This wide range of adaptation of

traceability shows its importance in improving software quality, maintenance,

evolution and reuse activities.

For a given trace, there can be one or many possible trace paths, while each trace

path has a source and target artefacts. In particular, an artefact may be a source for

a given trace path and a target for another trace path simultaneously. A trace link

or known by a traceability link is a relationship between a pair of artefacts. All

such links generated in between two groups of software artefacts are referred as a

trace relation (Cleland-Huang et al., 2012). A trace set is the sum of all generated

traces and traceability graph is used to visualize all the relationships. A

8

traceability graph is a traceability network when the edges are directional or the

nodes are embedded with a weight. Further, traceability maintenance is the

consistency management of artefacts and trace updates for a given change.

Some of the categorizations based on the different dimensions of traceability exist

such as requirement to design, requirements to code base and to test case files

likewise. Among different traceability types, requirement traceability addresses

the dependencies between requirements and among the requirements to design/

source codes. It can be subcategorized as pre-requirements and post-requirements

specification that details the life cycle of a software requirement in forward and

backward directions. Design traceability is the ability to trace design and

requirements to design rationale for the verification and maintenance of

architecture design accurately (Tang, Jin, & Han, 2007). Having the ability to trace

design traceability can be useful to determine trace design evolution, root causes,

to relate architectural design objects and also to analyse the cross-cutting concerns,

especially in a DevOps environment.

Moreover, the different traceability classifications in the literature are shown in

Figure 2-1. One such classification is automatic or manual, based on the

automation level of the traceability process. Another classification is forward or

backwards, based on the direction of the traceability path (Cleland-Huang et al.,

2012). Forward tracing follows subsequent steps such that from requirements to

code; whereas backward tracing follows antecedent steps such that code to design

or requirements artefacts. Artefact-level is another criterion that classifies

traceability as horizontal or vertical. Horizontal tracing considers homogeneous

artefacts as such artefacts in the equivalent levels of abstraction like tracing

between different versions of requirement artefacts (Mäder, Gotel, Kuschke, &

Philippow, 2008). Further, this can be sub-classified based on the direction such

that horizontal forward tracing or horizontal backward tracing. Tracing artefacts in

different levels of abstraction; heterogeneous artefacts, such as the requirement to

code is considered as vertical tracing, which can be either vertical forward tracing

or vertical backward tracing. Proactive and reactive tracing is another

categorization based on the stimuli behaviour. In reactive tracing, the traces are

9

created on demand in accordance to a stimulus for capturing traces. Whereas in

proactive tracing, traces are generated in the background without explicit response

to any stimulus (Cleland-Huang et al., 2012). The traceability link generation

techniques for these categories are selected by considering the aspects such as the

problem domain and the behaviour of the software system.

Figure 2-1 : Summary of traceability classification

A major challenge in tracing software artefacts is the heterogeneity in software

artefacts, different abstraction levels and lack of defined data formats for software

artefacts (Wijesinghe et al., 2014). Therefore, it is essential to identify the key

artefact elements from a given artefact input in order to establish relationships.

2.1.3 Software artefact traceability in a DevOps environment

The concept of DevOps represents the integration of the development environment

and the operational environment that encourages developing systems rather than

software. Primarily DevOps ease the project team management with

communication, understandability, integration and relationships among the

development teams and operational teams by breaking the gap between them. It

increases the rate of change and deploys features into production faster (Kim et al.,

2016)(Ghantous & Gill, 2017). The demanding drivers for having DevOps can be

identified as improving the quality of applications, enhancing customer

experience, the ability for simultaneous deployment in different platforms and the

need to reduce Information Technology (IT) costs. The technical benefits of a

DevOps environment include identification of the problem earlier, reducing the

error fixing time durations and reduction of the problem complexities due to its

10

cross-functionality behaviour. Similarly, the importance towards the business

aspect is significant as DevOps shorten the development life cycle, increase the

release velocity and improve the Return On Investment (ROI) by achieving a

higher customer satisfaction (Bass et al., 2015). Furthermore, rich collaboration

and performance-oriented culture encourage the ability to research and innovate

within projects. However, the Internet of Things (IoT) and microservices

architecture are identified to be challenging for DevOps.

In the software development process, DevOps is applicable to various phases of

software delivery such as continuous planning, continuous integration, continuous

delivery and continuous testing (Bass et al., 2015). Consequently, the ability to

trace the changes made to the code is essential in providing feedback at any

integration failures. Therefore, the artefact traceability is a key challenge in

achieving CI. Furthermore, the need for techniques and tools to recover

traceability links in legacy systems is important for a variety of software evolution

tasks. These include maintenance tasks, impact analysis, program comprehension

and encompassing tasks such as systematic reuse of traceability types and Reverse

Engineering for redevelopment (Cleland-Huang et al., 2012).

2.2 Data pre-processing

Software artefacts consist of different formats such as the requirements in natural

language, design artefacts in different UML notations and source code artefacts in

programming languages. Thus, pre-processing and extracting the required data is

an initial task towards the development of traceability links. The textual contents

in artefacts provide descriptive details about their informal semantics. The

frequently involved pre-processing steps for artefacts in requirements are the NLP

activities such as tokenization, text normalization, anaphora analysis,

morphological analysis and stemming (Cleland-Huang et al.,

2012)(Arunthavanathan et al., 2016). It is assumed that if the textual contents of

artefacts are similar, then those artefacts are conceptually related in resulting

establishment of traceability links between them. The other types of artefacts can

pre-process with different file readers, UML parsers and programming language

specific parsers.

11

2.3 Information retrieval methods

Information Retrieval (IR) methods enable extracting and analysing the embodied

textual contents in artefacts with less pre-processing effort. The cost of traceability

link recovery can be minimized since no predefined vocabulary or grammar is

involved (Cleland-Huang et al., 2012). The use of meaningful identifiers and

comments in the source code of documentation can be found helpful in applying

IR methods. The key steps in a generalized IR process that follows a pipelined

architecture can be listed as; (1) document parsing, extraction and pre-processing,

(2) corpus indexing with an IR method, (3) ranked list generation and (4) analysis

of candidate links. Vector Space Model (VSM), Term Frequency-Inverse

Document Frequency (TF-IDF) metric and Latent Semantic Indexing (LSI)

techniques are the mostly used IR techniques (Y. Zhang, Wan, & Jin, 2016).

2.4 Traceability management

The cost of managing a larger number of artefact relationships whenever a change

occurs is identified as a major reason for rarely using traceability in practice.

Moreover, it is signified that the effort of maintaining artefact relations is

considerably high though the number of artefacts is minimal. Hence, ensuring the

correctness of traceability over time is essential in traceability maintenance/

management and is a multi-step activity (Mäder & Gotel, 2012)(Maro, Anjorin,

Wohlrab, & Steghöfer, 2016). The proper identification of a feasible traceability

management approach could minimize the cost and effort during the SDLC.

2.4.1 Evaluation of traceability support techniques

Table 2.1 summarizes the features of traceability management techniques with

a description, benefits and limitations.

12

Table 2.1 : Evaluation of software artefacts traceability management techniques

Technique Functionalities Methods/ techniques followed Advantages Limitations

Rule-based Define rules in

traceability links

generation.

Rule set based on attributes of artefacts.

Traceability management with rule re-

evaluation (Mäder & Gotel, 2012).

Ideal for artefacts such as

requirements, use cases and

analysis of object models.

Weakness in recognition of

structural changes (Cleland-

Huang et al., 2012).

Hypertext-

based

Support traceability

maintenance.

XML. Markup specifications (Alves-

Foss, Conte de Leon, & Oman, 2002).

Consider requirements and code

artefacts (Cleland-Huang et al.,

2012).

Weekly support for other types

of artefacts.

Event-

based

Automate trace link

generation and

maintenance.

Publish-subscribe relationship

mechanism. Event-based subscriptions

(Galvão & Goknil, 2007).

Ability to maintain dynamic links. Scalability issues in

maintaining the dynamicity of

traceability.

Constraint-

based

Support traceability

maintenance.

Set of constraints are provided that

should not get disobeyed by traceability

links.

Artefact types can be viewed as

constraints on one another (Fockel,

Holtmann, & Meyer, 2012).

Difficulty in referencing all

traceability links to constraints

(Fockel et al., 2012).

Transform

ation-based

Support traceability

maintenance.

Incremental transformation approaches.

Graph- transformation based

methodologies.

Beneficial for model-based

software systems (Riebisch, Bode,

Farooq, & Lehnert, 2011).

Not all artefacts are generated

by model transformations

(Maro et al., 2016).

Goal-

Centric

(GCT)

CIA over the non-

functional software

requirements.

Soft goal Interdependency Graph (SIG).

Traceability matrix (Galvão & Goknil,

2007).

Finds the impact of functional

changes over non-functional ones

to ensure quality.

Lack of scalability and tool

support (Galvão & Goknil,

2007).

Model-

driven

Support traceability

maintenance in

MDD

Use of template-based models (Javed &

Zdun, 2014).

Support for different artefact types

including source code (Javed &

Zdun, 2014).

Lack of support towards non-

model-driven systems (Javed

& Zdun, 2014).

Probabilisti

c model

Manage traceability

with uncertainty

handling.

Bayes' theorem (“Vector Space Model,”

2017).

Simplicity and ability to evolve

with data science methods.

Depend on probabilistic

assumptions such as the

artefacts are distributed

differently.

13

The rule-based and hypertext-based traceability support techniques are identified

to be not applicable to all types of software artefacts rather than requirements and

source code (Mäder & Gotel, 2012)(Cleland-Huang et al., 2012). Event-based and

constraint-based methodologies along with publish-subscribe mechanisms have

been widely involved in traceability maintenance while scalability is the main

problem in them (Galvão & Goknil, 2007)(Fockel et al., 2012). The

transformational and model-driven approaches can be identified as more

environment-oriented such as for model-based software systems. Thus, it can be

difficult to obtain a more generic traceability solution via them (Javed & Zdun,

2014). Moreover, the majority of IR related techniques such as VSM, LSI and TF-

IDF are involved due to their better performance outcomes (Hayes et al.,

2007)(Marcus, Xie, & Poshyvanyk, 2005). However, there is a lack of tool-

support for majority techniques with the compatibility for all types of software

artefacts. The scalability is the main issue that has been a limitation in most related

works following existing techniques having the inability to cater to traceability

management among a larger number of software artefacts.

2.5 Change detection

Change is always inevitable in any software development process. It is necessary

to cope with the changes properly to reduce the cost regardless of the used

software development model (Sommerville, 2010). Figure 2-2 illustrates the

software evolution process. The impact of a change is assessed prior further

propagating the change. The evolving software systems potentially support for

dynamic modifications and extensions.

Figure 2-2 : The software evolution process (Sommerville, 2010)

14

2.5.1 Change detection techniques

A. Edit history

This approach keeps track of the alterations or the edits as a history. Each change

is considered as an item for the history and records as another edit. This is already

in use with most of the software and non-software related tools and methodologies

such as text editors. The ‘Undo/ Redo’ and ‘Restore’ operators in most of the tools

have used this technique. Accordingly, this has been used for traceability related

change detections in the context of software artefacts as well (Omori &

Maruyama, 2008)(Kitsu, Omori, & Maruyama, 2013). However, this technique is

mostly used for change detection regarding the source code.

B. Tree differencing

Tree differencing represents elements as Abstract Syntax Tree (AST) and

calculates the differences to extract detailed change information. AST is a tree

representation of the abstract syntactic structure of source code, while each node

represents a construct occurring in the code (Sager, Bernstein, Pinzger, & Kiefer,

2006). Even in an older related work in (Chawathe, Rajaraman, Garcia-Molina, &

Widom, 1996), has used the idea of a matching and a minimum cost edit script that

transforms one tree to another for hierarchically structured data. The authors have

split the change detection problem such as ‘Good Matching’ and ‘Minimum

Conforming Edit Script’. However, the data format should be in a tree format for

that algorithm and not in other formats such as graphs.

C. Differencing algorithms

The customized differencing algorithm is another technique for software artefact

related change detection. It is used in software maintenance aspects such as

program-profile estimation (stale profile propagation). Any type of software

artefact can be generally taken as the input for a differencing algorithm though the

source code artefact is heavily gone through this technique in related works

(Apiwattanapong, Orso, & Harrold, 2004). However, implementing a general

algorithm for all types of software artefacts is identified to be impractical rather

than having a set of differencing algorithms for each type and category of software

artefacts.

15

2.6 Change impact analysis

The goal of Change Impact Analysis (CIA) in software development is detecting

the consequences of an artefact alteration in other parts of the software system

(Sommerville, 2010)(Lehnert, 2011). Traceability is a major supportive technique

in the identification of affected artefacts and is a key notion in the software

maintenance process. In areas such as Model-Driven Engineering (MDE), before

changing a metamodel, it is crucial to measure the impact of the changes among

the artefacts to understand whether the evolution is sustainable or not.

Figure 2-3 illustrates the iterative process of CIA in software development. It starts

with an analysis of a change request in source code to initially identify the set of

changes in which the artefacts could be affected. It is also called as concept

location or feature location with the meaning of finding a place in the source code

that an initial change needs to be made. Then, the change impact analysis is

conducted to estimate the effects in changes, resulting in an Estimated Impact Set

(EIS). Afterwards, the change is implemented and the elements in the Actual

Impact Set (AIS) are modified. The AIS is not considered to be unique for a

particular change request as a change can be implemented in several ways.

Figure 2-3 : Change impact analysis process (Li, Sun, Leung, & Zhang, 2013)

16

Generally, impact analysis is conducted before or/and after a change

implementation. The advantages of conducting impact analysis prior to a change

can be listed as for better program understandability, change impact prediction and

cost estimations. Correspondingly, conducting impact analysis after

implementation of a change can be beneficial in tracing ripple effects, selecting

test cases and in performing change propagation (Li et al., 2013).

2.6.1 Change impact analysis of heterogeneous software artefacts

The heterogeneous software artefacts in different stages of SDLC are always

following different types and formats. For instance, the requirement artefact can be

in a natural language provided in a text file while the source code artefact in

Python programming language as a set of .py files. Therefore, a change occurred

in one artefact does not directly reflect for other artefacts due to that type and

format mismatches. Due to this complexity, generally, an artefact change comes as

a request for change without a direct action of alteration. Currently, a responsible

resource person is in charge for coordinating change requests either by accepting

the change or declining the change request depending on his/ her manual change

interpretations which are subjected to human error.

The artefact traceability acts as the main pillar for artefact change management.

The inter-relationships and intra-relationships are established via the traceability

establishment process by linking each other based on the dependencies. Therefore,

the changes can be handled using those traces and paths. The traceability

visualization techniques such as traceability matrix or traceability graphs that

follow node edge connectivity can be used effectively. The graph theory

techniques and algorithms are involved in finding the change impacts among

traces (W.-T. Lee, Deng, Lee, & Lee, 2010). Moreover, the use of IR techniques

and Machine Learning (ML) are trending in the research level to manage artefact

changes with CIA (Zimmermann, Zeller, Weissgerber, & Diehl, 2005)(Dantas,

Murta, & Werner, 2007).

In considering the graph-based traceability results, the artefact changes can be

mapped to the nodes and the change propagation would be mapped via the

17

connected links. However, all the endpoints of the links may not be subjected to

changes. Thus, the impact of the propagated change at the linked endpoints has to

be measured in finding the actual victims of the change. A CIA algorithm has to

be implemented depending on the addressed artefact types in calculating the

occurred impacts (Tóth, Hegedűs, Beszédes, Gyimóthy, & Jász, 2010). The

features of the initial change would be highly influenced in the impact calculation

since the linked endpoints have to be compared with the initial change.

Accordingly, the proper identification of the initial change is essential. The IR

techniques are associated to this aspect in the related works (W. Wang, He, Li,

Zhu, & Liu, 2018)(Y. Zhang et al., 2016). Thus, based on the artefact type of the

initial change the required data such as the scope of the change and the keywords

in the change has to be identified. Then, the CIA algorithm must imply the

consequences of the change in calculating the impact values in comparison with

linked endpoint nodes. The probabilistic theorems such as association rules, Bayes

theorem and Change History are widely involved in the literature (Lehnert,

2011)(Mens, Buckley, Zenger, & Rashid, 2005). However, addressing the change

ripple effects becomes a challenge after the initial impacted endpoint identification

since the changes can propagate continuously from those endpoints too.

2.6.2 Change impact analysis categories

Change impact analysis methods are categorized as traceability-based CIA and

dependence-based in determining the change effects in the literature (Li et al.,

2013). The traceability-based CIA is narrowed in recovering the traceability links

among software artefacts. Dependence-based CIA is defined as estimating the

change effects of a proposed change. It is relatively more biased towards

analysing program syntax relations and in performing CIA of artefacts in the

same level of abstraction such as in the level of software design or within the

level of code. The higher level UML models and use case maps are mainly

involved in requirement and design level impact analysis. In addition, the source

code based CIA techniques are more capable of determining change impacts of

the final software product with improved precision as directly analysing the

implementation details.

18

Another categorization of CIA techniques is static impact analysis and dynamic

impact analysis. The static CIA techniques encounter all behaviours and inputs

(Sun, Li, Tao, Wen, & Zhang, 2010). Thus, contains a cost of precision though

safe. Moreover, static CIA techniques analyse the program code syntax and

semantic dependencies to construct intermediate representations using call graphs

and program dependence graphs. Then, perform CIA on those representations

resulting larger impact sets that are problematic to use in practice. Thus, lower

precision remains a main drawback in the static impact analysis techniques.

Besides, dynamic CIA methods overcome this disadvantage by considering only a

partial set of the inputs. Hence, these impact sets are more precise although lack

of safety. Furthermore, the impact sets computation process in dynamic impact

analysis techniques depend on the types of analysis of the gathered data such as

execution traces details, execution relation and coverage related information.

Two of the sub-techniques in dynamic CIA are Coverage Impact and Path Impact

(Apiwattanapong, Orso, & Harrold, 2005). Path Impact computes impact sets in

the method level using compressed program execution traces. It processes

forward and backward traces to determine the impact of changes. The forward

traces determine all methods called after the changed method(s), while the

backward traces identify methods into which the execution can return. The

coverage impact technique uses the coverage information to identify the

executions that traverse a minimum of one method in the changeset and marks the

covered methods in each execution. Next, it computes a static forward trace from

each change by considering the marked methods. Thus, the methods in computed

traces become the impact set. Moreover, it is identified that the path impact

technique is more precise compared to the coverage impact technique analytically

due to the use of traces rather than the coverage (Apiwattanapong et al., 2005).

However, in comparison, the time and space overhead in the path impact

technique is high. The time consumption in path impact technique is dependent

on the size of the analysed traces, while the coverage impact requires a constant

time in updating bit vectors at each of the method entries. Besides, the space

19

complexity of coverage impact technique is linear over the size of the program,

while it is proportional to the size of the traces in the path impact technique.

Figure 2-4 : Change impact analysis categorization

Figure 2-4 shows the categorization of change impact sets. Starting Impact Set

(SIS) indicates the initially affected set of entities by a change. Candidate or

Estimated Impact Set (CIS or EIS) is a subset of SIS, that denotes the potentially

impact entities. However, that subset may or may not be the actual change

impacted subset, which has to be clarified where AIS would be the outcome. The

CIS tends to coincides with the AIS. Due to the challenging effect of artefact type

mismatches, developer mistakes and artefact naming inconsistencies there may be

artefacts that are actually impacted by the change, but have not been identified by

CIS. Those are categorized as Discovered Impact Set (DIS). The manual or a

knowledge-based identification can be useful in that aspect (Czibula, Czibula,

Miholca, & Marian, 2017). False Positive Impact Set (FPIS) shows the artefacts

that are overestimated as belong to the CIS, but which are not actually impacted.

2.6.3 Change impact estimation and analysis techniques

Table 2.2 presents s summary of techniques that can be applied for CIA. Among

the techniques, the call graphs, dependence graphs are widely used in handling

the changes that enable the backtracking ability for easier debugging. Most of the

artefact types including design, source code and test cases are influenced by these

call graphs related techniques and IR based: LSI, VSM and TF-IDF techniques.

The formal semantics, first-order logic have mostly addressed the requirement

artefacts. However, most of these techniques are semi-automated.

20

Table 2.2 : Summary of change impact analysis techniques

2.6.4 Change impact analysis related frameworks and models

Figure 2-5 shows an architecture of a Java source code impact analysis tool called

‘Chianti’ which is a plugin in Eclipse Integrated Development Environment (IDE)

(Ren et al., 2005). There are three main submodules in this tool. Initially, derive

atomic code changes from pair of Java source code versions which is done via

pairwise AST comparisons. Another module reads the test call graphs for original

source code and edits code snippets. Also, it computes affecting code changes and

Category Technique Description

Statistical

analysis

Data flow analysis, relational language, program

slicing, static call graphs (Oliva, Gerosa, Milojicic,

& Smith, 2013)(Maule, Emmerich, & Rosenblum,

2008)

Has identified that the string analysis is

not precise for schema CIA. There is a

precision versus computational cost

trade-off in this analysis.

Comparative analysis: Study on impact analysis

algorithms, techniques using Precision, Recall and

Harmonic mean (Kama, 2013)(Li et al.,

2013)(Galbo, 2010)(De Lucia, Oliveto, & Tortora,

2008)(Y. Zhang et al., 2016)(Kabeer, Nayebi,

Ruhe, Carlson, & Chew, 2017)(Déhoulé, Badri, &

Badri, 2017)(Kchaou, Bouassida, & Ben-Abdallah,

2017)(Czibula et al., 2017)(Shahid & Ibrahim,

2016)(Borg, Wnuk, Regnell, & Runeson, 2017)

Results certify that existing algorithms

require enhancements and effective

mechanisms to facilitate automated tools

for CIA. Have identified required

characteristics in impact analysis.

Discovered the possibility of

transferring impact analysis tools in

academia to industry to help developers

during maintenance and evolution

activities.

Probabili

stic-

based

Change history and Bayes’ theorem (Sharafat &

Tahvildari, 2007)

Maintenance of object-oriented mission

critical systems is addressed. Limited

for object-oriented software.

Call graphs, Entity Dependency Graph (EDG)

(Oliva et al., 2013)(Ibrahim, Idris, Munro, &

Deraman, 2005)(Ibrahim, Munro, & Deraman,

2005)(Yiheng Wang, Zhang, & Fu, 2017)(Kchaou

et al., 2017)(Ren, Ryder, Stoerzer, & Tip, 2005)

Explain the concept of two dependency

states; namely, persistent relationship

state and immediate relationship state in

change propagation. Better program

understanding and debugging.

Formal Semantics (Goknil, Kurtev, van den Berg,

& Spijkerman, 2014). Logical dependencies and

classification criteria (Lehnert, 2011)(Duarte,

Duarte, & Thiry, 2016)(M. Lee & Offutt,

2002)(Rempel & Mader, 2017)

Removal of false positive impacts and

consistency checking. Adds valuable

information. Restricted for particular

change and relation types.

Rule-based (Lehnert, 2015)(Yiheng Wang et al.,

2017)(Lehnert, Farooq, & Riebisch, 2013)

Allows developers to smoothly retrace

the changes.

Data mining, Apriori algorithm (Zimmermann et

al., 2005)

Useful in change predictions.

History-

based

Historical co-change analysis, change history

(Sharafat & Tahvildari, 2007)

Use version histories to identify logical/

evolutionary couplings between entities.

Predict impact files after a change.

ML (Mills, 2017)(Czibula et al., 2017)(W. Wang et

al., 2018)

Classification models to predict the

validity of the candidate links. Use

unsupervised learning to identify hidden

dependencies. Less human involvement

Logical coupling (Wong, Cai, & Dalton, 2011) Use logical coupling with a Markov

model. Better accuracy.

21

affected tests. Besides, the third module visualizes the obtained change impact

details to the user. Thus, this plugin model is mainly based on the call graphs and

does not involve calculations for each impact in a quantitative value.

Figure 2-5 : Chianti tool architecture (Ren et al., 2005)

Arnold and Bohner present another impact analysis model in traceability (De

Lucia, Fasano, & Oliveto, 2008). They consider the changes occurred in

documentation and source codes in the identification of SIS. The dependency

graphs are used to identify the CIS using direct impacts and reachability graph

representations for indirect type of impacts. They have suggested to apply this

incrementally for identifying CIS to minimize the false positive rate.

Acharya and Robinson (Acharya & Robinson, 2011) present a static CIA

framework that is developed as a tool named ‘Imp’. The scope has been the source

code artefact impact analysis during frequent builds. Being a mathematical model,

this work has used forward slicing consisting of three criteria namely; (1) range,

(2) dependences and (3) summary edges to calculate the impact sets. Moreover,

the Andersen’s algorithm along with pointer analysis is applied. The algorithm of

this framework consists of two variations one for high setting impact analysis

which is expensive and another for low setting impact analysis which can be

performed more frequently faster with a lower cost.

Another static CIA technique is presented in (Jashki, Zafarani, & Bagheri, 2008)

that generates clusters of associated code files according to the co-modification

history records in the source code repository. It has decreased the complexity to

22

accelerate the CIA with the aid of dimensionality reduction techniques. Initially, it

mines the changed repository to find co-occurring source files and develops a

matrix containing the degree of closeness in each pair of files. Then, it has

performed an intrinsic dimensionality method based on Eigenvalues for estimation

on that matrix and gets a low dimensional matrix. Further, Principle Component

Analysis (PCA) is used for reduction. Finally, the matrix rows are taken as

coordinates of files and distance between each pair of files is measured and passed

to five different clustering methods. It identifies the clusters of associated files

from source code modules and creates the impact sets. However, any quantitative

measure is not adapted in measuring the severity of the impacts in this model.

Table 2.3 summarizes some related work with their methodology, advantages and

drawbacks of each. However, the majority has been limited only up to design level

or source code artefact in considering the artefact types while operational level

artefacts like build scripts are not addressed.

Table 2.4 summarizes related work on CIA according to their scope. Many studies

have based on estimating impact among homogeneous artefacts in the same level

such as either on requirements, UML designs or source code artefacts. Among

them, the majority of the studies have addressed requirement and source code

artefacts. The Java programming language or the object-oriented aspects are the

considered programming category in them. The call graphs, dependence graphs

and treemaps are mainly used in requirements artefact, UML designs and source

code artefacts while minor has involved data mining algorithms such as Apriori

algorithm in source code artefact. A few have addressed the impact analysis

between heterogeneous artefacts including requirements to test cases artefact.

Accordingly, one of the major limitations is being restricted to one or two types of

homogeneous artefacts mostly requirements or source code. The work that has

addressed heterogeneous artefacts are also limited only up to test cases artefact

without considering remaining stages artefacts such as build scripts, configuration

files and user manuals. Also, the visualization aspects are stated as future works to

be addressed in some of these existing related works.

23

Table 2.3 : Change impact analysis related work summary

Reference Addressed scope Description Advantages Limitations

(Lehnert,

2015)

Address heterogeneous

software artefacts from

different development

stages.

Based on a set of predefined CIA propagation rules.

Heterogeneous artefacts are mapped on a common

meta-model, dependencies are extracted as traceability

links. A set of impact propagation rules recursively

executed to compute the impact. Implemented as the

prototype tool EMFTrace.

Forecast the impacts prior to

implementation and address a

multitude of different change

operations. Maintain the

consistency in architecture and

the code of the test system.

Requirement artefact is

not included.

(Y. Zhang

et al., 2016)

Automatic recovery of

requirement to code trace

links.

A tool; R2C is implemented which concatenates

features to recovery links in requirements to source

code. WordNet is used to find synonyms of terms. Part-

Of-Speech (POS) tagging, parsing, extracting verb

object phrases and stemming applied. Comments are

also used in the tracing process. Compare the text

similarities based on IR techniques: VSM, TF-IDF.

Traceability link recovery is

addressed for requirement-to-

code artefacts.

Only requirement-to-

code traceability links

recovery is considered.

Tool fails to recover all

links. CIA is not

considered.

(Duarte et

al., 2016)

A body of knowledge on

traceability is build named

TraceBoK.

Requirements are classified based on the target domain.

Available as a web-based open source on internet to

access.

The transferring of the findings

of researches on traceability

from academia to the software

industry is achieved via this

knowledge body.

Limit for requirements.

CIA methods are not

discussed. Not a

straightforward impact

analysis tool.

(Goknil,

Kurtev, &

Berg, 2016)

CIA between requirements

and architecture.

Formal semantics in requirements relations used.

Implemented as an extension for existing tool called

TRIC.

Provide precise CIA in

software architecture which is

able to mitigate false positives.

Only the requirements

artefact is considered.

(Rodrigues,

Lencastre,

& Filho,

2016)

A user interactive tool for

traceability visualization.

Used visualizing techniques: Sunburst and tree in radial

layout, graphs, matrix and hierarchical.

Evaluate traceability allowing

domain independent data.

Provide various visualization

options via single tool.

Only the requirements

artefact is considered.

Impact analysis is not

addressed.

(Shahid &

Ibrahim,

2016)

Prototype tool, HYCAT to

support CIA.

First traceability matrix is generated between

requirements and test cases. CIA integrates both types;

static impact analysis and dynamic analysis together.

Results have shown high

accuracy and efficiency.

Only a case study

evaluation is performed

on the tool application.

(Yiheng

Wang et al.,

2017)

A rule-based CIA method

for software lifecycle

objects is designed.

5 types of entity dependency and changes were defined

and the corresponding change propagation rules were

designed. CIA is based on change propagation rules.

Explain the concept of two dependency states, (1)

persistent relationship state and (2) immediate

relationship state in change propagation.

Experiments have shown the

effectiveness of the introduced

algorithm.

No GUI support.

24

(Kabeer et

al., 2017)

Evaluates the applicability

of textual similarity

techniques for CIA

following Bag of Words

with topic modelling and

file coupling.

Finds the impact of textual similarity on altered files. A

corpus is created using the summary of the change

requests mined via Jira. Cosine similarity is applied to

get the textual similarity between documents. TF-IDF is

used to express Change Requests (CR) in the vector

space. Used Leave-One-Out Cross Validation

(LOOCV) to obtain model performance.

The effort in CIA for can be

minimised by extending its

applicability to many

dimensions such that to

impacted files and duration.

Existing CIA

techniques are

involved. No

straightforward tool

with a GUI.

(Déhoulé et

al., 2017)

CIA model addresses

AspectJ programs.

Change Impact Model for Java (CIMJ) is involved, 41

impact rules defined relevant to AspectJ programming

rules as well. Three change impact categories were

identified: (1) object code impacts on AspectJ code, (2)

AspectJ code on AspectJ code and (3) AspectJ code on

object code. Used precision and recall to evaluate.

Allows better support for

cascading impact analysis.

Evaluation shows higher

accuracy.

Limited for source

code artefact in Aspect-

Oriented Programming

(AOP) language.

(Kchaou et

al., 2017)

Impact analysis in UML

class and sequence

diagrams.

Uses structural and semantic dependencies within and

inter-UML diagrams. Uses graphs to map structural

dependencies. IR techniques; TF-IDF and LSI used for

semantic traceability.

Have gained precision of 84%

and a recall of 91% in the

requirements CIA and

management.

Limited to design

artefact in UML

notation.

(W. Wang

et al., 2018)

An approach to combine

multiple existing IR

techniques to facilitate

CIA.

Approach integrates a bag-of-words based IR technique

and a neural network based IR technique to derive

couplings from the code. Extract all identifiers,

comments and other artefacts from the code and

generates a corpus. Transform the corpus and change

request into their corresponding matrix and vector

forms by IR techniques. Use LSI and doc2vec. Employ

a learning paradigm to generate a similarity metric.

Results provide statistically

significant improvements in

accuracy across several cut

points. A new method is

introduced for measuring the

similarity between source code

and change request based on a

learning paradigm in

overcoming drawbacks

associated with IR techniques.

Only source code

artefact is considered.

25

Table 2.4 : Scope-based change impact analysis related work

2.7 Consistency checking and management

In software development, different artefacts process through various phases of the

SDLC. The changes and refinements that occur in artefacts do not happen at a

same speed and pace. Therefore, the consequences of each artefact change or

refinement may not result in a uniform pattern. Some refinements may reflect and

impact on other artefacts immediately. Thus, the stability among artefacts can

become inconsistent and can fail in representing the expected software system

solutions. That can lead to stakeholder dissatisfaction and system failure. The

Reference
Artefact level

Requirements Design Source code Testing Other

(Maule et al., 2008) X

(Spijkerman, 2010) X

(Oliva et al., 2013) X

(Li et al., 2013) X

(W.-T. Lee et al., 2010) X

(Phetmanee & Suwannasart, 2014) X

(Goknil et al., 2014) X

(Lehnert, 2015) X X X

(Y. Zhang et al., 2016) X X X

(Duarte et al., 2016) X

(Goknil et al., 2016) X X

(Rodrigues et al., 2016) X

(Shahid & Ibrahim, 2016) X X

(Yiheng Wang et al., 2017) X

(Kabeer et al., 2017) X

(Déhoulé et al., 2017) X

(Borg et al., 2017) X

(Galbo, 2010) X

(Kchaou et al., 2017) X

(Mills, 2017) X

(Czibula et al., 2017) X

(Rempel & Mader, 2017) X

(W. Wang et al., 2018) X

(Wong et al., 2011) X

(Lehnert et al., 2013) X X X

(Sharafat & Tahvildari, 2007) X X

(Zimmermann et al., 2005) X

(Tóth et al., 2010) X

(Dantas et al., 2007) X

26

consistency management in software domain is defined as the capability to

preserve the synchronization among artefacts along with the occurring changes

(Pete & Balasubramaniam, 2015). Accordingly, an artefact alteration or the

presence of outdated artefacts should consistently reflect on all the other affected

artefacts before they are used in the software process.

2.8 Change propagation in DevOps

The change propagation is conducted after the sequence of activities; change

detection and change impact analysis to monitor ripple effects and for the

selection of test cases respectively (Li et al., 2013). When new alterations are

made, it is essential to confirm that remaining software artefact elements in a

system are synchronized and consistent.

Thus, change propagation is the new changes necessary in a software system in

order to validate the consistency of assumptions in the system after an artefact has

been changed. This is mostly conducted during the incremental software changes.

Firstly, CIA is done to predict the change effects before checking whether they

need modifications. The tool ‘JTracker’ is popular for assisting change

propagation along with CIA. When a programmer changes a class, it marks the

potentially impacted neighbouring classes. The propagation is terminated if the

changes of neighbouring classes are not necessary. Furthermore, ‘JRipples’ is

another significant tool for change propagation throughout the incremental

artefact changes (Lehnert, 2011)(Li et al., 2013)(Rajlich, 2014).

2.8.1 Change propagation techniques

A. Heuristic rules

Heuristic rules use to aggregate the detected changes to propagate and to obtain

an optimal solution with high performance (Cleland-Huang et al., 2012)(Cleland-

Huang, Gotel, Hayes, Mäder, & Zisman, 2014). Hence, it is essential to determine

the best path for propagating any change in the context of software artefact

traceability. There exist specific aggregation algorithms which have been based

on the heuristic rules and the related work in (Kitsu et al., 2013) has discussed

one for source code change propagation.

27

B. Distance-based

In the distance-based option, the temporal distance and spatial distance are mainly

involved. The time taken among changes and the location distance among two

modifications are considered in propagating a change. The use of ASTs and other

representations are involved in determining these distances (Kitsu et al., 2013).

2.9 Continuous integration

Continuous integration is the repetitive integration process of building software

implementations and testing them during specifically an Agile software

development process. It elaborates frequent merging of the sole components of a

software system into a shared branch by preserving the healthiness of the code.

The importance of CI is significant in reducing most of the risks in software

development such as lack of deployable software, late discovery of defects and

lower project visibility (Duvall et al., 2007)(Meyer, 2014)(Kim et al., 2016). The

automation of the CI process has given significant importance in the literature. In

CI, the working code is committed to the version control repositories by

developers. And make build scripts on those frequently pushed code in the CI

servers to integrate new changes to the software. Figure 2-6 illustrates the CI

workflow conceptually.

Figure 2-6 : Continuous integration process (Farcic, 2016)

28

The principal ‘Single Source Point’ is encouraged via version control repositories

such as CVS, Subversion, Perforce and Visual SourceSafe that allow accessing all

source codes from a single primary location. After each build script execution in

CI servers, the feedback mechanism notifies the status of the build. The Short

Messaging Service (SMS), Really Simple Syndication (RSSI), E-mail and Project

Management (PM) tools are the main techniques used for feedback. Fixing the

discovered pipeline failures sooner without delaying is recommended to continue

well with CIs. Furthermore, CI and testing with Test-Driven Development (TDD)

are intricately linked together (Eck, Uebernickel, & Brenner, 2014)(Farcic, 2016).

The rationale of version controlling using the scripts to control the code rather

than the individual commands is a key method in tracing the artefacts. The ‘Echo’

approach is an evolving tool-based solution that addresses traceability in

requirements as tracking the artefacts using static or manual documentation is

impractical in an Agile environment (C. Lee, Guadagno, & Jia, 2003).

2.9.1 DevOps practices

Being a cultural aspect DevOps broadens the view of Software Engineering

paradigm by defining metrics that are understood across teams, sharing

measurement methods, tools and by making performance part of Agile stories.

CALMS approach is the principal notion followed in DevOps that describes to

start with people (Culture), bring in Automation, stay in Lean, Measure

everything and to Share among team members respectively. DevOps practices

give equal priority to the operations team in the development environment while

making developers responsible for incident handling towards faster code

repairing, enforcing the deployment processes used by Devs or Ops, adhering to

continuous deployment and developing infrastructure code as deployment scripts

(Bass et al., 2015). The major four dimensions of the DevOps practices remain as

plan/ track, dev/QA, release/deploy and monitor/optimize. This strengthens the

Agile software development methodology that stands as an umbrella for many

software process models such as SCRUM, XP, Lean and many more.

DevOps engineer is a prominent role in a DevOps environment that can be an

individual, team or even handled at an organizational level (Ghantous & Gill,

29

2017). The responsibility of a DevOps engineer is to manage the tool support that

which automation, version control, configuration and maintenance tools to be

used, when to use based on their performance and contribution for productivity.

Thus, the level of automation in the development and deployment pipeline of a

DevOps environment is basically controlled by the DevOps engineer.

The coordination of human resources in a DevOps environment is important to

maintain the manageability of collaborative nature. Similarly, there are separate

team coordination mechanisms defined. They are human processes and automated

processes. The frequently used stand-up meetings in Agile is an example of

human processes-based team coordination while automated processes involve

version control, configuration management and continuous integration to fasten

the feedback to developers.

Figure 2-7 : DevOps overview (“QASource DevOps Experts,” 2018)

There are stages of a DevOps cycle with respect to SDLC phases as depicted in

Figure 2-7. Some sources have defined as 5C’s of DevOps and some as 6C’s.

Those include continuous planning, CI, continuous testing, Continuous Delivery

(CD), continuous deployment and continuous monitoring (Kim et al.,

2016)(Ghantous & Gill, 2017). CD refers to the product-level software system

releases through the continuous process of building, test and continuous

deployment automation. Technically, the best practice to keep a successful

DevOps environment is following CICD (Continuous Integration Continuous

Delivery) pipeline (Farcic, 2016)(“DZone DevOps,” 2018) that combines DevOps

30

practices together. It ensures to have faster integrations, accelerates product

delivery with more frequent deployments and releases. That eventually

contributes to increase the productivity by bringing the best plus points in

adapting to DevOps.

2.9.2 DevOps tools

DevOps is classified as a new way of testing strategies that heavily contribute to

increase organization throughput. It has been a powerful selection for quality

results and in speeding up even customer level query processing due to the

evolving DevOps tool support. The tool support in a DevOps environment majorly

helps in maintaining CI and traceability. Jenkins, Travis, Ansible, Docker, Sonar,

Maven and OpenStack are few among many (Ghantous & Gill, 2017). The

existing higher level plugins such as ‘Hudson post-build scripts’ enable automated

analysis of CI operations carried out in CI tools like Jenkins.

A common fact on most of these existing tools is that they have only concentrated

on source code artefact integrations regardless of other artefact integrations such

as a design diagram modification, test case alteration and a requirement addition.

The reason for that is DevOps is emphasizing the practices on source code by

assuming that a source code change is done only after considering other earlier

stages artefact modifications such as design or requirements changes. Thus, the

DevOps tools are performing on source code artefact according to CICD practices.

A. Jenkins

Jenkins being a leading build automation server is a prominent DevOps tool that

supervises regularly executed jobs. It is an open source rapid CI server, which

generates a scenario where errors can be captured at a very early stage in the

SDLC. Figure 2-8 illustrates the basic workflow of building a software project on

Jenkins automation server as a job.

Figure 2-8 : Jenkins workflow

31

The functionality of the Jenkins server is conducting a definite set of activities or

tasks invoked via a trigger. The trigger can be a change happened in a linked

version control system or a temporal trigger such that a build in each 10 minutes.

The possible tasks include performing a build with Maven or Gradle for instance,

executing a pre-written shell script, archiving the build outcomes and starting any

integration tests. Currently, Jenkins focuses on building or testing software

systems continuously and supervising executions of jobs even though those are

running on a remote machine. The simple configuration through the web-based

GUI, the capability of deploying at a larger scale environment and the ability to

call slaves from the cloud by adhering to a slave topology can be identified as

major advantages of adhering to Jenkins (Berg, 2015). In addition, it offers a huge

bundle of plugins to enhance the capabilities to support the CICD pipeline. Those

plugins are usually integrated with other existing DevOps tool stack features such

as for instance Jenkins has Docker deployment-related plugins where Docker itself

is another DevOps tool.

B. Docker

Docker is an open platform for building, shipping and executing distributed

software applications even on a Virtual Machine (VM) or a cloud environment.

The existence of microservices is enriched by tools like Docker. It has made the

containers/ objects that hold and transport data easily (Farcic, 2016)(Ghantous &

Gill, 2017). Docker containers are happened to replace VMs as the preferable way

to create immutable deployments due to the higher usage of it in the industry. The

powerful utilization of Docker reduces the deployment efforts.

Figure 2-9 : Docker workflow

32

Figure 2-9 shows the workflow of Docker. Dockerfile is the primary element in

this process that encapsulates the instructions required to build a source project

with its dependencies and depending on environmental features. The execution of

Dockerfile results in a Docker Image that is a file comprised of a number of layers.

Finally, Docker runs that image to obtain the outcome that is Docker Container

known as a standardized software capable of delivering (“Docker,” 2018). They

are accessible and easily usable to everyone. The relationship between a Docker

image and a Docker container is similar to the difference between an object-

oriented class and an object where Docker image is depicting the class and Docker

container representing the runtime instance or the object out of the image.

C. Puppet

Puppet is a configuration tool in DevOps environments, based on deploying

microservices with less time (Farcic, 2016). Puppet comprised of a centralized

configuration server accessed by clients (Ghantous & Gill, 2017). The

configurations are described in the form of scripts defined in a Domain Specific

Language (DSL). Puppet provides a unified platform for activities such as

initiating system services or organizing packages that need various tasks in

heterogeneous operating systems.

D. Travis

Travis is classified as a recognized distributed continuous integrations service that

supports building and testing open source software projects. It encourages team

workings by tightly coupling to DevOps practices. It can automate test scheduling

with GitHub repositories (Redmiles et al., 2007)(“Travis CI,” 2018).

2.9.3 DevOps related project management tools

Project management tools have a significant contribution in any software

development model especially in DevOps where collaboration is maximum.

Hence, managing a larger number of smaller teams, tracking software changes and

tasks allocation among teams are keep recorded using a PM tool by any software

organization. Therefore, there is a huge number of PM tools available to fulfil the

organizational and personal PM needs. Few of the most prominent PM tools

having different capabilities are discussed in this section.

33

A. Trello

Trello (“Trello,” 2018) is a prominent, web-based PM application currently owns

by the company Atlassian which provides many software tools. It follows a board,

list and card structure with a simpler GUI using JavaScript to manage tasks, assign

among team members with deadlines, priorities and progress. It provides most of

the functionalities freely being a reason for its wider usage in industry level and

academia for projects management. Further, Trello is enriched with open source

APIs to integrate with various environments and cloud-based integration services.

B. Jira

Jira is another leading product by Atlassian company for Agile PM tasks and issue

tracking (“JIRA Software,” 2018). Being a proprietary tool, it is comprised of

three main packages namely Jira Core for generic PM features, Jira Software

specifically for Agile PM features and Jira Service Desk for IT/ business service

desks. The organizations such as Skype, Twitter and NASA also rely on this tool

due to its cross-platform supportability.

C. Slack

Slack (“Slack,” 2018) is a cloud-based team collaboration tool which stands for

‘Searchable Log of All Conversation and Knowledge’ launched in 2013. It

provides persistent chat rooms for software environment communication that can

be organized by topic and searchable including files. Slack is a proprietary tool

that provides basic functionalities free with cross-platform capabilities.

D. Zoho sprints

Being similar to Trello in structure, Zoho Sprints (“Zoho Sprints,” 2018) is a

proprietary Agile PM tool that is built specially for Scrum teams to plan the

workloads in Sprints. Thus, it provides features to add user stories to backlogs

estimate and prioritize work items following a board-based GUI.

E. Bitrix24

This is categorized as a leading free cloud and mobile PM solution that provides

extended features proprietarily. Tasks, Gantt charts, task dependencies, resource

planning and invoice management can be conducted with Bitrix24 (“Bitrix24,”

2018) in many languages such as English, Spanish, Russian and German.

34

2.10 Analysis of related work

Table 2.5 summarizes some related work on traceability management. The work

presented by Tyree (Tyree & Akerman, 2005) has used the decision-based

traceability on the architectural artefact. Passos (Passos et al., 2013) has addressed

up to the implementation level artefacts and its development environment is

limited to feature-oriented software projects. A rule-based approach with multi-

level dependency modelling considering many artefacts including the testing

phase is presented in (Lehnert et al., 2013). It has applied impact analysis over

heterogeneous artefacts and has achieved significant precision and recall results

though lacking support for dynamic UML models. Zhang (S. Zhang, Gu, Lin, &

Zhao, 2008) has addressed the change detection and impact analysis with a

framework implemented in AspectJ programs. The workspace awareness tool in

(Sarma, Redmiles, & Van Der Hoek, 2012) has involved all the phases in

continuous integration in an event-based approach, but it lacks the automation.

The IR techniques VSM and LSI are used in (Lucia, Fasano, Oliveto, & Tortora,

2007) though the change propagation and continuous integration are not

addressed. However, this work has been not limited to a specific artefact type and

has semi-automated traceability recovery. The tool Echo presented in (C. Lee et

al., 2003) which is based on Agile practices have addressed requirements and

design artefacts. Another event-based notification approach that supports

heterogeneous and distributed development environments is used in (Cleland-

Huang, Chang, & Christensen, 2003) though it lacks CI support.

Although there are a considerable amount of research has been done, most of the

literature has certain limitations such as being addressing only a few artefact

types, not focusing on complete SDLC, lack of support towards continuous

integration and lack of automation. Further, it is observable that the IR methods

are involved in requirement traceability, whereas event-based and rule-based

approaches are used in change detection, impact analysis and change propagation.

Accordingly, the lack of traceability management to cope with continuous

integrations for the entire SDLC can be identified in the existing related works.

35

Table 2.5 : Evaluation of related work on traceability management

Related

work

Traceability

establishment

Change

detection
CIA

Consistency

management

Change

propagation
CI

(Tyree & Akerman,

2005)

Template-based

approach using

architectural decision

templates.

Decision-based

approach.

Manual analysis by

humans.

- Decision-based

approach require

manual

monitoring.

-

(Passos et al., 2013) Feature-oriented

approach.

Feature-oriented

manner.

Calculate feature

dependencies in artefacts.

- - -

(Lehnert et al., 2013) Rule-based approach.

Dependency detection,

Dependency relations.

- Rule-based approach.

Multi-level modelling.

Depend on change

propagation rules.

Multi-perspective

consistency

checking.

Analyse

dependency

relations.Recursiv

e algorithm.

-

(S. Zhang et al., 2008) - Atomic change

representation,

syntactic

dependencies.

Static AspectJ call graphs. - - -

(Sarma et al., 2012) Event-based approach. Visualization. Event-based approach.

Binary measurements.

Manual

visualizations.

YANCEES

notification

service.

Worksp

ace

awarene

ss tool.

(Lucia et al., 2007) Information retrieval

methods.

Matrix-based

using VSM.

Rule-based approach. Traceability

recovery using LSI.

- -

(C. Lee et al., 2003) Text annotations.

Conversation-centric

model.

Visualization. Manually via

visualization. Forward,

backward traceability.

- Use of elaboration

activities.

Versioni

ng.

(Cleland-Huang et al.,

2003)

Event-based approach. Publisher-

subscriber.

Event-based approach.

Event logs for artefacts.

- Update artefact

event logs.

-

(Alves-Foss et al.,

2002)

Data pre-processing

XML, HTML.

Visualization. Manually via

visualization.

Integrative

approach.

- -

36

2.11 Visualization of traceability links

Visualizing software artefact traceability is useful in building, recovering the

artefact relationships and in decision making. It is challenging to visualize a large

number of traceability links and paths among artefacts in real time with inter-

relationships due to scalability and visual clutter related issues.

Table 2.6 : Traceability visualization techniques

Technique Features Advantages Limitations
Related

work

Lists Represent data

in a single

dimension

sequentially.

Efficiency due to

simplicity.

Limited for a smaller

amount of data due to

single dimension.

(Merten,

Jüppner,

&

Delater,

2011)

Traceabilit

y matrix

Store data with

two-

dimensional

grid structure.

Capable of

displaying artefacts

in two dimensions.

Recommended for

a smaller number of

artefacts.

Impractical to represent

a larger number of

traceability

relationships.

(Chen,

Hosking,

&

Grundy,

2012)

Cross-

reference

Represent data

in a table

structure.

Capable of

providing a list of

relevant trace links

for artefacts.

Inability to provide an

inclusive structure of

traces and to find

individual trace links

since strictly adhered to

a table structure. Lack of

scalability.

(Chen et

al., 2012)

Treemap A tree data

structure to

represent data

in a 2D

manner.

Display a large tree

by using display

space effectively.

Inability in

communication with the

hierarchical structure.

Complex for a larger

number of links.

(Shneide

rman,

1992)

Hierarchica

l tree

Represent data

in hierarchical

structure with

node-link

style.

Provide detailed

dependency

information about

traces. Simplicity,

understandability.

Visual clutter in an

excessive number of

trace links.

(Holten,

2006)

Traceabilit

y graph

Graph

representation,

data in nodes

and

relationships

in edges.

Higher ability in

visualizing

structured data with

relations.

Limit the viewing of

graph for excessive

nodes. Performance

issues.

(Herman,

Melanco

n, &

Marshall,

2000)

Sunburst

and

Netmap

A radial

layout.

Alternative for

matrices and

graphs.

Effective in

browsing and

navigation with

better user

orientation.

Not filtering the

visualization links.

(Merten

et al.,

2011)

37

There are visualization techniques and tools that enable analysing large temporal

data. The selection of an optimal technique depends on the various properties in

trace links. Table 2.6 presents a summary of visualization techniques. Among

different visualization techniques, traceability matrix is mostly used for

requirements artefact with NLP aspects (Thommazo, Malimpensa, De Oliveira,

Olivatto, & Fabbri, 2012)(Chen et al., 2012). The graph-based, tree-based and

other techniques are also used in some related work (Chen et al., 2012)(Rodrigues

et al., 2016).

Table 2.7 analyses the related work on traceability visualization techniques. Most

of them have slightly considered model driven features. It is a limitation in

supporting to a range of software types (Kugele & Antkowiak, 2016)(Santiago,

Vara, De Castro, & Marcos, 2014). Many works have addressed the visual clutter

and scalability issues (Merten et al., 2011)(Filho & Lencastre, 2012) and several

tools are integrated with a specific IDE. Moreover, many studies have considered

only a certain type of artefacts such as either requirements or source code. Thus,

there is a need for a generic software artefact visualization methodology.

Table 2.7 : Evaluation of related work on traceability visualization techniques

Related

work

Visualization technique

List

s

Trace

ability

matrix

Cross-

refere

nce

Tree

map

Hierar

chical

tree

Trace

ability

graph

Sunburst

and Netmap

visualization

Other

(Merten et

al., 2011)
√ √

(Chen et al.,

2012)
 √ √

(Holten,

2006)
 √ √

(Rodrigues et

al., 2016)
 √ √ √ √

(Filho &

Lencastre,

2012)

 √ √ √

(Thommazo

et al., 2012)
 √

(Kugele &

Antkowiak,

2016)

 √

metapho

r-based

(Santiago et

al., 2014)
 √

MDE-

oriented

38

2.12 Tool support for tractability management and continuous integration

One of the approaches for maintaining traceability is tool-based approaches where

a specific tool is used for tracing purpose of that particular artefact. The tool

support for artefact traceability and continuous integration is an evolving area

with the use of existing and novel techniques. The representation and

visualization of the identified traceability results is a major challenge for proper

artefact management. Some existing traceability tools support the representation

while some remain with limitations as stated in Table 2.8.

Table 2.8 : Tool support for traceability management

Tool Usefulness Limitations

TraceME (Bavota et al.,

2012)

Artefact traceability visualization

in traceability dependency graphs.

Limited to Eclipse IDE as

a plugin. Research-level.

ADAMS Re-Trace (De

Lucia, Oliveto, et al.,

2008)

Heterogeneous artefact

traceability management and

recovery.

Limited to be used within

Eclipse IDE as a plugin.

Caliber-RM (Capterra,

2019)

Allow stakeholder collaboration

with versioning. Impact

identification and visualization of

requirements.

Proprietary. Limited for

requirements artefact.

Platform dependent with

Windows OS.

Cradle

(“3SL,” 2018)

Designed for Agile development.

Scalable and multi-user

accessible.

Lack of CIA, Proprietary

tool. Limited for

requirements.

RequisitePro (“Rational

RequisitePro,” 2017)

A collaborative requirements

management tool. Support use

case generation.

Limited for requirements

artefact. Proprietary. Lack

of tool maintenance in

updates.

YAKINDU

(“YAKINDU

Traceability,” 2019)

Support tool integration with the

applicable artefacts. Visualize

query and generate traceability

coverage reports and impact

analysis results.

Limited for requirements

artefact. Proprietary and

patent pending tool.

Palantír

(Sarma et al., 2012)

Notify artefact changes, CIA.

Graphically display in a

configurable and non-obtrusive

way. Enforce continuous

coordination.

Changes related

information is captured at

the file level and user

notification of conflicts at

the code entity level.

ReqView (“ReqView,”

2017)

Present structured requirements in

a tabular way and visualize in a

traceability matrix.

Limited for requirements

artefact. Proprietary tool.

Table 2.9 summarizes the tool support for information retrieval techniques. The

tool TraceME has addressed all the main artefact types and stands as an Eclipse

plugin (Bavota et al., 2012). The tool RETRO can be identified as more towards a

39

case study biased to the requirements artefacts (Hayes et al., 2007). ADAMS Re-

Trace is another Eclipse plugin that has addressed the main types of artefacts and

has used the LSI technique for IR (De Lucia, Oliveto, et al., 2008).

Table 2.9 : Tool support for information retrieval

Tool Artefacts
Information retrieval technique

VSM TF-IDF LSI Other

IBM RequisitePro (“Rational

RequisitePro,” 2017)

Requirements documen

t-based

TraceME (Bavota et al., 2012) All X

RETRO (Hayes et al., 2007) Requirements,

design, bug reports

X X X

ReqAnalyst

(“SERG :ReqAnalyst,” 2017)

Requirements X Extract-

Query-

View

ADAMS Re-Trace (De Lucia,

Oliveto, et al., 2008)

All X

TraceTool (Mischler &

Monperrus, 2014)

SRS X X

Wider use of VSM, TF-IDF and LSI techniques for the purpose of information

retrieval can be seen in this summarized commercial traceability related tools in

Table 2.9. However, still, the major software artefact that most of the tools have

addressed is only the requirements artefact where the test scripts, configuration

files sort of artefact types are hardly addressed.

The use of traceability management support along with CI, change impact

analysis and consistency management in the existing tools is summarized in Table

2.10. Some tools are platform dependent such as Caliber-RM is only supporting

Windows environment (Borland, 2006). TraceMaintainer is an independent tool

that supports any CASE tools in any heterogeneous environment. However, it is

limited for the support towards the requirements and design artefacts (Mäder et

al., 2008). LDRA-TBmanager is a significant tool that has addressed the artefacts

related to testing activities in SDLC and it supports the applications developed

using any programming language (“LDRA,” 2018). TraceME and ArchEvol are

integrative tools with the Eclipse IDE as a plugin. An object-oriented Supply-

Chain Management (SCM) infrastructure is contained in the tool MolhadoArch

that has addressed majority types of software artefacts (Nguyen, Munson, &

40

Boyland, 2004). Accordingly, a lack of tool support addressing all the types of

heterogeneous artefacts together in SDLC with a minimum of dependencies such

as depending on a particular IDE or a platform can be identified.

Table 2.10 : Tool support for traceability management

Tool Artefacts

Traceability

management approaches

Continuous integration

approaches C

I

A

Consis

tency

manag

ement

Rule-

based

Hypertext

-based

Integ

rativ

e

Versi

onin

g

Colla

borat

ion

visua

lizati

on

Mo

deli

ng

IBM DOORS

(“IBM-Rational

DOORS,” 2017)

Requiremen

ts

 X X X X X X X X

RequisitePro

(“Rational

RequisitePro,”

2017)

Requiremen

ts

 X X X X X

Caliber-RM

(Borland, 2006)

Requiremen

ts

 X X X X X X

Cradle (“3SL,”

2018)

Requiremen

ts

 X X

TraceMaintainer

(Mäder et al.,

2008)

Requiremen

ts, structural

UML

X X

TraceAnalyzer

(Egyed, 2001)

UML

designs, test

cases, code

 X X X

TraceME (Bavota

et al., 2012)

All X X

LDRA-

TBmanager

(“LDRA,” 2018)

Requiremen

ts,

regression

suites, test

scripts

 X X

ReqView

(“ReqView,”

2017)

Requiremen

ts

 X X X

ArchEvol (Nistor,

Erenkrantz,

Hendrickson, &

van der Hoek,

2005)

Architectura

l aspects,

code

 X X X

ArchStudio

(“ArchStudio,”

2018)

Architecture X X X X

MolhadoArch

(“Molhado

Project,” 2017)

All X X X

41

2.13 Evaluation techniques of traceability management

2.13.1 Quality measures

A. Traceability coverage

The correctly identified trace links in a traceability recovery process is known by

traceability coverage. It is advantageous to determine the quality of established

artefact traces such that well traced and poorly identified traces which helps to

improve the traceability. Traceability coverage can be defined as in equation (2.1)

(Cleland-Huang et al., 2012).

 (2.1)

Where, targets is the target artefacts and links_a (targets) denotes the links traced

between a particular artefact a with the artefacts in the target set.

B. Correctness measures

Precision, recall and F-Measure are the highly applied accuracy measures. The

accurate instance count among all the obtained instances regardless of their

relevance is known by precision (2.2) and helps to save time when finding

changes. Recall (2.3) that is also referred by sensitivity expresses the accurate

instance count among the obtained related instances and contributes to confirm

whether proposed changes are all considerable or not (Zeugmann et al., 2011).

 (2.2)

 (2.3)

Where, EIS represents estimated impact set and AIS denotes actual impact list.

In relation to both precision and recall, F-Measure (2.4) is defined by the

weighted harmonic mean of both of them in a test having the values in range [0,1]

which highlights the association of precision and the recall (Zeugmann et al.,

2011). F-Measure is also known by F1 score.

 (2.4)

42

C. Reliability

Reliability of traceability is important in safety-critical and high-reliability

systems. The Hidden Markov Chain (HMC) algorithm can be used in measuring

software reliability (J. Lee, Cho, Youn, & Lee, 2009)(Vrignat, Avila, Duculty, &

Kratz, 2015). The UML artefact based reliability prediction in traceability also

contains a significant value in the literature (Trung & Thang, 2009)(J. Lee et al.,

2009). Moreover, the proper maintaining of a traceability matrix is considered

useful to preserve the reliability with respect to requirements artefact.

D. Usability

Usability is concerned with the user experience and the interactivity based on

evolving user expectations. The usefulness, ease of use, learnability and likeability

are treated as the general concepts of the usability (Winkler, 2008). A larger

number of users sample is mainly considered in measuring the usability aspects of

a traceability tool in the related works (Faulkner, 2003). Moreover, the degree of

automatization by reducing human effort in reducing the trace link generation time

and user interface improvements are considered as usability features

(Sünnetcioglu, Brandenburg, Rothenburg, & Stark, 2016).

There exist multiple criterion methods to evaluate usability quantitatively and

qualitatively such as System Usability Scale (SUS), Likelihood to Recommend

(LTR), Net Promoter Score (NPS) and the use of Tag Clouds. SUS is a Likert

scale methodology found by John Brooke in 1986 to measure usability level of a

software tool with the involvement of a set of users (Brooke, 2013). It provides a

questionnaire consists of ten standard questions each with five options. The

options which are scale-based ranging from ‘strongly agree’ to ‘strongly disagree’

remain the same for all questions and each contains a quantitative weight. Thus,

the final outcome of SUS is a numerical value called SUS score. It assigns a

usability level to the tool such as Average or Above Average.

NPS is another user satisfaction evaluation method, but with a single question to

the users that question how likely a user would recommend the tool to someone

(Keiningham, Aksoy, Cooil, Andreassen, & Williams, 2008). It is known as LTR

and is also defined as SUS score divided by 10 in relation with SUS methodology

43

(“MeasuringU,” 2018). The answerable 11 scale options range from ‘not at all

likely’ to ‘extremely likely’ similar to SUS and results in a quantitative value as

the final NPS value. In addition, a tag cloud is a novel visualization technique to

represent weighted keyword-based textual contents (Sinclair & Cardew-Hall,

2008). It can be used to represent user feedback with their response frequencies.

2.13.2 Network analysis

Network analysis combines several centrality measures to specifically assess

network graphs. Thus, they are applicable to evaluate the accuracy of traceability

links in traceability networks that are represented in a form of visualization graphs.

The centrality measures include (Knoke & Yang, 2008), degree centrality: denotes

the status of a node based on the number of adjacent links; (2.5) closeness

centrality: gives the most nearer node to a maximum number of nodes; (2.6)

betweenness centrality: states the number of times a node act as a bridge along the

shortest path to others; Eigenvector Centrality (EVC): gives the most influential

element. EVC measure is used to analyse the accuracy of the artefact traceability

establishment (Borgatti, 2005).

 (2.5)

 (2.6)

EVC is defined as the principal Eigenvector of the adjacency matrix defining the

network and has been used to analyse accuracy in previous work (Perera, Miller,

& Allison, 2017). If an EVC measure of the artefact has a higher value, it can

influence many other artefacts. An artefact is more influential if it affects other

highly influential artefacts than an artefact which affects the same number of less

influential artefacts (Perera et al., 2017). Thus, EVC is useful to find how the

artefacts influence the linked artefacts, without necessarily being restricted to the

shortest path etc in a node connectivity (Borgatti, 2005).

44

2.13.3 Traceability testing techniques

A. Unit testing

The unit testing verifies the fulfilment of the specification by each unit

(Sommerville, 2010). The concept of Test-first development encourages to have

automated unit test for each functionality, before the implementation of the

function. It is essential to perform unit tests at each integration of the continuous

integration process.

B. Regression testing

The regression test is important in confirming that the previously run tests and

alterations have not introduced new defects (Sommerville, 2010). Hence, it is

essential in applying for a traceability management tool as the traceability itself

heavily gets changed based on artefact element alterations. Besides, regression

testing is the main testing method in Agile-based software development.

Traceability matrix technique can be used in regression testing (Athira & Samuel,

2011).

C. User acceptance testing

The User Acceptance Testing (UAT) is one perspective in the final stage system

testing that verifies the intended behaviour of the final software product and is a

black box test (Hambling & Goethem, 2013). The version controlling features can

be used to maintain the requirements and acceptance tests. UAT can be applied to

different case studies and user samples. The alpha and beta tests are two subtypes

of UAT.

2.13.4 Supported testing tools

A. Selenium

Selenium is an open source, portable test automation suite that is capable of test

management and reporting (“Selenium,” 2018). This can be applied for continuous

integration servers, where the machine-readable test reports are essential to

evaluate the accuracy of integrations.

45

B. JUnit

JUnit stands as a prominent Java-based unit test automation tool which is

integrated with most of the IDEs such as NetBeans (Sommerville, 2010).

Therefore, it can be used in testing the Java involved source code artefact

traceability.

2.14 Discussion

Software systems in every domain become highly complex and competitive

requiring the ability to perform in high reliability in order to sustain without being

replaced by a newer software system. The development of these systems requires

strong traceability and consistency management for the correct functioning and

maintenance of the product.

Different types of intermediate software artefacts are involved during the

development process. The main software artefacts include requirements, designs,

source codes, test scripts, build scripts, configuration files and many more. The

Agile software development model is identified to be the most evolving one in

trend due to its highly collaborative and cost-effective nature. It is comprised of

practices such as DevOps, continuous integration and continuous delivery.

DevOps reduce the gap between development and the operations, whereas the

continuous integration referrers frequent merging of developer working copies.

The resulting rapid changes of artefacts are required to be traced in order to

preserve the maintainability in DevOps. Furthermore, change impact analysis

plays a significant role before and after each change detection process.

The evaluation measures of traceability and impact analysis are more towards

efficiency, performance and correctness measures. Evaluating the quality

attributes is vital for the betterment of traceability management in a rapidly

changing DevOps environment. Correspondingly, the uniqueness and the

usefulness of the core research problem identified to be addressed in this research

work; determining an approach of impact analysis for artefact traceability in a

DevOps environment is justified in this conducted literature study.

46

2.14.1 Limitations in current practices

The main limitation in the existing context of software traceability and continuous

integration is the lack of sufficient tools and technique. The existing tools are

limited to certain artefacts and development environments (C. Lee et al.,

2003)(Burgaud, 2006). Also, there is a lack of CIA methods associated with

traceability especially in a quantitative approach. Moreover, traceability

visualization and validation covering heterogeneous artefacts are hindrances in

literature. Thus, the automation of traceability establishment has become

unachievable and inapplicable into DevOps environments. Although the support

of traceability and CI is important to be available during the overall SDLC, it is

not completely preserved in the current practices (Chang, 2005).

2.14.2 Future challenges and research directions

The current software industry is still reluctant to adapt the traceability aspects into

the environments due to the above-identified limitations and challenges. It is

challenging to build a general framework that supports traceability management

with a wide range of customizability. Another challenge is that currently,

traceability does not provide tangible direct advantages to software development.

Thus, there is a need of a tool that supports all the artefact types and development

environments in managing traceability. On the other hand, DevOps practices

support great collaboration between many functions engaged in the current

software development processes. Therefore, a technically sound and feasible

approach to manage software artefact traceability with impact analysis for a

DevOps environment having continuous integrations is essential for software

development as well as for maintenance (Rubasinghe et al., 2017).

47

Section 3

3 Research methodology

The solution space of the addressed research question is presented in this chapter.

The system designs of extended SAT-Analyser system and the technical aspects

of functionalities with their implementation are explored in this chapter.

3.1 System design

3.1.1 System overview

Figure 3-1: Extended SAT-Analyser system overview

Figure 3-1 depicts the abstract system overview of extended SAT-Analyser tool.

The heterogeneous artefacts are handled by the presentation layer as inputs to the

system. The business logic layer pre-processor component is responsible for the

data pre-processing of the acquired artefacts, data extraction and storing the

extracted items. Major functions related to overall traceability management;

traceability establishment is handled by traceability generator component and

48

change detection, change impact analysis, change propagation and consistency

management are managed by the continuous integrator component. Most of the

algorithmic workflow is divided within the business logic layer for these

functions. The traceability CI component is defined to be triggered with the

continuous deployments in a DevOps environment. Hence, at a deployment task,

pre-processor obtains the latest source code and build script artefacts via the

Jenkins automation server’s most recent successful build. The data management

required by the business logic layer is stored in the bottom data access layer.

Finally, the results visualization in three enhanced methods such as informative,

analytical and interactive graph is a responsibility of the presentation layer’s

visualization manager while providing a notification back to Docker Deployer.

The delivery manager in presentation layer then proceeds to complete the

deployment task with deployable software prior to CD.

3.1.2 Research model

In designing the extended SAT-Analyser, an industry level survey is conducted

among the DevOps practitioners. The purposes of the survey are to;

 Identify software artefacts that are highly subjected to changes,

 Continuous integration techniques and frequencies,

 Traceability management methods used in practice,

 Visualization mechanisms in DevOps environments,

 Change detection, change impact analysis, change propagation and

methods used to ensure artefact consistency.

Accordingly, unit test scripts are selected with respect to source code artefact

based on the analysis of obtained survey responses. The major activity of the

configuration phase within a DevOps environment is to build the implemented

codebase. Build automation is associated to compile the source code and to

transform into a binary code form. Build automation ensures that the tested code is

executable. The tools like Jenkins, buildbot, Apache Ant, Ninja, MSbuild and

Puppet support it with many options such as make-based, make-build, build script

generation and make-incompatible. Correspondingly, the build script generation

approach is used in this research. The Java-based Apache Maven is selected as the

49

configuration artefact while Jenkins as the build automation server. In the build

scripting method, the source code related dependencies, dependant plugins and

repositories are provided in a scripting format which is executed when a build is

necessary that can be either continuously or periodically through Jenkins.

Figure 3-2 : SAT-Analyser tool research model

Figure 3-2 illustrates the research model of the extended SAT-Analyser. It shows

the integration of SAT analyser with a practical software development process in

DevOps practice. A DevOps environment differs from a traditional development

process by the means of continuity in testing, integrating, deploying, delivering

and due to the collaborative workforce of different roles together. The developers

who are denoted as Devs, Quality Assurance (QA) engineers who perform testing

and other operational level team members denoted by Ops who are responsible for

monitoring, deployment, delivery and maintenance tasks work hand in hand than

performing their duties in isolation.

This research model is designed to perform the artefact traceability in CICD

pipeline. Initially, SAT-Analyser obtains all artefacts; requirement, design

diagram, source codes, test scripts, build script and establishes a traceability model

among them with visualization and validation. Then, SAT-Analyser’s invokes

50

scheduler during continuous integration. To ensure the traceability before

delivering, SAT-Analyser obtains the latest source code and build script via the

most recent successful build from Jenkins server. Accordingly, SAT-Analyser re-

establishes a traceability model based on obtained new source code and build

script artefact with change detection, change impact analysis, change propagation

and visualizes the traceability results. Simultaneously, notifies the teams via the

project management tool Trello about the change propagation. Consequently,

DevOps teams can decide on proceeding with CD. SAT-Analyser supports the

synchronization within the software process in this approach. Table 3.1 lists the

addressed software artefacts and the features existed in the initial SAT-Analyser

prototype tool. The limitations in the initial tool and the possible improvements for

the considered aspects in this research work are also summarized.

Table 3.1 : Analysis of existed SAT-Analyser

Existed SAT-Analyser
Considerations for

the tool extension

SDLC

phase

Software

artefacts
Possible improvements for limitations

Require

ment

analysis

Natural

language

requiremen

t

description

The data pre-processing is currently

error-prone. Only the requirements

given in the simplest raw text is

considered in a .txt format. The other

types of artefacts can be considered.

NLP data pre-processing can be

enriched with IR techniques for better

data extraction. Does not support

continuous integration.

Will not be

considered as the

area is more into

Natural Language

Processing and

information

retrieval. Not

within the research

scope.

Design

UML class

diagram

Only the structural view class

diagrams are considered. Can be

extended to behavioural models. In a

class diagram, only the inheritance is

considered. The aggregation,

composition types of relationships

have not considered.

Other UML design

diagrams are not

within the research

scope, as we focus

on CICD pipeline.

Implem

entation

Java source

code

Only the source files in Java language

are processed using Java Grammar 8.

Can be extended to other Object-

Oriented or functional programming

languages such as C++, Python.

Impact analysis is not included

significantly after the change

detection.

Other programming

languages are not

within the research

scope. Source code

will be considered

as it is used in CI to

integrate the code

to a shared

repository.

51

Table 3.2 summarises the software artefacts considered with respect to phases in

DevOps, the importance of the selected artefact types and possible techniques for

the proposed SAT-Analyser tool.

Table 3.2 : Analysis of the SAT-Analyser with DevOps extension

Proposed research for SAT-Analyser with DevOps environment

Phases Artefacts Description Possible techniques

Development

Java source

code

The source code

changes are prominent

in continuous

integration. Many

changes occur in the

codebase and the proper

consistency

management is

essential.

Java Grammar 8 and

ANother Tool for

Language Recognition

(ANTLR) are used to pre-

process Java code. The

version controlling can be

done via GitHub. Jenkins

can be integrated for

change management.

Testing

Unit test

script

Unit tests automate the

testing process by

verifying individual

units. It refactor easily

instead of changing

already tested codes

which is costly and

risky.

Event-based traceability

can map with the previous

code version. Tree-

differencing with Edit

history can use for change

detection.

Configuration

Dependency

files in

Maven

Maven repository build

automation by

concatenating artefact

dependencies. All

prominent CI servers are

supportive to the

packaging structure used

in the Maven

dependency

management and Maven

is highly supported

within the IDEs

involved in industry

level.

Maven files follow an

XML data structure such

as pom.xml file. XML

based data pre-processing

can be done using DOM

parser. Tree-differencing

with Edit history can apply

for change detection.

Tools such as Puppet and

Chef can be used for

configurations and Jenkins

can be used to automate

the source code repository

compilation into an

executable code base.

Deployment

Deployment

scripts

The cloud technologies

are used for efficient

productivity in DevOps.

The deployment scripts

can be used for cloud

integrations with cloud

hosts. Thus, the build-

deploy-test-release

pipeline in CD aspect of

DevOps can be

facilitated.

The deployment scripts

can be created based on

the build outcomes using

Docker that create a

deployment script called

Dockerfile and

containerize it to deploy as

a standard software unit to

a cloud or local repository.

52

3.1.3 System architecture

Figure 3-3 depicts the extended SAT-Analyser system architecture that follows a

layered behaviour having presentation, business logic and a data access layer. The

artefact manager provides the input interaction by intaking requirement in textual,

design in UML, source code in Java, test script in JUnit and build script in Maven

files. The visualization manager provides the output interaction with different

graph representation types such as informative, interactive and analytical by

involving JSON, JavaScript and Python to facilitate flexibility for decision

making. The delivery manager fulfils the deployment with deployable software

before continuous delivery.

Figure 3-3 : Extended-SAT-Analyser system architecture

53

The business logic layer is responsible for artefact data conversion into processed

artefact elements, traceability establishment and continuous integration

management. The CI manager is associated with the Jenkins automation server

and Docker deployer. The pre-processor component has a separate data extraction

module for each type of artefacts due to the heterogeneity of them. Once pre-

processed, XML converter brings them into a single common XML format using

XML parsers like DOM and SAX parser. Traceability generation with the aid of

XML readers, string comparison and traceability results validation using both

statistical and network analysis techniques are responsibilities of the traceability

establisher component.

The continuous integration component is considerably important as it is

responsible for change detection and impact analysis that involves mathematical

models such that scheduler algorithms, XML comparison algorithms, weight

calculation, impact assignment and change propagation using graph traversal

algorithms. It is triggered by the delivery manager at a continuous deployment

activity that could be twice a day or more frequent. Then, pre-processor obtains

the latest development artefact; source code and associated build script artefact via

the Jenkins latest successful build job. Jenkins server is comprised of a

relationship with multiple source code management systems like GitHub, a build

job triggering to perform project build activities and a notifier to inform the build

results whether a success or a failure. After completing the traceability and CI

process with change propagation results visualization, SAT-Analyser notifies to

teams via project management tool Trello. Next, the Docker deployer can proceed

with deployment by creating Dockerfile, Docker image and containerization to let

the delivery manager in presentation layer have deployable software.

The bottom layer is providing the database storage and access for all the purposes

such as for artefact storage, graph storage involving ontology dictionary manager,

WordNet manger, relation manager and graph database manager.

54

3.1.4 Abstract system workflow

Figure 3-4 illustrates the abstract workflow design of extended SAT-Analyser tool.

It starts by input artefacts such that requirements in the text, design in UML class

diagram, source code in Java, unit test in JUnit and build script in Maven

pom.xml. Then, preprocesses each type, converts into an intermediate XML

format, generates traces, visualizes and analyses them. The remaining CI part has a

scheduler to initiate the CI process and detects changes based on XML versions of

artefacts by managing versions. Thereafter, calculates impact and propagates

changes accordingly. Finally, updates changed artefact XMLs and notify deployer

via a project management tool to bring the system into a stable stage.

Figure 3-4 : Extended SAT-Analyser abstract workflow

55

3.1.5 Detailed system workflow

The detailed system workflow of extended SAT-Analyser is shown in Figure 3-5.

The application of the technical aspects shown and discussed in Figure 3-3 is

illustrated in this diagram. The leftmost side shows the data/ information elements

such as artefacts, Java Grammar, JSON parser, artefact elements, XML writer,

WordNet, dictionary ontology, thresholds, Neo4j graph database and Gephi open

graph platform. The activities are shown by the other type of rectangular shapes

while arrows depict the activity flow with directions. The notations IN, V1/2/3,

CP, CIA, CD, CM represent inputs, versions, change propagation, change impact

analysis, change detection and consistency management to categorize the activities

for better readability. The workflow ends when consistency is managed with

traceability project stability.

Figure 3-5 : Extended SAT-Analyser detailed workflow

56

3.1.6 System class structure

The class diagram of SAT-Analyser tool is shown in Figure 3-6. The classes

GUI_Manager and DB_Controller handle user interface and database,

respectively. The superclass Artefact_Manager intakes the artefacts from the user

and initiates the data Pre_Processor and Data_Extractor classes. There exist

subclasses inherited from Artefact_Manager for each type of artefacts. There can

have many pre-processor and extractor sub-modules as the inputs are in

heterogeneous. The extracted artefact elements and sub-elements are handled by

the Artefact_Elements class. Traceability establishment is done by class

Traceability_Generator which has a composition relationship with

Relation_Manager which manages the established trace relations among artefact

elements. Traceability visualization is based on the established relations and is

provided in three different kinds of views namely; informative view, interactive

view and analytical view. Traceability evaluation is performed by class

Trace_Validator that is related with analytical visualization type. The

Change_Detetor class monitors the database changes of artefact elements. It

triggers Impact_Management class whenever a change is identified for impact

analysis of affected items. Change_Propagator is used to propagate the changes

for affected artefacts by mandatorily using the class Graph_Traversal.

Figure 3-6 : Extended SAT-Analyser class structure

57

3.2 Traceability establishment

3.2.1 Data pre-processing of SAT-Analyser tool

The requirements, design, source code, unit test script and build script artefacts are

considered for the artefact traceability process of this system. Therefore, those

artefacts are addressed in the data pre-processing component as the input items.

The, requirement documents are in document format (.docs) or text file format

(.txt), design diagrams in metadata-JSON file format (.mdj) following UML

notation, source codes in Java programming language (.java), unit test artefact in

JUnit unit test script files (.java) and Maven build script is in a pom file (.xml).

The pre-processing of up to source code artefact is from the existed initial version

of the SAT-Analyser tool.

The NLP module is responsible for pre-processing data and extracting information

from requirement documents, story cards that are written in generic natural

language English. It is designed to extract the artefact elements such as classes,

methods, attributes and relationships from the stated requirements. The Stanford

CoreNLP is used to process the natural language statements to produce a base

form of text. Thus, its submodules Part-of-Speech tagger, parser, Named Entity

Recognizer (NER) and Anaphora analysis (coreference resolution) are also

involved for better pre-processing of the requirement data.

Initially, the NLP module tokenizes the pronouns of a given requirement

document as the task of tokenization. Then, Anaphora analysis is conducted to

identify the coreferences in given sentences before extracting the artefact

elements. Consequently, the extraction of nouns is performed in order to detect the

artefact elements among the processed requirement statements. A parse tree is

internally generated with the aid of used Stanford CoreNLP to obtain detailed

granularities of sentences by using POS tagging.

Correspondingly, the classes, methods, attributes and the relations among them are

extracted as the major artefact elements. A set of identification rules are involved

since differentiating among classes and attributes is problematic as both are nouns.

58

Therefore, if a verb phrase is following noun phrases in a sentence those nouns are

extracted as class names. Thus, attributes are extracted from nouns and adjectives

if the nouns and adjectives in a sentence are not following a verb phrase. Also,

methods are extracted from the noun phrases associated with class names.

Moreover, the relationship identification is defined to extract the association and

generalization type of relationships. Accordingly, a rule-based approach is

followed in the requirements data extraction. Then, the morphological analysis is

performed to convert the contents into a root form for redundancy elimination

purpose. Hence, the stemming analysis and redundant elimination are conducted in

retrieving a unique set of requirement data.

The design tools StarUML and Modelio are selected based on their ability to store

design diagram files as a model file (.mdj) and the export capability to generate

XMI (.xmi) and UML (.uml) formats respectively. Thus, it can be used to data

extraction via a JSON reader since diagram information and class diagram

concepts are well stored in a JSON format in those selected design tools.

Additionally, two pre-defined dictionaries are also integrated with this parsing

module in order to fine-tune the data extraction process by eliminating non-

realistic extractions in the context of class diagrams.

The source code parsing module pre-processes the source code artefact data from

the project workspace. The tool ANTLR is used to generate lexers, tokens and

relevant listener classes for the Java language. An abstract syntax tree of a source

code file is generated by ANTLR and is further processed using the Java

Grammar. The source code data extraction is done by traversing through the

syntax trees using the tree walker integrated with ANTLR in identifying class

declarations, methods, attributes, generalization and association relationships.

Moreover, they are designed to be stored in a temporary Neo4j database.

The goal of Algorithm 3:1 is to pre-process the input artefact resources and extract

the data accurately. The supportive input artefact types are requirements, UML

design class diagram, Java source code, JUnit test files and Maven build script at

this stage of the SAT-Analyser.

59

Algorithm 3:1 Data pre-processing

Require: Software artefacts (requirements, design, source code, test script, build

script)

Ensure: associating input data to a traceability project

1. input: artefact: a

2. if (a== requirements)

3. a_req = NLP_module(a)

4. if (a== design)

5. a_uml = UML_parser(a)

6. If (a== source code)

7. a_src= SRC_parser(a)

8. If (a== unit test)

9. a_ut= UT_parser(a)

10. If (a== build script)

11. a_bs= BS_parser(a)

12. axml = Convert_to_XML(a)

13. If (all 5 axml exists)

14. Build project structure module

15. Make folder structure

16. Initiate graph files

17. Else

18. Notify failure

19. output: new artefact traceability management project

Accordingly, if the type is ‘requirements’, the artefact is forwarded to process via

NLP_module algorithm and if the artefact type is ‘design’ it is forwarded to

UML_parser algorithm. Else, the artefact is forwarded into the SRC_parser if the

input artefact type is ‘Java source code’. Similarly, if the artefact is a ‘unit test’

type as a set of JUnit test script files, then UT_parser is used and if the artefact is a

build script in the form of a Maven pom.xml file, BS_parser is invoked. The

extracted artefact data are processed through the Convert_to_XML algorithm to

convert the data into a common format using XML writers. A new SAT_Analyser

project is created only if all artefact elements containing XML files are

successfully found. Thus, the expected final outcome in this algorithm is the

creation of a new SAT-Analyser project.

The goal of Algorithm 3:2 is to process the requirements artefact data provided in

English natural language via the .txt or the .doc file formats. The input is processed

through NLP activities to extract the requirements related artefact elements.

60

Algorithm 3:2 NLP_module

Require: Software artefacts: requirements in natural language

Ensure: pre-process requirements artefact data

1. input: requirements artefact: a

2. while (a)

3. tokanization

4. Anaphora analysis

5. Data extraction

6. Return classes, methods and attributes

7. if (classes, methods, attributes exists)

8. morphological analysis

9. Stemming analysis

10. Redundant elimination

11. output: pre-processed requirements artefact

The tokenization is performed to clear the statements by segmenting the running

text into words and sentences. The anaphora analysis is done to achieve

coreference identification. Thus, the pronouns are identified and re-organise the

requirement statements. The names of classes, methods, attributes and

relationships are extracted. A rule-based approach is designed such as class rules,

method rules, attribute rules and relationship rules. Once a certain set of elements

are collected, the morphological analysis along with stemming analysis is

conducted on the outcome. The motive is to transform the extracted requirements

artefact elements into a further base form to eliminate redundancies due to

plurality.

Algorithm 3:3 UML_parser

Require: Software artefacts: design in UML class diagram

Ensure: pre-process design artefact data

1. input: design artefact: a

2. if (a== UML class file)

3. process via StarUML reader

4. Process via Modelio reader

5. Data extraction

6. Return classes, methods and attributes

7. output: pre-processed design artefact

The motive of Algorithm 3:3 is to pre-process the design artefacts such that the

class diagrams designed in UML notation. Only the diagrams origin from the tools

61

StarUML and Modelio are processed since they highly contained the class diagram

details in JSON or the model based formats which eases the processing. Therefore,

a StarUML reader and a Modelio reader are designed to identify encoded details in

a class diagram file. The identified details such as class names, methods and

attributes are extracted as the design elements.

Algorithm 3:4 SRC_parser

Require: Software artefacts: source code in Java programming language

Ensure: pre-process source code artefact data

1. input: source code artefact: a

2. if (a== Java source files)

3. process via ANother Tool for Language Recognition

4. Process via Java grammar

5. Data extraction

6. Return object-oriented classes, methods and attributes

7. Store in Neo4j DB

8. output: pre-processed source code artefact

The pre-processing of source code artefacts is the goal of the Algorithm 3:4 and

the input must be a set of Java source code files. The ANTLR tool is involved to

generate Java Grammar based syntax trees, to traverse the tree using its tree

walker and to make use of the listeners for tracking. Hence, the class declarations,

methods, attributes are extracted with the aid of the ANTLR capabilities. The

extracted source code elements are stored in a Neo4j graph database temporarily.

Algorithm 3:5 UT_parser

Require: Software artefacts: unit test in JUnit test scripts

Ensure: pre-process unit test artefact data

1. input: unit test artefact: a

2. if (a== JUnit test script)

3. process via ANother Tool for Language Recognition (ANTLR)

4. Process via Java and JUnit grammar

5. Data extraction

6. Return JUnit classes, methods and attributes

7. Store in Neo4j DB

8. output: pre-processed unit test artefact

The pre-processing of unit test artefact provided in JUnit test scripts is the motive

of the Algorithm 3:5. The input to this algorithm must be a set of JUnit test script

62

files. Similar to the SRC_parser, ANTLR tool is involved in the process to

generate Java Grammar. The extracted unit test artefact elements are stored as the

output of this algorithm in a Neo4j graph database.

Algorithm 3:6 BS_parser

Require: Software artefacts: build script in Maven dependency pom.xml file

Ensure: pre-process build script artefact data

1. input: build script artefact: a

2. if (a== build script file)

3. process using XML data extraction

4. Return build script name, plugin dependency names

5. Store in Neo4j DB

6. output: pre-processed build script artefact

The pre-processing of build script artefact in Maven dependency file as a pom.xml

file is the intention of the Algorithm 3:6. The Maven build script; pom.xml files

are in a .xml tag structure. Therefore, directly the XML data extraction is

performed on pom.xml file to extract build script (project) name and

dependencies/ plugins names as data. Then, the extracted build script artefact

elements are stored as the output of this algorithm in a Neo4j graph database.

3.2.2 Input to XML conversion

The all five artefact processing modules write the pre-processed and extracted

artefact data in XML format using XML writers separately. A new traceability

project is created only if all processed requirement, design, source code, test script

and build script artefact XML formats are available. The extracted artefact data are

processed through the Convert_to_XML algorithm in order to convert the data into

a common format using XML writers.

The primary motive of this Algorithm 3:7 is the common format conversion of

pre-processed and extracted artefact related data. Therefore, the input to this

algorithm is designed to be the pre-processed requirements, design, source code,

unit test and build script artefact elements. The XML format is selected as the

common conversion format as XML structures are helpful in building complex

graphs with readability over others. Hence, all pre-processed artefact element data

63

are written using XML writers. The outcome of this algorithm is a separate XML

file for each artefact type that contains relevant extracted artefact data.

Algorithm 3:7 Convert_to_XML

Require: pre-processed artefact data

Ensure: Convert pre-processed software artefact to a common format

1. input: pre-processed artefact: a

2. if (a== requirements OR design OR source code OR unit test OR build script)

3. XML writer (pre-processed classes, methods, plugins, attributes)

4. Return a.xml

5. output: XML conversion of an artefact

3.2.3 Traceability generation

The pre-processed and extracted artefact elements are used for the traceability link

building among the addressed artefact types that are software requirements,

design, source code, unit test and build script. The WordNet is heavily involved in

the mapping purpose in this trace process (Kamalabalan et al., 2015). Moreover, a

self-generated dictionary is used for similarity calculations between artefact

elements which are helpful to manage the traceability links. The similarity is

calculated among two strings at a time where the strings represent the extracted

artefact element data and data stored in the WordNet. The Levenshtein algorithm is

applied for that purpose and it outputs a distance value called ‘Edit Distance

Value’. It denotes the minimum number of edit operations required for

transforming a string into the other string which signifies the similarity among two

strings. The most prominent edit operations performed include the insertion of a

character into a string, deletion of a character from a string and character

replacements. Accordingly, a threshold value is defined as 0.85 for the similarity

calculation based on the edit distances. Thus, the artefact elements that exceed the

defined threshold are considered as having a higher similarity and are mapped

together. Here the above mentioned self-generated dictionary fine-tunes the

performance of the matching artefact elements. The threshold-based mapping

refers to the relationship building process where the traceability links are

generated and established.

64

Correspondingly, a semantic network is created for word matching through the

build relationship module of this traceability link generation component of the

SAT-Analyser. The distance between nodes is measured in the semantic network

to identify the matching percentage. Importantly, the process so far is designed to

be automated. Also, the nodes are allowed to be manually adjusted if an

inappropriate lower matching percentage is achieved among two artefact elements.

Thus, a user can generate a new traceability link for the appropriate relevant

elements manually in the interface level. Nevertheless, the manual link creation in

every project is time-consuming and inefficient. Hence, the self-generated

dictionary is triggered to resolve this issue. It keeps track of the artefact element

words in the built semantic network continuously. For an example, the following

network shown in Figure 3-7 would be created in considering the words Bank,

Library, Online, Offline, Student and Cashier.

Figure 3-7 : Semantic network for words

Each word is stored with its relevant similar words and properties. The properties

include name-value pairs and a word’s parent class information. An API provided

by the Apache Jena Library is involved to build the ontology model in

implementations. Next, RDF is identified as a data format that more accurately

describes a metadata data model. Thus, it is used to record information as one of

the building block standards of the semantic web. However, RDF can be

represented in various different formats like JSON and XML. Hence, the artefact

specific XML file conversions are also mapped into a pre-defined relationship

XML model as shown in Figure 3-8.

65

Figure 3-8 : Pre-defined relationship XML model

The XML artefact models are separately generated for all supported three types of

software artefacts namely, requirements, UML class diagrams, Java code, JUnit

test files and Maven build script. The relationships among artefact elements are

recorded and modified based on change detections and change propagation results

during the software development.

Algorithm 3:8 Traceability link generation

Require: Software artefacts
Ensure: Building relationships among artefacts

1. input: artefacts: a
2. for (a)
3. get synonyms from WordNet
4. String comparison for classes, attributes, methods, relationships
5. matchDistance = Jaro Winkler algorithm similarity (element1,element2)
6. If (matchDistance > = 0.8 and < = 1.0)
7. Build trace link among two artefact elements
8. Else
9. editDistance= Levenshtein Distance algorithm
10. distance (element1,element2)
11. matchDistance = 1 - editDistance
12. If (matchDistance > = 0.8 and < = 1.0)
13. Build trace link among two artefact elements
14. XML Writer (nodes, links)
15. output: XML conversion of artefact traceability links (Relations.xml)

Algorithm 3:8 handles the pre-processed artefact data towards the traceability link

generation. It ensures the relationship creation among the extracted artefacts that

are input for the algorithm. Then, a string similarity computation is performed via

the Jaro-Winkler algorithm (“Jaro Winkler Distance,” 2017) and Levenshtein

Distance algorithm (“Levenshtein-Algorithm,” 2017) using the WordNet

synonyms and pre-defined dictionary ontology. The Jaro-Winkler algorithm

considers that the differences in the start of the strings are more significant than

differences close to the end of the strings, while Levenshtein algorithm computes

66

the number of modifications needed to transform a string to another. Therefore,

the Jaro-Winkler algorithm is selected due to its efficiency compared to the

Levenshtein distance algorithm. Fixed threshold values are associated for both

algorithms and Levenshtein is used for deep comparison if the Jaro-Winkler

similarity measure is not in the range of 0.8 and 1.0. Additionally, the WordNet

synonym selection is done using the Levenshtein Distance algorithm with a

threshold of 0.85.

Figure 3-9 : Traceability link generation component

Figure 3-9 illustrates the abstract processes involved in the traceability

establishment process. A similarity is marked if either threshold is met by

triggering a relationship among those two artefact elements. Next, the artefacts and

their established trace links are parsed through the Document Object Model

(DOM) parser (Olsson, 2015) and converted into a predefined XML structure.

3.3 Traceability visualization

Visualization of the established traceability links is essential in decision making

during the SDLC. It allows users to browse, explore and manage the relationships

among software artefacts which are useful in recovering from artefact degradation.

However, the number of artefact elements to be represented is a major challenge in

this context of visualization due to high visual clutter. Another challenge is the

instant modification facility of a built visualization schema based on the change

detection and change propagation outcomes.

67

Algorithm 3:9 Visualization

Require: Software artefact traceability links

Ensure: Visualise and represent artefact traceability links

1. input: artefact traceability links: k

2. Store relation nodes in Graph DB

3. while (DB is Not Null)

4. Graph generator (Graph DB)

5. Visualize default traceability graph

6. XMLR =Obtain Relations.xml

7. JSONR=XML to JSON convertor (XMLR)

8. D3 visualization graph generation (JSONR)

9. PythonR=XML to Python list convertor (XMLR)

10. Python visualization graph generation (PythonR)

11. output: Artefact traceability graphs

The visualization Algorithm 3:9 is responsible for generating the representation

outcomes of established traceability links among artefacts. The outcomes of the

traceability link generation component are mainly involved as the input for this

component along with the change detection components results. Thus, the artefact

relationship links are obtained as the direct input. The extracted and traceability

established artefacts and relationships are stored as nodes and links in a Graph

Database. The Neo4j database is selected in this purpose as it is supportive for

graph-based representations. The graph generator module is triggered to process

the relation nodes obtained from the graph database into graph-friendly formats

such as Gexf (Graph Exchange XML Format) files. The visualization module

represents the artefact elements as nodes and the relationships or the built

traceability links among them as edges among the nodes. Concurrently, the

relations XML version that consists of all traceabilities is obtained and converted

into a JSON format and Python list format for two variations of visualizations.

The visualization component is responsible for providing the output of the system.

It is based on the graph representation techniques following the insights from

literature. The traceability visualization enhancement in this research is performed

in two additional aspects such as analytical and interactive representations apart

from the existed static informative visualization type in the initial version of SAT-

Analyser. The component is modularized as depicted in Figure 3-10.

68

Figure 3-10 : Visualization component

The established traceability links in the traceability link generation component are

used in this visualization component. The inner modules are designed to manage

each type of artefact intra-relations. Thus, relationship management is defined for

each requirement, UML class diagram related design, source code, test files and

build script. Finally, all the finalized relation nodes that consist of the artefact

elements relationships are stored in the Neo4j graph database. Additionally, the

relations are stored in JSON format for the use of enhanced visualization

methodologies such that one for the interactivity purpose and one for traceability

analysis purpose that are described in this section.

3.3.1 Default SAT-Analyser informative traceability visualization

The default traceability visualization of SAT-Analyser contains the Neo4j graph

database (“Graph Visualization-Neo4j,” 2018) and Gephi graph generation

platform (“Gephi,” 2017). The Neo4j database is selected for this purpose due to

its support towards graph-based visualizations. It is identified to be capable of

handling a larger number of nodes, relationships among them with properties.

Moreover, the graph structure of it is flexible and not a defined schema that

follows a semi-structured schema. It follows a simple set of rules in a key-value

pair based manner. The graph generator module then obtains the relation nodes

and converts them into graph-friendly formats including Gexf files. The Apache

69

Lucene Indexing API is involved for the purpose of searching and locating nodes

and edges among relation nodes in the Neo4j graph database since the Neo4j lacks

the ability of indexing. Then, the visualization is performed with the node and

links using the Java library called Gephi-toolkit API (“Gephi,” 2017).

This view facilitates a general representation with colour codes for nodes and

edges to reduce the scalability issues provided with a separate information pane on

the right-hand side of the window to elaborate details of each node. Hence, this

can be categorized more as an informative visualization type. The naming

conventions used in this traceability graph visualization are as follows; RQ-

Requirement, D -Design, SC-Source Code, UT-Unit Test, BS-Build Script, _M-

Method/ Function, _F-Field/ Attribute. Each artefact type is illustrated and used

with a unique number next to each artefact element or sub-element for unique

referencing. In addition, results can be filtered based on artefact types or edge

types from the menu as shown in Figure 3-11. Those options are as follows;

 Full graph view with artefacts and their links.

 Edge filtered view for the relationship among the identified classes,

attributes, operations for each of the artefacts in requirements, design,

code, test script and build script.

 Artefact filtered views for each one of 5 artefact types separately.

Figure 3-11 : Default SAT-Analyser Traceability visualization menu

70

The artefact level representations are offered with each artefact. Different filtered

views are facilitated to avoid huge visual clutter. Figure 3-12 illustrates a selected

section of the generated graph view. The length of the edges denotes the strength

of the similarity between every two nodes. Larger the string comparison value

means shorter the length of the corresponding edge. For example, in Figure 3-12,

the edit distance value among RQ1 and D4 is 0.916 which denotes Normal Order

class in requirement artefact and design, respectively. Similarly, the value among

RQ1_M2 and D4_M3 is 1.0, which represents Cash On Delivery method in

requirements artefact and UML design artefact, respectively. Thus, the length of

the edge between RQ1 and D4 is comparatively lengthy as the UML class diagram

artefact has used the class name with naming conventions. Figure 3-13 shows a

portion of artefact filtered view for requirement artefact type that illustrates a

particular requirement and its associated methods, fields’ relationships.

Figure 3-12 : Default SAT-Analyser visualization full graph view

Figure 3-13 : Default SAT-Analyser visualization requirement artefact filtered view

71

3.3.2 Analytical traceability visualization

The analytical traceability visualization is mainly targeted for the purpose of

traceability outcome validation that is in detail described in the subsection 3.6.2.

Traceability results validation is important to proceed with decision making. On

the other hand, visualization is vital to convey validation results when the number

of items to be validated increases. Therefore, analysing the traceability outcomes

and visualizing the analysed traceability outcomes is added to the SAT-Analyser.

The existed SAT-Analyser default traceability visualization mechanism was not

supportive to traceability validation techniques used in this research such as

network analysis. Thus, a newer traceability visualization module is added as

Python-based analytical traceability visualization. The XML relations file is

involved in this variation. The network analysis functions in Python NetworkX

libraries (“NetworkX,” 2018) that are used for the traceability results validation in

this work are mapped with matplotlib.pyplot libraries to render into a graph in

Python. NetworkX is widely used for the creation, manipulation and analysing

structure dynamics, and function of complex networks due to its ability of

painlessly slurp in large non-standard data sets. Also, Matplotlib is a recognized

Python 2D plotting library capable of producing quality figures and

the pyplot module provides a MATLAB-like interface via a set of functions

familiar to MATLAB users (“Matplotlib,” 2018).

This analytical visualization is also used in the change impact analysis and change

propagation process (see section 3.4) as it’s based on the network analysis

techniques involved in traceability validation. Figure 3-14 shows a general

analytical graph view obtained during a SAT-Analyser validation task. The basics

of artefact category naming convention of default informative visualization

technique and the colour codes for nodes are preserved in this view too. In

addition, zooming, recording zoom levels, moving, saving as image features are

facilitated in this view. The more analytical aspects of this view based on the

network analysis results are described in the subsection 3.6.2 and chapter 4. Figure

3-15 shows a visualization of traceability results based on Eigenvector centrality

measure by applying heat maps. The darker nodes depict lesser important nodes

72

and lighter nodes represent the higher importance nodes in the network. Figure 3-

27 in subsection 3.4.5 illustrates an example of change propagated analytical

traceability graph view based on impact values.

Figure 3-14 : General analytical traceability graph

Figure 3-15 : Analytical traceability graph in traceability validation

3.3.3 Interactive traceability visualization

The purpose of another lightweight interactive traceability visualization module is

as an enhancement for the SAT-Analyser tool. The XML relations file is involved

in this variation by converting it into JSON format. The JavaScript library D3.js

(Data-Driven Documents) technology, well recognized for manipulating

documents based on data is used in generating the interactive behaviour on a

browser view (“D3.js,” 2018). It visualizes data using HTML, SVG, and CSS by

emphasizing on web standards. It provides full capabilities of modern browsers by

combining powerful visualization components using DOM manipulation based on

a data-driven approach instead of depending on a proprietary framework.

73

Figure 3-16 represents a part of an interactive traceability graph view that has

preserved basics of colour codes and artefacts category naming conventions to

maintain the consistency among all visualization types in SAT-Analyser. Mainly,

the hovering features on nodes and edges that encapsulates more details of nodes/

edges without colliding with the view, double-clicks on nodes to highlight

neighbours for better readability, re-positioning of nodes/ edges on the network via

dragging are facilitated in this view. This interactive visualization is also

facilitated at CIA, change propagation results representation and at traceability

results validation results. Additionally, Figure 3-28 illustrates a change propagated

interactive traceability graph view in subsection 3.4.5.

Figure 3-16 : Interactive traceability graph view

3.4 Impact analysis and change propagation

3.4.1 Identification of strengths of artefacts and relationships

The list of affected nodes can be obtained from the outcome of the change

detection process (see subsection 3.5.1). For, example if a new node is added, then

there can be new links created with it and other nodes. Thus, for each change,

there can be impacts in different degrees. The impacts can be explored using graph

representations.

There can be highly affected artefact elements which are highly impacted and

lesser ones. Thus, a measure is required to identify that. For that purpose, the

graph nodes and edges can be assigned with weights. In assigning weights, a

particular measurement is required with a pre-defined static or a dynamic one that

74

differs from one traceability project to another according to the node-link count.

The concept of centrality is widely used in Social Network Analysis and has found

different realizations regarding proper measures. One of the centrality measures;

Eigenvector centrality also known as Eigencentrality (Borgatti, 2005) that

expresses the influence level or the importance of nodes in a network is identified

as a useful measure in this purpose (Jashki et al., 2008). Google search engine also

uses this to rank the search results (Fernández, 2008). In definition, the EVC for

node i as in the equation (3.1),

 (3.1)

Where represents the adjacency matrix of the graph network G having

Eigenvalue . There is an identical solution if Eigenvalue is the largest

associated with the Eigenvector of the adjacency matrix according to the Perron-

Frobenius theorem (Newman, 2010).

A fixed scale is defined with three margins using the EVC values of nodes and

edges in designing the weight system of CIA component of SAT-Analyser (Iresha

D. Rubasinghe, Meedeniya, & Perera, 2018). The designed weight assignment

system consists of two sections; one for nodes using an Influential Factor and

weights for edges using that Influential Factor. The base for this mathematical

model is EVC.

 =

 =

 (3.2)

 = (3.3)

 =

 (3.4)

A node’s weight is defined based on its EVC value. The lowest weight on the

scale is the minimum EVC value across all the nodes (3.2). Similarly, the

maximum weight is the largest EVC value (3.3). Also, the average on the scale is

decided by considering the average EVC value with respect to the total EVC value

75

of all nodes and the node count (3.4). Thus, for any i
th

 node, the influential factor

is assigned low if having the weight in the range of [,) and otherwise,

the influential factor can be assigned high if the weight is within the range of

[] as derived in the conditional equation (3.5).

 ()

 = ‘Low’ (3.5)

 ()

 = ‘High’

Similarly, the weight system of the trace links or the edges is based on the

influential factor definition of nodes. Each edge is mandatorily associated with a

source node (starting point) and a target node (endpoint) as the traceability

management of the tool SAT-Analyser is output as a directed graph. An

assumption is made based on the directed behaviour of the traceability declaration.

Assumption 01: The weight of an i
th

 edge (Ei) is identical to the weight of the

source node (Ni
source

) of that particular edge as shown in Figure 3-17 and equation

(3.6).

Figure 3-17 : Node-edge direct connectivity

 (3.6)

Thus, the Influential Factor of edges can be defined as the conditional equation

(3.7).

 (
)

 = ‘High’ (3.7)

 (
)

 = ‘Low’

76

The influential factor of any edge can be obtained by its source node’s influential

factor where the edge starts from. If any node has a higher influential factor, its

outgoing edges have a high influential factor value. Consequently, the scale

system for the edge weight can be obtained similarly to nodes in determining the

weight of edges (3.8), (3.9), (3.10).

 (3.8)

 = (3.9)

 =

 (3.10)

There can be at most two scenarios for any pair of artefact nodes that are

associated with a traceability edge.

I Scenario 1: Outgoing traceability edge from a low influential artefact node

Figure 3-18 : Node-edge scenario 1

In the scenario illustrated in Figure 3-18, the target artefact can become either

a low influential or a high influential node. Adhering to the stated assumption

01, whenever the starting point is a low influential node, then the outgoing

edges of it get a low influential factor resulting a lower impact. For instance, if

the source artefact node is a Maven build script file which certainly would

hold a low EVC value, the outgoing trace links from it are certainly the

declared dependant plugins which also have a low influential factor value. In

that case, a traceability link between the Maven build script file and it’s any of

the plugins contains a low impact such that any change applied to a build

script is not crucial to forward propagation. In contrast, if the target artefact

node is high, then an incoming change from a low influential artefact cannot

generate a significant impact. Thus, the traceability link gets assigned a low

influential factor in accordance with the assumption 01 which becomes true

for this scenario 1.

77

II Outgoing traceability edge from a high influential artefact node

Figure 3-19 : Node-edge scenario 2

In the second scenario illustrated in Figure 3-19, the target artefact is either a

low influential or high influential node. Adhering to assumption 01, the trace

links starting from a high influential artefact node contain a high influential

factor value with a considerably higher impact. For instance, if the starting

node is type of a source code artefact class which most probably holds a high

value of EVC, the outgoing trace links from it can reach to source code

artefact attributes/ methods/ unit test artefact/ build script artefact which would

mostly have a high influential factor value by creating a parent-child

dependant nature. Hence, the traceability link between this source code class

artefact and its attribute/ method/ unit test artefact/ build script artefact gets a

significant high impact because any change applied to the source code class is

having a higher possibility of affecting to its dependant natured endpoint

artefacts. Similarly, if the target artefact is a high node, then an incoming

change from a high influential artefact can considerably impact on it. Thus, the

trace link can be assigned with a high influential factor according to the stated

assumption 01 that becomes true for this scenario 2 as well.

Accordingly, the impact is designed to be measured and would propagate

forward through direct edges until a low impact node is reached. As the

outgoing edge of a lower node is also low, the change impact propagation

would terminate there without further moving forward.

78

3.4.2 Impact analysis process: workflow

Figure 3-20 : Impact analysis component workflow

Figure 3-20 represents the designed change impact analysis component of the

SAT-Analyser tool. This resides as a sub-component within the CI component

with the change detector and change propagator. The outcome of the change

detector that is changesets becomes an immediate input for this CIA component.

Also, the outcome of the traceability establishment component within the business

logic layer is another input for this where the relations with their source and target

are obtained. Accordingly, the Impact Data Collector gathers all the required sets

of nodes and edges. Impact Generator is the core of this CIA overall component

where the mathematical model is handled. The Weight Calculator assigns a weight

to each node and edge using Eigenvector centrality value of each node and edge.

The sorter module finds the minimum and maximum valued EVCs and based on

that the Weight Scale Manager declares the weight scale. The Influence Factor

Calculator provides a two-level influence factor for each node and edge that is

solely considered for impact analysis. Impact Analyser performs the impact results

representation as change impact sets and their respective values. Also, the

Decision Manager module triggers that impacted results to Change Propagator

component to further navigate the changes to other remaining nodes and edges.

3.4.3 Impact analysis process: pseudo code and implementation details

Impact analysis process can be initiated only through change detection as they are

sequential activities in this problem domain. Therefore, once change detection is

79

performed the impact analysis option is available in the changesets window. If the

change set is null, still the impact analysis option helps to make the system to a

more consistent level by producing an updated Relations.xml file.

Algorithm 3:10 elaborates the flow of events in the impact analysis process among

the modules in the impact analysis workflow diagram. A changeset must exist for

this to proceed. Then, the Relations.xml that concatenates all types of artefact

relationships together in the SAT-Analyser must be prepared for the current

version of the integration.

Algorithm 3:10 Impact analysis

Require: Detected change set among two versions

Ensure: Impact value of a change in changeset

1. input: A changeset

2. If change set node is not null

3. Relation Manager(current version)

4. If change set contain Additions

5. Prepare Relations.xmlNEW_VERSION via traceability re- establishment

6. Else

7. Start preparing Relations.xmlNEW_VERSION using Relations.xmlPREVIOUS_VERSION

8. Generate analytical traceability graph (Gnode,edge)

9. Weight Calculator (nodes)

10. If change set node not in G (nodes)

11. Add change set node to G (nodes)

12. For each node in G

13. Weightnode=EigenvectorCentralitynode

14. Max_weight= max from all Weightnode

15. Min_weight= min from all Weightnode

16. Avg_weight= Sum of all weightnode / Node count (G)

17. Influential Factor Calculator (nodes, edges)

18. For each node in G

19. If (Weightnode >= Min_weight And Weightnode < Avg_weight)

20. InflencialFactornode= Low

21. Else if (Weightnode >= Avg_weight And Weightnode < = Max_weight)

22. InflencialFactornode= High

23. For each edge (source, target) in G

24. If (InflencialFactorsource == Low)

25. InflencialFactoredge = Low

26. Else

27. InflencialFactoredge = High

28. Obtain influential factor of change set nodes

29. output: Influential factor of each change in changeset

80

In this case; if the current integration has contained only a few types of artefacts,

there would be only those types of intermediate XML versions prepared. Thus,

establishing a proper Relations.xml is not possible. Therefore, the remaining

missing artefact types’ XML versions that have not been affected in the current

integration are copied from the previous version of integration. Once all types of

artefact intermediate XML files are collected and if the change set contains the

change type ‘Additions’, the SAT-Analyser’s traceability re-establishment is

performed in the back-end to prepare the new Relations.xml. Otherwise, if the

change set does not contain any ‘Additions’ and only include ‘Modifications’

and/or ‘Deletions’; then the previous version’s Relations.xml is taken. Thereafter,

it is altered via the change propagation process based on the CIA results.

Once the Relations.xml is prepared successfully for the current integration the

nodes and links are extracted from it and fed into the analytical traceability graph

type which is powered by Python NetworkX libraries. There, the Weight

Calculator gets triggered and applies the Eigenvector centrality measure on all

nodes and assigns a value for each node as its weight. The minimum, average and

maximum weight values are calculated as the weight scale by analysing all the

values of all nodes. Thereafter, the Influential Factor Calculator gets invoked and

converts the node weights into either a low or a high value according to the

criteria. Also, assigns a low or high value to each edge based on an edge’s source

node’s influential factor value.

Figure 3-21 evidently shows a code snippet of weight and influential factor

calculator implemented in Python. The nodes in the changeset are located in the

analytical traceability graph and obtain the influential factor of change set nodes to

decide which ways to start propagating the changes depending on the impact of

change set nodes. For instance, when a changeset node holds a low influential

factor value, then the outgoing trace links of that artefact node are discarded.

81

Figure 3-21 : Code snippet of weight and influential factor calculators

3.4.4 Impact analysis process: user modifiability

In the practical scenario, the CIA results are subjected to vary beyond the

described SAT-Analyser CIA calculations. For instance, a change on a least

important artefact node may cause the whole project to be failing which will be

only among the awareness of developers and operations team members who are

actively involved in that particular project. Thus, the CIA results are provided with

user modifiability capability to strengthen the accuracy and to avoid

inconsistencies. The user can alter the impacted nodes by adding newer, modifying

and deleting if any unnecessary node(s) that do not require change(s) to be

propagated.

Figure 3-22 and Figure 3-23 show the SAT-Analyser tool automatically identified

CIA results and the user altered CIA results respectively. Then, the final altered

CIA result is considered in propagating the changes further in visualization, PM

and CIA validation.

...

evc=nx.eigenvector_centrality_numpy(UG)

nx.set_node_attributes(UG, evc, 'EVC')

node_labels = nx.get_node_attributes(UG,'EVC')

weights=nx.get_node_attributes(UG,'EVC')

Wmax=evc[max(evc, key=evc.get)]

Wmin=evc[min(evc, key=evc.get)]

for node in UG:

 Wtot=Wtot+weights[node]

Wavg=Wtot/len(UG)

InfluenceFactor=[]

for node in UG:

 if (weights[node]>=Wmin and weights[node]<Wavg):

 UG.node[node]['IF'] = 'Low'

 elif (weights[node]>=Wavg and weights[node]<=Wmax):

 UG.node[node]['IF'] = 'High'

node_if=nx.get_node_attributes(UG,'IF')

for s, t, d in UG.edges(data=True):

 if (UG.node[s]['IF'] == 'Low'):

 d['IF'] = 'Low'

 else:

 d['IF'] = 'High'

edge_if=nx.get_edge_attributes(UG,'IF')

...

82

Figure 3-22 : SAT-Analyser generated CIA

results

Figure 3-23 : User altered CIA results

3.4.5 Change propagation of the impact

Firstly, the change impact analysis is declared as the first level dependencies such

that for a given node; its connected intermediate nodes are considered for the

impact set. Secondly, the impact analysis is presented with a quantitative impact

value based on their assigned node and edge weights. Thus, the graph traversal is

minimal for this one level consideration.

However, the changes are possible to continue affecting remaining nodes until

reach a leaf node or root. Therefore, the change propagation is required to be

managed from first level impact analysis onwards. The weight system is applied in

order to provide a quantitative value for them too.

The graph traversal is highly required at this stage to identify the nodes that are

subjected to propagate changes. The graph traversal algorithms in finding paths

can be applied for this purpose. The algorithms; Dijkstra algorithm, Bellman-Ford

algorithm and Floyd & Warshall algorithm are identified to be having a potential

in applying for this SAT-Analyser tool suitably. The Dijkstra algorithm can be

used for stepwise routing with weights. Bellman-Ford algorithm which is powerful

in handling negative edge weights and Floyd & Warshall algorithm that supports

both negative and positive weights are useful in propagating changes across the

graph representation of traceabilities.

83

A. Graph traversal model for change propagation

Once the changeset is obtained by the Impact Analyser component it assesses the

weights and influential factor of each node and edge for the items in the given

changeset. Thus, the changeset items and all the remaining nodes and edges

contain a certain impact value depending on each other relationships. Identifying

the impact of each changeset item on other remaining nodes and edges is the

primary task of this change propagation model. This works in collaboration with

the Impact Analyser component as the impact value of each node is required to be

accessed during the propagation.

The Dijkstra algorithm is selected for the graph traversal as the weights are non-

negative. For each item in changeset, graph traversal model gets applied.

However, if there exist any ‘Addition’ change type items in the changeset, then the

change propagation results are only for the displaying purpose. Because according

to the constraint defined in the impact analysis process if a CI activity includes any

artefact ‘additions’ the developer must update all the other artefact types and insert

at the same moment. Otherwise, if the changeset only includes ‘Modifications’

and/or ‘Deletions’ the change propagation results are used to alter the overall

Relations.xml that concatenates all the artefact types’ relationships.

B. Change propagation process: workflow

Figure 3-24 : Change propagation workflow

84

Figure 3-24 illustrates the designed workflow of the change propagation model in

this SAT-Analyser tool. The Change Set Filter module pre-processes the

changeset that is associated with impact values assigned in Impact Analyser based

on the change types such that additions, modifications and deletions. Then, each

type of change set is parsed into the Dijkstra Graph Traverser to identify the

complete impact path sets until reaches a leaf node. The Impact Path Filter is

responsible for applying the conditional constraints on those complete impact path

sets based on change artefact types and filters the relevant portion of impact path

from each complete impact path. Each of those filtered impact path is parsed

through the Impact Edge Extractor submodule to express path in edges to be

helpful in change propagation. Finally, Change Propagator module applies that

impact path edge sets on Graph Manager to update traceability graph and to

Relation Manager sub-module to update Relations.xml file for the continuation of

SAT-Analyser tool. Simultaneously, the DevOps teams get notified about the

change propagation via the project management tool Trello for each change

propagation activity as a separate card in associated company Trello board.

C. Change propagation process: pseudo code and implementation details

Algorithm 3:11 describes the change propagation model associated with Dijkstra

graph traversal algorithm and artefact type based path filtering conditional process.

The single source Dijkstra algorithm helps to find the cheapest path of a given

starting node which is each node item in changeset in this scenario. The Python

analytical NetworkX library’s single source Dijkstra function is used in the

implementation purpose (“NetworkX,” 2018).

The weights are supposed to be in numerical form for the Dijkstra traversal and

hence the textual influential factor system in High and Low levels is converted

temporarily into 1 and 0 respectively. Then, an artefact type oriented conditional

algorithm is applied for each complete impact path obtained through Dijkstra

algorithm path traversal. That captures the level of affecting based on artefact

type; such as if the changeset item is a sub-element like a method, attribute or

plugin, then only that node is declared to be considered as affected. If the

changeset item is a main requirement element the design, source code and unit

85

test, then the paths up to unit test are considered as the relevant impact path

portion.

Algorithm 3:11 Change Propagation

Require: Impact value assigned changeset

Ensure: Change propagation of changeset

1. input: An impact assigned changeset

2. For each item in impacted changeset

3. Dijkstra single source graph traverser (G, item, influential factor value)

4. Impact path set = Impact_PathComplete

5. For each Impact_PathComplete in Impact path set

6. Impact path filter (Impact_PathComplete)

7. If itemchange_set = a sub element

8. Impact_PathRelevant = itemchange_set

9. If itemchange_set = a requirement element

10. Impact_PathRelevant = itemchange_set & itemreq_sub & itemdesign & itemsource & itemunittest

11. If itemchange_set = a design element

12. Impact_PathRelevant = itemchange_set & itemdesign_sub & itemsource & itemunittest

13. If itemchange_set = a source code element

14. Impact_PathRelevant = itemchange_set & itemsource_sub & itemunittest

15. If itemchange_set = a unittest element

16. Impact_PathRelevant = itemchange_set & itemunittest_sub

17. If itemchange_set = a build script element

18. Impact_PathRelevant = itemchange_set & itembuildscript_sub

19. Propagate changes (Impact_PathRelevant Set)

20. Extract edges (Impact_PathRelevant Set)

21. Update graph manager

22. Update relation manager

23. Project management notifier

24. output: Relevant Impact path sets

Similarly, if the changeset item is a design element; its sub-elements along with

source code and unit test are taken as affected. If the changeset item is a source

code element only the unit test items are declared to be affected along with that

particular source code elements’ sub-elements if any. Also, if the changeset item is

of type unit test or build script, then only their sub-elements are declared as

affected. Accordingly, the relevant impact set paths are captured from the

complete impact paths and are extracted into edges format in order to update the

traceability graph and Relations.xml.

86

Figure 3-25 shows a Python NetworkX involved code snippet that contains the

Dijkstra algorithm and conditional algorithm applications.

Figure 3-25 : Code snippet of change propagation implementation

...

for delitem in CDdeleteNodeList.CDdeleteNodeList:

 delete_node=delitem

 path2 = nx.single_source_dijkstra(UG, delete_node,weight='IF')

 nodesetdict=path2[0]

 pathsetdict=path2[1]

 for i in nodesetdict:

 if UG.node[i]['IF'] == 0:

 nodesetdict[i]="Low"

 #print i,nodesetdict[i]

 elif UG.node[i]['IF'] == 1:

 nodesetdict[i]="High"

 #print i,nodesetdict[i]

 print "---------Deletion of ",delete_node," Impacts:---------"

 ##for SUBELEMENTS ##

 if ('_' in delete_node):

 for i in nodesetdict:

 if '_' in i:

 print i ,"-->", nodesetdict[i]

 f2.write("\""+i+"\",")

 print "Edges:"

 for i in pathsetdict:

 if '_' in i:

 ind=0

 for s in range(len(pathsetdict[i])):

 if ind+1 <=len(pathsetdict[i])-1:

 print "(",pathsetdict[i][ind],",",pathsetdict[i][ind+1] ,")"

 f.write("("+pathsetdict[i][ind]+","+pathsetdict[i][ind+1] +"),")

 ind=ind+1

 ##for DESIGN ELEMENTS ##

 if ('D' in delete_node and '_' not in delete_node):

 for i in nodesetdict:

 if delete_node+"_" in i or 'SC' in i or 'UT' in i:

 print i ,"-->", nodesetdict[i]

 f2.write("\""+i+"\",")

 print "Edges:"

 for i in pathsetdict:

 if delete_node+'_' in i or 'SC' in i or 'UT' in i:

 ind=0

 for s in range(len(pathsetdict[i])):

 if ind+1 <=len(pathsetdict[i])-1:

 print "(",pathsetdict[i][ind],",",pathsetdict[i][ind+1] ,")"

 f.write("("+pathsetdict[i][ind]+","+pathsetdict[i][ind+1] +"),")

 ind=ind+1

 ##for SOURCECODE ELEMENTS ##

 if ('SC' in delete_node and '_' not in delete_node):

...

87

The GUI level impact analysis results are shown in Figure 3-26. It shows the

changeset, affected nodes with their influential factor and the edges of identified

paths. The user has the option to edit the impact results in the window as necessary

and the ‘Info’ button helps with the artefact details for ease of alteration. Once the

confirmation button in that window is clicked, the graph updating and relations

manager updating get triggered by completing the change propagation process.

Figure 3-26 : Impact analysis results window

Accordingly, when the button ‘Confirm Change Propagation’ is invoked, it

propagates the displayed impact results to Graph Manager and Relations Manager

to update artefacts. Thus, the updated traceability graph displayed in both

interactive graph mode and analytical graph mode. Figure 3-27 shows an example

of the overall updated analytical traceability graph. Figure 3-28 shows the

interactive graph preview based on D3.js and localhost server. This view is

provided as optional since the localhost (Apache wampserver) is required to be

started. The modified node and impacted nodes by modification are shown with

larger node size for better readability while the deleted node and impacted nodes

by deletion are completely deleted from both of these graph views. Additionally,

88

the influence factor values of edges are shown on top of edges and influential

factor of nodes can be seen by keeping the cursor on any nodes (hovering) in the

interactive graph mode in Figure 3-28. Moreover, the neighbourhood highlighting

facility for any particular node is facilitated by double-clicking any node for better

interactivity in this interactive graph mode. Simultaneously, the notification

approach gets triggered to make awareness about the change propagation to

project teams as described in subsection 3.4.6. Thus, relevant requirement

engineers, design teams, developers and QA teams can update their responsible

raw artefact types such as requirements document, design diagrams, source codes,

unit test scripts and/or build script files.

Figure 3-27 : Change propagated analytical traceability graph view

Figure 3-28 : Change propagated interactive traceability graph view

89

Simultaneously, the Relations Manager also gets triggered at the back-end. The

artefact XML files of changes propagated artefact types get updated with deletion

and/or modification impact results and set them as the artefact XML files of the

current version. However, according to the constraints in this extended SAT-

Analyser, if there are any ‘Addition’ type changesets, then the overall traceability

gets re-established. Thus, the overall graph is shown in the SAT-Analyser’s

default graph format without requiring above-described change propagation steps.

In that case, all artefacts’ XML files along with the Relations.xml file also gets re-

generated during that traceability re-establishment without requiring any separate

XML file updating as described above.

3.4.6 Notification approach

SAT-Analyser’s each traceability change propagation result is notified to DevOps

teams via one of the industry-level project management applications Trello

(“Trello,” 2018). Trello is selected for the SAT-Analyser integration due to its

open source availability and industry level popularity as a PM tool.

The Trello Java API is used to integrate it with the SAT-Analyser tool to signify

the SAT-Analyser’s ability to integrate with industry level PM tools. For each

change propagation confirmation, a newer Trello card is created automatically in a

dedicated list in the Trello board. The Trello card name is generated with the

particular change propagated traceability project name along with the date and

time for unique identification as shown in Figure 3-29. The CIA results that

contributed to that particular change propagation activity are also embedded into

each Trello card in its card description. Once, the change propagation is confirmed

the overall Trello board is automatically loaded in the browser with the new card

instance as shown in Figure 3-30. Accordingly, the teams get notified about the

SAT-Analyser change propagation for them to alter their responsible raw artefacts

that are affected by the change propagation based on traceability.

90

Figure 3-29 : Trello change propagation card instance

Figure 3-30 : Trello board with change propagation notification

3.5 Traceability management

A scheduler is implemented to trigger the artefact changes to the extended

traceability management tool SAT-Analyser. The scheduler is designed to get

triggered based on the CD timelines prior to a CD activity on a project such that

along with a continuous deployment task. Thus, once the scheduler is triggered it

displays a window to fetch all the types of artefact changes corresponding to all

phases in the form of an input window except the source code and build scripts

which are fetched automatically via the Jenkin’s latest successful build job as

described in the section 3.5.3: Continuous Integration. The remaining process

items of the traceability management process in this extended SAT-Analyser

except CIA are discussed in this section that consists of change detection,

consistency management and CI.

91

3.5.1 Change detection

The change is vital during the software development process throughout all the

stages. All the phases in SDLC such as requirements engineering, design,

implementation, testing and maintenance can be changed in different frequencies.

The changes occurred in one phase of the development process can evolve through

all or most of the other phases based on the dependencies among them.

Accordingly, the changes are evolved via the artefacts involved in each phase. The

change detection component relies on the established traceability links among

those artefacts in the traceability link generation component.

The extracted artefact elements are stored and maintained in a common XML

format based on a predefined XML relation model using customized tags.

Therefore, the comparison of artefacts is performed via those common format

versions of them, specifically as an XML comparison. The relation model is

compared among each and checked whether the artefact elements are compatible

with each other. A change can be in three types, edit, deletion and addition.

A. Change detection process: workflow

Figure 3-31 : Design diagram: change detection component

Figure 3-31 illustrates the module and subcomponent organization of the change

detection component. The artefact changes are allowed to occur in any type of five

artefacts supported in the tool SAT-Analyser such that requirement changes,

design diagram changes, source code changes, unit test case changes or build

script changes. A developer can integrate any one or many types of artefacts in the

92

form of a continuous integration task. That new artefact integration may contain

either element additions, element alterations of removals. Whenever a new

artefact input is received by the tool SAT-Analyser, it starts its intermediate XML

format generation task for that particular artefact category using the data pre-

processor, element extractor and XML converter modules. As a result, an XML

format representation is created for that particular artefact(s) integrations. For

instance, if the integration included a new requirement document and a new source

code, then two different intermediate XML files are generated one for requirement

and one for source code.

Then, as depicted in Figure 3-31, the bottom layer holds a database to store the

newly created intermediate XML versions corresponding to a performed

continuous integration task. The XML Version Recorder module is responsible for

adding the correct version suffix to those newly created XML versions based on

the previously generated XML version suffix numbers. The actual change

detection is initiated there onwards in the XML Comparison module that compares

the newly found intermediate XML files and the last previous XML version of

those corresponding artefact types. Regarding the above stated example, the old

requirement XML file versus new requirement XML file and the old source code

XML file versus newly created source code XML file would be used by this XML

comparison module to encounter the occurred changes. Finally, the identified

changes are the outcome of this change detection component.

B. Change detection process: pseudo code

The change detection Algorithm 3:12 is designed to ensure the identification of

artefact related changes. The traceability management must be altered based on the

changes since each phase of the SDLC is lightly or tightly coupled with other

phases. That leads to a change in one artefact affects the other dependent artefacts.

Therefore, the change detection having high performance is crucial in order to

minimise the number of concurrent conflicts that can lead to artefact

inconsistencies. The input considered to this change detection algorithm can be

any type of artefact change such as an edit, addition or deletion.

93

Algorithm 3:12 Change Detection

Require: Software artefact intermediate XML versions

Ensure: Identify changes in continuous artefact integrations

1. input: artefact integrations

2. If input=Requirement OR Design OR Source Code OR Test case OR Build Script

3. Change Detection Component

4. Invoke artefact pre-processor (input artefact)

5. Artefact element extractor

6. XML Convertor (pre-processed artefact input)

7. Return XML new version

8. Store XML new

9. If XML version recorder(XML new) fetches corresponding XML old

10. Invoke diffmk comparison engine

11. Diffartefact=XML comparison (XML new , XML old)

12. Return XMLdiff

13. Store XMLdiff

14. XML extractor (XMLdiff)

15. Return all changes

16. String pre-processor (changes)

17. Return Changes Added, Changes Modified, Changes Deleted

18. Display changesets

19. output: Detected changesets

The scheduler can be triggered either to invoke in any given specific time slot or to

invoke whenever the SAT-Analyser traceability tool is executed which means a

change has occurred. For an example, if a class called ‘shop’ is identified in the

requirements artefact element, it must be available as an artefact element in both

other UML class diagram and source code related artefacts. Accordingly, if the

‘shop’ class is removed from the requirements specification or from the XML

relation model, that and all dependent items such as ‘bookshop’, ‘bakery shop’

must not be available in the other two types (design, source code) of artefact

related files. If an existence is identified, it is marked as an incompatibility

situation. Hence, a change is declared and the change detection points are

triggered.

Accordingly, the change detection is technically based on XML version

comparison in the SAT-Analyser system model. The XML comparison algorithms

such as BULD (Bottom-Up Lazy-Down propagation) and Diff (Cobena,

Abiteboul, & Marian, 2002) that match nodes and construct a delta in a linear

94

time, X-Diff algorithm (Yuan Wang, DeWitt, & Cai, 2003) that does comparison

by generating trees with a minimum cost edit script and Johnson’s algorithm that

detects changes of documents are in active research. As the SAT-Analyser is

mainly on a Java-based platform, performance wise it is ideal to stay in the same

technological domain. Therefore, the Java friendly XML comparison modules

such as XMLUnit (“XMLUnit,” 2018) are especially experimented to find useful

in this process.

C. Change detection process: implementation details

Studying the existing open source XML comparison algorithms, frameworks and

research works, the generalized tool for XML named ‘diffmk’ (“diffmk,” 2018)

from Oracle Sun developers is selected to be incorporated with the SAT-Analyser

tool. It is provided with the license type BSD-3-Clause and is allowed for

productivity or publishing. The origin of this tool diffmk is from the tool ‘diff’ and

is in the language Perl though currently, Java supported binary versions are also

available.

The diffmk operates in the sequence domain as it encodes changes by annotating

the input document. It expresses diffs by inlining them into the d1 document, so no

size comparison is available for that tool and is actively involved in the XML

based research works (Suzuki, 2002)(Lindholm, Kangasharju, & Tarkoma, 2006).

Diffmk compares the previous version of a file with the current version and creates

a file that includes nroff/troff ‘change mark’ commands. Accordingly, diffmk

generates markfile which contains all the lines of the current file plus inserted

formatter ‘change mark’ requests. When markfile is formatted, changed or inserted

text is shown by a | character at the right margin of each line. The position of the

deleted text is shown by a single *. If the characters | and * are inappropriate, a

copy of diffmk can be edited to change them as the original version of diffmk is a

shell script.

Considering the limitations of diffmk, it does not differentiate between changes in

text and changes in formatter request coding. Thus, file differences involving only

formatting changes with no change in the actual text can produce change marks.

But regarding the tool SAT-Analyser, its XML intermediate files are properly

95

generated according to a predefined format structure. Therefore, unnecessary

formatting changes do not exist by not being affected with this limitation of

diffmk. As diffmk uses diff, it has the same limitations on file size and performance

that diff may impose. In particular, the performance is nonlinear with the size of

the file and very large files (over 1000 lines) may take longer to process. Also,

diffmk uses the ‘ed’ editor (“GNU ‘ed,’” 2018). If the file is too large for ed, ed

error messages may be embedded in the file. As a precaution for these limitations,

breaking the file into smaller pieces is technically advisable. However, a single

artefact file such as a corresponding to single requirement file, design diagram

may not exceed 1000 lines practically in a normal Agile based software project

where non-critical projects are addressed. Therefore, this limitation is also not

affecting the purpose of SAT-Analyser tool in incorporating the diffmk engine for

XML comparison module.

Consequently, the diffmk based XML comparison module implemented in Java is

more aligned with the tool SAT-Analyser. The two latest versions of XML files

are considered such as the current version and the latest previous version. It checks

for the mutual XML artefact file types in two selected version directories. For an

instance, if both directories have requirement artefact’s XML files, source code

artefact type XML files; then those artefact types from each version directory are

taken as the input in .xml file format. Then, the diffmk starts its comparison

process for two files and creates another XML file with the content of newer XML

file content and the change points marked as changed (modified), added and

deleted as evidently shown in the following code snippet in Figure 3-32.

The outcome XML file that contains the marked change points is used in the

remaining process to extract those changes as suitable to the SAT-Analyser tool.

Once a traceability project is created, initial traceability is established and should

have at least single continuous integration activity occurred to be eligible for

proceeding with this change detection process.

A menu item is available for each traceability project in SAT-Analyser tool to

invoke that as shown in Figure 3-33.

96

Figure 3-32 : Diffmk based change types declaration

Figure 3-33 : Change detection menu item

There must be at least one integrated CI version to proceed and else an error is

shown indicating insufficiency of integrations as shown in Figure 3-34. Otherwise,

a new directory named ‘xml_CD’ gets created to the folder structure as shown in

Figure 3-35. That xml_CD directory holds all the diffmk change points marked

XML files. The XML Extractor sub-module is called for each of those files in the

xml_CD directory corresponding to artefact types and all the marked change

points that are either changed, added or deleted are extracted as string from each

XML file. Then, that data string is pre-processed and categorized as additions,

modifications and deletions to be more user-friendly and readable. Finally, the

categorized change detection results are presented as shown in Figure 3-36.

97

Figure 3-34 : Insufficient CI versions for change detection

Figure 3-35 : Change detection results xml_CD directory

Figure 3-36 : Change detection results in outcome window

98

The continuous integrations may or may not have all types of artefact integrations.

For example, a CI may only integrate a set of code files to a source code repository

in a particular integration resulting in a newer version of intermediate XML file

generated only for source code artefact. Thus, the change detection will be

conducted only for the source code artefact in that scenario as in above Figure 3-

36. The unique artefact ID and the artefact element or sub-element name are

displayed as the change content. The colour code scheme of green for added

changes, blue for modified changes and red for deleted changes is adapted for

better readability. Thereafter, the Impact Analysis can be initiated from this

window to identify the encountered impacts due to the detected changes.

3.5.2 Consistency management

In frequent changes during a DevOps environment, the risk of artefact

inconsistency tends to be high. The changes may need to be propagated to

maintain the consistency level, but should be propagated based on the impact

analysis outcomes. Because propagating a non-impacted change across the

artefacts can become an unnecessary overhead.

SAT-Analyser establishes traceability with traceability visualization. Whenever an

artefact alteration; add/ edit/ delete occurs, the inconsistencies arise. The SAT-

Analyser’s process of change detection, change impact analysis, change

propagation is designed in handling this inconsistency issue.

99

A. Consistency management process: workflow

Figure 3-37 : Consistency management workflow

A rule-based consistency management approach is followed in this extended SAT-

Analyser system to ensure consistency. Figure 3-37 shows the inter-component

and intra-component wise handling of consistency management. The version

management is a major part in ensuring the consistency related to continuous

integration which is the core of this extended SAT-Analyser in order to cope with

DevOps environments. There, the version numbers are separately handled in a

textual file format to maintain consistency. Also, the version directory structure

creation is monitored and roll backed properly in any unsuccessful integration

attempt to avoid inconsistencies. In the change detection, a module called Artefact

XML Comparator performs to ensure a consistent input to Change Detector

component. The outcome of the Change Detector is also handled in a separate

directory structure named ‘CD’ by this consistency manager. A module named

Artefact Stabilizer executes during the impact analysing to make the current

version always stable by transferring non-altered artefact types XML files from the

immediate previous version to the current version. That highly helps to Impact

Analyser, Change Propagator and Traceability Validator components.

100

B. Consistency management process: pseudo code and implementation details

Algorithm 3:13 Consistency Management

Require: SAT-Analyser to be started

Ensure: Consistency of SAT-Analyser

1. input: Scheduler strike

2. For each successful Continuous Integration

3. Invoke Version Manager

4. prepare CI directory structure (version)

5. CICurrent= version

6. CIPrevious=version-1

7. CINew=version+1

8. Create CIVersionManager.txt to xml directory

9. Write to CIVersionManager.txt (CICurrent)

10. Create xml_CI(CIPrevious) directory

11. CICurrent= CINew

12. CIPrevious= CICurrent

13. For each Change Detection initiation

14. Invoke artefact XML comparator (CICurrent , CIPrevious)

15. Mutual_XMLs=Extract mutual artefact types XMLs current and previous versions

16. Continue Change Detection (Mutual_XMLsCurrent , Mutual_XMLsPrevious)

17. Create xml_CD directory

18. Store/ replace detected changes output files

19. For each Impact Analysing initiation

20. Invoke artefact stabilizer (CICurrent , CIPrevious)

21. If CICurrent does not contain all artefact types

22. Transfer missing artefact type from CIPrevious

23. Continue Impact Analysing

24. Change propagation

25. Confirm consistency of validator

26. output: Maintenance of consistency in SAT-Analyser

Algorithm 3:13 describes the workflow of rule-oriented consistency management

approach. This ensures the consistency of Continuous Integration, Version

Manager, Change Detector, Impact Analyser, Change Propagator and Traceability

Validator components throughout the SAT-Analyser execution.

Artefact XML Comparator intakes the current XML directory content and

previous XML directory at the moment and identifies the mutual XML artefact file

types. Because there must be similar artefact type XML files available in both

versions to avoid any inconsistencies during the change detection process. Mainly

the Artefact Stabilizer module ensures the current XML directory’s stability before

101

proceeding of the impact analysis process. Because if all artefact types XML files

does not exist in the current XML directory before the impact analysis, that would

lead to an incomplete Relations.xml where some artefact types are missing, thus

the system can become inconsistent there onwards.

3.5.3 Continuous integration

Due to the frequent software changes, the continuous integrations can occur in

dynamic frequencies in a DevOps software development environment. According

to the survey conducted among industry experts, they are currently coping with no

traceability support or schedulers. Hence, it is identified that scheduling

traceability is required to be managed in this SAT-Analyser tool to make it

synchronized with the usual DevOps workflow of the environment without being

an overhead. Therefore, a scheduling algorithm is needed to invoke the traceability

process at CI activities. The initially identified options are;

 Fixed intervals: office starting time (8.00AM) and office finishing time

(6.00PM) or

 User-defined intervals in a customizable manner or else

 Whenever continuous deployment occurs in CICD pipeline prior delivery

(CD).

to trigger starting the traceability management process.

A. Scheduler: workflow

The fixed intervals scheduling option is provided at one point in the SAT-Analyser

as most of the local software development companies are still not functioning 24

hours continuously. Therefore, the office starting time and the ending time that is

approximately after about 10 hours is applied in the scheduler design. Thus, if the

office start time is 8.00AM, then once the SAT-Analyser is opened, first

integration triggering will be prompted. After 10 hours which means at 6.00PM on

the same working day, another triggering will occur automatically. Accordingly,

mandatorily two CI traceability triggering are designed to be occurred

automatically with the option either to proceed with or to cancel if there is nothing

to be integrated for traceability monitoring based on the productivity of the

company teams on a particular day.

102

Also, it is allowed to manually trigger at any time enhancing the immediate CI

traceability capabilities apart from the defined scheduling intervals. Therefore, it is

possible to look for traceability whenever continuous deployment occurs in CICD

pipeline prior to delivery (CD).

Figure 3-38 : Scheduler workflow

The scheduler is designed based on an executor framework. Figure 3-38 represents

the workflow of the scheduler that consists of three main components. There is a

scheduled thread pool where the number of tasks and the number of threads is

defined as necessary. As there is only one task (task of triggering CI) to be

triggered for the requirement of SAT-Analyser, only one task and one thread are

queued. The CI Trigger object in Figure 3-38 represents the functionality of CI

artefact fetching window. The Scheduled Executor Service component handles the

periodical behaviour of the scheduler. A fixed delay of each 10 hours is applied

there as the scheduler frequency to invoke CI Trigger via the thread. The Executor

Service component represents the used executor framework that holds the runnable

interfaces corresponding to threads.

B. Scheduler: pseudo code and implementation details

Algorithm 3:14 elaborates the CI scheduler process pseudo code that ensures the

CI automation. As it is highly coupled with the main tool SAT-Analyser, the

execution of SAT-Analyser tool is essential. When the SAT-Analyser is started at

the beginning of the working day, simultaneously a responsible person can

confirm the stable projects that are ready to accept integrations continuously.

103

Algorithm 3:14 Continuous Integration Scheduler

Require: SAT-Analyser to be started

Ensure: Continuous Integration Automation

1. input: Project Stability Confirmation

2. If project is stable after first traceability establishment

3. CI initial = Invoke first CI task

4. Scheduler Starts (CI initial)

5. Thread starts

6. Timer = T0

7. CI version number generator starts

8. Task () = CI window prompts

9. Do

10. Runnable Timer 10hours

11. If Timer = T10hours

12. CI automatic = Invoke CI task

13. Assign CI version number

14. Task ()

15. Loop Until SAT-Analyser shuts down

16. Thread shuts down

17. Scheduler terminates

18. output: Automated Continuous Integration window prompting

Accordingly, the responsible person in-charge can initiate the first CI task (CI

initial) as a way of confirming that particular project created in SAT-Analyser is

capable of successfully accepting continuous integrations. That CI initial

automatically becomes an input to the scheduler to start immediately. Then, the

thread starts soon after initiating the timer (T0) to the current time and the task of

prompting CI window to input artefact integrations executes. The CI version

management subprogram also starts parallel and generates version numbers

starting from version 1 to each project. Thereafter, the runnable interface of that

started thread runs with the timer counting to 10-hour intervals from T0 until the

SAT-Analyser shuts down. After each successful CI task submission, when the

timer reaches a 10-hour interval (T10hours), automatically the CI task gets invoked,

get assigned a CI version number and CI window prompts to input artefact

integrations. The running thread and scheduler terminate when the SAT-Analyser

tool shuts down.

The implementation of this CI scheduler algorithm is performed using Java as the

core development of the SAT-Analyser depends on Java. The Java Executor

104

framework’s Scheduled Executor Service is adapted in implementation that

supports interfaces and methods for scheduled or repeated periodic executions of

tasks (“Priority Blocking Queue,” 2018). Figure 3-39 is an evident code snippet

regarding the implementation of this CI scheduler in SAT-Analyser.

Figure 3-39 : Scheduler code snippet

The Java concurrent libraries associated with the Executor framework are included

to use their methods and runnable interfaces. Only one thread pool is declared

since it is guaranteed not to be reconfigurable to use additional threads as only one

task to be executed. The scheduleWithFixedDelay() method creates and executes

a periodic task that runs periodically until cancelled. It becomes enabled first after

the given initial delay, that is declared as 10 as we want the scheduler to start after

10 hours from initial CI task. Then, it runs subsequently with the given period

which is 10 hours. Thus, executions will commence after initialDelay+period, next

initialDelay + 2 * period and so on. The task of prompting CI window and the

integration version number generation is defined inside a runnable as a repetitive

task. CI window prompting is declared in a separate method by enhancing code

modularization where the integration number and project path is passed as

parameters. That helps to bind the generated version number of that particular

integration with the opening CI window and its file intakes.

package com.project.traceability.Scheduler;

import java.util.concurrent.TimeUnit;

import java.util.concurrent.ScheduledExecutorService;

import java.util.concurrent.Executors;

import com.project.traceability.GUI.ProjectIntegrateWindow;

public class SchedulerService {

 public static int versionNumber;

 public static void main(String ProjectPath, int PrevVersionNumber) {

 ScheduledExecutorService execService = Executors.newScheduledThreadPool(1);

 execService. scheduleWithFixedDelay (new Runnable() {

 //The repetitive task

 @Override

 public void run() {

 //Continous Integration Version Number Generation

 versionNumber=PrevVersionNumber+1;

 Flag(ProjectPath, versionNumber);}

 }, 10, 10, TimeUnit.SECONDS); }

public static void Flag(String ProjectPath, int integrationVersion) throws IOException{

 ProjectIntegrateWindow.main(ProjectPath, integrationVersion);

 System.out.println("CI V"+integrationVersion+" for "+ProjectPath+" Triggered at: "+ new

 java.util.Date()); }}

105

Further, a log is printed each time a CI is triggered for later inspections. The code

is configured to pass the corresponding project location and name to this scheduler

once an initial CI task is invoked by a person-in-charge. Thus, the scheduler gets

triggered for each project separately by invoking CI windows separately for each

project. The corresponding relevant project path and the time snippet that CI is

triggered is included in each CI log entry.

After a traceability project creation, can synchronise each project with the DevOps

environment’s CI process by configuring the local source code, unit test script and

build script paths that are used for versioning via the menu item shown in Figure

3-40. Figure 3-41 depicts the intermediate configuration settings to set those paths

to obtain the latest source code, test, build script artefacts from the DevOps

process’s involved Jenkins build servers and versioning tools such as GitHub.

Figure 3-40 : Continuous integration configuration menu item

Figure 3-41 : Continuous integration configuration window

106

Figure 3-42 shows the first CI task ((CI initial)) initiation towards the confirmation

for a stable project that is ready to accept integrations continuously. By right-

clicking the project and selecting ‘Integrate’ option, Figure 3-43 is prompted with

CI window. This gets triggered by scheduler that accepts all types of input artefact

integrations. The corresponding project name, path, CI task and the integration

number are shown on the top of that window for accuracy when there are multiple

traceability projects being monitored through the SAT Analyser. There includes a

toggle button to indicate whether the integration includes any new artefact element

‘additions’ or not. A click on it considers as only artefact ‘modifications’ and

‘deletions’ would be included in the particular integration task. Figure 3-44

represents the artefact ‘addition’ mode where that all artefact inputs must be

provided to enable the ‘Finish’ button. Also, the artefact ‘modification’ or

‘deletion’ attempts, at least one artefact must be input to proceed.

Figure 3-42 : Continuous integration menu item

Figure 3-43 : Continuous artefact

integration window

Figure 3-44 : Continuous artefact integration

window with disabled forward option

107

C. Version control system: implementation details

Along with a scheduler having an integration version management mechanism is

essential to save and keep track of each individual CI task. Therefore, the CI

version management is done using a folder structure. The CI version number

generated through the scheduler is linked with this version control for unique

identification of each integration. The raw artefact contents in each CI task such as

requirement and design always replace the previous corresponding artefact items.

In the existed initial version of SAT-Analyser, the intermediate XML formats of

all the artefacts are generated into a separate directory called ‘xml’. Thus, version

control is designed around that. The corresponding version number of each

integration is physically saved in a text file dedicated for that particular version

content to avoid version number resetting when the SAT-Analyser is restarted.

Initially, the Version Control Manager looks for ‘CIVersionManager.txt’ file

containing a version number. If does not exist, that indicates it as the traceability

project’s first CI task where the version number is one. If exists, reads that file’s

version number, increments it by one and labels the current CI version with that

number, while writing it into a new version text file. Considering, the CI content

management of these each integration; a new directory is created in the same level

of default ‘xml’ directory with the name ‘xml_CIn’ where ‘n’ denotes the current

version number minus one. The existed content inside the ‘xml’ directory is

moved to the new directory by leaving the ‘xml’ directory empty. Thus, always the

current CI version’s intermediate XML file content is saved into ‘xml’ directory.

The previous version can be found in the ‘xml_CIn’ directory.

Figure 3-45 evidently presents a part of the code used in creating this Version

Management module. It shows how each previous version storage directory gets

created and move the existed content into that by leaving ‘xml’ directory empty

and by deleting each moved file. Although this gets executed whenever a CI task

is triggered, this moving and deletion get rollbacked if a CI task is cancelled

without being a successful submission. Thus, each file is moved back into ‘xml’

directory and deletes the created previous version ‘xml’ directory.

108

Figure 3-45 : Code snippet of version control management

Figure 3-46 and Figure 3-47 show the Version Management directory structure in

the GUI level. In Figure 3-46, the first CI task is performed with UML and build

script artefacts by moving default traceability project’s initial XML file content to

‘xml_CI0’ folder. The generated XML files of UML and build script files with

version number text file are stored in the ‘xml’ directory. Similarly, after the given

interval (10 hours) when the 2
nd

 CI occurs and submitted successfully with a build

script artefact integration, the 1
st
 CI task’s content in ‘xml’ directory moved into

‘xml_CI1’ directory. The XML content and version number text file of 2
nd

 CI task

get stored in ‘xml’ directory as shown in Figure 3-47.

Figure 3-46 : CI version 1 of a

project

Figure 3-47 : CI version 2 of a project

...

File oldxmlFolder = new File(ProjPath+File.separator+"xml_CI"+(versionNumber-

1)+File.separator);

 File currentxmlFolder = new File(ProjPath+File.separator+"xml"+File.separator);

 oldxmlFolder.mkdir();

 if(currentxmlFolder.isDirectory()) {

 File[] contents = currentxmlFolder.listFiles();

 for(int k = 0; k < contents.length; k++) {

 File sourceFile=new File

(ProjPath+File.separator+"xml"+File.separator+contents[k].getName());

 Path sourceFilepath=

FileSystems.getDefault().getPath(ProjPath+File.separator+"xml"+File.separator+contents[k].ge

tName());

 File destFile = oldxmlFolder;

 FileUtils.copyFileToDirectory(sourceFile, destFile);

 Files.delete(sourceFilepath); } }

109

3.5.4 Multi-user supportability

DevOps environments function in combination of small-size teams in achieving

faster developments and delivery simultaneously. Therefore, the DevOps tools

stack mostly consists of multi-user features with shared access through a

dashboard in order to facilitate team coordination and work allocations properly.

Accordingly, the SAT-Analyser tool also powered with multi-user accessibility

through a web-based version in addition to the stand-alone desktop version with

equal features discussed in previous sections.

Figure 3-48 : Multi-user accessible SAT-Analyser web version

Figure 3-48 shows the implemented main GUI of the web-based SAT-Analyser

prototype. The web deployment platform AjaxSwing (“AjaxSwing,” 2018) is

integrated into the implementation that creates HTML and JavaScript at runtime

by transforming Java Swing to HTML. It performs with the open-source Java

Servlet container Apache Tomcat server. Thus, SAT-Analyser is featured with

cross-browser compatibility where one machine in the DevOps environment can

act as the server while other team members can access the SAT-Analyser in real-

time using their own client device browsers. User session timeouts, update

intervals and auto-refreshing are defined to enable dynamic multi-user

accessibility in similar to DevOps tools stack. The features; traceability

visualization, validation, CI, change detection, CIA with user modifiability using

asynchronous monitor updates for controlling single session input at a time,

change propagation, PM notification and SAT-Analyser performance monitoring

all equally render in the browser itself.

110

3.6 Extended SAT-Analyser evaluation

The SAT-Analyser tool validation components are implemented into the tool itself

as three different modules for the purposes of measuring resource utilization,

traceability accuracy analysis and network analysis of traceability results. The

implementation details of the three modules are described in this section.

3.6.1 Implementation of the accuracy analysis module

Traceability establishment and CIA accuracy analysis module is based on

statistical measures precision, recall and F-measure (Zeugmann et al.,

2011)(Rubasinghe, Meedeniya, & Perera, 2018b). The traceability establishment

process of SAT-Analyser depends on the artefact elements and sub-elements

extraction results since the traceability is generated according to string comparison

among extracted artefact outcomes. Thus, the accuracy of artefact extraction

results is implemented to be measured specifically under the traceability

establishment accuracy. The accuracy of CIA process is implemented around the

outcomes obtained in the CIA as described in section 3.4. The mathematical

calculations of precision, recall and F-measure following their definitions are

applied using the Java calculations into the development. The example output

windows of implemented accuracy measure application are shown in Figure 3-49

and Figure 3-50 for traceability artefact extraction and CIA respectively.

Figure 3-49 : SAT-Analyser traceability establishment accuracy analysis window

111

Figure 3-50 : SAT-Analyser CIA accuracy analysis window

The outcome of artefacts extraction in a current version of a project for each

artefact type is shown in Figure 3-49. The identified count denotes the automated

count of the items in the table for each artefact type. The user can select the

correctly identified items with left mouse click and CTRL key on the keyboard

together on a correct cell. Similarly, clicking twice on the same cell deselects a

selection. Accordingly, the correctly identified count is a subset of the total

identified count. Then, the actual total count of artefacts elements/ sub-elements is

extracted based on expert knowledge and inserted manually in the text boxes next

to the actual count. A click on the ‘Calculate’ button automatically counts the

number of selected items in the table and computes the accuracy measures.

The latest CIA outcome of a selected software traceability project containing

impacted artefact element/ sub-elements for the three change types ‘addition’,

‘modification’ and ‘deletion’ are displayed to increase the usability as shown in

Figure 3-50. The CIA accuracy calculation uses the CIA categorization sets (see

Subsection 2.6.1) EIS/ CIS, AIS and DIS. Thus, the count of estimated or the

candidate artefact items shown in text areas is automatically displayed. The

remaining AIS count which is a subset of EIS count has to be manually identified

by an expert from the results shown in text areas and manually entered. Similarly,

the total real impact set count which is the sum of DIS count and AIS count is

entered based on expert knowledge before proceeding with the ‘Calculate’ button.

112

3.6.2 Implementation of the network analysis module

The traceability validation module is developed by applying network analysis

concepts over the traceability visualization graph. This is implemented using

Python NetworkX libraries (“NetworkX,” 2018) with Java-based GUIs. Python

Matplotlib based and JavaScript D3.js based two traceability graph visualization

extensions are also integrated into this module as described in the traceability

visualization Subsection in 3.3.2 and 3.3.3 (Rubasinghe, Meedeniya, & Perera,

2018a). Figure 3-51 shows a Python code snippet used for obtaining centrality

measures summary from a traceability graph.

Figure 3-51 : Network analysis centrality measures code snippet

The main network analysis window facilitating analytical, interactive traceability

visualization extensions, separate centrality measure options, overall measure

summaries and centrality measure visualizations is shown in Figure 3-52. The

output of the button ‘Centrality Measures Textual Summary’ that summarizes the

...

import networkx as nx

import matplotlib.patches as mpatches

import matplotlib.pyplot as plt

import numpy as np

UG=nx.read_gexf(GexfPathForValidation.path, node_type=None, relabel=True)

ddd=nx.degree(UG)

bt=nx.betweenness_centrality(UG)

ebt=nx.edge_betweenness_centrality(UG)

ec=nx.eigenvector_centrality_numpy(UG)

cc=nx.closeness_centrality(UG)

dc=nx.degree_centrality(UG)

idc=nx.in_degree_centrality(UG)

odc=nx.out_degree_centrality(UG)

print "Traceability Graph Info: #Nodes=",

nx.number_of_nodes(UG),' #Edges=',nx.number_of_edges(UG)

print "Max degree centrality:",

max(dc.iterkeys(), key=(lambda key: dc[key])),'=',dc[max(dc, key=dc.get)]

print "\t Max in-degree centrality:",

min(idc.iterkeys(), key=(lambda key: idc[key])),'=',idc[min(idc, key=idc.get)]

print "\t Max out-degree centrality:",

max(odc.iterkeys(), key=(lambda key: odc[key])),'=',odc[max(odc, key=odc.get)]

print "Max closeness centrality:",

max(cc.iterkeys(), key=(lambda key: cc[key])),'=',cc[max(cc, key=cc.get)]

print "Min betweenness centrality node:",

min(bt.iterkeys(), key=(lambda key: bt[key])),'=',bt[min(bt, key=bt.get)]

print "Max betweenness centrality edge:",

max(ebt.iterkeys(), key=(lambda key: ebt[key])),'=',ebt[max(ebt, key=ebt.get)]

print "Max eigenvector centrality:",

max(ec.iterkeys(), key=(lambda key: ec[key])),'=',ec[max(ec, key=ec.get)]

...

113

maximum and minimum values of degree centrality, closeness, betweenness and

Eigenvector centrality is shown in that example. Similarly, in detail analysis of

each individual centrality measure is embedded into the left side centrality button

series. The ‘Info’ button provides the artefact details of involved traceability

project graph as shown in Figure 3-53.

Figure 3-52 : SAT-Analyser network analysis main window

Figure 3-53 : Network analysis artefact information view

3.7 Tool performance analysis

We have measured the SAT-Analyser tool performance for its core functionalities

traceability establishment and CIA process. The resource utilization is monitored

in terms of elapsed time, memory consumption and CPU processing power

consumption, where the tool contains a menu item for performance analysis. The

in-built Java library classes; runtime and ManageemntFactory are used for the

114

implementation. The output is provided in both textual and graphically for the

elapsed time, memory usage and CPU usage percentage. The Java-based

JFreeChart (“JFreeChart,” 2018) is used for graph creation with features such as

zooming, saving and manual alterations are provided for better analysis.

Figure 3-54 : SAT-Analyser traceability establishment performance analysis window

Figure 3-55 : SAT-Analyser CIA performance analysis outcome window

An example performance analysis output for traceability establishment activities

of software projects and CIA activities are provided in Figure 3-54 and Figure 3-

115

55 respectively. Evidently, the initial execution of the tool has consumed a larger

elapsed time in both traceability establishment and CIA as initially, it requires

collecting dependencies, repositories and libraries.

The elapsed time, memory consumption and CPU usage percentage depend on the

performance of used machine such that the SAT-Analyser would be executed

more smoothly when the machine is in an idle state without any other heavy

applications and background processes running. Furthermore, the size and

complexity level of the software project used in SAT-Analyser for traceability

establishment and CIA also affect the resource utilization such that tool execution

would consume a larger amount of elapsed time, memory and CPU if the project

contains a larger amount of artefact elements/ sub-elements/ trace relationships.

3.8 Conclusion

The context of software artefact traceability is strengthened with continuous

integration capabilities in order to be compatible with the evolving DevOps

environments. The existed SAT-Analyser tool is extended to support DevOps

environments by addressing software artefacts related to the remaining phases of

SDLC such as testing and maintenance phases that were not included in the initial

tool. The artefact data pre-processing, traceability establishment and visualization

is performed for DevOps related software artefacts based on the justifications

obtained from current industry level employee feedback and literature. The

existed traceability visualization is further enhanced with two additional

variations for better interactivity and for the purpose of traceability analysis with

better usability. Besides, change impact analysis model is designed with change

detection and change propagation with the aid of a mathematical and weight

system mainly based on the centrality measure; Eigenvector centrality and graph

traversal algorithms. Moreover, multi-user accessibility is featured in the SAT-

Analyser tool as a web-based version to improve the team-based usability in

DevOps environments. The implementation of change impact analysis model and

traceability validation along with traceability establishments are further evaluated

on a heterogeneous case study basis in chapter 4.

116

Section 4

4 Evaluation

A case study based approach is used for evaluation of the proposed methodology,

using a data set of heterogeneous software projects. The remaining subsections

describe the data set, experimental results and analysis for the evaluation metrics.

4.1 Datasets and materials

A data set of 20 software engineering projects where the underlying technology is

Java programming language is selected in different domains and scales as the

dataset. Table 4.1 provides an overview of the considered software projects.

Table 4.1 : Dataset summary

Project title Description

Software product measures

Scale #Req. #Design

classes

LOC function

calls

S1 Virtual

historical

site guide

Application to guide historical

sites in Sri Lanka using

virtual reality.

15

Large

9

Mediu

m

3185

Medium

742

Medium

Medi

um

S2 Workout

manager

Application to manage

exercise routine using

smartwatch and gamification.

9

Medium

11

Large

1333

Small

313

Small

Small

S3 Employee

performance

tracker

Mobile application to measure

employee performance during

professional travelling duties.

9

Medium

12

Large

2415

Medium

515

Medium

Medi

um

S4 Medical

appointment

manager

An android application to

manage doctor/patient

medical appointments.

9

Medium

6

Small

2362

Medium

529

Medium

Medi

um

S5 Task planner

- PlanIt

Personal daily-tasks

organizing system.

8

Small

4

Small

2977

Medium

662

Medium

Small

S6 Interactive

book reader

A mobile app with augmented

reality to visualize characters

and scenarios in kid’s books.

12

Medium

4

Small

5491

Large

939

Large

Large

S7 MyDrive

multimedia

library

Personal media content

management system.

7

Small

7

Mediu

m

2646

Medium

571

Medium

Medi

um

S8 E-School

manager

An MIS to ease the activities

of students and teachers.

10

Medium

6

Small

3460

Medium

490

Small

Medi

um

S9 Graphical

password

strategy

A system to maximize the

user password space using

memorable information.

6

Small

5

Small

1466

Small

475

Small

Small

S10 Hotel

management

Android app

An Android application to

handle all hotel activities via a

mobile.

19

Large

8

Mediu

m

5579

Large

1141

Large

Large

S11 Expenses

tracker

Mobile application to track

daily income and expenses.

17

Large

12

Large

3355

Medium

782

Medium

Large

S12 Online

developer

A system to generate a

complete insight of a software

8

Small

10

Mediu

2269

Small

162

Small

Small

117

profile

analyser

developer based on the

profile.

m

S13 Computer-

based

psychothera

py

A system to identify and

reduce the effects of mental

health disorders with self-

guided treatment.

16

Large

7

Mediu

m

3712

Large

602

Medium

Large

S14 Child

monitoring

system

A monitoring system with

play sound, voice over, listen,

watch the child and call a

neighbour.

10

Medium

12

Large

2288

Small

502

Medium

Medi

um

S15 PDF content

search

system

Desktop application to search

through PDF files.

8

Small

7

Mediu

m

3638

Large

873

Large

Large

S16 Disease

management

system

Integrated digital health

system to manage patients

with chronic disease,

remotely using SMSs.

12

Medium

10

Mediu

m

3700

Large

802

Large

Large

S17 HTTP2

support for

Apache

JMeter

Software plugin to adopt and

implement HTTP2 support for

performance measuring of

JMeter application.

18

Large

19

Large

2649

Medium

628

Medium

Large

S18 Point of

sales system

System for customer and

order management in sales.

5

Small

5

Small

97

Small

16

Small

Small

S19 GuideME -

smart tour

guide

Tour guide system to display

locations, accommodations,

routes in Sri Lanka.

7

Small

11

Large

3208

Medium

676

Medium

Medi

um

S20 Tour

management

system

Tour booking management

system for passengers and

drivers and guides.

8

Small

9

Mediu

m

2298

Medium

494

Small

Medi

um

The software product measures are prominent aspect in measuring software

projects scale. Especially, Line of Code (LOC) and number of associated function

calls of a software project are two common measures (Hattori, Guerrero,

Figueiredo, Brunet, & Dam, 2008)(Li et al., 2013). However, these cannot be

solely used as a metric in deciding a scale of an overall software project as they

both are associated only with source code. For example, basic software problem

having a smaller number of requirements may be complex to implement due to

lack of technologies, coding abilities and refactoring methods, which may

eventually increase the LOC or/and function calls count. Thus, the functional

requirements count, number of classes in UML class diagram and LOC along with

the number function calls of a project is considered as software product measures

when deciding the project scale (“Measuring Requirements,” 2018).

We have followed the Interquartile Range (IQR) methodology to scale the projects

based on the overall median (Q2), the median in the lower half of data (Q1) and

median in the upper portion of data (Q3) with respect to each selected software

118

product measure. Thus, a minimum, Q1, Q2, Q3 and a maximum value exist for

requirements count, design classes count, LOC and function call count. Firstly,

each project is assigned a subscale (small/ medium/ large) for each of that product

measure such as a single project gets four subscales as described in Table 4.1.

The subscale is determined as small, if the value is greater than or equal to the

minimum and less than or equal to Q1. Similarly, subscale medium is defined, if

the value is greater than Q1 and less than Q2 while subscale is assigned as large if

the value is greater than or equals to Q3 and also less than or equals to the

maximum. Figure 4-1 boxplot illustrates the scale ranges according to Q1, Q2 and

Q3 measures. The final scale of the project is obtained based on the highest

subscale probability. Further, if any two subscales are similar and the remaining

two subscales also similar which results in an equal probability; the final scale is

decided manually based on project area, scope and codebase development effort.

Figure 4-1 : Project scale

4.1.1 Pre-defined categorization of change types

We have defined 17 change types for artefact changes and three-to-five unique

change types are applied for a given case study, covering all 17 change types for

the testing purpose. These changes are selected based on the possibilities in a

practical software development. Based on the survey among DevOps practitioners,

currently, there exists no mechanism to track the heterogeneous artefact level

changes covering every phase of SDLC. Following are the defined change types.

 C1: Add a main requirement

 C2: Add a moderate importance requirement

 C3: Add a low importance requirement

 C4: Modify a requirement

 C5: Delete a requirement

Q3

Max

Q2

Q1

Min

Large

Medium

Small

119

 C6: Add a design component

 C7: Modify a design component

 C8: Delete a design component

 C9: Add a source code artefact

 C10: Modify a source code artefact

 C11: Delete a source code artefact

 C12: Add a unit-test artefact

 C13: Modify a unit-test artefact

 C14: Delete a unit-test artefact

 C15: Add a configuration artefact

 C16: Modify a configuration artefact

 C17: Delete a configuration artefact

4.1.2 Evaluation environment specification

The SAT-Analyser tool performance depends on the execution environment as any

other software tool. Thus, the evaluation results presented in this chapter depends

on the used environment parameters. SAT-Analyser is evaluated in an

environment specification with Core i5-321M CPU @ 2.50GHz processor, 700GB

storage, 4GB RAM and Windows 8.1 Pro operating system.

4.2 Experimental results: case study 1 (POS system)

This section presents an overview of the selected case study, S18: Point of Sales

system for a shop, where a customer can place orders consisting of items. An order

can be either a special order having the online ordering feature or a normal order

having only the cash on delivery facility. The system records the customer details

with name and location for delivery purposes. Also, the system facilitates the

ability to record item details with an item number and price. A customer can send

and receive orders using the system. These requirements are stated in the software

requirement specification in natural language. Figure 4-2 shows the natural

language requirements considered for this study. The corresponding design in

UML class diagram is shown in Figure 4-3. The main classes are identified as

Customer, Order and Item. An Order is specialized into SpecialOrder and

NormalOrder. Since the entity Order is composed of a set of Item entities, there is

120

an aggregation relationship. There is a composition relationship as a strong

aggregation between the classes Customer and Order. Thus, if the Customer entity

is deleted, then Order (part) entity is deleted as well.

Figure 4-2 : POS system description

Figure 4-3 : POS system design diagram

The relevant source code artefacts are given in Java programming language as a

set of class files and unit test scripts are provided in JUnit test files. Further, as

configuration file, a Maven build script file used for building the POS system is

considered. The artefact files are provided in the SAT-Analyser tool web site

(“SAT-Analyser,” 2018).

Figure 4-4 : SAT-Analyser main artefact summary for POS system

The identified main artefact elements by the tool SAT-Analyser are listed in

Figure 4-4 followed by the tool generated unique identifier of each artefact.

Further, there exists artefact sub-elements for methods, attributes (fields) and

In a shop, a customer can place more than one order. An order can have more than one item.

Customer details must record the name and location. Item details must record the item number

and price. A customer can send and receive the order using the system. The customer can

order in two types. Orders are special order and normal order. An order can be confirmed and

closed by the customer. The special order can order items online. Normal order can order

items in cash on delivery. An item can be added and removed.

121

plugins as partially shown in Figure 4-4 with _F, _P and _M notations. Table 4.2

summarises the manual artefact identification and categorization of the POS

system based on expert knowledge such as by a requirement engineer.

Table 4.2 : Artefact categorization: POS system

Artefact type Low Medium High

Requirement RQ1, RQ2 RQ3 RQ4, RQ5

Design D1, D2 D3 D4, D5

Source code S1, S2 S3 S4, S5

Test script UT1, UT2 UT3 UT4, UT5

Configuration files - - BS1

4.2.1 Evaluation of traceability establishment component

Figure 4-5 represents a part of the final traceability established relations file in

XML format. It contains a source to target format depicting directed traceability

relationships. For example the D4: Normal Order is connected to SC1: Customer

as one of the traces, showing that any alteration occurred in Normal Order design

class would affect the Customer source code class.

Figure 4-5 : POS system Relations.xml instance

Figure 4-6 provides a section of the full traceability graph for the POS system.

Nodes denote the heterogeneous software artefacts and edges represent the

traceability relationship links. Colour codes are applied for each category of nodes

to enhance the usability aspects. The node BS1 in black shows the Maven

pom.xml build script file and each source code (SC) class is visualized in red

coloured nodes. The notations D, RQ, UT stand for the design diagram,

<?xml version="1.0" encoding="UTF-8"?>

<Relations>

 <Relation id="1">

 <SourceNode>D4</SourceNode>

 <RelationPath>UMLClassToSourceClass</RelationPath>

 <TargetNode>SC1</TargetNode>

</Relation>

 <Relation id="2">

 <SourceNode>D4_F1</SourceNode>

 <RelationPath>UMLAttributeToSourceField</RelationPath>

 <TargetNode>SC1_F1</TargetNode>

</Relation>

<Relation id="3">

122

requirement item and unit test class item respectively. Moreover, this interactive

traceability graph is customizable.

Figure 4-6 : Part of the traceability visualization graph - POS system

Figure 4-7 : Network analysis summary - POS system

Figure 4-7 states the SAT-Analyser tool computed centrality measures summary

for the network analysis based traceability validation. The Maven build script

artefact (BS1) holds the maximum betweenness and closeness centrality measure

values since this POS case study has one Maven build script file that is linked with

every source class artefact by verifying the centrality result as accurate.

123

4.2.2 Evaluation of continuous integration process

Among the defined 17 change types for the impact analysis process, five change

types are applied to this POS case study project as follows.

 C4: Modify a requirement

 C9: Add a source code artefact

 C10: Modify a source code artefact

 C12: Add a unit-test artefact

 C15: Add a configuration artefact

Figure 4-8 shows the detection of the five change types in the tool’s Change

Detection results window for each particular artefact category listed according to

addition, modification and deletion. The corresponding impact analysis results of

the five change types are calculated and summarized in the Impact Analysis

Results window as shown in Figure 4-9. The impacted nodes/ edges are listed

using the influential factor values obtained through EVC. For example, the

addition of unit test artefact element (UT5_M3: InvokeTest method) has not

affected any other since its own influential factor has been a low value.

Figure 4-8 : POS system change detection window

124

Figure 4-9 : POS system impact analysis window

Figure 4-10 : POS system change propagation instance

The propagation of changes is visualized in the traceability graph with impact

analysis results such as 1 for high and 0 for low. The node impact analysis results

are shown when hovered on each node in real-time. In this artefact change

example, the scenario is relevant to one constraint defined in the SAT-Analyser

tool CIA process. As this scenario contains artefact additions as change types

(source code addition, test script element addition, build script element addition),

125

all artefact types must be submitted with relevant affecting results of newer

artefact additions. Thus, the system considers this type of a change integration as a

re-establishment of traceability. Figure 4-10 shows a part of the change propagated

traceability graph where the newly added build script artefact plugin (BS1_P4:

jfreechart) can be seen as a new node linked with its mother artefact node BS1.

4.2.3 Performance analysis

Figure 4-11 provides the statistical analysis results for the CIA process conducted

on the POS system. The AIS count is completely same as the EIS count based on

SAT-Analyser’s impact analysis, signifying the identified impacts are accurate.

However, there are two impacts that have not been identified by the tool that is

relevant to the DIS set. The addition of SC5_M2 must impact on a corresponding

unit test (UT) item and the modification of SC4_F2 may impact on a UT item

which is missing in the obtained EIS. Thus, the recall and F-measure are more

than 0.95 while precision is 1.0 successfully.

Figure 4-11 : CIA statistical analysis results: POS system

The performance of CIA process of the case study POS with respect to time

consumption, CPU and memory consumption is shown in the Figure 4-12 for the

above demonstrated 5 changes one at a time such as C4, C9, C10, C12 and C15

respectively. According to the variations in the results, it is observable that the

126

performance of the CIA process depends on the change type and that particular

changed artefact item’s nature on the traceability network.

Thus, the time, memory and CPU consumption is higher for the C4 in this scenario

which represents a modification done to a requirement artefact item such that

RQ4: Customer has been modified into RQ4: the Foreign Customer. It has been

occupied more resources since it is having a higher number of trace links with

design, source code and unit test artefacts that result in having a larger number of

affected items. According to the defined CIA rule-based Algorithm 3:11, a

requirement artefact is supposed to check the maximum number of paths in

calculating the impact sets. Therefore, the graph traversal consumes a higher

resource amount during the CIA process of such a change done on a significant

artefact item. Remaining four changes C9, C10, C12 and C15 have occupied lesser

similar amounts of resources since they all are later stages artefacts like source

code, unit test and build script that are having a lesser number of relationships.

According to these results, the modifications are requiring a considerably higher

amount of resources compared to artefact additions.

Figure 4-12 : CIA performance analysis results: POS system

127

4.3 Experimental results: case study 2 (Tour management system)

This section presents the considered artefacts and the evaluation results obtained

by SAT-Analyser. The selected case study, S20: Tour Management System

manages tours that mainly address the types of employees, namely manager,

driver, tour guide and a passenger who books a tour. The system records both

employees’ details and passenger details. The system provides a list of available

tours along with a date. The manager can reserve a tour for a passenger, can assign

the route to a tour, assign a driver for each tour, create a bill to the passenger and a

passenger can book a tour using this application. Figure 4-13 represents the

requirements description of this Tour Management case study.

Figure 4-13 : Tour management system description

Figure 4-14 : Tour management system design diagram

In a tour management system there are three types of employees, namely manger, driver and

guide. An employee must record the employee code, name, address and a contact number. A

tour is identified by a unique tour ID and a date. The manager reserves a tour for a passenger.

This is one of the main requirements of the system. When a passenger registers for a tour, he/

she provide the name, address, contact number, birth date, gender and preferences. Another

main task of the manager is that manager assigns route to a tour. A route has a route length,

tour duration and town names. Moreover, manager assigns a driver for each tour. Additionally,

when a passenger makes the payment for a tour, the manager creates bill to the passenger. A

bill consists of the date, passengers count and tour ID. Furthermore, a guide elaborates each

tour for the passengers during a tour. Further, a route has one or more towns. For each route, a

town records its overnight stay details.

128

Figure 4-14 shows the corresponding UML class diagram of the Tour

Management case study consisting of nine classes. There is an inheritance

relationship in Guide, Driver and Manager with Employee class. An aggregation

relationship between Town and Route classes and a composition between Tour

and Route classes exist in the design with other association relationships. The

relevant Java source code artefact, JUnit test artefact and the used Maven build

script artefact file of the case study are provided in the SAT-Analyser tool web

portal (“SAT-Analyser,” 2018).

The identified main artefact elements by the tool SAT-Analyser are listed in

Figure 4-15 followed by the tool generated unique identifier of each artefact.

Further, there exists artefact sub-elements for methods, attributes (fields), and

plugins as partially shown in Figure 4-15 with _F, _P and _M notations. Table 4.3

summarises the manual artefact identification and categorization of Tour

Management system based on expert knowledge such as by a requirement

engineer/ software engineer involved in the project.

Figure 4-15 : SAT-Analyser main artefact summary for tour management system

Table 4.3 : Artefact categorization: tour management system

Artefact type Low Medium High

Requirement RQ1, RQ3 RQ2, RQ6, RQ8 RQ4, RQ5, RQ7

Design D2, D4 D1, D3, D5, D6 D7, D8, D9

Source code S7, S9 S2, S3, S4, S5 S1, S6, S8

Test script UT7, UT9, UT10 UT2, UT3, UT4, UT5 UT1, UT6, UT8,

UT9

Configuration files - - BS1

129

4.3.1 Evaluation of traceability establishment component

Figure 4-16 : Tour management system Relations.xml instance

A part of the tool generated traceability relations wrote down in the XML format

is shown in Figure 4-16. For instance, a relation between RQ1: Route to D6:

Manager can be seen as a directed relationship since Manager is the person who

assigns a Route to each Tour. Figure 4-17 provides a section of the full traceability

graph for the Tour Management system.

Figure 4-17 : Traceability visualization - tour management system

Figure 4-18 states the SAT-Analyser tool computed centrality measures summary

for the network analysis based traceability validation. The build script artefact

(BS1) holds the maximum values for betweenness and closeness centrality

measures. This case study has only single Maven build script and it is related with

each and every source class artefact, hence the result is acceptable. One of the

maximum Eigenvector centrality is held by the node SC6_M4 that denotes the

method setPreferences () in the Java Tour class which can be considered as one of

the highly important artefacts in this case study.

<Relation id="155">

 <SourceNode>RQ2_F2</SourceNode>

 <RelationPath>ReqFieldToUMLOperation</RelationPath>

 <TargetNode>D9_M11</TargetNode>

</Relation>

<Relation id="156">

 <SourceNode>RQ1</SourceNode>

 <RelationPath>ReqClassToUMLClass</RelationPath>

 <TargetNode>D6</TargetNode>

</Relation>

130

Figure 4-18 : Network analysis summary - tour management system

4.3.2 Evaluation of continuous integration process

From the defined 17 change types for the impact analysis process, another five

change types are applied to this Tour Management case study.

 C2: Add a moderate importance requirement

 C5: Delete a requirement

 C6: Add a design component

 C13: Modify a unit-test artefact

 C17: Delete a configuration artefact

Figure 4-19 shows the corresponding change detection results obtained by the

SAT-Analyser tool. The performed five changes are accurately detected by

displaying the affected artefact ID and name. The performed CIA results are

shown in Figure 4-20. For example, for C13, the modified unit test artefact (UT5:

ManagerTest) has impacted on its two child nodes UT5_M1:setUpClass method

and UT5_M2:tearDownClass method which has a lower impact value. The

propagated changes are re-visualized and a part of the traceability graph is shown

in Figure 4-21. For instance, the newly added D9_M15 is newly represented in the

graph while BS1_P2 has removed and earlier BS1_P3 has become BS1_P2 by

making the IDs consistent.

131

Figure 4-19 : Tour management system change detection window

Figure 4-20 : Tour management system impact analysis window

Figure 4-21 : Tour management system change propagation instance

132

4.3.3 Performance analysis

The CIA accuracy of the Tour Management example is shown in Figure 4-22. The

modification and deletion change types related impacts are completely identified

by the tool. However, there are five missing impact items in the addition change

type since the corresponding artefact elements are not modified according to the

added changes during CI. Thus, the addition of RQ9 must impact on a design (D),

source code (SC) and a UT item while the addition of D9_M15 must impact on an

SC sub-element and may impact on a UT item. The CIA process has obtained 0.86

recall, 0.93 F-measure and 1.0 precision.

Figure 4-22 : CIA statistical analysis results: tour management system

The resource consumption of the CIA process for each change type is shown in

Figure 4-23. The bar instances in each graph show five changes C2, C5, C6, C13

and C17. The memory consumption of each change is the same, since all are

additions and deletions while C13 has been a modification, but on a later stage unit

test artefact has fewer trace relations. Moreover, the highest CPU consumption is

taken by the C5 where a requirement RQ1: Route has been deleted which affects a

larger number of related trace links. The second highest CPU consumption occurs

for the other artefact deletion C17 where a build script artefact item is deleted. It is

observable that modifications and deletions tend to consume more resources

compared to additions.

133

Figure 4-23 : CIA performance analysis results: tour management system

4.4 Experimental results: case study 3 (MyDrive multimedia library)

As the third case study, we have selected, S7: MyDrive Multimedia Library,

which is a personal media content management system. A user can store and

manage own favourite media contents such as music, video or pictures. It ensures

user privacy rather than storing in any content management system. The

requirements of the Multimedia Library system are provided in a text format as

shown in Figure 4-24 where it describes the major functionalities required such as

managing multimedia file contents and altering metadata of files by a user.

Figure 4-24 : MyDrive multimedia library system description

The UML class diagram is shown in Figure 4-25. There exists an inheritance

relationship in Image, Video and Audio classes with the class MultimediaFile

which is the parent class of them. Further, an aggregation and a composition

relationship exist for MultimediaFile class with Folder and Metadata classes

respectively. The corresponding Java source code artefacts, unit test script artefact

in JUnit test file format and the Maven build script associated with the case study

building are listed in the SAT-Analyser tool web site (“SAT-Analyser,” 2018).

User has to create user accounts in the system and login to the system. User can edit

profile and logout anytime. Each multimedia file contains a file ID, original name,

publicity and file type. Then user can upload multimedia files, search multimedia files,

manage uploaded files, download and delete files. Multimedia files can be in three

kinds such as image, video or an audio. Each multimedia file has at least one metadata

associated. A user's all multimedia files have a folder to storage. That folder must have

a folder ID and some metadata. Further, user can edit metadata of a multimedia file.

134

Figure 4-25 : MyDrive multimedia library system design diagram

Figure 4-26 : SAT-Analyser artefact summary for MyDrive multimedia library system

The identified main artefact elements by the tool SAT-Analyser are listed in

Figure 4-26 followed by the tool generated unique identifier of each artefact.

Further, there exist artefact sub-elements for methods, attributes (fields) and

plugins as partially shown in Figure 4-26 with _F, _P and _M notations. Table 4.4

summarises the manual artefact identification and categorization of MyDrive

Multimedia Library system based on expert knowledge.

Table 4.4 : Artefact categorization: MyDrive multimedia library system

Artefact type Low Medium High

Requirement - RQ2 RQ1, RQ3

Design D3, D2 D4 D1, D2, D5, D6, D7

Source code S4, S3, S7, S11, S12,

S13

S2, S6, S9,

S10

S1, S3, S5, S8, S14

Test script UT4, UT5, UT6 UT2, UT7 UT1, UT3, UT8

Configuration files - - BS1

135

4.4.1 Evaluation of traceability establishment component

According to Figure 4-27, the established trace relationships are written down into

the pre-defined XML format. For instance, it shows two intra-relationships among

SC11: FolderInfo with its source methods SC11_M8 and SC11_M9. Figure 4-28

provides a section of the full traceability graph for the Multimedia Library system.

Figure 4-27 : Multimedia library system Relations.xml instance

Figure 4-28 : Traceability visualization - multimedia library system

Figure 4-29 : Network analysis summary - multimedia library system

<Relation id="112">

 <SourceNode>SC11</SourceNode>

 <RelationPath>SourceClassToSourceMethod</RelationPath>

 <TargetNode>SC11_M8</TargetNode>

</Relation>

<Relation id="113">

 <SourceNode>SC11</SourceNode>

 <RelationPath> SourceClassToSourceMethod </RelationPath>

 <TargetNode>SC11_M9</TargetNode>

</Relation>

136

Figure 4-29 states the tool computed centrality measures summary for the network

analysis based traceability validation. The Maven build script artefact (BS1) shows

the maximum closeness and the highest in-degree centrality measures. As this case

study also has only one Maven build script which is linked with all Java source

class artefacts, the validation result is verifiable. One of the maximum EVC

among all types of artefacts is taken by SC9_M6 that represents the Java method

setFolderName () in the Folder Java class as one of the highly influenced artefacts.

4.4.2 Evaluation of continuous integration process

We have considered three change types as follows.

 C7: Modify a design component

 C11: Delete a source code artefact

 C14: Delete a unit-test artefact

The change detection results are shown in Figure 4-30 and the corresponding CIA

results are given in Figure 4-31. The modification of D4_F2 artefact sub-element

has impacted on itself and associated source code artefacts. Also, the deletion of

SC5, UT8 has impacted many artefact items, but with a lower influential factor.

Figure 4-30 : Multimedia library system change detection window

Figure 4-32 provides a section of the change propagated traceability graph

visualization. The modified design artefact sub-element D4_F2 can be seen in a

larger size signifying the modification while SC5 has been removed. Regarding

the D4_F2 design sub-element’s impacted artefact set, there exist two highly

137

influential artefact items as SC9_M6 and SC9_M5. But they have not been

propagated with the impact since the modified node D4_F2 itself contains a low

influential value. Thus, the outgoing traces of a low influential impact node are

discarded without further change propagation according to the defined CIA model.

Figure 4-31 : Multimedia library system impact analysis window

Figure 4-32 : Multimedia library system change propagation instance

4.4.3 Performance analysis

The corresponding accuracy results of the CIA process of this Multimedia Library

system case study is shown in Figure 4-33. The impact set of deletion changes are

completely identified by the SAT-Analyser tool. There is one missing item as a

DIS element in the modification impacts as the alteration on D4_F2 may impact on

a UT item. Accordingly, the final precision has been 1.0, recall is 0.98 and the F-

measure is 0.99.

138

Figure 4-33 : CIA statistical analysis results: multimedia library system

Figure 4-34 : CIA performance analysis results: multimedia library system

The performance analysis results of the CIA process for change types C7, C11 and

C14 are given in Figure 4-34. The maximum time, memory and CPU usage has

been reported for the C7, which is a modification change type on a design artefact

such that D4_F2: metadata modified into D4_F2: folder metadata. The remaining

C11 and C14 have consumed a lesser amount of resources since they both are later

stage artefact deletions on source code and unit test artefact items, respectively,

where a minimum number of trace links are associated. Although the deletion of

SC5 in C11 change type has impacted on many items, the number of paths to be

checked in graph traversal is lesser, compared to C7 where a design artefact is

139

modified. According to the defined rule-based graph traversal for CIA, the design

level artefacts check design level, source code level and the unit test level, whereas

source code artefacts are only subjected to check source code level and unit test

level paths. Hence, it is justifiable that the artefact modifications tend to consume

more resources, when the artefact belongs to an earlier stage.

4.5 Experimental results: case study 4 (Disease management system)

This section presents an overview of the software artefacts in case study 4 with the

obtained evaluation results by SAT-Analyser. The selected case study, S16: C-

CARE is a digital health system for chronic disease management and prevention. It

helps health centres to manage admitted patients remotely by use of bulk SMS and

also other citizens can subscribe to get health tips and monitor their patients

without the patients availing themselves physically. The doctors can send SMS

notifications to their patients either giving them appointments, advice the drugs

they should take, food and exercises. The patients can attend to their daily jobs at

the same time receiving treatment. Hence, this contributes to the economic growth

of the country as opposed to when they are hospitalized. The provided text-based

requirements are shown in Figure 4-35.

Figure 4-35 : Disease management system description

The design level class diagram in UML notation for the Disease Management system

is illustrated in Figure 4-36. Two composition relationships among classes Doctor and

DoctorRecords and between Patient and PatientRecords can be seen in the design

while other relationships being associations and inheritance.

The chronic disease management system has three types of users such as Admin, Doctor and

Patient. Admin, each doctor and each patient has an associated login to system. There should be

a username and a password to login. Every doctor who sign up with system must provide first

name and last name. Each doctor has doctor records in a doc table. Every patient who sign up

with system must provide full name and system generates an ID for each patient. Each patient

has patient records in a table inside the system. Doctor and admin can access patient records

and admin can access doctor records too. There is a SMS facility named healthSMS. Every

patient can send SMS to doctors via the system's healthSMS. Doctors can view patient

messages via the system's healthSMS. The healthSMS needs receiver, phone number and

message to process. Each patient can be in two types such as a selected patient or an admitted

patient. Admitted patients can prefill doctors. Also, admitted patients have admission details

separately. Admin can access healthSMS.

140

Figure 4-36 : Disease management system design diagram

Moreover, the associated source code, unit test and Maven build script artefacts of

the case study are provided in the SAT-Analyser tool web portal (“SAT-

Analyser,” 2018). The tool identified artefact elements are listed in Figure 4-37

with the unique identifier of each artefact. Further, there exists artefact sub-

elements for methods, attributes and plugins as partially shown in Figure 4-37 with

_F, _P and _M notations. Table 4.5 summarises the manual artefact identification

and categorization of Disease Management system based on expert knowledge.

Figure 4-37 : SAT-Analyser main artefact summary for disease management system

Table 4.5 : Artefact categorization: disease management system

Artefact type Low Medium High

Requirement RQ3 RQ5 RQ1, RQ2, RQ4

Design - D6, D10 D1, D, D3, D4, D5, D7, D8, D9

Source code SC11 SC5, SC6, SC7, SC10 SC1, SC2, SC3, SC4, SC8, SC9

Test script UT11 UT5, UT6, UT7, UT10 UT1, UT2, UT3, UT4, UT8, UT9

Configuration - - BS1

141

4.5.1 Evaluation of traceability establishment component

Figure 4-38 : Disease management system Relations.xml instance

Figure 4-38 shows a part of the established relations in XML predefined format in

the source to the target structure. Three of the source classes to unit test class

relations are shown therebetween Login-LoginTest, Selectedpatient-

SelectedPatientTest and PatientRecords-PatientRecordsTest.

Figure 4-39 : Traceability visualization - disease management system

Figure 4-39 shows a part of the traceability graph for the Disease Management

system. The relationship between RQ5, SC5 and D6 can be clearly seen that

denotes the HealthSMS feature’s requirement, source class and design class.

<Relation id="77">

 <SourceNode>SC6</SourceNode>

 <RelationPath>SourceClassToUnitTestClass</RelationPath>

 <TargetNode>UT6</TargetNode>

</Relation>

<Relation id="78">

 <SourceNode>SC9</SourceNode>

 <RelationPath>SourceClassToUnitTestClass</RelationPath>

 <TargetNode>UT9</TargetNode>

</Relation>

<Relation id="79">

 <SourceNode>SC8</SourceNode>

 <RelationPath>SourceClassToUnitTestClass</RelationPath>

 <TargetNode>UT8</TargetNode>

</Relation>

142

Figure 4-40 : Network analysis summary - disease management system

Figure 4-40 states the SAT-Analyser tool computed centrality measures summary

for the network analysis based traceability validation. One of the minimum

betweenness and closeness centrality are obtained by the RQ4: Admin as its

having a lack of attributes and methods in each artefact category that results in

having a lesser number of relationships comparatively.

4.5.2 Evaluation of continuous integration process

Following two change types are applied to this Disease Management case study.

 C1: Add a main requirement

 C3: Add a low importance requirement

A newer main requirement is added as requiring a Nurse and a lower importance

requirement is specified as having a Timetable for a Nurse. The other remaining

artefact types such that design, source code, test files and build script artefacts are

supposed to be modified accordingly when an artefact addition is integrated.

Figure 4-41 shows the detection of added main and lower requirement elements.

Accordingly, the calculated change impact analysis results are shown in Figure 4-

42. Due to not modifying the other artefact types along with the requirement

artefact addition, it accurately shows that currently no impact of the newly added

two requirements on others.

143

Figure 4-41 : Disease management system change detection window

Figure 4-42 : Disease management system impact analysis window

The change propagation results of this scenario are shown in Figure 4-43. It can be

clearly seen that RQ6: Nurse and RQ6_F1: timetable have intra-relationships.

Also, there are no inter-relationships since no modifications are submitted on other

artefact types along with these two requirement additions.

Figure 4-43 : Disease management system change propagation instance

144

4.5.3 Performance analysis

The accuracy of the CIA process in the Disease Management system case study is

shown in Figure 4-44. As the modifications on other artefact types are not

incorporated during the CI activity of the added changes, there exist missing

impact identifications. Hence, the addition of RQ6 and RQ6_F1 must impact on a

design, source code and a unit test item. The final precision has been 1.0 since the

identified EIS is accurate though the recall and F-measure are lower due to

missing DIS items which would be higher when adding all the artefacts during an

addition change type following the SAT-Analyser’s CI constraint.

Figure 4-44 : CIA statistical analysis results - disease management system

The performance analysis of the applied change types C1 and C3 on Disease

Management system are provided in Figure 4-45. Since C1 is about adding a main

requirement artefact item such as RQ6: nurse it has shown a higher resource

consumption than the other C3: lower importance requirement item addition such

as RQ6_F1: timetable. The reason for the significant difference in these two

changes though both are the same change type is in accordance to the CIA

algorithm 3:11. Accordingly, if the changed artefact item is a sub-element it is

supposed to check a lesser number of paths than a main artefact element.

Therefore, the RQ6 addition is consuming a considerable resource amount while

RQ6_F1 is lesser as an artefact sub-element.

145

Figure 4-45 : CIA performance analysis results: disease management system

4.6 Experimental results: case study 5 (E-School management system)

As the fifth case study, we have selected, S8: E-School Management system that

handles the student, teacher and subject courses workload within a domain of a

school. It helps for data management in the school’s management level activities

and student activities by allowing to store student, teacher, course details and

letting students enrol in courses. The requirements are shown in Figure 4-46.

Figure 4-46 : E-School management system description

The corresponding UML class diagram is shown in Figure 4-47. It contains six

classes with inheritance for Person categorized as Student and Teacher. Two

composition relationships exist between PersonList, Person and CourseList,

Course. The remaining artefacts involved in the case study such that source code,

unit test script and build script are provided via the SAT-Analyser web site (“SAT-

Analyser,” 2018). The identified main artefact elements by the tool SAT-Analyser

are listed in Figure 4-48 followed by the tool generated unique identifier of each

artefact. Further, there exist artefact sub-elements for methods, attributes (fields)

and plugins as partially shown in Figure 4-48 with _F, _P and _M notations.

eSchool management system handles a person list and a course list. There are two main

types of person in the system as teacher and student. System checks whether a person is

logged. Admin can handle person list, delete users and search users. Each person must

provide name, dob and address. Then, a person can login, see profile, set password, and get

new course details. A teacher has a staff main page to view and a student has a student main

page to view. Student can enroll to courses. System checks the eligibility of a student and

grant permission to enroll to requested course. The course list contains courses. Admin can

update courses, delete courses and check course fees. A course contains a course name,

course Id, beginning date, finishing date and a fee. Teacher can enroll to subjects to teach.

146

Figure 4-47 : E-School management system design diagram

Figure 4-48 : SAT-Analyser main artefact summary for E-School management system

Table 4.6 summarises the manual artefact identification and categorization of E-

School Management system based on expert knowledge such as by a requirement

engineer/ software engineer.

Table 4.6 : Artefact categorization: E-School management system

Artefact type Low Medium High

Requirement RQ1 RQ7, RQ8 RQ2, RQ3, RQ4, RQ5,

RQ6

Design - D5, D6 D1, D2, D3, D4

Source code SC10 SC1, SC3, SC4, SC5,

SC9

SC2, SC6, SC7, SC8, SC11

Test script UT10 UT1, UT3, UT4, UT5,

UT9

UT2, UT6, UT7, UT8,

UT11

Configuration files - - BS1

147

4.6.1 Evaluation of traceability establishment component

The established traces are first written into a Relations.xml file as represented in

Figure 4-49 having a source-target tag structure. For example, it shows two

relations from SC8: Enroll and SC10: MyProfile source classes to the BS1:

project’s Maven build script artefact. Figure 4-50 provides a section of the

traceability graph for the E-School Management system.

Figure 4-49 : Relations XML format of traceability establishment - E-School system

Figure 4-50 : Traceability visualization – E-School management system

Figure 4-51 shows the SAT-Analyser tool computed centrality measures summary

for the network analysis based traceability validation. The node RQ6 (admin) has

got the minimum betweenness centrality which is acceptable since it is isolated

without relationships with other heterogeneous artefacts; design and source code

as in Figure 4-50 evidently.

<Relation id="97">

 <SourceNode>SC8</SourceNode>

 <RelationPath>SourceClassToBuildscriptClass</RelationPath>

 <TargetNode>BS1</TargetNode>

</Relation>

<Relation id="98">

 <SourceNode>SC10</SourceNode>

 <RelationPath>SourceClassToBuildscriptClass</RelationPath>

 <TargetNode>BS1</TargetNode>

</Relation>

148

Figure 4-51 : Network analysis summary – E-School management system

4.6.2 Evaluation of continuous integration process

We have considered two change to analyse the impact in the E-School

Management case study; C8: Delete a design component and C16: Modify a

configuration artefact. The change detection results are shown in Figure 4-52

while the corresponding CIA results are provided in Figure 4-53. The deletion of

D4: Teacher design artefact has impacted on its existed own method (D4_M1).

However, the modification performed on BS1_P6 plugin name has not impacted

on any other as it’s a leaf node having no outgoing edges to propagate even though

its own influential factor is high.

Figure 4-52 : E-School management system change detection window

149

Figure 4-53 : E-School management system impact analysis window

The part of the change propagated traceability graph is shown in Figure 4-54. The

nodes D4 and its impacted D4_M1 has been removed while BS1_P6 is modified.

Figure 4-54 : E-School management system change propagation instance

4.6.3 Performance analysis

The impact sets accuracy of the E-school Management case study are measured

using the statistical metrics as shown in Figure 4-55. The precision has been

obtained as 1.0 since the identified all impact items are accurate. However, there is

a lower recall and F-measure due to lacking two impact items with respect to the

deletion impact items. The deletion of D4 must impact on an SC and a UT item

though they have not been identified by the SAT-Analyser tool due to missing

traceability establishments which can be improved with more rigorous NLP and

name entity recognition techniques.

150

Figure 4-55 : CIA statistical analysis results: E-School management system

Figure 4-56 shows the performance analysis results with respect to time, memory

and CPU consumption occupied by the change types C8 and C16 applied on E-

School Management system. The C16 modification change type performed on a

build script artefact item has occupied a higher elapsed time while the memory and

CPU consumption remains equivalent for both C8 deletion and C16. It is again

noticeable that artefact modification is requiring a higher resource allocation

comparing to deletion and addition as further justified in previous case studies

performance results.

Figure 4-56 : CIA performance analysis results: E-School management system

151

4.7 SAT-Analyser performance analysis

This section provides an overall evaluation of the SAT-Analyser tool considering

all five case studies’ results in summary.

4.7.1 Traceability establishment performance

The overall traceability generation performance for the five case studies is shown

in Figure 4-57 in terms of elapsed time, memory and CPU consumption. The total

artefact count of each project is shown beneath each bar in the graphs.

Figure 4-57 : SAT-Analyser traceability establishment performance

The third case study Multimedia Library system has occupied the maximum time

and CPU consumption since it lacks many possible traces due to naming

differences in artefact types. For instance, there exists a design class called User

but lacks a source class with any similar name. Thus, the traceability establishment

of the tool which relies on the string comparison consumes more time and CPU by

performing string matching rigorously. However, it consumes less memory since a

smaller amount of matching traces is resulting due to the same reason of naming

differences. The least number of artefacts included two projects POS: 90 artefacts

and Disease Management: 128 total artefacts are consuming the least amount of

resources. Further, the second highest resource consumption is occupied by the

maximum number of total artefacts holder, E-School Management: 252 project.

152

4.7.2 Accuracy evaluation of change detection component

Table 4.7 provides a summary for the accuracy of XML comparison based change

detection process in SAT-Analyser, where the applied change types versus tool

identified change types are listed. All the applied change types have been

accurately detected by the tool ranging from 5 to 2 change counts at a time.

Table 4.7 : Change detection component accuracy evaluation

Project title

The actual number of

occurrences of

artefact- changes/

commits within the

CI process

Number of changes

detected by the tool

(automated by SAT-

Analyser)

1 POS system C4, C9, C10, C12, C15 C4, C9, C10, C12, C15

2 Tour management system C2, C5, C6, C13, C17 C2, C5, C6, C13, C17

3 Multimedia library system C7, C11, C14 C7, C11, C14

4 Disease management system C1, C3 C1, C3

5 E-school management

system

C8, C16 C8, C16

4.7.3 Accuracy evaluation of impact analysis component

The statistical analysis results of CIA process in each case study project are

summarized in Table 4.8.

Table 4.8 : Change impact analysis component accuracy evaluation

Project title
Change

type

Identifi

ed

impact

set by

the tool

(EIS)

Actual

impact

set

(AIS)

Non

identified

correct

impact

set (DIS)

Statistical analysis for the

accuracy of impact analysis

Preci

sion

Recall F-

Measure

POS system Addition 3 3 1

1.0 0.95 0.97 Modification 34 34 1

Deletion 0 0 0

Tour

management

system

Addition 3 3 5

1.0 0.86 0.93 Modification 2 2 0

Deletion 27 27 0

Multimedia

library

system

Addition 0 0 0

1.0 0.98 0.99 Modification 4 4 1

Deletion 36 36 0

Disease

management

system

Addition 2 2 3

1.0 0.4 0.57 Modification 0 0 0

Deletion 0 0 0

E-school

management

system

Addition 0 0 0

1.0 0.5 0.67 Modification 1 1 0

Deletion 1 1 2

153

The POS, Tour Management and Multimedia Library system ranging from Small

to Medium scale have shown a higher accuracy in terms of precision, recall and F-

measure. The Disease Management and E-School Management system have

shown a reduction in recall and F-measure due to not following the SAT-

Analyser’s defined CI constraint and lack of applied NLP capabilities respectively

which can be improved in future. The advanced NLP features, information

retrieval techniques and deep learning capabilities can be applied to handle the

situations with meaningless artefact names and inconsistent naming conventions

which currently affect the results according to String comparison approach in

traceability. Nevertheless, the precision has been 1.0 in all five case studies

successfully.

4.8 Usability of the extended SAT-Analyser tool

The usability of a tool has to be assessed with practitioners in the considered

domain (Bangor, Kortum, & Miller, 2009). We have used the System Usability

Scale (Brooke, 2013) that is a researched usability assessment Likert scale, to

evaluate the usability of prototype tool SAT-Analyser involving DevOps

practitioners in the industry from various software companies as listed in

Appendix E.

SUS is a standard reliable tool to measure a system usability with a pre-defined set

of questions along with a provided set of answers for each. Participants’ every

single response is quantified based upon the selected answer option following a

pre-defined fixed scale and output a final average score in the range of 0-100.

Scores above 68 are considered as having an above average usability level while

below 68 as an average usability level.

SAT-Analyser prototype tool in this research work is highly focused on the CIA in

software artefact traceability for DevOps based on a novel theoretical model that

supports CICD pipeline. Thus, SAT-Analyser can be categorized as a prototype-

level support tool for DevOps tool stack having unique features that the existing

tools in DevOps tool stack do not facilitate. The tool is live demonstrated

interactively with Q/A sessions and given the standard SUS questionnaire among a

154

total of 20 DevOps practitioners. The questionnaire consists of 10 items consisting

of 5 positive statements and 5 negatives. Each has 5 level options to respond

ranging from strongly disagree to strongly agree as provided in appendix B with

all received individual responses.

Figure 4-58 shows a summary of the responses for 5 positive SUS statements and

Figure 4-59 depicts the analysis of the responses obtained for 5 negative

statements. Consequently, a final overall SUS score of 62.5 is obtained signifying

the tool SAT-Analyser usability level as Average in terms of user experience at

front-end which is mainly based on Human-Computer Interaction (HCI) aspects.

Majority participants in the usability study experienced the notion of traceability

and CIA for the first time. They had a new experience of the features including

traceability creation, visualization, validation, change detection, CIA, change

propagation and PM all in a single tool that supports continuous integration in

DevOps practice. Figure 4-58 indicates the highest value for Well integration and

least for Confidence in using the tool accordingly. Moreover, their lack of

awareness in the traceability aspects depicts in Figure 4-59 as the highest agreed

percentage is for the statement of Need prior learning.

Figure 4-58 : SUS positive responses analysis

155

Figure 4-59 : SUS negative responses analysis

In addition, an extra option is provided in the same survey for the participants to

respond as a selection of three most relevant words that best describe their own

perspective about SAT-Analyser among 20 tool related term choices as in

appendix B. A tag cloud which stands as a methodology to visualize user feedback

attractively is generated based on those user selections. As shown in Figure 4-60,

the most emphasized terms about SAT-Analyser tool by participants are

Traceability, Supportive and Improvable which derive a positive level of user

satisfaction about the tool SAT-Analyser denoting a future direction to enhance

the usability beyond a prototype-level with more HCI aspects.

Figure 4-60 : SAT-Analyser usability tag cloud

156

Section 5

5 Discussion

5.1 Feature analysis of SAT-Analyser in practice

The industry level software development environments highly embrace Agile

principles and transform into DevOps practices. The nature of CICD in DevOps

practices drives software projects in any domain and any scale towards successful

ROI benefits. However, adapting to operational level in DevOps practice is

challenging due to the lack of formalism compared to traditional software models.

Therefore, the requirement of having traceability support in a DevOps

environment is significant than in a traditional software development environment

which is addressed in this research work further with CIA.

The feature selection of the proposed SAT-Analyser tool is based on an initial

survey conducted among DevOps practitioners. We can consider the requirements

written in natural language as it is the industry practice. UML class diagrams were

selected as the code base is dependent on that. Unit testing is used, as it tests the

individual functionalities for errors. Considering the continuous integration tasks,

we have set up the scheduler with different options: automated fixed intervals,

dynamically and manually to detect the changes as necessary, to avoid overhead

and reduce the cost. In current practice, change detection is defined mainly for

source code changes and no proper tools to automated detectors for other artefact

changes. Source code change detection tools that industry is aware of are Jenkins

Cron Job, ServiceNow, JIRA Service Desk, ServiceNow. SAT-Analyser detects

changes of all artefacts not being limited to the source code. We also gave

prominence to source code changes, since it is the most affected artefact. Github

repository paths, Jenkins are configured with the tool for that. Also, we have

performed change detection for rest of the artefacts as any artefact can be changed

in DevOps such as a requirement and design change. Thus, our tool supports

traceability management for all the major artefact types and can be extended for

remaining sub artefacts as well.

157

According to the survey, 66.7% accepts that traceability handling might be useful

while rest is unaware of the concept of traceability. Thus, we have represented

traceability with graph-based interactive and analytical visualization. Traceability

graph is the most used trace representation mechanism according to the literature.

Many analytical approaches can be conducted on graphs using graph theories and

mathematical models which we have used for CIA. 33.3 % reported that they do

not use an impact analysis for changes and rest is having a vague idea about CIA

methods due to lack of knowledge. CIA limitations that lead to not practising in

the industry are suggested as being time consuming and hardship in calculating the

exact impact. We have used a dependency-based CIA with a mathematical

weighting scheme model using EVC based on the influential factor of an artefact.

Dependency-based methods are discussed in the literature and ideal for graph

calculations. Network analysis centrality measures are selected due to the

significant performance and variety of metrics. We have calculated the CIA with a

minimal cost and complexity with a rule-based algorithm. CIA rules are defined

considering the practical dependency scenarios by avoiding calculation overhead

and only proceeding with higher impact artefact items to increase performance.

In practice, change propagation methods are automatically deployed to the Jenkins

server and used pre-defined protocols and policies specific to the company.

Change propagation is crucial for decision making and hence traceability graphs

are re-visualized for every change propagation. Continuous integration is

performed frequently using tools such as Jenkins, CodeDeploy, CodePipeline,

Puppet, Jira, TravisCI, and TeamCity. In order to support it, SAT-Analyser is

integrated with Jenkins and Docker for deployment activities due to wide usage of

them and with the GitHub repository with opensource facilities. Additionally, our

tool is integrated with the popular project management tool Trello, as it provides

free Agile Kanban boards, thus support CICD pipeline. Finally, we have shown

the applicability of the tool for different project scales and domains, using case

study evaluation.

158

Since the software industry mainly uses Jenkins to support continuous integration,

Table 5.1 gives a comparison of Jenkins with the proposed tool SAT-Analyser.

Table 5.1 : Comparison between Jenkins and SAT-Analyser for CI

Jenkins SAT-Analyser Tool

Pros Cons Pros cons

Source code change

detection.

Consider only

source code.

Source code, requirement,

design, unit test, build

script change detection.

Pre-processing

time complexity.

Build automation

with scheduling.

No traceability

support.

Traceability support for

all artefacts.

-

Open source. No impact

analysis.

CIA for every change

detection.

Prototype level

tool.

Support any scale

projects.

- Better performance with

small to medium scale

projects.

Scalability issues

in artefact pre-

processing.

Project deployment

with many integrated

plugins support.

Lack traces,

change

propagation

visualization.

Traces, changes with

impact are visualized in

graph format.

-

The existing industry perspectives in DevOps practice for traceability, change

detection, change impact analysis, change propagation and CI over the SAT-

Analyser solutions are summarized in Table 5.2.

Table 5.2 : Industry level traceability management vs. SAT-Analyser tool

Feature Industry practice SAT-Analyser tool

Traceability

establishment

and

visualization.

No proper tools. String similarity based traceability

establishment with graph-based

visualization. Network analysis

and statistical analysis based

traceability validation.

Change

detection.

No proper tools to auto-detect

changes of every artefact. Use

monitoring tools to detect failures in

Jenkins for source code building.

Detect changes for every artefact

for every integration using XML

based comparison.

Impact

analysis.

Manually decide the range of

affected artefacts in code level,

Lacks CIA. Time-consuming and

hard to calculate the exact impact.

Calculate the level of impact as

high or low for every change

detection using Eigenvector

centrality.

Change

propagation.

Automatically deploy to the server

with Jenkins. Use pre-defined

protocols to manage code.

Propagate changes according to

impacts and re-visualize in a

traceability graph.

Continuous

integration.

Jenkins as an ideal solution for

source code integration with build

automation.

Integrated with Jenkins and source

code management repository

(GitHub) integrated CI along with

PM facility using Trello.

159

According to Table 5.2, change detection and CI are addressed in tool level in the

industry, mainly with Jenkins and source code management without considering

other artefact types. The industry perspective of traceability management is less

and they believe impact analysis as a challenge. In contrast, SAT-Analyser tool

provides the ability in each activity integrated with DevOps tools stack. Table 5.3

validates the SAT-Analyser capabilities over mostly cited traceability management

tools encountered in literature as discussed in Chapter 2. Thus, the limitations in

those tools such as lack of heterogeneous artefact support, change detection, CIA

for heterogeneous artefacts, change propagation, IDE independency are

successfully solved in the SAT-Analyser prototype tool.

Table 5.3 : Existing traceability management tools vs. SAT-Analyser

Tools Tra

ce

ME

IBM

DO

ORS

Trac

eAna

lyzer

LDRA-

TBman

ager

Arch

Evol

SAT-

Analy

ser Features

Requirement traceability √ √ √ √

Design level traceability √ √ √ √

Heterogeneous artefact traceability √ √ √ √

Traceability visualization √ √ √ √

Traceability validation √

CI/ scheduling/ versioning √ √ √ √

Change detection √

Change impact analysis √ √ √

Change impact analysis validation √

Change propagation visualization √

Consistency management, Project

management
 √ √

DevOps tools stack supportability √

IDE independence √

Tool performance analysis √

The approach we designed and developed as SAT-Analyser tool, supports

traceability management of software projects in both traditional and Agile based

process. It is specifically, designed to facilitate requirements in DevOps

environment with CICD concepts. The identified major differences in traditional

software re-development versus DevOps environments are acceptance of artefact

changes and collaborative behaviour. In traditional software development, the

frequency of artefact changes is minimal due to the sequential nature, where the

artefact changes are not accepted at a later stage of SDLC. Thus, in general

software development, the traceability and impact analysis process are required

160

only at the beginning and end of the process. Hence, the requirement of

incorporating the CI features with scheduling and versioning included in this

research work would be lesser significant in a traditional software development

process, while the traceability model would be equally important as for DevOps.

Hence, the frequency of change detection, their impact analysis and change

propagation, visualization, team collaboration and validation features included in

this research work are uniquely useful and supports continuous integration in

DevOps practice. Thus, these features of the research work SAT-Analyser are

actively useful for the daily usage of CICD pipeline in a DevOps environment

since any artefacts change is always welcomed at any stage of SDLC.

In contrast, the features of CI, change detection, CIA, change propagation, PM

notifications are uniquely useful for DevOps environments as the artefacts

management is having the utmost importance due to collaborative team-based

nature. Thus, these features of the research work SAT-Analyser are actively useful

for the daily usage of CICD pipeline in a DevOps environment since any artefacts

change is always welcomed at any stage of SDLC.

5.2 Analysis of the usability study based evaluation

The theoretical traceability and CIA model are mainly focused in this research

work while usability aspects are scoped into the prototype SAT-Analyser tool. The

usability of the research outcome SAT-Analyser prototype is evaluated based on

standard SUS score methodology with the involvement of DevOps practitioners in

the software industry.

An overall 62.5 SUS value is obtained from 100.0 representing the SAT-Analyser

prototype tool usability level as Average. Usability is important in deploying the

SAT-Analyser tool as an industry tool since it contributes to the DevOps tools

stack consists of a large number of dynamic tools evolving rapidly. Thus, the

usability features of SAT-Analyser can be refined more with better performance

parameters such as speed, memory consumption, as well as by integrating HCI

principles in front-end for both stand-alone desktop version and web-based version

in transforming it from prototype-level to a standard industry-level tool.

161

5.3 Mapping of the objectives and the methodology

The research problem addressed in this research project is to obtain software

artefact change impact analysis in traceability especially for DevOps environments

having frequent continuous integrations, where Agile principles are practically

applied deviating from traditional sequential software development patterns. The

research statement was defined consisting of several research questions;

 how to enable software artefact synchronization since multiple artefacts are

highly affected all the time in a DevOps environment and

 how to maintain consistency among all artefacts with CIs.

Therefore, the research objectives are defined into each unique milestone in the

research, each having a detailed technical methodology for, traceability

management, artefact change detection in CIs, CIA and change propagation in

DevOps as illustrated in Figure 5-1. Thus, the research milestones are achieved in

the form of a prototype traceability tool SAT-Analyser as the proof-of-work.

Figure 5-1 : Research objectives-methodology-results mapping

5.4 Limitations

The traceability establishment and traceability visualization remain challenging in

large scale software projects, where a large number of artefacts and relationships

are expectable. The JavaScript D3.js based interactive visualization shows a

lighter weight compared to the other two visualizations used in this research

namely Neo4j, Gephi based visualization and Python network analysis based

162

visualization. The traceability establishment in this research work faces the main

limitation due to restrictions in NLP over practical issues such as meaningless

artefact naming, different naming conventions. That limitation exists even in the

use of NLP with dictionary ontologies and WordNet databases.

Moreover, the computation of CIA is limited to Eigenvector centrality in this

research work that is subjected to be contradictory with expert-based impact

values. As one of the solutions, we have provided the user alteration capability in

CIA results. Furthermore, the performance of the SAT-Analyser traceability tool

of this research work is limited due to the intermediate use of XML for the artefact

data extraction process that also affects the CI scheduling capabilities of the tool.

Hence, more dynamic CI scheduling features can be supported to improve the

artefact pre-processing and traceability establishment performance.

5.5 Future work

This study can be extended in many directions. Performance and accuracy of the

traceability establishment can be enriched with advanced NLP features,

information retrieval techniques and deep learning capabilities. This would be a

significant future improvement to facilitate traceability support regardless of

project scale. Traceability visualization with better scalability is another promising

future work. Also, integrating the three visualization variations provided in SAT-

Analyser together would be useful. Moreover, the supported artefact types can be

extended with more sub artefact categories such as support for other programming

languages other than Java as the tools stack in DevOps environments are more

dynamic with latest technologies. Another major future research direction would

be improving the CIA model, which is based on eigenvector centrality in network

analysis that shows the influential value of a node or a link. Further, SAT-

Analyser can be extended for a function such as a software quality assessment tool

that assesses the quality of the design and code. In addition, the usability aspects

of the tool can be improved into an industry-level DevOps supportive tool by

integrating HCI concepts along with refined performance parameters.

163

5.6 Conclusion

This research has addressed traceability management of heterogeneous software

artefacts covering all the stages of SDLC, with change impact analysis to cope

with continuous integrations in DevOps practices. Initially, the raw artefacts were

processed using string comparison and NLP, and traceability links were

established between the extracted artefacts. The traceability visualization is

developed in three views, Gephi-based informative, Python-based analytical and

JavaScript-based interactive. The traceability validation process is based on the

network analysis centrality measures and statistical accuracy measures. The

continuous integration tasks are combined with supporting processes including

collaboration with DevOps tool stack, scheduling algorithms, versioning, XML-

based artefact change detection, weighting scheme based CIA model for artefact

impact computation, graph-based change propagation and project management to

maintain the artefact consistency.

The DevOps support is ensured in traceability establishment by providing

heterogeneous artefact support for each major stage in SDLC such that

requirements artefact, design, code, unit test and build script artefacts. Traceability

visualization is enhanced in three variations to overcome scalability issues and to

fasten decision making since time is critical in a more collaborative DevOps

environment. Due to the extra cost of traceability management, the validation of

traceability results is identified to be important in DevOps, where a higher number

of tools stack is always actively in use.

Change impact analysis, which is a result of artefact changes accepted during

software development in a DevOps environment in following continuous

integration is a core part of this research work. Hence, it supports the CICD

pipeline concept following change detection, change impact analysis, change

propagation and consistency management with project management features. The

weighting scheme based on a mathematical model is used for CIA. It has used

eigenvector centrality measure that captures the level of importance in each

artefact with respect to all artefacts. A rule-based scenario is adapted for graph

164

traversal paths and further user alteration is used to improve the accuracy.

Traceability is re-visualized based on impact values according to the CIA.

The research work is evaluated using real software projects based case studies in

different scales and user acceptance interview and survey among industry DevOps

practitioners. The results have shown the usefulness of the research outcome for

the software engineering domain as a migration from theoretical principles to

practical use since there is a hindrance of the awareness about CIA and traceability

in the current industry. Further, the SAT-Analyser tool is featured with web-based

with multi-user accessibility to allow DevOps teams to use the tool actively along

with DevOps tools stack.

165

References

3SL. (2018). Retrieved July 6, 2017, from https://www.threesl.com/cradle/

Acharya, M., & Robinson, B. (2011). Practical change impact analysis based on static program slicing

for industrial software systems. In 33rd International Conference on Software Engineering -

ICSE ’11 (pp. 746–755). New York, USA: ACM. https://doi.org/10.1145/1985793.1985898

AjaxSwing. (2018). Retrieved October 19, 2018, from

http://creamtec.com/products/ajaxswing/index.html

Alves-Foss, J., Conte de Leon, D., & Oman, P. (2002). Experiments in the use of XML to enhance

traceability between object-oriented design specifications and source code. In 35th Annual

Hawaii International Conference on System Sciences (pp. 3959–3966). IEEE.

https://doi.org/10.1109/HICSS.2002.994466

Apiwattanapong, T., Orso, A., & Harrold, M. J. (2004). A differencing algorithm for object-oriented

programs. In 19th International Conference on Automated Software Engineering, 2004. (pp. 2–

13). IEEE. https://doi.org/10.1109/ASE.2004.1342719

Apiwattanapong, T., Orso, A., & Harrold, M. J. (2005). Efficient and precise dynamic impact analysis

using execute-after sequences. In 27th International Conference on Software Engineering - ICSE

’05 (pp. 432–441). New York, USA: ACM. https://doi.org/10.1145/1062455.1062534

ArchStudio. (2018). Retrieved July 5, 2017, from http://isr.uci.edu/projects/archstudio/setup-easy.html

Arunthavanathan, A., Shanmugathasan, S., Ratnavel, S., Thiyagarajah, V., Perera, I., Meedeniya, D.,

& Balasubramaniam, D. (2016). Support for traceability management of software artefacts using

Natural Language Processing. In Moratuwa Engineering Research Conference (MERCon) (pp.

18–23). IEEE. https://doi.org/10.1109/MERCon.2016.7480109

Athira, B., & Samuel, P. (2011). Traceability Matrix for Regression Testing in Distributed Software

Development. In Abraham A., Lloret M. J., Buford J. F., Suzuki J., Thampi S. M. (eds) Advances

in Computing and Communications. ACC 2011. Communications in Computer and Information

Science, 191, (pp. 80–87). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-

22714-1_9

Bangor, A., Kortum, P., & Miller, J. (2009). Determining what individual SUS scores mean: adding an

adjective rating scale. Journal of Usability Studies, 4(3), 114–123.

Bass, L. J., Weber, I. M., & Zhu, L. (2015). DevOps : a software architect’s perspective (1st ed.).

Addison-Wesley Professional.

Bavota, G., Colangelo, L., De Lucia, A., Fusco, S., Oliveto, R., & Panichella, A. (2012). TraceME:

Traceability Management in Eclipse. In 28th IEEE International Conference on Software

Maintenance (ICSM) (pp. 642–645). IEEE. https://doi.org/10.1109/ICSM.2012.6405343

Berg, A. M. (2015). Jenkins Continuous Integration Cookbook (2nd ed.). Packt Publishing.

Bitrix24. (2018). Retrieved October 2, 2018, from https://www.bitrix24.com/

Borg, M., Wnuk, K., Regnell, B., & Runeson, P. (2017). Supporting Change Impact Analysis Using a

Recommendation System: An Industrial Case Study in a Safety-Critical Context. IEEE

Transactions on Software Engineering, 43(7), 675–700.

https://doi.org/10.1109/TSE.2016.2620458

Borgatti, S. P. (2005). Centrality and network flow. Social Networks, 27(1), 55–71.

https://doi.org/10.1016/j.socnet.2004.11.008

Borland. (2006). Borland ® CaliberRM
TM

.

Brooke, J. (2013). SUS: A Retrospective. Journal of Usability Studies, 8(2), 29–40.

Burgaud, L. (2006). A Novel development framework combining requirement driven and model based

engineering processes. In 4ème Conférence Annuelle d’Ingénierie Système (pp. 1–7).

Chang, S. K. (2005). Handbook of Software Engineering And Knowledge Engineering: Recent

Advances. World Scientific Publishing. World Scientific Publishing. https://doi.org/10.1142/5785

Chawathe, S. S., Rajaraman, A., Garcia-Molina, H., & Widom, J. (1996). Change detection in

hierarchically structured information. ACM SIGMOD Record, 25(2), 493–504.

https://doi.org/10.1145/235968.233366

Chen, X., Hosking, J., & Grundy, J. (2012). Visualizing traceability links between source code and

documentation. In IEEE Symposium on Visual Languages and Human-Centric Computing

166

(VL/HCC) (pp. 119–126). IEEE. https://doi.org/10.1109/VLHCC.2012.6344496

Cleland-Huang, J., Chang, C. K., & Christensen, M. (2003). Event-based traceability for managing

evolutionary change. IEEE Transactions on Software Engineering, 29(9), 796–810.

https://doi.org/10.1109/TSE.2003.1232285

Cleland-Huang, J., Gotel, O. C. Z., Hayes, J. H., Mäder, P., & Zisman, A. (2014). Software

traceability: trends and future directions. In Future of Software Engineering - FOSE 2014 (pp.

55–69). New York, USA: ACM. https://doi.org/10.1145/2593882.2593891

Cleland-Huang, J., Zisman, A., & Gotel, O. (2012). Software and Systems Traceability. Software and

Systems Traceability (1st ed.). London: Springer-Verlag London. https://doi.org/10.1007/978-1-

4471-2239-5

Cobena, G., Abiteboul, S., & Marian, A. (2002). Detecting changes in XML documents. In 18th

International Conference on Data Engineering (pp. 41–52). IEEE.

https://doi.org/10.1109/ICDE.2002.994696

Czibula, I. G., Czibula, G., Miholca, D. L., & Marian, Z. (2017). Identifying Hidden Dependencies in

Software Systems. Studia Universitatis Babeș-Bolyai Informatica, 62(1), 90–106.

https://doi.org/10.24193/subbi.2017.1.07

D3.js. (2018). Retrieved May 21, 2018, from http://d3js.org/

Dantas, C., Murta, L., & Werner, C. (2007). Mining Change Traces from Versioned UML

Repositories. In Brazilian Symposium on Software Engineering (SBES’07) (pp. 236–252).

De Lucia, A., Fasano, F., & Oliveto, R. (2008). Traceability management for impact analysis. In

Frontiers of Software Maintenance (pp. 21–30). IEEE.

https://doi.org/10.1109/FOSM.2008.4659245

De Lucia, A., Oliveto, R., & Tortora, G. (2008). Adams re-trace: traceability link recovery via latent

semantic indexing. In 13th International Conference on Software Engineering - ICSE ’08 (pp.

839–842). New York, USA: ACM. https://doi.org/10.1145/1368088.1368216

Déhoulé, F., Badri, L., & Badri, M. (2017). A Change Impact Analysis Model for Aspect Oriented

Programs. In 12th International Conference on Evaluation of Novel Approaches to Software

Engineering (pp. 144–157). SCITEPRESS Publications.

https://doi.org/10.5220/0006350701440157

diffmk. (2018). Retrieved June 27, 2018, from

https://docs.oracle.com/cd/E36784_01/html/E36870/diffmk-1.html#scrolltoc

Docker. (2018). Retrieved August 28, 2018, from https://docs.docker.com

Duarte, A. M. D., Duarte, D., & Thiry, M. (2016). TraceBoK: Toward a Software Requirements

Traceability Body of Knowledge. In 24th International Requirements Engineering Conference

(RE) (pp. 236–245). IEEE. https://doi.org/10.1109/RE.2016.32

Duvall, P. M., Matyas, S., & Glover, A. (2007). Continuous Integration: Improving Software Quality

and Reducing Risk. Addison-Wesley Professional (1st ed.). Addison-Wesley Professional.

DZone DevOps. (2018). Retrieved August 28, 2018, from https://dzone.com/articles/what-is-cicd

Eck, A., Uebernickel, F., & Brenner, W. (2014). Fit for continuous integration: how organizations

assimilate an agile practice. In 20th Americas Conference on Information Systems (AMCIS ’14)

(pp. 1–11). GA, USA: AIS. https://doi.org/10.1109/ACCESS.2017.2685629

Egyed, A. (2001). A scenario-driven approach to traceability. In 23rd International Conference on

Software Engineering. ICSE 2001 (pp. 123–132). IEEE.

https://doi.org/10.1109/ICSE.2001.919087

Farcic, V. (2016). The DevOps 2.0 Toolkit: Automating the Continuous Deployment Pipeline with

Containerized Microservices (1st ed.). CreateSpace Independent Publishing Platform.

Faulkner, L. (2003). Beyond the five-user assumption: Benefits of increased sample sizes in usability

testing. Behavior Research Methods, Instruments, & Computers, 35(3), 379–383.

https://doi.org/10.3758/BF03195514

Fernández, P. (2008). Book Review: Google’s PageRank and Beyond: The Science of Search Engine

Rankings. The Mathematical Intelligencer, 30(1), 68–69. https://doi.org/10.1007/BF02985759

Filho, G. A. de A. C., & Lencastre, M. (2012). Towards a Traceability Visualisation Tool. In 8th

International Conference on the Quality of Information and Communications Technology (pp.

221–223). IEEE. https://doi.org/10.1109/QUATIC.2012.60

167

Fockel, M., Holtmann, J., & Meyer, J. (2012). Semi-automatic establishment and maintenance of valid

traceability in automotive development processes. In 2nd International Workshop on Software

Engineering for Embedded Systems (SEES) (pp. 37–43). IEEE.

https://doi.org/10.1109/SEES.2012.6225489

Galbo, S. P. D. (2010). A Survey of Impact Analysis Tools for Effective Code Evolution. University of

Central Florida.

Galvão, I., & Goknil, A. (2007). Survey of traceability approaches in model-driven engineering. In

IEEE International Enterprise Distributed Object Computing Workshop, EDOC (pp. 313–324).

IEEE. https://doi.org/10.1109/EDOC.2007.4384003

Gephi. (2017). Retrieved October 14, 2017, from https://gephi.org/

Ghantous, G. B., & Gill, A. (2017). DevOps: Concepts, Practices, Tools, Benefits and Challenges. In

21st Pacific Asia Conference on Information Systems (pp. 1–13). Langkawi, Malaysia: AIS.

GNU “ed.” (2018). Retrieved June 27, 2018, from

http://www.gnu.org/software/ed/manual/ed_manual.html

Goknil, A., Kurtev, I., & Berg, K. van den. (2016). A Rule-Based Change Impact Analysis Approach

in Software Architecture for Requirements Changes. Eprint ArXiv:1608.02757, 1–44.

Goknil, A., Kurtev, I., van den Berg, K., & Spijkerman, W. (2014). Change impact analysis for

requirements: A metamodeling approach. Information and Software Technology, 56(8), 950–

972. https://doi.org/10.1016/j.infsof.2014.03.002

Graph Visualization-Neo4j. (2018). Retrieved July 21, 2017, from https://neo4j.com/developer/guide-

data-visualization/

Hambling, B., & Goethem, P. van. (2013). User Acceptance Testing: A Step-by-step Guide (1st ed.).

BCS, The Chartered Institute for IT.

Hattori, L., Guerrero, D., Figueiredo, J., Brunet, J., & Dam, J. (2008). On the Precision and Accuracy

of Impact Analysis Techniques. In 7th IEEE/ACIS International Conference on Computer and

Information Science (ICIS 2008) (pp. 513–518). IEEE. https://doi.org/10.1109/ICIS.2008.104

Hayes, J. H., Dekhtyar, A., Sundaram, S. K., Holbrook, E. A., Vadlamudi, S., & April, A. (2007).

REquirements TRacing On target (RETRO): improving software maintenance through

traceability recovery. Innovations in Systems and Software Engineering, 3(3), 193–202.

https://doi.org/10.1007/s11334-007-0024-1

Herman, I., Melancon, G., & Marshall, M. S. (2000). Graph visualization and navigation in

information visualization: A survey. IEEE Transactions on Visualization and Computer

Graphics, 6(1), 24–43. https://doi.org/10.1109/2945.841119

Holten, D. (2006). Hierarchical Edge Bundles: Visualization of Adjacency Relations in Hierarchical

Data. IEEE Transactions on Visualization and Computer Graphics, 12(5), 741–748.

https://doi.org/10.1109/TVCG.2006.147

IBM-Rational DOORS. (2017). Retrieved October 14, 2017, from https://www.ibm.com/us-

en/marketplace/rational-doors

Ibrahim, S., Idris, N. B., Munro, M., & Deraman, A. (2005). Integrating Software Traceability for

Change Impact Analysis. Integrating Software Traceability for Change Impact Analysis, 2(4),

301–308.

Ibrahim, S., Munro, M., & Deraman, A. (2005). A Requirements Traceability To Support Change

Impact Analysis. Asian Journal of Information Technology, 4(4), 335–344.

Jaro Winkler Distance. (2017). Retrieved October 14, 2017, from http://alias-

i.com/lingpipe/docs/api/com/aliasi/spell/JaroWinklerDistance.html

Jashki, M.-A., Zafarani, R., & Bagheri, E. (2008). Towards a more efficient static software change

impact analysis method. In 8th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for

Software Tools and Engineering - PASTE ’08 (pp. 84–90). New York, USA: ACM.

https://doi.org/10.1145/1512475.1512493

Javed, M. A., & Zdun, U. (2014). A systematic literature review of traceability approaches between

software architecture and source code. In 18th International Conference on Evaluation and

Assessment in Software Engineering - EASE ’14 (pp. 1–10). New York, USA: ACM.

https://doi.org/10.1145/2601248.2601278

JFreeChart. (2018). Retrieved August 14, 2018, from http://www.jfree.org/jfreechart/

168

JIRA Software. (2018). Retrieved October 2, 2018, from https://www.atlassian.com/software/jira

Kabeer, S. J., Nayebi, M., Ruhe, G., Carlson, C., & Chew, F. (2017). Predicting the Vector Impact of

Change - An Industrial Case Study at Brightsquid. In ACM/IEEE International Symposium on

Empirical Software Engineering and Measurement (ESEM) (pp. 131–140). IEEE.

https://doi.org/10.1109/ESEM.2017.20

Kama, N. (2013). Change impact analysis for the software development phase: State-of-the-art.

International Journal of Software Engineering & Its Applications, 7(2), 235–244.

Kamalabalan, K., Uruththirakodeeswaran, T., Thiyagalingam, G., Wijesinghe, D. B., Perera, I.,

Meedeniya, D., & Balasubramaniam, D. (2015). Tool support for traceability of software

artefacts. In Moratuwa Engineering Research Conference (MERCon) (pp. 318–323). IEEE.

https://doi.org/10.1109/MERCon.2015.7112366

Kchaou, D., Bouassida, N., & Ben-Abdallah, H. (2017). UML models change impact analysis using a

text similarity technique. IET Software, 11(1), 27–37. https://doi.org/10.1049/iet-sen.2015.0113

Keenan, E., Czauderna, A., Leach, G., Cleland-Huang, J., Shin, Y., Moritz, E., … Hearn, D. (2012).

TraceLab: An experimental workbench for equipping researchers to innovate, synthesize, and

comparatively evaluate traceability solutions. In 34th International Conference on Software

Engineering (ICSE) (pp. 1375–1378). Zurich, Switzerland: IEEE.

https://doi.org/10.1109/ICSE.2012.6227244

Keiningham, T. L., Aksoy, L., Cooil, B., Andreassen, T. W., & Williams, L. (2008). A holistic

examination of Net Promoter. Journal of Database Marketing & Customer Strategy

Management, 15(2), 79–90. https://doi.org/10.1057/dbm.2008.4

Kim, G., Debois, P., Willis, J., Humble, J., & Allspaw, J. (2016). The DevOps Handbook (1st ed.). IT

Revolution Press.

Kitsu, E., Omori, T., & Maruyama, K. (2013). Detecting Program Changes from Edit History of

Source Code. In 20th Asia-Pacific Software Engineering Conference (APSEC) (pp. 299–306).

IEEE. https://doi.org/10.1109/APSEC.2013.48

Knoke, D., & Yang, S. (2008). Social Network Analysis (3rd ed.). London: SAGE Publications.

Kugele, S., & Antkowiak, D. (2016). Visualization of Trace Links and Change Impact Analysis. In

IEEE 24th International Requirements Engineering Conference Workshops (REW) (pp. 165–

169). Beijing, China: IEEE. https://doi.org/10.1109/REW.2016.039

LDRA. (2018). Retrieved July 5, 2017, from http://www.ldra.com/en/software-quality-test-

tools/group/by-software-life-cycle/requirements-traceability

Lee, C., Guadagno, L., & Jia, X. (2003). An agile approach to capturing requirements and traceability.

In 2nd International Workshop on Traceability in Emerging Forms of Software Engineering (pp.

1–7). Citeseer.

Lee, J., Cho, B., Youn, H., & Lee, E. (2009). Reliability analysis method for supporting traceability

using UML. In Communications in Computer and Information Science (pp. 94–101). Springer,

Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10619-4_12

Lee, M., & Offutt, A. J. (2002). Algorithmic analysis of the impacts of changes to object-oriented

software. In Technology of Object-Oriented Languages and Systems (pp. 61–70). CA, USA:

IEEE. https://doi.org/10.1109/TOOLS.2000.868959

Lee, W.-T., Deng, W.-Y., Lee, J., & Lee, S.-J. (2010). Change impact analysis with a goal-driven

traceability-based approach. International Journal of Intelligent Systems, 25(8), 878–908.

https://doi.org/10.1002/int.20443

Lehnert, S. (2011). A taxonomy for software change impact analysis. In 12th International Workshop

and the 7th Annual ERCIM Workshop on Principles on Software Evolution and Software

Evolution - IWPSE-EVOL ’11 (pp. 41–50). New York, USA: ACM.

https://doi.org/10.1145/2024445.2024454

Lehnert, S. (2015). Multiperspective Change Impact Analysis to Support Software Maintenance and

Reengineering. University of Hamburg.

Lehnert, S., Farooq, Q. U. A., & Riebisch, M. (2013). Rule-based impact analysis for heterogeneous

software artifacts. In European Conference on Software Maintenance and Reengineering, CSMR

(pp. 209–218). Genova, Italy: IEEE. https://doi.org/10.1109/CSMR.2013.30

Levenshtein-Algorithm. (2017). Retrieved October 14, 2017, from http://www.levenshtein.net/

169

Li, B., Sun, X., Leung, H., & Zhang, S. (2013). A survey of code-based change impact analysis

techniques. Software Testing Verification and Reliability, 23(8), 613–646.

https://doi.org/10.1002/stvr.1475

Lindholm, T., Kangasharju, J., & Tarkoma, S. (2006). Fast and simple XML tree differencing by

sequence alignment. In ACM Symposium on Document Engineering - DocEng ’06 (pp. 75–84).

New York, USA: ACM. https://doi.org/10.1145/1166160.1166183

Lucia, A. De, Fasano, F., Oliveto, R., & Tortora, G. (2007). Recovering traceability links in software

artifact management systems using information retrieval methods. ACM Transactions on

Software Engineering and Methodology, 16(4), 13:1-13:50.

https://doi.org/10.1145/1276933.1276934

Mäder, P., & Gotel, O. (2012). Towards automated traceability maintenance. Journal of Systems and

Software, 85(10), 2205–2227. https://doi.org/10.1016/j.jss.2011.10.023

Mäder, P., Gotel, O., Kuschke, T., & Philippow, I. (2008). traceMaintainer - Automated Traceability

Maintenance. In 16th IEEE International Requirements Engineering Conference (pp. 329–330).

Catalunya, Spain: IEEE. https://doi.org/10.1109/RE.2008.25

Marcus, A., Xie, X., & Poshyvanyk, D. (2005). When and how to visualize traceability links? In 3rd

International Workshop on Traceability in Emerging Forms of Software Engineering - TEFSE

’05 (pp. 56–61). New York, USA: ACM. https://doi.org/10.1145/1107656.1107669

Maro, S., Anjorin, A., Wohlrab, R., & Steghöfer, J.-P. (2016). Traceability maintenance: factors and

guidelines. In 31st IEEE/ACM International Conference on Automated Software Engineering -

ASE 2016 (pp. 414–425). New York, USA: ACM. https://doi.org/10.1145/2970276.2970314

Matplotlib. (2018). Retrieved August 14, 2018, from http://matplotlib.sourceforge.net

Maule, A., Emmerich, W., & Rosenblum, D. S. (2008). Impact analysis of database schema changes.

In 13th International Conference on Software Engineering - ICSE ’08 (pp. 451–460). New York,

USA: ACM. https://doi.org/10.1145/1368088.1368150

Measuring Requirements. (2018). Retrieved August 31, 2018, from

https://www.jamasoftware.com/blog/measuring-requirements-product-size-requirements-quality/

MeasuringU. (2018). Retrieved November 7, 2018, from https://measuringu.com/nps-sus/

Mens, T., Buckley, J., Zenger, M., & Rashid, A. (2005). Towards a Taxonomy of Software Evolution.

J. Softw. Maint. Evol., 17(5), 309–332. https://doi.org/10.1002/smr.v17:5

Merten, T., Jüppner, D., & Delater, A. (2011). Improved representation of traceability links in

requirements engineering knowledge using Sunburst and Netmap visualizations. In 4th

International Workshop on Managing Requirements Knowledge, MaRK’11 - Part of the 19th

IEEE International Requirements Engineering Conference, RE’11 (pp. 17–21). Trento, Italy:

IEEE. https://doi.org/10.1109/MARK.2011.6046557

Meyer, M. (2014). Continuous integration and its tools. IEEE Software, 31(3), 14–16.

https://doi.org/10.1109/MS.2014.58

Mills, C. (2017). Towards the automatic classification of traceability links. In 32nd IEEE/ACM

International Conference on Automated Software Engineering-ASE 2017 (pp. 1018–1021). IL,

USA: IEEE. https://doi.org/10.1109/ASE.2017.8115723

Mischler, A., & Monperrus, M. (2014). An Approach for Discovering Traceability Links between

Regulatory Documents and Source Code Through User-Interface Labels. Eprint

ArXiv:1403.2639, 1–14.

Mohan, K., Xu, P., Cao, L., & Ramesh, B. (2008). Improving change management in software

development: Integrating traceability and software configuration management. Decision Support

Systems, 45(4), 922–936. https://doi.org/10.1016/j.dss.2008.03.003

Molhado Project. (2017). Retrieved July 5, 2017, from

http://www.ece.iastate.edu/~tien/molhado/index.html

NetworkX. (2018). Retrieved August 19, 2018, from https://networkx.github.io/

Newman, M. (2010). Networks: An Introduction (1st ed.). Oxford University Press.

https://doi.org/10.1093/acprof:oso/9780199206650.001.0001

Nguyen, T. N., Munson, E. V., & Boyland, J. T. (2004). The molhado hypertext versioning system. In

15th ACM Conference on Hypertext & Hypermedia - HYPERTEXT ’04 (pp. 185–194). New

York, USA: ACM. https://doi.org/10.1145/1012807.1012859

170

Nistor, E. C., Erenkrantz, J. R., Hendrickson, S. A., & van der Hoek, A. (2005). ArchEvol: versioning

architectural-implementation relationships. In 12th International Workshop on Software

Configuration Management - SCM ’05 (pp. 99–111). New York, USA: ACM.

https://doi.org/10.1145/1109128.1109136

Oliva, G. A., Gerosa, M. A., Milojicic, D., & Smith, V. (2013). A change impact analysis approach for

workflow repository management. In IEEE 20th International Conference on Web Services,

ICWS 2013 (pp. 308–315). CA, USA: IEEE. https://doi.org/10.1109/ICWS.2013.49

Olsson, M. (2015). Document Object Model. In JavaScript Quick Syntax Reference (pp. 39–44).

Berkeley, CA: Springer. https://doi.org/10.1007/978-1-4302-6494-1_10

Omori, T., & Maruyama, K. (2008). A change-aware development environment by recording editing

operations of source code. In International Workshop on Mining Software Repositories - MSR

’08 (pp. 31–34). New York, USA: ACM. https://doi.org/10.1145/1370750.1370758

Passos, L., Apel, S., Kästner, C., Czarnecki, K., Wasowski, A., & Guo, J. (2013). Feature Oriented

Software Evolution. In 7th International Workshop on Variability Modelling of Software-

intensive Systems-VaMoS ’13 (pp. 17:1-17:8). Pisa, Italy: ACM.

https://doi.org/10.1145/2430502.2430526

Perera, I., Miller, A., & Allison, C. (2017). A Case Study in User Support for Managing OpenSim

Based Multi User Learning Environments. IEEE Transactions on Learning Technologies, 10(3),

342–354. https://doi.org/10.1109/TLT.2016.2632126

Pete, I., & Balasubramaniam, D. (2015). Handling the differential evolution of software artefacts: A

framework for consistency management. In IEEE 22nd International Conference on Software

Analysis, Evolution, and Reengineering (SANER) (pp. 599–600). QC, Canada: IEEE.

https://doi.org/10.1109/SANER.2015.7081889

Phetmanee, S., & Suwannasart, T. (2014). A Tool for Impact Analysis of Test Cases Based on

Changes of a Web Application. In International MultiConference of Engineers and Computer

Scientists-IMECS ’14, I, (pp. 497–500). Hong Kong: IAENG.

Priority Blocking Queue. (2018). Retrieved June 29, 2018, from

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/PriorityBlockingQueue.html

QASource DevOps Experts. (2018). Retrieved August 28, 2018, from

https://www.qasource.com/devops#!devops-expertise

Rajlich, V. (2014). Software evolution and maintenance. In Future of Software Engineering - FOSE

2014 (pp. 133–144). New York, USA: ACM. https://doi.org/10.1145/2593882.2593893

Rational RequisitePro. (2017). Retrieved July 5, 2017, from

https://www.oit.va.gov/Services/TRM/ToolPage.aspx?tid=41

Redmiles, D., Van Der Hoek, A., Al-Ani, B., Hildenbrand, T., Quirk, S., Sarma, A., … Trainer, E.

(2007). Continuous Coordination: A New Paradigm to Support Globally Distributed Software

Development Projects. Wirtschaftsinformatik, 49, 28–38. https://doi.org/10.1038/leu.2008.246

Rempel, P., & Mader, P. (2017). Preventing defects: The impact of requirements traceability

completeness on software quality. IEEE Transactions on Software Engineering, 43(8), 777–797.

https://doi.org/10.1109/TSE.2016.2622264

Ren, X., Ryder, B. G., Stoerzer, M., & Tip, F. (2005). Chianti: a change impact analysis tool for java

programs. In 27th International Conference on Software Engineering - ICSE ’05 (pp. 664–665).

New York, USA: ACM. https://doi.org/10.1145/1062455.1062598

ReqView. (2017). Retrieved May 7, 2018, from https://www.reqview.com/

Riebisch, M., Bode, S., Farooq, Q. U. A., & Lehnert, S. (2011). Towards comprehensive modelling by

inter-model links using an integrating repository. In 18th IEEE International Conference and

Workshops on Engineering of Computer-Based Systems, ECBS 2011 (pp. 284–291). NV, USA:

IEEE. https://doi.org/10.1109/ECBS.2011.32

Rodrigues, A., Lencastre, M., & Filho, G. A. de A. C. (2016). Multi-VisioTrace: Traceability

Visualization Tool. In 10th International Conference on the Quality of Information and

Communications Technology (QUATIC) (pp. 61–66). Lisbon, Portugal: IEEE.

https://doi.org/10.1109/QUATIC.2016.019

Rubasinghe, I. D., Meedeniya, D. A., & Perera, I. (2017). Towards Traceability Management in

Continuous Integration with SAT-analyzer. In 3rd International Conference on Communication

171

and Information Processing (ICCIP 2017) (pp. 77–81). Tokyo, Japan: ACM.

https://doi.org/10.1145/3162957.3162985

Rubasinghe, I. D., Meedeniya, D. A., & Perera, I. (2018a). Automated Inter-artefact Traceability

Establishment for DevOps Practice. In 2018 IEEE/ACIS 17th International Conference on

Computer and Information Science (ICIS 2018) (pp. 211–216). Singapore: IEEE.

https://doi.org/10.1109/ICIS.2018.8466414

Rubasinghe, I. D., Meedeniya, D. A., & Perera, I. (2018b). Software Artefact Traceability Analyser :

A Case-Study on POS System. In 6th International Conference on Communications and

Broadband Networking (ICCBN 2018) (pp. 1–5). Singapore: ACM.

https://doi.org/10.1145/3193092.3193094

Rubasinghe, I. D., Meedeniya, D. A., & Perera, I. (2018). Traceability Management with Impact

Analysis in DevOps based Software Development. In 2018 International Conference on

Advances in Computing, Communications and Informatics (ICACCI) (pp. 1956–1962).

Bangalore, India: IEEE. https://doi.org/10.1109/ICACCI.2018.8554399

Sager, T., Bernstein, A., Pinzger, M., & Kiefer, C. (2006). Detecting similar Java classes using tree

algorithms. In International Workshop on Mining Software Repositories - MSR ’06 (pp. 65–71).

Shanghai, China: ACM. https://doi.org/10.1145/1137983.1138000

Santiago, I., Vara, J. M., De Castro, V., & Marcos, E. (2014). Visualizing Traceability Information

with iTrace. In 9th International Conference on Evaluation of Novel Approaches to Software

Engineering (pp. 5–15). SCITEPRESS Publications. https://doi.org/10.5220/0004865400050015

Sarma, A., Redmiles, D. F., & Van Der Hoek, A. (2012). Palantír: Early detection of development

conflicts arising from parallel code changes. IEEE Transactions on Software Engineering, 38(4),

889–908. https://doi.org/10.1109/TSE.2011.64

SAT-Analyser. (2018). Retrieved November 10, 2018, from https://sites.google.com/cse.mrt.ac.lk/sat-

analyser/case-studies

Selenium. (2018). Retrieved October 2, 2017, from http://www.seleniumhq.org

SERG :ReqAnalyst. (2017). Retrieved July 5, 2017, from

http://swerl.tudelft.nl/bin/view/Main/ReqAnalyst

Shahid, M., & Ibrahim, S. (2016). Change impact analysis with a software traceability approach to

support software maintenance. In 13th International Bhurban Conference on Applied Sciences

and Technology (IBCAST) (pp. 391–396). IEEE. https://doi.org/10.1109/IBCAST.2016.7429908

Sharafat, A. R., & Tahvildari, L. (2007). A Probabilistic Approach to Predict Changes in Object-

Oriented Software Systems. In 11th European Conference on Software Maintenance and

Reengineering (CSMR’07) (pp. 27–38). Amsterdam, Netherlands: IEEE.

https://doi.org/10.1109/CSMR.2007.9

Shneiderman, B. (1992). Tree visualization with tree-maps: 2-d space-filling approach. ACM

Transactions on Graphics (TOG), 11(1), 92–99. https://doi.org/10.1145/102377.115768

Sinclair, J., & Cardew-Hall, M. (2008). The folksonomy tag cloud: when is it useful? Journal of

Information Science, 34(1), 15–29. https://doi.org/10.1177/0165551506078083

Slack. (2018). Retrieved October 2, 2018, from https://slack.com

Sommerville, I. (2010). Software Engineering (10th ed.). New York: Addison-Wesley Professional.

Spijkerman, W. (2010). Tool Support for Change Impact Analysis in Requirement Models. University

of Twente.

Sun, X., Li, B., Tao, C., Wen, W., & Zhang, S. (2010). Change impact analysis based on a taxonomy

of change types. In International Computer Software and Applications Conference (pp. 373–

382). IEEE. https://doi.org/10.1109/COMPSAC.2010.45

Sünnetcioglu, A., Brandenburg, E., Rothenburg, U., & Stark, R. (2016). ModelTracer: User-friendly

Traceability for the Development of Mechatronic Products. Procedia Technology, 26, (pp. 365–

373). Elsevier. https://doi.org/10.1016/j.protcy.2016.08.047

Suzuki, N. (2002). A Structural Merging Algorithm for Xml documents. In International Conference

on WWW/Internet (pp. 699–703). IADIS.

Tang, A., Jin, Y., & Han, J. (2007). A rationale-based architecture model for design traceability and

reasoning. Journal of Systems and Software, 80(6), 918–934.

https://doi.org/10.1016/j.jss.2006.08.040

172

Thommazo, A. Di, Malimpensa, G., De Oliveira, T. R., Olivatto, G., & Fabbri, S. C. P. F. (2012).

Requirements Traceability Matrix: Automatic Generation and Visualization. In 26th Brazilian

Symposium on Software Engineering, SBES 2012 (pp. 101–110). Natal, Brazil: IEEE.

https://doi.org/10.1109/SBES.2012.29

Tóth, G., Hegedűs, P., Beszédes, Á., Gyimóthy, T., & Jász, J. (2010). Comparison of different impact

analysis methods and programmer’s opinion: an empirical study. In 8th International Conference

on the Principles and Practice of Programming in Java - PPPJ ’10 (pp. 109–118). Vienna,

Austria: ACM. https://doi.org/10.1145/1852761.1852777

Travis CI. (2018). Retrieved July 5, 2017, from https://travis-ci.org/

Trello. (2018). Retrieved October 2, 2018, from https://trello.com/

Trung, P. T., & Thang, H. Q. (2009). Building the reliability prediction model of component-based

software architectures. World Academy of Science, Engineering and Technology, 35(11), 911–

918.

Tyree, J., & Akerman, A. (2005). Architecture decisions: Demystifying architecture. IEEE Software,

22(2), 19–27. https://doi.org/10.1109/MS.2005.27

Vector Space Model. (2017). Retrieved July 3, 2017, from

http://cogsys.imm.dtu.dk/thor/projects/multimedia/textmining/node5.html

Vrignat, P., Avila, M., Duculty, F., & Kratz, F. (2015). Failure Event Prediction Using Hidden

Markov Model Approaches. IEEE Transactions on Reliability, 64(3), 1038–1048.

https://doi.org/10.1109/TR.2015.2423191

Wang, W., He, Y., Li, T., Zhu, J., & Liu, J. (2018). An Integrated Model for Information Retrieval

Based Change Impact Analysis. Scientific Programming, 2018(Article ID 5913634), 1–13.

https://doi.org/10.1155/2018/5913634

Wang, Y., DeWitt, D. J., & Cai, J. Y. (2003). X-Diff: An effective change detection algorithm for

XML documents. In International Conference on Data Engineering (pp. 519–530). IEEE.

https://doi.org/10.1109/ICDE.2003.1260818

Wang, Y., Zhang, J., & Fu, Y. (2017). Rule-Based Change Impact Analysis Method in Software

Development. In 2nd International Conference on Computer Engineering, Information Science

& Application Technology (ICCIA 2017) 74, (pp. 396–403). Atlantis Press.

Wijesinghe, D. B., Kamalabalan, K., Uruththirakodeeswaran, T., Thiyagalingam, G., Perera, I., &

Meedeniya, D. (2014). Establishing traceability links among software artefacts. In 14th

International Conference on Advances in ICT for Emerging Regions (ICTer) (pp. 55–62). IEEE.

https://doi.org/10.1109/ICTER.2014.7083879

Winkler, S. (2008). On Usability in Requirements Trace Visualizations. In Requirements Engineering

Visualization (pp. 56–60). Catalunya, Spain: IEEE. https://doi.org/10.1109/REV.2008.4

Wong, S., Cai, Y., & Dalton, M. (2011). Change Impact Analysis with Stochastic Dependencies.

Technical Report. PA, USA.

XMLUnit. (2018). Retrieved October 20, 2018, from https://www.xmlunit.org/

YAKINDU Traceability. (2019). Retrieved January 25, 2019, from

https://www.itemis.com/en/yakindu/traceability/

Zeugmann, T., Poupart, P., Kennedy, J., Jin, X., Han, J., Saitta, L., … Fürnkranz, J. (2011). Precision

and Recall. In Encyclopedia of Machine Learning (pp. 781–781). Boston, MA: Springer US.

https://doi.org/10.1007/978-0-387-30164-8_652

Zhang, S., Gu, Z., Lin, Y., & Zhao, J. (2008). Change impact analysis for AspectJ programs. In IEEE

International Conference on Software Maintenance (pp. 87–96). Beijing, China: IEEE.

https://doi.org/10.1109/ICSM.2008.4658057

Zhang, Y., Wan, C., & Jin, B. (2016). An empirical study on recovering requirement-to-code links. In

17th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence,

Networking and Parallel/Distributed Computing (SNPD) (pp. 121–126). Shanghai, China: IEEE.

https://doi.org/10.1109/SNPD.2016.7515889

Zimmermann, T., Zeller, A., Weissgerber, P., & Diehl, S. (2005). Mining version histories to guide

software changes. IEEE Transactions on Software Engineering, 31(6), 429–445.

https://doi.org/10.1109/TSE.2005.72

Zoho Sprints. (2018). Retrieved October 2, 2018, from https://www.zoho.com/sprints/

173

Appendix A: Initial survey

Questionnaire

1. Please indicate your gender
o Female

o Male

o Prefer not to say

2. What is your age group?
o 18 - 24 years

o 25 - 29 years

o 30 - 34 years

o 35 - 39 years

o 40+ years

3. Please indicate your highest educational level
o Diploma

o Bachelor Degree

o Master Degree

o Professional

o Other

4. Which of the following best describes your role?
o Programmer/ Junior level

o Quality Assurance level

o Deployment level

o Operational level

o Other:____________

5. How long you have been working with DevOps?
o Less than 1 year

o 1 - 3 years

o More than 3 years

6. What are the involved software artefacts for stages in SDLC?

7. Please specify other artefacts you use if any:_______________

8. What is/are the involved programming language(s)?
o Java

o Python

o C/C++

o Other:____________

9. What types of tests are conducted?
o Unit tests

o Integration tests

o Functional tests

o Regression tests

o Other:____________

174

Change Management: Regarding the change management in your

DevOps environment.

10. How often do you check for software artefact (source code/ design etc)

changes?

11. What is/are the tool(s) used for change detection/ change management?

12. How do you handle the traceability? (Manually/ Tools used/ Do you visualize

traceability?)

13. Is it helpful to have a traceability tool with visualization?

14. What are the limitations you experience in detecting changes?

15. How do you propagate changes and limitations (if any)?

16. How do you analyse the impact of changes?
o Dependency-based calculation

o Traceability-based calculation

o Static analysis

o Dynamic analysis

o Manually

o We don't do

o Other:____________

17. What are the limitations you experience in analysing impacts?

Continuous Integration: Regarding Continuous Integration in

your DevOps environment.

18. How often do you perform continuous integrations?
o Very frequently-anytime

o Hourly

o Daily-Once in a day

o Other:____________

19. How do you perform Continuous Integration process and limitations (if any)?

20. What are the Continuous Integration/ Continuous Delivery/ DevOps tools you

use?
o CVS: Github/ Bitbucket

o Jenkins

o Puppet

o Jira

o Travis CI

o Docker

o Other:____________

21. What types of projects are done with DevOps practices?
o Small scale projects (i.e. less than 5 OOP classes)

o Any scale project

o Any domain project

o Other:____________

22. What is the maximum number of classes involved in a project you have done

using DevOps? (eg. number of classes in the class diagram/ number of classes

in the source code)

23. What are the difficulties you face in working with DevOps?

175

Summary of responses for the initial survey

Involved artefacts:

Artefact
Requirement

s engineering
Design

Develop

ment
Testing

Configur

ation
Deployment Operations

SRS

document

X

User stories X X

Story cards X X

Class

diagram

X X

Use case

diagram

X X

sequence

diagram

X X

Other design

diagrams

X X X

Source code X

Build scripts X X X X

Test cases X

Test scripts X

Configuratio

n/

dependency

files

 X

Deployment

scripts

 X X X

Cloud

integration

scripts

 X X X

User manuals X X X

Containerize

d images

 X

KB articles X

Monitoring/

synthetics

 X

Programming languages:

176

Testing types:

Change detection frequency:

 Automatically Hourly

 Manually Weekly

Change detection tools:

 Jenkins Cron Job

 ServiceNow

 JIRA Service Desk

 ServiceNow - to manage tickets

Traceability handling methods:

 Jenkins

 Custom audit tools/ CloudTrail

Usefulness of Traceability and Visualization:

Change detection limitations:

 With Jenkins this is done automatically

 No proper tools to auto detect changes, Just monitoring tools to detect

failures

Change propagation methods:

 Automatically deploy to the server with Jenkins

 Using pre-defined protocols and policies defined by the company

177

Impact analysis methods:

Impact analysis limitations:

 Time consuming

 It’s hard to calculate the exact impact

CI frequency:

 Very frequently-anytime

CI methods:

 Jenkins - No limitations encountered as we do CI/CD

 Tools: Jenkins, CodeDeploy, CodePipeline, TravisCI, TeamCity

CI / CD / DevOps tools chain:

 CVS: Github, BitBucket; Jenkins; Puppet; Jira; Travis CI; Docker; Code

Pipeline; OpsWorks; Octopus; TeamCity

DevOps suitability:

DevOps limitations:

 Adapting to Operational role at times is difficult

 Broader domain. You need to have excellent knowledge in programming,

networking, OS and storage domains to practice

178

Appendix B: User acceptance survey

Questionnaire for the interview (post-interview)

 Strongly

Agree

Strongly

Disagree

1. I think that I would like to use this system

frequently

2. I found the system unnecessarily complex

3. I thought the system was easy to use

4. I think that I would need the support of a

technical person to be able to use this system

5. I found the various functions in this system were

well integrated

6. I thought there was too much inconsistency in

this system

7. I would imagine that most people would learn to

use this system very quickly

8. I found the system very cumbersome to use

9. I felt very confident using the system

10. I needed to learn a lot of things before I could

get going with this system

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

11. Please underline 3 words that best describe your impression/ idea/ quality of the tool

Poor Average Usable Efficient Novelty

Prototype Good Adaptable Accuracy Originality

Slow Excellent Decision-making Analysis Simplicity

Improvable Innovative Supportive Traceability Collaborative

179

Summary of responses for the interview

The SUS calculation values (SUS score) for all the responses obtained from 20

participants (P) for each question (Q) averaged to a final SUS score of 62.5.

Participant Q 1 Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Q 8 Q 9 Q 10 SUS score

P1 4 4 3 3 5 2 3 3 4 3 60.0

P2 4 1 3 1 3 4 2 3 3 2 60.0

P3 4 1 3 1 3 2 4 3 4 4 67.5

P4 4 2 4 3 4 2 4 1 3 2 72.5

P5 4 2 4 1 5 1 2 3 2 4 65.0

P6 4 3 4 2 4 1 4 3 3 5 62.5

P7 4 2 3 4 5 2 4 2 2 3 62.5

P8 3 1 4 3 3 2 4 2 3 3 65.0

P9 4 2 4 4 5 2 5 4 3 4 62.5

P10 4 2 3 1 4 2 4 3 3 3 67.5

P11 4 2 3 4 4 2 4 3 2 2 60.0

P12 3 2 4 3 4 3 4 3 4 3 62.5

P13 3 2 3 3 4 3 3 2 3 3 57.5

P14 3 4 3 3 3 3 2 3 3 2 47.5

P15 3 3 3 2 4 2 3 1 3 2 65.0

P16 4 3 4 2 4 2 4 2 3 3 67.5

P17 3 4 4 3 4 3 3 4 2 2 50.0

P18 4 3 3 3 4 3 3 3 3 2 57.5

P19 4 2 4 3 4 2 4 4 3 2 65.0

P20 4 2 3 2 4 1 3 1 4 3 72.5

Average 62.5

180

Appendix C: Research tool configuration settings

Note: user.home means the PC’s logged in account’s user directory where you can find the

Documents, Desktop etc directories listed. i.e C:\Users\User\ or C:\Users\cse\

1. Make sure these software are installed;

a. JDK 1.8 and JRE both with environment variables set to JDK bin

b. WordNet 2.1 into PC’s user home directory (user.home\WordNet\bin)

c. Python 2.7 into PC’s C:\ drive (C:\Python27\python.exe)

d. Microsoft visual C++ 2010 redistribution x64 or x32 (https://www.microsoft.com/en-

us/download/confirmation.aspx?id=15336)

e. Wampserver x64 or x32 into C:\ drive (C:\wamp\www)

f. D3.js (C:\wamp\www\d3\d3.js)

g. Google chrome browser

2. Install following Python packages (using pip-Win tool:

https://sites.google.com/site/pydatalog/python/pip-for-windows)
Package Name pip-Win tool Command

networkx pip install networkx

numpy pip install numpy

matplotlib pip install matplotlib

scipy pip install scipy

3. Copy these directories and files into exact following local locations in PC;

a. SATAnalyzer user.home\SATAnalyzer

b. Resources user.home\Resources

c. SAT_CONFIGS user.home\SAT_CONFIGS

d. Files within www directory C:\wamp\www (For any existing files don’t copy or replace and

skip)
e. SAT_Analyser_2_0 D:\ SAT_Analyser_2_0

4. Stand-Alone Desktop Access:-

A. Run the JAR file sat-0.2-jar-with-dependencies.jar in path

D:\SAT_Analyser_2_0\ SAT_Analyser_2_0\target\
a. Can double click on the file (Not-recommended as cannot track any exceptions since this

is a prototype level tool)

b. Open command prompt (Recommended method)

i. Change the drive to D:\ by typing D: and hit enter

ii. Type the following command and hit enter

java -jar "D:\SAT_Analyser_2_0\SAT_Analyser_2_0\target\sat-0.2-jar-with-

dependencies.jar"

Else double click on the exe file SAT_Analyser_2_0.exe in path

D:\SAT_Analyser_2_0\ SAT_Analyser_2_0\target\

5. Multi-User Web Access:-

A. Install AjaxSwing application with built-in Apache Tomcat server on one PC

as Server_Machine (http://creamtec.com/products/ajaxswing/install/index.html).

B. Copy file SAT2.properties file in path D:\SAT_Analyser_2_0\

SAT_Analyser_2_0\target\ to AjaxSwing installed path’s conf directory (i.e.

C:\AjaxSwing4.6.0\conf\SAT2.properties)

a. Go to http://localhost:8040/ajaxswing/apps/SAT2 in browser (Server_Machine)

b. Client machine(s) connected within same local area network; go to

<Server_Machine’s_IP_Address>:8040/ajaxswing/apps/SAT2 in a browser

https://www.microsoft.com/en-us/download/confirmation.aspx?id=15336
https://www.microsoft.com/en-us/download/confirmation.aspx?id=15336
https://sites.google.com/site/pydatalog/python/pip-for-windows
http://creamtec.com/products/ajaxswing/install/index.html
http://localhost:8040/ajaxswing/apps/SAT2

181

Appendix D: SAT-Analyser 2.0 user guide overview

Initializing SAT-Analyser

Once the SAT-Analyser is executed for the first time, the workspace selection

window will be prompted as below.

You can provide a location in your machine and click Ok. Then, SAT-Analyser

main window will be loaded.

In the stand-alone desktop version; It consists of four main subsections for listing

any existing traceability projects’ directory structure vertically on the left-hand

side corner, file opening section on the top, traceability results default visualization

section on the bottom center and bottom right-hand side for listing the details of

traceability results. Moreover, there is a top main menu for selecting further

functionalities.

182

In the multi-user accessible web version; It consists of two main subsections for

listing any existing traceability projects’ directory structure on the top horizontally

and file opening section on the bottom. The top main menu for selecting further

functionalities is the same as in the desktop version.

Creating a software traceability project

In the top menu bar, select File New Project to start creating a software

project for traceability generation. Then, the following artefact input window will

be prompted to provide traceability project name and to insert the artefact inputs.

First, you must give a project name which is not null and click Ok for the rest of

the form items to be enabled. Once a valid project name is given and clicked Ok,

the Import Artefact Files section will be activated to provide artefact input files.

Provide each artefact separately by clicking on the Browse button and finally click

Finish to create the project or click Cancel for the cancellation of the process.

183

Generating traceability outcomes

The requirement artefact element extraction process is set visible via a

Requirement Artefact Confirmation window for the user to have a generic idea

about the traceability items etc. Click on each of the elements listed to expand,

edit, add or delete the element items as necessary. Then, click Confirm for the

confirmation to start the traceability establishment process.

The project main window will be loaded with the newly created project file tree

visible on the left-hand side corner section. The

 folder bs lists the Maven build script artefact file,

 property folder contains the intermediate traceability graph related files,

 folder src contains the source code Java file set,

 folder txt includes the SRS artefact text document file,

 folder uml consists of the UML class diagram artefact file,

 folder ut includes the set of JUnit unit test class files,

 folder xml holds all the SAT-Analyser tool generated intermediate XML

format files of each artefact type such as;

o Requirement Artefact File.xml,

o UML Artefact File.xml,

o Source Code Artefact File.xml,

o Unit Test Artefact File.xml,

o Build Script Artefact File.xml,

o XML conversion of artefact traceability links: Relations.xml.

Select any of the files and double click on it to view the contents which will be

opened in the top section.

Traceability visualization

Right click on the project name to view the traceability outcomes. Select

Visualization and click a visualization type.

184

For instance, in the view option Full Graph: - overall traceability graph including

all the types of artefacts as nodes and their relationships as links will be visible in

the Graph section of the window. Zoom the view by scrolling the mouse pointer in

and out. The naming conventions used in this traceability graph visualization is as

follows; RQ - requirement, D – design, SC - source code, UT - unit test, BS -

build script, _M - method/ function, _F - field/ attribute

Continuous integration

Frequent occurrences of integrations take place in a DevOps environment. It is

featured with the traceability results in the SAT-Analyser tool. Whenever a

continuous integration is to be submitted, the project source code path that is

integrated with the build automation such as with Jenkins/ Github must be

specified via the configuration as a prerequisite at the time of traceability project

creation.

Right-click on the project and click on Project select Configure. Insert the

source path, unit test path and build script locations corresponding to the

associated build automation repositories. Then, right-click on any project name

and click on the option Continuous Integrate. Once the first integration task is

triggered, an artefact input window pops up with the project path and an assigned

integration ID number to submit each type of individual artefact inputs.

As a constraint of the SAT-Analyser tool if the integration contains additions of

artefact elements/ sub-elements, then you must update all the artefact types to be

tallied with the new additions and upload all types of artefact inputs. If your

integration contains only modifications and/ or deletions of artefacts, you can

specify that by clicking on a button named Include Only Artefact Modifications

and Deletions. Then, you are allowed to upload only that particular type(s) of

artefacts.

185

Change detection, change impact analysis and change propagation

There must be more than one successfully completed integration to proceed with

the Change Detection option in the menu, by right-clicking the project name.

Then it will be prompted with any changes artefact type and change type wise.

A click on the Impact Analysis button in the change detection window to proceed

or else click Cancel to terminate the change analysis process. The impact analysis

results window lists the impact of detected artefact changes on remaining artefact

items with the manual editing feature. Then, click on the Change Propagation

button at the bottom of the window to confirm the impact results. That will load

the updated traceability graphs highlighting the changed/ modified artefact items.

For complete user guide: - https://sites.google.com/cse.mrt.ac.lk/sat-analyser/tool-

support

https://sites.google.com/cse.mrt.ac.lk/sat-analyser/tool-support
https://sites.google.com/cse.mrt.ac.lk/sat-analyser/tool-support

186

Appendix E: List of companies involved in the surveys/ interviews

1. Pearson Lanka

2. Metatechno Lanka Company (Pvt) Ltd

3. Typefi Colombo

4. Apigate Sri Lanka Ltd

5. Creative Software

6. Sysco Labs

7. HNB IT

8. Epic Lanka (Pvt) Ltd

9. John Keells Holdings

10. Zone24x7 (Pvt) Ltd

11. Tiqri (Pvt) Ltd

187

Appendix F: Published papers

1. Rubasinghe, I. D., Meedeniya, D. A., & Perera, I. (2017). Towards Traceability
Management in Continuous Integration with SAT-analyzer. In 3rd International
Conference on Communication and Information Processing (ICCIP 2017) (pp.
77–81). Tokyo, Japan: ACM. https://doi.org/10.1145/3162957.3162985

2. Rubasinghe, I. D., Meedeniya, D. A., & Perera, I. (2018). Software Artefact
Traceability Analyser : A Case-Study on POS System. In 6th International
Conference on Communications and Broadband Networking (ICCBN 2018) (pp.
1–5). Singapore: ACM. https://doi.org/10.1145/3193092.3193094

3. Rubasinghe, I. D., Meedeniya, D. A., & Perera, I. (2018). Automated Inter-artefact
Traceability Establishment for DevOps Practice. In IEEE/ACIS 17th International
Conference on Computer and Information Science (ICIS 2018) (pp. 211–216).
Singapore: IEEE. https://doi.org/10.1109/ICIS.2018.8466414

4. Rubasinghe, I. D., Meedeniya, D. A., & Perera, I. (2018). Traceability
Management with Impact Analysis in DevOps based Software Development. In
International Conference on Advances in Computing, Communications and
Informatics (ICACCI) (pp. 1956–1962). Bangalore, India: IEEE.
https://doi.org/10.1109/ICACCI.2018.8554399

5. Meedeniya, D. A., Rubasinghe, I. D., & Perera, I. (2019). Software Artefacts
Consistency Management Towards CICD: A Roadmap. International Journal of
Advanced Computer Science and Applications (IJACSA), 10(4).

https://doi.org/10.1145/3162957.3162985
https://doi.org/10.1145/3193092.3193094
https://doi.org/10.1109/ICIS.2018.8466414
https://doi.org/10.1109/ICACCI.2018.8554399

