

RAINW ATER HARVESTING POTENTIAL OF BUILT ENVIRONMENTS WITH DISASTER RESISTANT FEATURES

BY A. K. KAPURUGE

SUPERVISED BY PROF: M. T. R. JAY ASINGHE

THESIS SUBMITTED TO THE DEPARTMENT OF CIVIL ENGINEERING IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF ENGINEERING IN STRUCTURAL ENGINEERING DESIGN

> DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA SRI LANKA

> > 2007

89563

Abstract

Large scale and medium scale housing projects are actively promoted by investors in many part of Sri Lanka due to the high demand for good quality housing in well planned neighbourhoods. These housing projects will be located at a radius of 15 km from the main urban centers due to lack of large buildable land.

One of the constraints for such projects is the provision of adequate water supply. One solution is the provision of deep tube wells with treatment plants when the National Water Supply & Drainage Board (N W S & D B) supply is not available. The impact of pumping water from deep strata can be minimized by supplementing at least part of the non - portable water demand by rain water harvesting.

The use of rain water as a supplement to pipe borne water to full fill non-portable water demand will be an attractive for the water problem in Colombo metropolitan area.

A typical house in a housing scheme can be either single storey or two storey. Recent surveys have found that majority of the Sri Lankans prefer to live in two story houses. They also provide an ideal opportunity for rainwater harvesting by using the rainwater tank located at first floor level. This water can be easily used for flushing the toilet located at the ground floor level, gardening and even to have a bath with chlorine free water.

This will need structural solution for mounting the tank and rainwater harvesting solutions that can provide water while assuring that these tank supported system will not be damaged during a natural disaster such as an earthquake. It is also useful to ensure that the rainwater is in par with the quality supplied from tube wells or N W S & D B supply. The structural solutions required are developed so that it would be adopted from the building planning stage.

This research explains the structural aspects that could be coupled with rainwater harvesting system, so that they could be included in houses planned with disaster resistant features. Since the capacity of the tank is of significant importance, detailed studies have been carried out under this research to determine the optimum tank capacities for various climatic zones of Sri Lanka. The structural solution were coupled with these tank capacities to come up with alternative solution for mounting the tanks. The cost effectiveness of rainwater harvesting in long run with current tariff of NWS&DB is also presented.

LP/ 100N/115/01

RAINWATER HARVESTING POTENTIAL OF BUILT ENVIRONMENTS WITH DISASTER RESISTANT FEATURES

BY

A. K. KAPURUGE

SUPERVISED

BY

PROF : M. T. R. JAYASINGHE

LIBRARY UNWERSITY OF MORATUWA SPILAWA Lanka. THESIS SUBMITTED TO THE DEPARTMENT OF CIVIL ENGINEERING IN PARTIAL FUCFILMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF ENGINEERING IN STRUCTURAL ENGINEERING DESIGN

University of Moratuwa

89563

624 07 624.01 (043)

DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA SRI LANKA SEPTEMBER 2007

89563

(28)

DECLARATION

I, Ajith Krisantha Kapuruge, hereby declare that the contents of this thesis is the output of the original research work carried out at the Department of Civil Engineering, University of Moratuwa. Whenever others' work is included in this thesis, it is appropriately acknowledged as a reference.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

ABSTRACT

Large scale and medium scale housing projects are actively promoted by investors in many part of Sri Lanka due to the high demand for good quality housing in well planned neighbourhoods. These housing projects will be located at a radius of 15 km from the main urban centers due to lack of large buildable land.

One of the constraints for such projects is the provision of adequate water supply. One solution is the provision of deep tube wells with treatment plants when the National Water Supply & Drainage Board (N W S & D B) supply is not available. The impact of pumping water from deep strata can be minimized by supplementing at least part of the non - portable water demand by rain water harvesting.

The use of rain water as a supplement to pipe borne water to full fill non-portable water demand will be an attractive for the water problem in Colombo metropolitan area.

A typical house in a housing scheme can be either single storey or two storey. Recent surveys have found that majority of the Sri Lankans prefer to live in two story houses. They also provide an ideal opportunity for rainwater harvesting by using the rainwater tank located at first floor level. This water can be easily used for flushing the toilet located at the ground floor level, gardening and even to have a bath with chlorine free water.

This will need structural solution for mounting the tank and rainwater harvesting solutions that can provide water while assuring that these tank supported system will not be damaged during a natural disaster such as an earthquake. It is also useful to ensure that the rainwater is in par with the quality supplied from tube wells or N W S & D B supply. The structural solutions required are developed so that it would be adopted from the building planning stage.

This research explains the structural aspects that could be coupled with rainwater harvesting system, so that they could be included in houses planned with disaster resistant features. Since the capacity of the tank is of significant importance, detailed studies have been carried out under this research to determine the optimum tank capacities for various climatic zones of Sri Lanka. The structural solution were coupled with these tank capacities to come up with alternative solution for mounting the tanks. The cost effectiveness of rainwater harvesting in long run with current tariff of NWS&DB is also presented.

ACKNOWLEDGEMENT.

I would like to express my heartiest admiration and appreciation to my supervisor Prof. M.T.R. Jayasinghe of the Department of civil Engineering for his precious advice, guidance, encouragement and support throughout the research period.

I wish to extend the sincere gratitude to the National Water Supply and Drainage Board for giving this opportunity with the assistance of necessary fund.

I wish to thank my colleagues Mr. S.K.L.S Rupasinghe and Mr. Mangala De Silva for all the support they extended throughout this research.

My deepest gratitude and love goes to my loving parents for all valuable encouragement and support throughout the carrier.

Finally I wish to thank my diffice staff and all others who supported me in this task.

Electronic Theses & Dissertations www.lib.mrt.ac.lk

TABLE OF CONTENT

ABSTRACT

ACKNOWLEDGEMENT

LIST OF TABLES

LIST OF FIGURES

CHAPTER ONE

h

INTRODUCTION		1
1.1	General	1
1.2	Objectives	3
1.3	Methodology	3
1.4 Chapte	Arrangements of Thesis University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk	4

LITERATURE R	EVIEW	5
2.1 Rainwater harvesting in Global and Sri Lankan context		5
2.1.1	Rainwater Harvesting in USA at Texas	5
2.1.2	The application in Nigeria	6
2.1.3	The usage in Bangladesh	6
2.1.4	Application in Australia	7
2.1.5	The Scenario in India	7
2.1.6	The success storey in China	8
2.1.7.	The application in rural Thailand	8
2.1.8	The situation in Sri Lanka	9

2.2 The components of a Rainwater Harvesting System		10	
	2.2.1	The Collection area.	10
	2.2.2	The Capacity of First Flush Device.	10
	2.2.3	The Conveyance System.	11
	2.2.4	The Storage facility.	11
2.3	2.3 The Benefit of Rain Water Harvesting.		12
2.4 The Climate Zones of Sri Lanka.		mate Zones of Sri Lanka.	12
	2.4.1	The Location Of Sri Lanka.	13
	2.4.2	The Wet Zone	13
	2.4.3	The Dry Zone	13
	2.4.4	The Intermediate Zone.	13
2.5	Summa	ıry	14

CHAPTER THREE

È

ħ

RAIN W.	ATER HARVESTING SYSTEM FOR SRI LANKA	19	
3.1	Introduction		
3.2	Typical Typical Electronic Theses & Dissertations	19	
3.3	The Water Usageww.lib.mrt.ac.lk	20	
3.4	The Roof Area	21	
3.5	5 The Tank Capacitates		
3.6	The Proposed System	21	
3.7	The Provision of an uninterrupted supply	22	
3.8	3.8 The Water saving Efficiency		
	3.8.1 The Method	23	
	3.8.2 The Specimen Calculation	24	
3.9	Analysis Of Results	25	
3.10	Summary	25	

CHAPTER FOUR

•

•

Þ

R

UR	URBANIZATION AND WATER DEMAND. 4.1 Introduction.		37	
			37	
		4.1.1	Population Density	37
		4.1.2	Land Use Pattern.	37
		4.1.3	Ground Water Pollution.	38
		4.1.4	Scarcity of Land	38
	4.2	Water 1	Demand	39
	4.3	Summa	ary	40

CHAPTER FIVE

SUPPOF	RTING ST	RUCTURES	51
5.1	Introdu	ction to Calculations	51
5.2	Possible	Mounting System	51
5.3	Structur	al designshiversity of Moratuwa, Sri Lanka.	53
		000EEMater tank supporting steel intamesdesign	53
	5.3.2.	2000 ET Water Wahk Supporting steel frame design	55
	5.3.4.	1000 LT Water tank supporting steel frame supporting	ng
		slab design	57
	5.3.5.	2000 LT Water tank supporting steel frame, support	ing
		slab design	59
	5.3.6.	2 Nos 2000 LT (4000 LT) supporting steel frame,	
		supporting slab Design	61
		5.3.6.1 Option 1	61
		5.3.6.2 Option 2	62

CHAPTER SIX

•

M

Þ

۲

THE CO	DST ASPECT	71
6.1	General	71
6.2	Increasing Water Tariff	71
6.3	The Water usage in an average house	72
6.4	The Capital Cost	72
6.5	Summary	74
СНАРТ	ER SEVEN	79
CONCL	USIONS AND FUTURE WORK	79
7.1	Conclusions	79
7.2	Future Work	80
REFERENCES		81
ANNEX	-1-A Structural Design Calculation & Dissertations	83-87
	1-B Structural Design Calculation 1k	88-92
ANNEX -2 Structural Drawings		93-100
ANNEX -3 Calculation of Capital Cost		101-106

71

LIST OF TABLES

Table No	Title	Page No
3.1	The Monthly average rainfall value for six main cities in Sri Lanka	26
3.2	Water saving efficiency for Colombo with various demand, roof area and storage capacities	27
3.3	Water saving efficiency for Kandy with various demand, roof area and storage capacities	28
3.4	Water saving efficiency for Kurunegala with various demand, roof area and storage capacities	29
3.5	Water saving efficiency for Anuradhapura with various demand, roof area and storage capacities	30
3.6	Water saving efficiency for Hambantota with various demand, roof area and storage capacities	31
3.7	Water saving efficiency for Puttlam with various demand, roof area and storage capacities	32
3.8	Average annual water saving efficiencies as a percentage of total water required for six major crises & Dissertations	33
4.1	www.lib.mrt.ac.lk Population in different center of Colombo Metropolitan area	41
4.2	General Land use pattern of Colombo Metropolitan area	42
4.3	List of location bacteriological examination of water sample give unsatisfactory research in Colombo Metropolitan area	43
4.4	New development requested water supply under condominiums in the Colombo Metropolitan area	46
4.5	No of connections in Colombo metropolitan area	49
6.1	Water Tariff – National Water Supply & drainage Board-domestic	75
6.2	Water Tariff – National water Supply & Drainage Board- Non domestic	76
6.3	Tariff increase – According to the Water Consumption	77
6.4	Water Tariff excluding service charge for monthly domestic consumption	78

j۴.

k

LIST OF FIGURES.

Figure No	Title	Page No
2.1	The arrangements for the first flush device and the rain water collecting tanks.	15
2.2	The alternative first flush device.	16
2.3	Sri Lanka annual rainfall map	17
2.4	Location of Sri Lanka in the world.	18
3.1	The arrangements proposed for rainwater tank for single storey house.	34
3.2	The arrangement proposed for rainwater tank for two store house.	у 34
3.3	The arrangement for uninterrupted supply.	35
3.4	Average variation of water saving efficiency with storage fraction and demand fraction (from Fewkes)	36
4.1	PopuFalion density Theorom to Pitysin Colombo metropolitan areanrt. ac. 1k	50
5.1	Sectional Elevation	
	1000 liters mounted on a cantilever slab.	67
5.2	Sectional Elevation	
	2000 liters mounted on a cantilever slab.	68
5.3	Sectional Elevation 4000 liters mounted on a cantilever slab.	69
5.4	Sectional Elevation 4000 liters mounted on slab supported by beam.	70

K

b.

R