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Abstract 
 

Modeling of power fluctuations in a solar PV power plant using an Artificial Neural Network 

(ANN) was carried out in the study. The resulting model was used to evaluate the energy 

storage requirement to control fluctuations of the power output. The ANN was trained to model 

the output of a 300kW solar PV system installed in Colombo with an average hourly energy 

output of 90.55kWh and an average daily energy production of 1177 kWh. The ANN model 

proved to deliver forecasts with significant accuracy and generalizability. Correlation 

coefficients for training, validation and testing were 0.945 0.948 and 0.939 respectively. 

Further validation was done using an isolated data set of a time period of a month for which 

model was able to achieve a correlation coefficient of 0.93. Residual analysis confirmed the 

error was random and free of autocorrelation. Error terms had a normal distribution with mean 

1.09kWh and standard deviation of 20.06kWh. A direct mapping was established between 

meteorological parameters and power output of a solar PV system, as oppose to estimating 

solar irradiance. Energy storage requirement was evaluated for two power output control 

schemes. First scheme specifies a ramp up, ramp down rate, and a continuous power delivery 

period. By means of an optimizing algorithm the combination of parameters corresponding to 

the least energy storage requirement was established and the result for energy requirement was 

approximately 15% of the average daily energy generation of the PV system. Variation of 

energy storage requirement under different operating conditions was analyzed further. The 

second output control scheme uses moving average smoothening to control power output. The 

calculated energy storage requirement for moving average scheme was approximately 8% of 

the average daily energy generation. The effect of imposing restriction on operating parameters 

of the schemes were examined in detail.  
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Chapter 1 Introduction 
 

1.1 Background of study 
 

Sri Lanka, is an upper middle income earning country with a rapidly increasing energy 

consumption owing to the economic growth rate. Aforementioned energy requirement is 

fulfilled by primary energy sources such as petroleum or by secondary sources such as 

electricity, generated using primary sources coal, petroleum, hydro power and biomass. 

The expenditure for importing petroleum has caused severe strain to the economy. The effect 

was provoked further owing to the rapid fluctuations and increasing international oil prices. 

Reduced rainfall increased demand on petroleum imports. Under this circumstance, the country 

had to depend on expensive petroleum based thermal power generation to fulfill the rising 

energy demand. As a result of this unfavorable situation, the country had to spend a significant 

portion of its export earnings on petroleum importation. [1]  

Under such conditions the Sri Lankan energy sector is compelled to exploring indigenous 

energy sources such as renewable energy derived from solar, wind, biomass, and hydro. 

Accommodating such available resources is favorable for the long term energy security in the 

country as well as to survive through the crisis at hand. Solar and wind are the most prominent 

renewable energy sources in terms of potential. Solar energy has significant advantages over 

other sources and probably is the most important renewable energy source available in present 

day. Most of other renewable energy sources are also derived directly or indirectly from solar 

energy. 

Solar energy has advantages such as cleanliness, free availability, and accessibility from most 

of the urbanized geographical locations of the country throughout almost the entire year, 

capability to operate independently or in conjunction with traditional energy sources and being 

remarkably renewable. Sri Lanka experiences a high solar irradiance that can be a viable energy 

source for electricity production. During the recent times there has been a growing trend in 

accommodating solar electricity at domestic, industrial and utility scale.  

Solar energy has the disadvantages of intermittency and variability. These ae common with all 

renewable sources. Accommodating solar energy is limited by the aforesaid inherent 

fluctuating nature of Photovoltaic electricity due to the high variability of the primary energy 



 

2 

 

source. As the solar electricity penetration increase, this fluctuation will affect the stability and 

controllability of the main utility grid. To mitigate this limitation it’s absolutely vital to have 

the ability to predict solar generation and means of dampening the fluctuations.  

 

1.1.1 Solar Energy Potential in Sri Lanka  
 

Sri Lanka is in the equatorial belt where a significant amount of solar energy exist throughout 

the year.  The solar energy resources in Sri Lanka has been estimated by several parties. Some 

estimations are based on the daily total solar radiation recorded at a number of weather stations 

throughout the country and some are based on the satellite image processing.  

Climatological Solar Radiation (CSR) is a model developed by National Renewable Energy 

Laboratory (NREL) of Department of Energy United States capable of predicting monthly and 

annual average daily total solar radiation. The CSR was used to evaluate monthly average daily 

total solar radiation estimates for the seven years period from 1985 to 1991.  

The results of this study show the distribution of solar resources measured in terms of annual 

average daily insolation (on tilted surface where the tilt angle equals to the local latitude). The 

insolation predicted is in the range of 4.5 to 6.0 kWh/m2/day across the country. Lowest values 

appear in the hill country of the Central Province [2]. The seasonal variation of isolation is in 

the range between 4.5 and 6.5 kWh/m2/day (on tilted surface where the tilt angle equals to the 

local latitude) [2]. The CSR predicts that the highest insolation is during the hot dry period 

between March and April during the first inter-monsoon season.  

Following figures show the solar resource potential of direct normal irradiation on horizontal 

plane and annual average daily total irradiance at tilted surface where the tilt angle equal to the 

local latitude angle. 
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Figure 1-1  : Direct Normal Irradiation (DNI) data for horizontal plane.  

Source: Solar Resource assessment for Sri Lanka and Maldives by NREL 
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Figure 1-2: Annual average daily total solar irradiance at surface tilted at latitude angle 

Source: Solar Resource assessment for Sri Lanka and Maldives by NREL 
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According to the figure, it can be concluded that harnessing of annual average daily solar 

radiation of 5.0-5.5 kWh/m2/day (on tilted surface with tilt angle to the local latitude angle) is 

possible in most parts of the country. Another conclusion drawn is that there exists a substantial 

solar energy potential in the dry zone.  

NASA-SSE model is a satellite image based solar radiation model to estimate atmospheric 

data. NASA-SSE has estimated monthly average daily insolation for Colombo, averaged for 

the 22 years from 1983 to 2005. The result data is available at the Atmospheric Science Data 

Center web site of National Aeronautics and Space Administration (NASA). NASA-SSE 

model estimates 6.67 kWh/m2/day as the maximum insolation value for the month of March 

while 4.93 kWh/m2/day as the minimum insolation value for November [3]. The estimated 

annual average global horizontal solar insolation at Colombo is about 5.58 kWh/m2/day [3]. 

Monthly averaged results of NASA-SSE for insolation (kWh/m2/day) of Colombo averaged 

over 1983-2005 is as follow. 

 

Table 1-1 Monthly averaged insolation of Colombo 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Avg 

 

5
.5

0
 

6
.2

7
 

6
.6

7
 

5
.9

6
 

5
.2

9
 

5
.3

0
 

5
.4

0
 

5
.6

5
 

5
.6

5
 

5
.2

9
 

4
.9

3
 

5
.1

6
 

5
.5

8
 

 

Source: NASA Atmospheric Science Data Center 

 

Employing solar energy for domestic and industrial applications in Sri Lanka, is economically 

favorable since the amply available energy source can minimize energy cost. According to the 

solar radiation data of Colombo for the period 2000-2003, solar energy is available with 

sufficient intensity for more than six hours in the day time throughout the year. Therefore solar 

photovoltaic modules and solar thermal collectors can function efficiently during major part of 

the day time. The figure below shows the sunshine hours along with the irradiation.  
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Figure 1-3  Monthly average hourly global horizontal irradiation (W/m2) of 

Colombo for the duration from year 2000 to 2003 

Source: Solar and Wind Energy Resource Assessment (SWERA) Report 

 

 

 

 

 

 

 

 

 

 

 

 

1.1.2 Sri Lankan context of Solar Energy Applications  
 

Solar energy is being used mainly as a source for electricity generation. The energy policy of 

Sri Lanka gives high priority to renewable energy [4]. Independent power producers are 

investing in the sector, resulting in a rapid growth.  

On the user end both households and Industries are opening up to the technology especially 

with encouraging tariff schemes introduced by the Ceylon Electricity Board such as Net 

metering Net Accounting and Net plus. Households can drastically reduce their electricity bill 

while having capital cost recovery within the range of five to seven years. Industries while 

enjoying the same financial benefits as households can progress in their green and sustainability 

ratings. This is prominent in export industry where the carbon footprint of the product is 

meticulously calculated.  

The current situation of solar energy system installation is in the range of 200MWp and could 

grow to double that amount [5].  
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1.2 Problem Statement 
 

Solar energy is an exceptionally sustainable energy source for Sri Lanka. The only drawback 

in accommodating solar energy as an energy source is the characteristic intermittency and 

variability. These are common with all renewable sources. 

Solar electricity is dependent primarily on the solar irradiance, which has periodic and random 

variations. The periodic variations are caused by the relative motion of the sun while random 

variations result mostly from cloud cover and seasonal changes. A predictive model would take 

these variations into account and estimate energy generation capacity of a solar power plant.  
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Figure 1-4 installed Solar PV capacity of Sri Lanka and projected growth  

Figure 1-5 Periodic change of 
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Figure 1-6  Short term random 
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Source: Assessment of Sri Lanka power sector UNDP 
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As the solar electricity penetration increase, this fluctuation will affect the stability and 

controllability of the main utility grid. To mitigate this limitation it’s absolutely vital to have 

the ability to predict solar generation and means of dampening the fluctuations. 

 

1.2.1 Aim   
Create a mathematical model to predict solar energy fluctuations, which will be used to 

optimally incorporate energy storage systems such that the electricity produced meets the 

acceptance criteria of the national grid. 

1.2.2 Objectives 
1. To explore solar electricity fluctuations and effects on the national grid  

2. To identify and study meteorological patterns which cause fluctuations 

3. To establish a mathematical model between variations in generated solar electricity 

and meteorological patterns 

4. To Explore and evaluate energy storage schemes suited for mitigating the predicted 

variations  

1.2.3 Scope  

Fluctuation of solar energy can be of two types 

1. Daily variation due to the change in position of the sun 

2. Random variation  

The first type can be closely expressed as a function of time using irradiation models  and solar 

PV system characteristics. The second type of variation is random and chaotic. These random 

variations can be categorized by the time duration of fluctuations.  

1. Very short duration flucuations 

a. Characterized by time spans of mS to S. 

b. Drops in power up to 95%. 

c. Smoothing can be done by super capacitors or by gerographical smoothnig 

2. Medium duration fluctuations 

a. Characterized by time spans of 15 mis to 1hr. 

b. Captures effects  of rains, seasonal cloud cover. 

c. Useful in planing and shceduling the power system in near future. 

d. Smoothing can be done by energy storage systems 
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The scope of the study is limited to the medium duration fluctuations. Neural networks are well 

equiped to modeling phenomena of this nature. The predictive model can be used to evaluated 

maximum power variations for sizing energy storage system as well as give the system 

controller the ability to plan electicity generation for the grid. 

1.2.4 Outcomes of the study 

1. Predictive mathematical model based on neural networks to estimate variations in 

solar electricity generation  

2. Method to optimally size energy storage systems such that the electricity produced 

meets the acceptance criteria of the national grid. 

1.2.5 Outline of the Study 

First chapter of the thesis, describes characteristics of utilization of solar energy in Sri Lanka 

and the potential of harnessing of the energy resource. Present status of solar energy generation 

and its trends are also highlighted. Fundamental theories which describe solar geometry and 

basic concepts of solar radiation are discussed in Chapter 2. A literature review on correlations 

developed by various scientists and engineers is included in the same chapter. Chapter 3 

involves the research methodology in detail. The results of the study are discussed in Chapter 

4. The final chapter is reserved to present the discoveries and conclusions.  

Figure 1-7 Hourly variation of PV power 
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Chapter 2 Review of Literature  
 

2.1 Fundamentals of Solar Radiation  
 

2.1.1 Introduction to the solar radiation  
Energy from the sun reaches earth by means of radiation. Solar radiation includes the total 

spectrum of the electromagnetic radiation of the sun. The sun is a star and center of the solar 

system. It is an extremely hot sphere mainly consisting of Hydrogen and Helium. The nuclear 

fusion reaction is the source of the immense energy emitted by the sun. .The diameter of the 

sun is 1.39×109m while earth has a diameter about 1.27×107m [6]. The average distance 

between the sun and the earth is approximately 1.5×108km [6]. Due to this large distance sun 

subtends a very small angle of 32 minutes on the earth’s surface [6]. Therefore we can assume 

that the earth receives almost parallel beam radiation from the sun. The very significant 

distance implies that light traveling at speed of 3×108 m/s in the vacuum takes 8 minutes and 

20 minutes to reach earth from the sun [6].  

 

 

Figure 2-1 Exaggerated depiction of the angle subtended on Earth by the sun due to the 

placement 
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The fusion reaction of Hydrogen is facilitated by the immense pressure caused by gravity at 

the core of the sun. The sun emits this energy at a rate of 3.8×1020MW, resulting in a per square 

meter rate of emission of 63 MW/m2 of the sun's surface [6]. Energy radiates in all directions 

uniformly. The earth receives a very small portion of the total radiation emitted, which is equal 

to 1.7×1014kW [6]. The brightness of the sun varies from its center to the edge. For engineering 

applications this variation is neglected. As a norm the solar disc is assumed to be of brightness. 

Terrestrial radiation is defined as the radiation within the atmosphere, and extraterrestrial 

radiation is defined as radiation outside of the earth’s atmosphere. Solar radiation is modeled 

as radiation of a blackbody surface with a temperature of 5762K [6]. The energy of the sun 

light measured on earth surface is in the range of 120 Wm-2. Direct sunlight gives about 93 lux 

of illumination per watt of electromagnetic power including infrared, visible and ultraviolet 

radiation. Bright sunlight provides illumination of approximately 100 000 lux per square meter 

at the earth’s surface [6].  

 

 

2.1.2 Solar geometry 
Solar geometry is the study of the position of the sun on the celestial globe. The position is 

defined by three angels. The amount of energy received on a specific location is dependent on 

the position of the sun. Therefore a clear understanding on solar geometry is essential. The 

energy received by a location largely determines the climate, weather, flora, fauna and seasonal 

and daily temperature variations. This is why the tropics have a very high bio diversity 

compared to the higher latitudes.  

Orbit of earth around the sun is elliptic with the sun at one focus point. The earth orbits the sun 

every 365 ¼ days, while spinning about its axis every 24 hours. The diagram shows two 

characteristic lines, namely line of solstice and the line of apsides.  The earth moves through 

six stages sequentially. Perihelion (nearest point to the Sun) January 2 to January 5. March 

equinox on March 19, 20, or 21, June solstice on June 20, 21, or 22, the aphelion (furthest point 

from the Sun) from July 3 to July 5, the September equinox on September 22, 23, or 24. 

December solstice on December 21, 22, or 23.  
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Figure 2-3 Variation of solar declination 

 

Figure 2-2 Earth's orbit relative to the sun 

 

The angle solar radiation makes with the surface affects the amount of energy received. This 

angle is dependent on the inclination of the surface to the tangent to the earth’s surface, and the 

tilt of the earth. Solar declination angle (δ) illustrated in the figure is the angle between a plane 

perpendicular to incoming solar radiation and the rotational axis of the earth. It is a measure of 

the tilt of the earth. The earths’ axis of rotation has an inclination of 23.50 from the ecliptic 

axis, normal to the ecliptic plane. The ecliptic plane is the plane of orbit of the earth around the 

sun. The solar declination angle varies from +23.45° on June 21 when the earths’ axis tilts 

toward the sun, to -23.45° on December 21 when the earths’ axis tilts away from the sun. The 

solar declination angle is 0° on equinox dates which are March 21 and September 21.  

 

 

 

   

 

 

 

 

 

 

 

(Source: www.greenwitchmeantime.com) 
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Figure 2-4 Variation of the solar declination angle throughout the year     

  (Source: www.powerfromthesun.net) 

 

 

Solar declination angle varies as the earth revolves around the sun. The variation causes cyclic 

changes in solar radiation. These variations contribute to cyclic weather changes causing 

seasons and monsoons. The variation of the solar declination throughout the year is shown in 

figure and the declination angle (δ) in degrees for any day of the year (N) can be calculated 

approximately by the Equation 2.1.  

 
𝛿° = 23.45 sin [

360

365
(284 + 𝑁)] 

(2.1) 

 

 

 

 

 

 

 

 

 

A location on the surface of the earth can be specified using the Latitude (ϕ) and the Longitude 

(L). The Latitude angle (ϕ) is the angle between the radial line connecting the location to the 

center of the earth and its projection on the equatorial plane. The latitude angle indicates the 

placement of the location relative to the equatorial plane.  

The earth spins about its axis every 24 hours. Therefore rotational speed is 150 per hour. The 

hour angle (ω) is defined as the angle measured on the earth’s equatorial plane between the 

two  projections on the equatorial plane of the line connecting center of earth and the location 

and the line connecting the center of the earth and sun. At solar noon ω=0. Before noon ω<0 

and after noon ω>0. 
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Figure 2-5 The Latitude angle (ϕ) and Hour angle (ω)  

Source: www.itacanet.org 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Zenith Angle (θ) is the angle from the observers’ zenith point to the sun’s position in the 

sky. The zenith angle can be derived with solar declination angle the hour angle and latitude. 

The zenith angle is 90 degrees at sunrise and sunset and is minimum at noon  

 cos 𝜃𝑍 = sin𝜙 sin 𝛿 + cos𝜙 cos 𝛿 cos𝜔 
(2.2) 

The solar altitude angle (α) is the angle of incidence of sun's rays on a horizontal plane at the 

specified location. The zenith angle and solar altitude angle are complementary.   

 𝜃𝑍 + 𝛼 =
𝜋

2
 

(2.3) 

The solar azimuth angle (Az) is the angle is the angle on the tangential plane between the 

projection of sun rays and the due south on the tangential plane. Westward angle is designated 

as positive. The mathematical expression for the solar azimuth angle is as follow 
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sin 𝐴𝑧 =

cos 𝛿 sin𝜔

cos 𝛼
 

(2.4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The solar incidence angle (θi) is the angle between the sun's rays and the normal on the striking 

surface. The angle on incidence depends on the tilt of the surface. 

 For a horizontal plane angle of incidence angle (θi) = zenith angle (θz) 

For tilted surfaces the angle of incidence can be derived as. 

 cos 𝜃𝑖 = sin𝜙 sin 𝛿 cos 𝛽 − cos𝜙 sin 𝛿 sin 𝛽 cos 𝐴𝑧𝑠

+ cos𝜙 cos 𝛿 cos𝜔 cos𝛽

+ sin𝜙 cos 𝛿 cos𝜔 sin 𝛽 cos𝐴𝑧𝑠

+ cos 𝛿 sin𝜔 sin 𝛽 sin𝐴𝑧𝑠 

(2.5) 

Where 𝛽 is the surface tilt angle from the horizontal and 𝐴𝑧𝑠  is the surface azimuth angle, the 

angle between the normal to the surface and true south, with westward designated as positive. 

Figure 2.7 illustrates the inter relation of the above discussed sun-earth angles.  

 

Figure 2-6: Altitude angle (α), Zenith angle (θz), and Azimuth angle (Az) 

 Source: www.itacanet.org 
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𝐴𝑍𝑆  

Figure 2-7 : The position of the sun relative to a tilted plane 
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2.2 Introduction to the solar irradiation fluctuations  
 

Solar electricity is dependent primarily on the solar irradiance, which has periodic and random 

variations. The periodic variations are caused by the relative motion of the sun that can be 

explained and predicted using solar geometry and terrestrial solar insolation correlations. The 

random variations result mostly from cloud cover and seasonal changes. Power output of a 

solar electricity system will vary with irradiation fluctuations. The sky can be generally 

categorized to sunny without clouds, sunny with clouds and rainy (overcast).  

 

 

Figure 2-8 Solar PV power generation vs time curves under three sky conditions 

 

The fluctuations are characterized by their time spans. Variations within a time span of a few 

seconds are caused by moving cloud cover. Though the fluctuations can reach 90% of the 

output the energy related to them is low due to the small time spans of the fluctuations. Only 

consistent fluctuations of energy that occur on a larger time period will transfer an effect to the 

hour scale.  Further fluctuations of this type are reduced when number of geographically spread 

PV systems are connected. The output variability of 1000MWp of dispersed 4kW residential 

PV systems have corresponded to a variability of 0.2% of the variability of a 1000MWp plant 
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at a single location [7]. Similar results were observed in a study conducted in 2012 Nagoya 

Japan [8]. 

 

 

 

 

 

 

 

 

 

 

 

The effect of overcast skies are rather significant in terms of instant power loss and time span. 

The effect is translated into a time span in the hour scale and changes the sinusoidal shape of 

the PV power curve.  

 

Figure 2-9 Geographical smoothening of collective solar power curve 
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Figure 2-10 Effect of sky condition change on PV power within a day 
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2.2.1 Weather seasons of Sri Lanka and climatic patterns 
 

Sri Lanka experience two monsoon seasons and two inter-monsoon periods. During all 

seasons an area of Sri Lanka gets rain. Annual rainfall is 2000mm with a range of 900-

5000mm. The seasons have a very significant effect on the solar energy irradiation. It is 

important to be aware of them. 

 

2.2.1.1 Northeast Monsoon (December to February) 

 

This period is characterized by lesser rainfall than of the other monsoon season. Rainfall is 

prominent in the North, Eastern slopes of hill country and the Eastern slopes of the Knuckles 

range. Since the winds blow across Asian landmass it is considerably colder. Therefore holds 

less moisture and forms less clouds. This period is characterized by cloud-free skies, sunny 

days and colder nights. During this time the earth passes through its perihelion (Closest point 

to the sun), the day length is shorter compared to July and August. Colombo receives a low 

rainfall less than 400mm 

 

 

Figure 2-11 Rainfall of NE monsoon 1200mm-200mm 
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2.2.1.2 First inter-monsoon period (March to April) 

Rainfall to Colombo slightly increases, and during this time Sri Lanka moves below the solar 

plane. Solar energy irradiation is high which cases increase in temperature during day. The 

high irradiance increases evaporation and promotes cloud formation. This movement effects 

the wind which were driven by the low pressure zone below Sri Lanka due to energy from the 

sun. Thunderstorm type of rain can be experienced during evening or afternoon.  Rainfall is 

less than the NE monsoon and the rain in predominantly to the west and south west region of 

the country. Colombo experience slightly higher rain compared to the NE monsoon coupled 

with more cloud cover. 

 

Figure 2-12 Rainfall distribution of first inter-monsoon 700mm -100mm 

2.2.1.3 Southwest monsoon (May to September) 

The solar plane is above Sri Lanka during this time. The energy influx causes low pressure and 

drives winds from the south towards the equator. The wind travels over the vast span of ocean, 

therefore it yields heights amount of rain. Rainfall is concentrated to the western and 

southwestern regions of the country. The rainfall starts with a peak and reduces exponentially 

towards the end of the period. Colombo experiences a rainfall in the range of 1500mm to 

1000mm. This five month period has several important incidences related to the motion of the 

sun relative to earth. The sun moves furthest to the north at noon in June. Earth is furthest from 

the sun in July, and August the sun is directly above Sri Lanka.  
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Figure 2-13 Rainfall distribution of SW monsoon 300mm-2000mm 

2.2.1.4 Second inter-monsoon season (October to November) 

The second inter-monsoon brings higher rainfall compared to the first inter-monsoon. 

Thunderstorm type of rain can be experienced during evening or afternoon.  Rainfall is 

predominantly to the west and south west region of the country. Colombo experience rainfall 

in the range of 1500-1000mm, coupled with high cloud cover. 

 

Figure 2-14 Rainfall distribution of inter-monsoon 1000mm-200mm 
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2.2.1.5 Seasonal Variation of Monthly Averaged Solar Irradiance 

With the change in seasons and position of solar path relative to the country Sri Lanka 

experiences the maximum irradiance in the months of March and April. There is a downward 

trend in irradiation tom April onwards. During the downward trend there are two local peaks 

in July Aug period and in October. Each peak is less than the predecessor 
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Figure 2-15 Variation of monthly average solar irradiance over the year 
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2.2.2 Effect of clouds on solar irradiation 
 

2.2.2.1 Introduction to classification of clouds 

A cloud is characterize by height, texture, shape, base color and appearance. The world 

Meteorological organization classifies clouds according to the distance to the distance from 

the sea level to the base of the cloud. This classification has three types of clouds [9]. 

2.2.2.2 High level clouds  

The cloud base is above 16,500 ft. High level clouds are mostly consisted with ice owing to 

the low temperatures at that height [9].  

2.2.2.2.1 Cirrus clouds 

These are white in color and has a fibrous appearance. The strand shapes stretch across the 

sky. These clouds have low opacity and white in color. Cirrus clouds indicate fair weather in 

the future [10].  

 

 

Figure 2-16 Cirrus clouds with fibrous texture source www.metoffice.gov.uk 

 

 

2.2.2.2.2 Cirrocumulus 

Cirrocumulus clouds consist large groups of white clumps called cloudlets that are neatly 

aligned. Cloudlets are made up of both water and ice. The water is at a temperature below 

zero degrees. Cirrocumulus clouds are formed when vertical currents meets a cirrus layer and 

condense creating cloudlets [10].  
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Figure 2-17 Cirrocumulus clouds www.metoffice.gov.uk 

 

 

2.2.2.2.3 Cirrostratus (CS)  

Cirrostratus are a transparent whitish veil of cloud. They cover a vast area of the sky up to 

hundred miles. Sun and moon can shine through creating a halo. Cirrostratus can be very 

small in thickness. Cirrostratus are formed in very stable conditions. Slow rising air caries 

vapor and condense to form Cirrostratus clouds. This type of rising air is generated by a 

forefront of a weather system. Their presence and movement of these clouds are an indication 

of moist weather within the 12-24 hours [9] [10].  

 

 

Figure 2-18 Cirrostratus clouds www.metoffice.gov.uk 
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2.2.2.3 Mid-level clouds  

 

The cloud base is in the range of 6500 to 16500 ft. These clouds comprises of mostly of water 

droplets [9].  

2.2.2.3.1 Altocumulus:  

Altocumulus are white or grey in color and appear as a sheet or layer of patched clouds with 

shading. There are composed of rounded masses that are regularly arranged. There is visible 

contrast within the cloud. These are contrasts are caused by the rounded masses of clouds that 

are called cloudlets. Altocumulus clouds can be formed by breaking up of Altostratus cloud 

layers, or under mild turbulent rising air currents. Altocumulus are arranged in an ordered 

fashion similar to Cirrocumulus. They can be differentiated by considering the fact that 

Altocumulus clouds have white or grey shaded masses within the cloud and Cirrocumulus are 

uniform in color [10]. 

 

Figure 2-19 Altocumulus clouds www.metoffice.gov.uk 

 

2.2.2.3.2 Altostratus (As) 

Altostratus clouds are mid-level clouds and spread as a uniform sheet or layer covering vast 

spans of the sky. Altostratus has a grey or bluish color and they vaguely lets sun light pass 

through. It doesn’t cause any precipitation but indicates oncoming rain storms. They form from 

descending cirrostratus clouds that grow in thickness. Altostratus clouds have a tendency to 

absorb more moisture and grow into Nimbostratus clouds [10].  
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Figure 2-20 Altostratus clouds www.metoffice.gov.uk 

 

 

2.2.2.4 Low level clouds 

The cloud base is below 6500, contain water, block sunlight and can bring precipitation.  

2.2.2.4.1 Stratus cloud (ST)  

Stratus in Latin means layer or sheet. Stratus are a grey or white layer of cloud that covers the 

sky. They don’t support a high moisture content. Therefore doesn’t contribute to significant 

rain. Stratus clouds form in stable atmospheric conditions. The water vapor condense when 

breezes raise cool, moist air over colder land or ocean surfaces. These clouds have a variety of 

thicknesses and opacity [10]. 

 

Figure 2-21 Stratus Clouds www.metoffice.gov.uk 
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2.2.2.4.2 Stratocumulus (SC) 

 

A stratocumulus cloud is a low level cloud formed by breaking up of a stratus cloud layer. 

Since stratus clouds ae formed in stable atmospheric conditions, the formation of stratocumulus 

clouds signifies an instability and the shape of the cloud is not uniform owing to being created 

from instability. (Base of these clouds are lumpy). Color varies within the cloud, usually grey 

or whitish sheet or layer composed of rounded masses or rolls. These clouds can produce only 

a slight precipitation. Rather they are a signal of a larger change on the horizon [10].  

 

Figure 2-22 Stratocumulus Clouds www.metoffice.gov.uk 

 

2.2.2.4.3 Nimbostratus (NS) 

 

This is the standard rain cloud. Nimbus refers to rain and stratus refers to sheet or layer in 

Latin. They are formed very close to the ground level and base is well below the 6500 ft mark 

for low level clouds. Definite sign of precipitation. Nimbostratus are grey flat cloud with little 

color variation [10].   

 

Figure 2-23 Nimbostratus Clouds www.metoffice.gov.uk 
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2.2.2.4.4 Cumulous 

Cumulus clouds are separated from each other. They can be seen as individual cauliflower 

shaped heaps of clouds.  These are the characteristic white fluffy clouds seen on sunny days. 

These clouds are formed by condensation of vapor in rising convection currents therefore have 

a heaped shape, which gives it the name cumulus which in Latin means heap. The top of 

cumulus clouds are brilliant white under the sun, while their base is relatively dark [10]. 

 

 

Figure 2-24 Cumulus Clouds www.metoffice.gov.uk 

 

 

 

2.2.2.4.5 Cumulonimbus (CB)  

Cumulonimbus loosely translates to heaped rain cloud. It is a very dense heavy cloud that grows 

vertically. Though base is below 6500ft its top reach to the upper part of the troposphere. The 

shape of the top take a characteristic anvil shape owing to the high winds at the top flattening 

the cloud head. Cumulonimbus are associated with heavy rain and thunderstorms. The base of 

the cloud is often dark like a cumulus cloud. 

Cumulonimbus clouds are grown from smaller cumulus clouds. These clouds grow vertically 

through condensation of moisture in convection currents. The large energy dissipated in 

condensation adds up and these clouds contain massive amount of energy comparable to 

numerous atomic bombs. A Cumulonimbus brings isolated short duration heavy rain [9] [10]. 
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Figure 2-25 Cumulonimbus clouds www.metoffice.gov.uk 
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2.2.2.4.6 Visual evaluation of cloud types 

 

Figure 2-26 Visual evaluation of cloud types, International Cloud Atlas WMO 
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2.2.2.5 Cloud induced irradiation fluctuations 

 

The effect of clouds on solar irradiance depends on  

 Cloud cover  

 Cloud type 

 Cloud thickness 

 Altitude angle of the sun 

 

2.2.2.5.1 Effect of cloud cover on irradiation 

Studies prove conclusively that solar irradiance is greatest at sun lit locations with partly 

clouded skies. It is absolutely vital that the location is not in the shaded area by the cloud. 

Following table compares the average effect of cloud cover (in Octas) and altitude angle on 

solar irradiance (W/m2). Such increments are caused by reflection of radiation by clouds. The 

reflection increases with cloud cover but decreases above 4 Octas as direct radiation passing 

through is reduced [11].  

 

Table 2-1 Analysis of variation of solar radiation on degree of cloud cover and altitude 

angle by Dorota Matuszko in Krakow, Poland 2004-2007 

 

At higher altitude angles and lower cloud cover there is little variation of irradiation. Further 

at higher altitudes the direct solar irradiation component is large. Therefore as cloud cover 

reaches 7-8 there is a sharp drop in global irradiance since a significant direct component is 

eliminated [11].  
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Figure 2-27 Variation of irradiance with cloud cover and solar altitude angle 

 

2.2.2.5.2 Effect of cloud type 

The effect of cloud genera on transmission of solar radiation differ and similar trends can be 

seen for data from around the globe, but exact comparisons and accurate interpretations have 

proved to be difficult [11].Yet the general trends are of useful knowledge in forecasting. 

 

Table 2-2 Percentage of radiation intensity variation with cloud type and solar altitude 

angle for Krakow- Poland 2004-2007 
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Layered clouds types (stratus) such as Nimbostratus, Altostratus, and Stratocumulus cause the 

largest deviations in irradiance. Clouds with vertical growth such as cumulus and 

cumulonimbus clouds cause lower irradiance loss provided the sun’s disk is not covered. 

Further cirrus clouds causes the least drop in global irradiance since they account for a large 

portion of scattered radiation [11]. To further examine the permeability of different cloud types 

24h irradiance data for single genre clouded skies have been compared. Similar studies have 

been done over different time spans by Robinson P J in 1977; Estupinan J G and Raman S in 

1996; Kuchinke C and Nunez M in 1999 [11]. Following table is the results of analysis by 

Dorota Matuszko for data from Krakow Poland. Permeability is compared to a similar day with 

equal cloud cover and equal cloud genre.   

 

Table 2-3 Transmission of solar radiation by cloud genre analysis by Dorota Matuszko 

for Krakow Poland 2004-2007 
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2.3 Mathematical models for solar irradiation and PV power 

forecasting 
 

The distributed nature of solar energy plants coupled with the impact of weather such as rain 

and clouds have on the consistency of the solar resource, creates unique challenges. The 

distributed solar generation is invisible to system control. While the load can be forecasted with 

significant accuracy the inaccessibility to real time energy production data and time variability 

of the production has caused a rapid rise in solar resource and PV energy production 

forecasting. There are many companies that have made commercial institutions that have made 

this their prime venture.  

 

The final outcome of forecasting is the solar energy of a power plant. Depending on the 

algorithm used this could be a single step process or two step process.  

 Direct forecast of solar power output. 

 Two step process of solar irradiance forecast and solar power forecast in sequence 

 Solar power prediction methods are generally characterized as follow Physical models and 

Statistical models. Each has its merits and complications.  

 

2.3.1 Physical methods of forecast  
Physical models explicitly model physical atmospheric phenomenon to predict irradiance using 

numerical weather prediction (NWP) models or sky images.  

2.3.1.1 Numerical weather prediction (NWP)  

NWP method uses several global weather models to generate forecasts of atmospheric 

variables such as rainfall, wind, temperature etc. These parameters are then used to forecast the 

solar irradiation. NWP has a forecast horizon of 6 hours. NWP require very powerful 

computers as three-dimensional models of the atmosphere and oceans are used to predict the 

weather based on current weather. Due to high computational loads the NWP models have 

relatively coarse resolution, with grid spacing in 50km-90km range. Mesoscale NWP models 

cover limited area but have higher resolution. Daily weather forecasts are from NWP tools. 

Since these are numerical models, the result validation is very important. This is done by 

comparing multiple NWP results. Combining NWP results in know and ensemble forecast and 

improves accuracy. [12]  
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2.3.1.2 Cloud imagery  

The second group of physical solar power prediction uses cloud images to predict cloud 

movement, and the predict irradiance into the future at a particular geographic site. Cloud 

imagery has better performance over NWP forecasts in shorter timeframe under six hours 

ahead. Total sky imaging (TSI) devices and satellite cloud images are used as methods of 

gathering cloud data.  

A TSI takes and overhead image which is processed to generate a forecast using velocity, 

opacity, size of shadow of the cloud, etc. A sky imager can cover 5-15 km2 of sky depending 

on the cloud presence, therefore can cover multiple solar plants. TSI has a prediction range 

below 30 mins, and cannot detect clouds beyond this time horizon. TSI method is best for short 

term power fluctuations. [13]    

 

 

Figure 2-28 Image of the complete sky take from a TSI system 

 TSI has better spatial resolution and higher sampling frequency compared to satellite images. 

Given that TSI images are limited by locations, images from geostationary satellites can be 

used which are available for the entire globe. The opacity of the clouds in satellite images and 

positioning in consequent images are used to estimate irradiance. Satellite based forecasting is 

the best for intraday timeframes of 1 to 6 hrs [13].  

Physical models can be further improved with statistical analysis. Historical Similar Mining 

method is one such method .Numerical weather predictions (NWP) tools coupled with a 

database of historical weather data and power production of a photovoltaic system is used in 

historical similar mining method. The model uses the weather forecasting for a defined time 

frame and corresponding historical real power production to find similar conditions within the 
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database. The similar historical conditions are used to arrive at a spot prediction for the PV 

plant output. Recent advancements in NWP have aided in the success of this method 

 

 

2.3.2 Statistical methods of forecast  
Statistical approaches predict irradiance based on past data. The database is used for training 

and statistical analysis. A persistence forecast is a basic statistical approach to predict the future 

output from a solar plant. Past time series data is used to forecast solar plant power output in 

the future, with minor adjustments based on the sun’s position in the sky. Purely statistical 

forecasting is not widely regarded as a modern solar power prediction scheme. However, 

hybrid approaches make use machine learning or advance statistical techniques to increase 

performance of past data based forecasting methods.  

Statistical approaches to solar power predictions directly forecast power output rather than 

going through the two steps of forecasting irradiation followed by forecasting power.  Their 

starting point is a training dataset that contains a variety of inputs that could include NWP 

outputs, ground station or satellite data, historic solar plant production data etc. The dataset is 

used to train models such as autoregressive or artificial intelligence models that produce a 

forecast of solar plant output under future conditions. The future conditions could be from 

physical models like NWP forecasts [13].  

Best practices adopt a hybrid of the two approaches. Physical models are used for irradiance 

forecasting, which is then used as input to solar plant simulation to predict power output. Using 

past data this forecast is subjected to statistical post-processing to improve performance and 

suitability to a specific location or power plant. Having multiple stages could create a cascading 

of forecasting error in to the next. But that is not the case. Each step has multiple forecasts from 

several models (i.e. weather from several NWP models) and a combined forecast is created, 

which is passed to the next step. This ensures higher accuracy and removes model deficiencies.   
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2.3.2.1 Persistence method 

This approach is considered as a native predictor. It is extensively used for forecasting 

meteorological parameters [14], [15].This is also known as moving average method. The 

parameter in the next time step is considered to be the average of the values within a chosen 

time window. 

For n number of time steps of size k (Sec) total time is T=nk 

𝑃𝑡+𝑘 = (
1

𝑛
) (𝑃𝑡 + 𝑃𝑡−𝑘 + 𝑃𝑡−2𝑘 +⋯+ 𝑃𝑡−𝑘 + 𝑃𝑡−(𝑛−1)𝑘) 

𝑃𝑡+𝑘 = (
1

𝑛
) (𝑃𝑡 + 𝑃𝑡−𝑘 + 𝑃𝑡−2𝑘 +⋯+ 𝑃𝑡−𝑘 + 𝑃𝑡−(𝑇−𝑘)) 

𝑃𝑡+𝑘 = (
1

𝑛
)∑𝑃(𝑡 − 𝑖)

𝑇−𝑘

𝑖=𝑜

 

Moving average is considered to be very effective in predicting solar energy production in short 

forecasting windows of below few hours [16].  

The model accuracy will decrease drastically as the forecasting horizon increase. Moving 

average is considered the base predictor, and the success of other prediction schemes are 

evaluated compare to the persistence approach. [17]  

 

2.3.2.2 Auto Regression model (AR) 

This model presumes the forecasted parameter values of the previous time steps can have a 

linear relationship with the parameter value of the immediate time step. The number of time 

steps can be defined. The regression is similar to multivariable regression. F statistic is 

evaluated to establish the significant of the model while t statistic is evaluated for the 

significance of each coefficient of the variables in the linear relationship 

𝑃𝑡 = 𝑎0 + 𝑎𝑡−1𝑃𝑡−1 + 𝑎𝑡−2𝑃𝑡−2 + 𝑎𝑡−3𝑃𝑡−3 +⋯+ 𝑎𝑡−𝑘 𝑃𝑡−𝑘 

Moving average model (MA) 

Value of a parameter can be expressed linearly using the value of the previous time step. This 

linear expression would have an error.   

𝑃𝑡 = 𝜖1+𝑎𝑡−1𝑃𝑡−1 
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𝑃𝑡−1 = 𝜖2+𝑎𝑡−2𝑃𝑡−2 

𝑃𝑡−2 = 𝜖3+𝑎𝑡−2𝑃𝑡−2 

If the error values are random (normal distribution) these error terms can be used for 

forecasting. Random error terms are known as white noise terms. 

𝑃𝑡 = 𝜇 + 𝜃1𝜖1 + 𝜃2𝜖2 + 𝜃3𝜖3 +⋯+ 𝜃𝑘𝜖𝑞 

2.3.2.3 Auto regressive moving average (ARMA) 

ARMA has two elementary sections namely Auto regressive (AR) and moving average (MA). 

The predicted variable is considered to be correlated to its past values hence auto regressive. 

The second portion is the MA method. The p,q constants are known as order of AR model and 

order of MA model. Which dictates how many previous values are considered in each case. 

𝑃𝑡 = (𝑎0 + 𝑎𝑡−1𝑃𝑡−1 + 𝑎𝑡−2𝑃𝑡−2 +⋯+ 𝑎𝑡−𝑘 𝑃𝑡−𝑝) + (𝜇 + 𝜃1𝜖1 + 𝜃2𝜖2 +⋯+ 𝜃𝑘𝜖𝑞) 

ARMA is suited for forecasting parameters that vary uniformly about the mean value which is 

time independent (Stationary time series). This is proved to have better performance when an 

underlying correlation is present in the time series. ARMA shows better performance than 

persistence models [17].  

 

2.3.2.4 Auto Regressive Moving Average with Exogenous inputs. (ARMAX) 

 

ARMA method is not facilitated to process exogenous inputs i.e. weather data at each time 

step. ARMAX method provides this facility it improves the performance of the scheme 

significantly [18].  

Simulations done in USA with actual PV output data as exogenous inputs have yielded 

satisfactory results in short forecasting horizons of 1-2 hr [19].  

Along with AR and MA components another exogenous input is introduced. Following is the 

formula for the ARMAX method. The input is di and number of time steps considered for the 

exogenous input is considered as b.  

𝑃𝑡 = (𝑎0 + 𝑎𝑡−1𝑃𝑡−1 + 𝑎𝑡−2𝑃𝑡−2 +⋯+ 𝑎𝑡−𝑘 𝑃𝑡−𝑝) + (𝜇 + 𝜃1𝜖1 + 𝜃2𝜖2 +⋯+ 𝜃𝑘𝜖𝑞)

+ (𝜂0 + 𝜂1𝑑1 + 𝜂2𝑑2…+ 𝜂𝑏𝑑𝑏) 
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2.4 Artificial Neural Networks (ANN) 
 

2.4.1 Introduction 
 

A neural network is a mean of establishing a correlation between several governing and 

governed parameters based on a database of both predicted and corresponding governing data. 

The mathematical model takes cue from nature and functions analogous to a network of 

neurons. Artificial Neural Networks are a powerful tool that brings the learning ability of 

machines to establishing complex correlations. Most of recent advances in machine learning 

applications attribute to the advances in processing power of computers that enabled 

sophisticated neural networks.  

The idea initiated in 1943 when mathematician Walter Pitts and neurologist Warren McCulloch 

published their work on a model of the functioning of neurons. The intention was to understand 

the functioning of the brain and a simple neural network was modeled as an electric circuit 

considering the analogues behavior.  

Donald Hebb theorized in his book “The Organization of Behavior” (1949) that learning is the 

consequent strengthening of connections between neurons with repeated practice. As the 

processing power of computers increased, it became possible to run a model of a neural 

network.   

First real world application was from Stanford University in 1959. A neural network named 

MADALINE. It was an adaptive filter that could eliminate echoes on phone lines. This 

technology is still functional to date.  

Though research was slow on neural networks, the interest was reinvigorated in 1982 by a 

scientist named John Hopfield form Caltech with his publication at the National Academy of 

Sciences USA. He was instrumental in the mathematical analysis of the ANNs. The power of 

neural networks was identified internationally and research were expedited. During the last 

decade machine learning and artificial intelligence have grown in leaps and bounds, giving 

machines the ability to communicate, learn and invent. Notable landmarks in the recent past 

were the accomplishments of Google AI, Facebook AI and Tesla AI. From simple features like 

recognizing a picture on social media to self-learning and self-driving cars, ANNs have proved 

to be a defining point in human civilization. 
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Key advantage of ANNs is the ability to establish nonlinear correlations with high degree of 

accuracy [20].  

The resulting model is adaptable and will modify with the availability of real-time data. The 

optimizing functions related to ANN training is based on numerical methods thus suits 

computer based processing.   

 

2.4.2 Fundamentals of Neural Networks 
 

The figure shows a basic make up of a neuron. The inputs come from synapses and each 

synapse has a weight. The function of the neuron body is to multiply each input with the 

corresponding weight and sum up the values. The bias is an input with a unit weight. The result 

is passed through an activation function. The resulting output can act as the input to a 

consequent neuron. 

 

 

Figure 2-29 Single neuron of an artificial neural network 

 

𝑣𝑗 = ∑𝑥𝑖  𝑊𝑗𝑖
𝑖

+ 𝑏𝑗 

𝑦𝑗 = ϕ (vj)  
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The activation function could have several forms 

Threshold Function 

𝑣𝑗 ≥ 0 → 𝑦𝑗 = 1 

𝑣𝑗 < 0 → 𝑦𝑗 = 0 

The response in binary in nature. This is also known as the McCulloch-Pitts model named after 

the scientist who first published the concept of neural network model. 

 

Sign function 

𝑣𝑗 ≥ 0 → 𝑦𝑗 = 1 

𝑣𝑗 < 0 → 𝑦𝑗 = −1 

 

Liner function 

𝑣𝑗 ≥ 𝑙1 → 𝑦𝑗 = 1 

𝑙2 < 𝑣𝑗 < 𝑙1 → 𝑦𝑗 = 𝑘𝑣𝑗  

𝑣𝑗 < 𝑙2 → 𝑦𝑗 = −1 

 

Hyperbolic function 

𝑦𝑗 = tanh (𝑎𝑣𝑗) 

Sigmoid function 

𝑦𝑗 =
1

1 + 𝑒(−𝑎𝑣𝑗)
 

0 < 𝑎 < ∞ 

 

A neural network has an input neuron layer and an output neuron layer. In-between the input 

and output layers are hidden layers. The number of hidden layers define the type of neural 

network. An ANN with no hidden layers can only represent linear separable functions. Single 

hidden layer ANNs can model function with continuous mapping between inputs and outputs.  

Multi-layer ANNs facilitate deep learning.  
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2.4.3 Solution of a single hidden layer ANN 
 

 

Figure 2-30 Single hidden layer neural network structure 

 

Numbering for an ANN with 2 neuron input layer, 12 neuron hidden layer and a 1 neuron 

output layer. 

𝑊𝑠𝑡𝑎𝑟𝑖𝑛𝑔 𝑛𝑒𝑢𝑟𝑜𝑛−𝑒𝑛𝑑𝑖𝑛𝑔 𝑛𝑒𝑢𝑟𝑜𝑛
(𝑙𝑎𝑦𝑒𝑟 𝑛𝑢𝑚𝑏𝑒𝑟)

 

 

Figure 2-31 Nomenclature of synaptic weights of a neural network 
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A neural network has n number of inputs and results in one output. The data set associated with 

the ANN has an input data matrix which would have m instances of n inputs and a 

corresponding target variable data matrix of m instances. The hidden layer has p number of 

neurons 

Input data 

[𝑋]𝑚 𝑋 𝑛 =

(

 
 

𝑋11 𝑋12 ⋯ 𝑋1𝑛
𝑋21 𝑋22 ⋯ 𝑋2𝑛
𝑋31
⋮
𝑋𝑚1

𝑋32
⋮
𝑋𝑚2

⋯ 𝑋3𝑛
⋱ ⋮

⋯ 𝑋𝑚𝑛)

 
 

 

Target data 

[𝑌] 𝑚𝑋 1 =

(

 
 

𝑌1
𝑌2
𝑌3
⋮
𝑌𝑚)

 
 

 

 

Each neuron of the input layer is connected to each neuron of the hidden layer. Resulting in np 

number of connections, equal number of weights. The weights are expressed in a matrix such 

that weights related to the neurons of the first layer appear in the same column. The purpose of 

this is to facilitate the activity of the hidden layer can be expressed as the matrix multiplication 

of the input matrix and weight matrix. 

𝑊𝑠𝑡𝑎𝑟𝑖𝑛𝑔 𝑛𝑒𝑢𝑟𝑜𝑛−𝑒𝑛𝑑𝑖𝑛𝑔 𝑛𝑒𝑢𝑟𝑜𝑛
(𝑙𝑎𝑦𝑒𝑟 𝑛𝑢𝑚𝑏𝑒𝑟)

 

 

[𝑊(1)]
 𝑛𝑋 𝑝

=

(

 
 
 
 

𝑊11
(1)

𝑊12
(1)

𝑊13
(1)

. . 𝑊1𝑝
(1)

𝑊21
(1)

𝑊22
(1)

𝑊23
(1)

. . 𝑊1𝑝
(1)

𝑊31
(1)

:

𝑊𝑛1
(1)

𝑊32
(1)

:

𝑊𝑛2
(1)

𝑊33
(1)

⋯ 𝑊1𝑝
(1)

⋮ ⋯ ⋮

𝑊𝑛3
(1)

⋯ 𝑊𝑛𝑝
(1)
)
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Activity of the hidden layer is [Z(2)]. Each column of the Z matrix has the activity of each 

neuron of the hidden layer, while each row corresponds to each observation of the input data 

set. 

 

[𝑍(2)]
𝑚𝑋𝑝

= [𝑋]𝑚 𝑋 𝑛𝑋 [𝑊
(1)]

 𝑛𝑋 𝑝
  

Output of the hidden layer is gained by passing the activity matrix Z through activation 

function  

[𝑎(2)]
 𝑚𝑋 𝑝

= 𝜙 ([𝑍(2)]
𝑚𝑋𝑝

) 

 

Similar steps can be taken for the output layer for which the output matrix  [a(2) ]mxp is the 

input. The weight matrix will be of size px1 taking into account that there is only one neuron 

in the output layer.  

 

[𝑊(2)]
 𝑝𝑋 1

=

(

 
 
 
 

𝑊11
(2)

𝑊21
(2)

𝑊31
(2)

⋮

𝑊𝑝1
(2)
)

 
 
 
 

 

 

Activity of the output layer is [Z(3)]. Since there is only one output neuron Z is a column matrix. 

Each row of [Z(3)] corresponds to each observation of the input data set. 

 

[𝑍(3)]
𝑚𝑋1

= [𝑎(2)]
𝑚 𝑋 𝑝

𝑋 [𝑊(2)]
 𝑝𝑋 1

 

The i th term of Z(3)  is 

𝑍𝑖
(3) =∑𝑎(2)(𝑖, 𝑘) ∗  𝑊(2)(𝑘, 1)

𝑝

𝑘=1

 

Output of the Output layer is gained by passing the activity matrix Z through activation function  

[�̂�]
 𝑚𝑋 1

= 𝜙 ([𝑍(3)]
𝑚𝑋1

) 

 

We can see that the output of the network is dependent of the weights of each synapse. The 

ANN has (np+p) number of weights. By optimizing these weights we can reduce the error 

between the output of the ANN [�̂�] and the target data [𝑌].  The error is calculated as the 
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difference between the output and target data. This error is used to create a cost function, which 

can be optimized with respect to the values of the weights.    

 

𝐽 =  ∑
(𝑌𝑖 − 𝑌�̂�)

2

2

𝑚

𝑖=1

 

 

With the large number of weights, the optimization can be very tedious and processing power 

consuming. Even modern super computers would not be able to follow a brute force algorithm 

by considering all the combinations between the weights to evaluate the one with the lowest 

error. Therefore other algorithms have been used to achieve the optimizations. Gradient decent 

method is the most widely used algorithm for this purpose.  

𝑑𝐽 =  
𝜕𝐽

𝜕𝑊(1)
𝑑𝑊(1) +

𝜕𝐽

𝜕𝑊(2)
𝑑𝑊(2) 

 

𝜕𝐽

𝜕𝑊11
(2)
=
𝜕∑

(𝑌𝑖 − 𝑌�̂�)
2

2
𝑚
𝑖

𝜕𝑊11
(2)

= −∑(𝑌𝑖 − 𝑌�̂�

𝑚

𝑖=1

)
𝜕𝑌�̂�

𝜕𝑊11
(2)

 

Since  

[�̂�]
 𝑚𝑋 1

= 𝜙 ([𝑍(3)]
𝑚𝑋1

) 

 

𝜕𝐽

𝜕𝑊11
(2)
= −∑(𝑌𝑖 − 𝑌�̂�

𝑚

𝑖=1

)
𝜕𝜙(𝑍𝑖

(3))

𝜕𝑍𝑖
(3)

𝜕𝑍𝑖
(3)

𝜕𝑊11
(2)
   

The vertical position of Z elements correspond to each observations. Therefore ith term 

stands for the ith observation.  

Since the  i th term of Z(3)  is 

𝑍𝑖
(3) =∑𝑎(2)(𝑖, 𝑘) ∗  𝑊(2)(𝑘, 1)

𝑝

𝑘=1

 

For 𝑊11
(2); 𝑘 = 1 

𝜕𝑍𝑖
(3)

𝜕𝑊11
(2)
= 𝑎(2)(𝑖, 1) 
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𝜕𝐽

𝜕𝑊11
(2)
= −∑(𝑌𝑖 − 𝑌�̂�

𝑚

𝑖=1

)
𝜕𝜙(𝑍𝑖

(3))

𝜕𝑍𝑖
(3)

𝑎(2)(𝑖, 1) 

 

 

Similarly for W21 
(2)   

𝜕𝐽

𝜕𝑊21
(2)
= −∑(𝑌𝑖 − 𝑌�̂�

𝑚

𝑖=1

)
𝜕𝜙(𝑍𝑖

(3))

𝜕𝑍𝑖
(3)

𝜕𝑍𝑖
(3)

𝜕𝑊21
(2)
  

𝜕𝐽

𝜕𝑊21
(2)
= −∑(𝑌𝑖 − 𝑌�̂�

𝑚

𝑖=1

)
𝜕𝜙(𝑍𝑖

(3))

𝜕𝑍𝑖
(3)

𝑎(2)(𝑖, 2) 

 

 

For Wp1 
(2)   

𝜕𝐽

𝜕𝑊𝑝1
(2)
= −∑(𝑌𝑖 − 𝑌�̂�

𝑚

𝑖=1

)
𝜕𝜙(𝑍𝑖

(3))

𝜕𝑍𝑖
(3)

𝑎(2)(𝑖, 𝑝)  

(

 
 
 
 
 
 
 
 

𝜕𝐽

𝜕𝑊11
(2)

𝜕𝐽

𝜕𝑊21
(2)

𝜕𝐽

𝜕𝑊31
(2)

⋮
𝜕𝐽

𝜕𝑊𝑝1
(2)
)

 
 
 
 
 
 
 
 

= (−)

(

 
 
 
 
 
 

(𝑌1 − 𝑌1)̂ 𝜙1
(3)′
𝑎(2)(1,1) + (𝑌2 − 𝑌2)̂ 𝜙2

(3)′
𝑎(2)(2,1) + ⋯+ (𝑌𝑚 − 𝑌𝑚 )̂ 𝜙𝑚

(3)′
𝑎(2)(𝑚, 1)

(𝑌1 − 𝑌1)̂ 𝜙1
(3)′
𝑎(2)(1,2) + (𝑌2 − 𝑌2)̂ 𝜙2

(3)′
𝑎(2)(2,2) + ⋯+ (𝑌𝑚 − 𝑌𝑚 )̂ 𝜙𝑚

(3)′
𝑎(2)(𝑚, 2)

(𝑌1 − 𝑌1)̂ 𝜙1
(3)′
𝑎(2)(1,3) + (𝑌2 − 𝑌2)̂ 𝜙2

(3)′
𝑎(2)(2,3) + ⋯+ (𝑌𝑚 − 𝑌𝑚 )̂ 𝜙𝑚

(3)′
𝑎(2)(𝑚, 3)

(𝑌1 − 𝑌1)̂ 𝜙1
(3)′
𝑎(2)(1,4) + (𝑌2 − 𝑌2)̂ 𝜙2

(3)′
𝑎(2)(2,4) + ⋯+ (𝑌𝑚 − 𝑌𝑚 )̂ 𝜙𝑚

(3)′
𝑎(2)(𝑚, 4)

(𝑌1 − 𝑌1)̂ 𝜙1
(3)′
𝑎(2)(1,5) + (𝑌2 − 𝑌2)̂ 𝜙2

(3)′
𝑎(2)(2,5) + ⋯+ (𝑌𝑚 − 𝑌𝑚 )̂ 𝜙𝑚

(3)′
𝑎(2)(𝑚, 5)

⋮

(𝑌1 − 𝑌1)̂ 𝜙1
(3)′
𝑎(2)(1, 𝑝) + (𝑌2 − 𝑌2)̂ 𝜙2

(3)′
𝑎(2)(2, 𝑝) + ⋯+ (𝑌𝑚 − 𝑌𝑚 )̂ 𝜙𝑚

(3)′
𝑎(2)(𝑚, 𝑝))

 
 
 
 
 
 

 

 

Let [] be a mx1 matrix with that indicates a scaled error for each observation 

 

[𝛿]𝑚𝑋1 = (

𝛿1
𝛿2
⋮
𝛿𝑚

) = −

(

 
 

(𝑌1 − 𝑌1)̂ 𝜙1
(3)′

(𝑌2 − 𝑌2)̂ 𝜙2
(3)′

⋮

(𝑌𝑚 − 𝑌𝑚)̂ 𝜙𝑚
(3)′
)
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(

 
 
 
 
 
 
 
 

𝜕𝐽

𝜕𝑊11

(2)

𝜕𝐽

𝜕𝑊21

(2)

𝜕𝐽

𝜕𝑊31

(2)

⋮
𝜕𝐽

𝜕𝑊𝑝1

(2)
)

 
 
 
 
 
 
 
 

=

(

  
 

𝑎(2)(1,1) 𝑎(2)(2,1) 𝑎(2)(3,1) … 𝑎(2)(𝑚, 1)

𝑎(2)(1,2) 𝑎(2)(2,2) 𝑎(2)(3,2) … 𝑎(2)(𝑚, 2)

𝑎(2)(1,3)
⋮

𝑎(2)(1, 𝑝)

𝑎(2)(2,3)
⋮

𝑎(2)(2, 𝑝)

𝑎(2)(3,3) … 𝑎(2)(𝑚, 3)
⋮

𝑎(2)(2, 𝑝)
…

⋮

𝑎(2)(𝑚, 𝑝))

  
 

(

 
 
(𝑌1 − 𝑌1)̂ 𝜙1

′

(𝑌2 − 𝑌2)̂ 𝜙2
′

⋮
(𝑌𝑚 − 𝑌𝑚)̂ 𝜙𝑚

′
)

 
 

 

 

(

 
 
 
 
 
 
 
 

𝜕𝐽

𝜕𝑊11
(2)

𝜕𝐽

𝜕𝑊21
(2)

𝜕𝐽

𝜕𝑊31
(2)

⋮
𝜕𝐽

𝜕𝑊𝑝1
(2)
)

 
 
 
 
 
 
 
 

= [
𝜕𝐽

𝜕𝑊(2)
] = ([𝑎(2)]

𝑚𝑋𝑝
)
𝑇
( [𝛿]𝑚𝑋1) 

 

A similar approach can be taken to evaluate differential coefficient [
𝜕𝐽

𝜕𝑊(1)] of the cost 

function for the hidden layer. 

 

[
𝜕𝐽

𝜕𝑊(1)
] = −∑(𝑌𝑖 − 𝑌�̂�

𝑚

𝑖=1

)
𝜕𝜙(𝑍𝑖

(3))

𝜕𝑊𝑖
(1)

 

 

[
𝜕𝐽

𝜕𝑊(1)
] = −∑(𝑌𝑖 − 𝑌�̂�

𝑚

𝑖=1

)
𝜕𝜙(𝑍𝑖

(3))

𝜕𝑍𝑖
(3)

𝜕𝑍𝑖
(3)

𝜕𝑊(1)
 

 

𝑍𝑖
(3) =∑𝑎(2)(𝑖, 𝑘) ∗  𝑊(2)(𝑘, 1)

𝑝

𝑘=1

 

𝜕𝑍𝑖
(3)

𝜕𝑎𝑖
(2)
= 𝑊(2)𝑇 
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[
𝜕𝐽

𝜕𝑊(1)
] = 𝛿(3)

𝜕𝑍𝑖
(3)

𝜕𝑎𝑖
(2)

𝜕𝑎𝑖
(2)

𝜕𝑊(1)
 

[
𝜕𝐽

𝜕𝑊(1)
] = 𝛿(3)𝑊(2)𝑇

𝜕𝑎𝑖
(2)

𝜕𝑊(1)
 

[
𝜕𝐽

𝜕𝑊(1)
] = 𝛿(3)𝑊(2)𝑇

𝜕𝑎𝑖
(2)

𝜕𝑍(2)
𝜕𝑍𝑖

(2)

𝜕𝑊(1)
 

[
𝜕𝐽

𝜕𝑊(1)
] = 𝛿(3)𝑊(2)𝑇

𝜕𝜙(𝑍𝑖
(2))

𝜕𝑍𝑖
(2)

𝜕𝑍𝑖
(2)

𝜕𝑊(1)
 

[
𝜕𝐽

𝜕𝑊(1)
] = 𝑋𝑇𝛿(3)𝑊(2)𝑇

𝜕𝜙(𝑍𝑖
(2))

𝜕𝑍𝑖
(2)

 

 

 

Using [
𝜕𝐽

𝜕𝑊(1)]  𝑎𝑛𝑑 [
𝜕𝐽

𝜕𝑊(2)] the gradient of the cost function at each W(1) and W(2) combination 

can be assessed. The starting point is an arbitrary set of values for the weights. The initial values 

are incremented in the direction of the maximum descent of the error. The gradient is evaluated 

for the new set of weights and the process is repeated until the minimum error is reached.  

2.4.4 Training validation and testing an artificial neural network 
 

A neural network can learn in many methods. Such as Error correlation learning (Back 

propagation by gradient decent method, Memory based learning, Hebbian learning, 

competitive learning, Boltzmann learning [21] . Each method has types of problems they are 

suited for. Back propagation of error is the most widely used method for forecasting.  

Training or learning phase of a neural network is the process of optimizing the weights of the 

synapses based on past data, such that the error is minimum. The method is well defined and 

the current computer processors can execute the numerical methods at great speed. A common 

misconception is that accuracy of a model is the most difficult aspect to achieve. In reality with 

sufficient well defined data an ANN can reach 99% of accuracy with ease. This is so prevalent 

that model overfitting the data is extreme that should be avoided in the training process. A 

model that over fits the data is less likely to give and accurate value for a new data point. The 

ability to extend the model to new data accurately is known as generalizability of a model. 
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Generalizability is a very important characteristic of performance of an ANN, and ensures the 

purpose of its existence.  

Validation of an ANN is assuring generalizability of the model. There are many ways of 

attaining this purpose. The most common method of maintaining generalizability is by using a 

randomly chosen portion of the historical data to evaluate the model at each optimizing cycle 

of synapse weights. This portion of data is known as the validation data set and it’s not used in 

the process of training. With each optimization cycle the error for the training data and 

validation data will drop. Overfitting is identified when the training error drops and validation 

error increase for a set number of cycles. The default in Matlab neural networks is six cycles.  

The k-fold method is an extension of the random selection of validation data. The data is first 

partitioned into k number of randomly chosen sets of equal size. As in the random method one 

set is used to validate and (k-1) number of sets are used to train. This process is repeated k 

times until energy subset has become the validation set.   

Another set of randomly chosen data is set aside as test data. This data set is not used for 

training or validation. It is used to establish the goodness of fit. If the test data and model output 

are significantly different there are some parameters that should be included as inputs  
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2.4.5 Applications of neural networks in similar scope 
 

Artificial neural networks have been successfully implemented in the scope of solar energy 

forecasting [22] .A study was carried out to predict solar irradiation for upcoming 24 hrs based 

on the irradiation of last 24 hrs. This is a direct forecasting of irradiance using past irradiance 

as inputs. A multi-layer (two hidden layers) ANN was trained on NREL Solar Radiation 

Research Laboratory (SRRL) data. The model is able to avoid overfitting and predict 

irradiation accurately [23] 

Forecasting power output of grid connected solar plants is done by predicting irradiance. A 

study was carried out to use an ANN with multilayer perceptron model which had a forecast 

horizon of 24hrs. Inputs to the model were solar mean irradiation and ambient temperature of 

the past hours.  Data set was in the time frames of July 1st 2008 to May 23rd 2009 and 

November 23rd 2009 to January 24th 2010. The location of the study Trieste, Italy (latitude 45 

40'N, longitude 13 46'E). The model reached correlation coefficients of 98-99% for sunny days 

and 94-96% for cloudy days [24].  

There is research carried out on including the Aerosol Index in the input data to a back 

propagation ANN along with irradiation data of previous hours. It has been shown that with 

the aerosol index the ANN can produce better results for a forecasting horizon of 24 hrs [25].  

 

The relationship between meteorically parameters and solar irradiance could be different in 

different types of weather. This concept has been tried out where three separate neural networks 

were trained for three weather conditions i.e. Sunny, partly cloudy and overcast. The data test 

site was from southern Italy,  

Advance neural networks like Bayesian neural networks (BNN) have been incorporated to 

estimating daily global solar irradiation. The input set comprises of weather data such as 

ambient temperature, humidity, sunshine hours etc. BNN have shown higher performance over 

the classical neural networks and empirical correlations [26]. Wavelet analysis is used to 

preprocess the sample data set for the ANN. Accuracy of forecast can be improved by wavelet 

analysis prior to training of the neural network [27].  
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2.4.6 Methods of evaluating model performance 
 

There are numerous methods of evaluating performance of a model. The predominantly used 

steps are 

 Test for correlation coefficient 

 Test for error percentage distribution statistics 

 Test for randomness of error 

 

2.4.6.1 Test for correlation coefficient and coefficient of determination (𝑹𝟐 ) 

The regression coefficient is a very important and basic statistic used for this purpose. It is a 

measure of the amount of variance captured by the model compared to the actual.  

Observation  -yi 

Model fit  -fi 

 

Mean of observed data: 

�̅� =
1

𝑛
∑𝑦𝑖

𝑛

1

  

Sum of squares (SS)  

Total sum of squares (SStot): 

𝑆𝑆𝑡𝑜𝑡 =∑(𝑦𝑖 − �̅�)
2

𝑛

1

 

Reggression sum of squares (SSreg): 

𝑆𝑆𝑟𝑒𝑔 =∑(�̅� − 𝑓𝑖)
2

𝑛

1

 

 

Residual sum of squares (SSres): 

𝑆𝑆𝑟𝑒𝑠 =∑(𝑦𝑖 − 𝑓𝑖)
2

𝑛

1
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𝑆𝑆𝑡𝑜𝑡 = 𝑆𝑆𝑟𝑒𝑔 + 𝑆𝑆𝑟𝑒𝑠 

𝑅2 =
𝑆𝑆𝑟𝑒𝑔

𝑆𝑆𝑡𝑜𝑡
= 1 − (𝑺𝑺𝒓𝒆𝒔/𝑺𝑺𝒕𝒐𝒕) 

 

 

Figure 2-32 Total sum of squares and regression sum of squares comparison 

 

The coefficient of determination in following ranges imply the nature of the correlation [28] 

𝑅2 < 0.3 𝑁𝑜𝑛𝑒 𝑜𝑟 𝑣𝑒𝑟𝑦 𝑤𝑒𝑟𝑎𝑘 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛  

0.3 < 𝑅2 < 0.5  𝑤𝑒𝑎𝑘 𝑜𝑟 𝑙𝑜𝑤 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛  

0.5 < 𝑅2 < 0.7 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑜𝑖𝑛  

𝑅2 > 0.7 𝑆𝑡𝑟𝑜𝑛𝑔 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛  

Following diagram shows the successful implementation of a linear model for the observed 

data. 
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Figure 2-33 Linear model fit with R2>99% 
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2.4.6.2 Test for error percentage distribution statistics 

 

Percentage error is a measure of accuracy of the model. For large data groups mean error 

percentage is considered. 

Residual = Observation – model  

Error% = Residualx100/observed 

−10% < 𝑀𝑒𝑎𝑛 𝐸𝑟𝑟𝑜𝑟 % < 10% 

 

2.4.6.3 Test for randomness of errors 

 

If the model is exhaustive of all relationships between the input parameters and output 

parameters there should not be any correlation among the residual terms. If the residual terms 

are showing a pattern i.e. sinusoidal, it means a sinusoidal relationship has been left out of the 

model, therefore making the model incomplete. The first method to graphically analyze the 

error terms. They should be random without any noticeable pattern.  
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Figure 2-34 Residuals appear random without a pattern 
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Randomness of error suggests that there is no autocorrelation within the error terms.  

Durbin-Watson statistic is a method of establishing the presence of autocorrelation in a data 

set.   

𝑑 =
∑ (𝑒𝑖 − 𝑒𝑖−1)

2𝑛
𝑖=2

∑ (𝑒𝑖)2
𝑛
𝑖=1

 

 

Durbin Watson statistic is larger than 1 and closer to 2 suggest the errors are not auto correlated.  

Randomly distributed data would show a normal distribution. Therefore the mean of residuals 

will be zero and the histogram should be symmetric about zero. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The QQ plot compares the Z score of a distribution with the Z scores of a standard normal 

distribution. It a measure to evaluate if the error distribution is normal. The Z scores of the 

error terms closely follow the standard normal distribution values.  

 

 

  

Figure 2-35 Histogram of errors with peak frequency at zero 
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Chapter 3 Research Approach 
 

3.1 Introduction 

The study is aimed at developing a relationship between selected meteorological parameters to 

solar electricity generation of a system. An artificial neural network was employed to predict 

the fluctuations caused by weather conditions in solar electricity generation. Initial step of 

identifying inputs to the model was by statistically analyzing the correlation between 

meteorological parameters and solar electricity generation. Data was collected from 

Meteorological Department of Sri Lanka for Colombo (6.9° N, 79.8° E). The data available 

were hourly measurements. Therefore the complete model is in hourly based variations. 

Training and validation of the neural network was done on a data set from 2016 January to 

December.  

 

3.2 Development and training of a neural network 
 

3.2.1 Identification of input parameters 
The fluctuations in hourly scale in solar electricity is attributed to irradiance, rainfall and 

cloud cover. The significance of each input is analyzed statistically. 

3.2.1.1 Statistical analysis 

 

Table 3-1 Monthly total energy variation with monthly rainfall average cloud cover and 

monthly insolation 

Month 

Energy 

kWh 

Rain 

mm 

Avg cloud 

cover 

Solar 

radiation(MJ/m2) 

Jan 36586.80 848.90 4.21 582.27 

Apr 42036.02 2416.70 5.00 688.61 

May 29220.16 9781.20 6.48 457.09 

Jun 34395.80 1623.70 6.26 531.89 

Jul 36652.23 639.60 6.00 579.70 

Aug 38214.81 9.50 5.74 625.67 

Sep 36657.91 377.00 5.95 584.41 

Oct 31311.99 3040.70 5.77 523.56 

Nov 31661.73 5262.40 6.28 463.60 

Dec 36411.91 2146.30 4.76 555.34 
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3.2.1.1.1 Correlation between monthly total rain fall to monthly total solar energy 

       
 

       
 

Regression Statistics      
 

Multiple R 0.713985202      
 

R Square 0.509774869      
 

Adjusted R Square 0.448496727      
 

Standard Error 2793.585968      
 

Observations 10      
 

       
 

ANOVA       
 

  df SS MS F 

Significance 

F  

 

Regression 1 64922751.61 64922751.61 8.319032806 0.020377438   

Residual 8 62432980.5 7804122.562    
 

Total 9 127355732.1        
 

       
 

  Coefficients 

Standard 

Error t Stat P-value Lower 95% Upper 95% 

 

Intercept 37691.1166 1207.942748 31.2027343 1.21027E-09 34905.59563 40476.63757  

X Variable 1 

-

0.908812688 0.315092425 

-

2.884273358 0.020377438 

-

1.635417123 

-

0.182208252 
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Figure 3-1 Monthly solar PV energy output with monthly rainfall 
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The correlation coefficient is 0.71. Which is sufficient to assume a correlation between monthly 

total solar energy to the monthly total rain. Therefore an analysis of variance is done and the F 

statistic is calculated.  

H0 : Coefficients do noy significantly differ from zero Regression model is not significant   

H1 : Coefficients significantly differ from zero. Regression model is significant 

 

H0 : Model is not significant   

H1 : Model is significant 

 

From the Anova table it’s evident that the significance of the calculated F statistic is 0.02 which 

less than 5%. Therefore, the null hypothesis is rejected. It can be concluded that under a 

confidence level of 95% there is a significant correlation between the two variables. 
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3.2.1.1.2 Correlation between monthly total irradiation to monthly total solar energy 

 

       

Regression Statistics      
Multiple R 0.962829055      
R Square 0.927039789      
Adjusted R Square 0.917919762      
Standard Error 1077.723359      
Observations 10      

       
ANOVA       

  df SS MS F 

Significance 

F  
Regression 1 118063831 118063831 101.6488054 7.98523E-06  
Residual 8 9291901.113 1161487.639    
Total 9 127355732.1        

       

  Coefficients 

Standard 

Error t Stat P-value Lower 95% Upper 95% 

Intercept 6462.017033 2882.017072 2.242185549 0.05523676 

-

183.9262537 13107.96032 

X Variable 1 51.59548565 5.117531978 10.08210322 7.98523E-06 39.79443575 63.39653555 
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Figure 3-2 Solar PV energy output with monthly average irradiation 
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The correlation coefficient is 0.96. Which is sufficient to assume a correlation between monthly 

total solar energy to the monthly total rain. Therefore an analysis of variance is done and the F 

statistic is calculated.  

H0 : Model is not significant   

H1 : Model is significant 

From the Anova table it’s evident that the significance of the calculated F statistic is 7.98523E-

06 which less than 5%. Therefore, the null hypothesis is rejected. It can be concluded that under 

a confidence level of 95% there is a significant correlation between the two variables. 
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3.2.1.1.3 Correlation between cloud cover and daily solar irradiation 

The effect on monthly solar electricity output obtained from data logged by inverters is not 

significant compared to other variables. The effect of cloud cover is at lower time scale. Cloud 

cover is a main cause of hourly and daily solar irradiance fluctuations.  

 

Regression Statistics      
Multiple R 0.726482058      
R Square 0.52777618      
Adjusted R 

Square 0.5114926      
Standard Error 0.182851528      
Observations 31      

       
ANOVA       

  df SS MS F 

Significance 

F  
Regression 1 1.08367008 1.0836701 32.411557 3.70793E-06  
Residual 29 0.96960576 0.0334347    
Total 30 2.05327584        

       

  Coefficients Standard Error t Stat P-value Lower 95% Upper 95% 

Intercept 1.587283099 0.173825469 9.131476 4.973E-10 1.231770097 1.942796102 

X Variable 1 -0.14987741 0.026326082 -5.6931149 3.708E-06 -0.20372029 

-

0.096034526 

 

The correlation coefficient is 0.72. Which is sufficient to assume a correlation between cloud 

cover and solar irradiation. Therefore an analysis of variance is done and the F statistic is 

calculated.  

H0 : Model is not significant   

H1 : Model is significant 

From the Anova table it’s evident that the significance of the calculated F statistic is 3.70793E-

06 which less than 5%. Therefore, the null hypothesis is rejected. It can be concluded that under 

a confidence level of 95% there is a significant correlation between the two variables. 
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3.2.1.1.4 Correlation between cloud cover and daily solar energy 

 

Regression Statistics      
Multiple R 0.70447      
R Square 0.496277      
Adjusted R 

Square 0.478908      
Standard Error 272.3127      
Observations 31      

       
ANOVA       

  df SS MS F 

Significance 

F  
Regression 1 2118686 2118686 28.57136135 9.71949E-06  
Residual 29 2150471 74154.18    
Total 30 4269157        

       

  Coefficients 

Standard 

Error t Stat P-value Lower 95% Upper 95% 

Intercept 2301.385 258.8706 8.890099 8.87191E-10 1771.935201 2830.834652 

X Variable 1 -209.566 39.20626 -5.34522 9.71949E-06 

-

289.7518701 

-

129.3802395 

 

 

The correlation coefficient is 0.7. Which is sufficient to assume a correlation between monthly 

total solar energy to the monthly total rain. Therefore an analysis of variance is done and the F 

statistic is calculated.  

H0 : Model is not significant   

H1 : Model is significant 

From the Anova table it’s evident that the significance of the calculated F statistic is 9.71949E-

06 which less than 5%. Therefore, the null hypothesis is rejected. It can be concluded that under 

a confidence level of 95% there is a significant correlation between the two variables. 
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3.2.1.1.5 Correlation between total solar energy and meteorological variables 

 

Regression Statistics      
Multiple R 0.936904621      
R Square 0.877790269      
Adjusted R Square 0.876551657      
Standard Error 90.73046271      
Observations 300      

       
ANOVA       

  df SS MS F 

Significance 

F  
Regression 3 17501808.88 5833936.294 708.6885741 1.0052E-134  
Residual 296 2436676.992 8232.016864    
Total 299 19938485.87        

       

  Coefficients 

Standard 

Error t Stat P-value Lower 95% Upper 95% 

Intercept 225.5754009 44.53032766 5.065657783 7.17436E-07 137.9392383 313.2115634 

X Variable 1 

-

0.032390189 0.020347002 

-

1.591890041 0.112476748 

-

0.072433307 0.007652928 

X Variable 2 -5.70160047 3.972514966 

-

1.435262175 0.152268206 

-

13.51955254 2.116351598 

X Variable 3 52.92568861 1.482517096 35.69988417 2.8135E-109 50.00807906 55.84329815 

 

 

The correlation coefficient is 0.93. Which is sufficient to assume a correlation between monthly 

total solar energy to the monthly total rain. Therefore an analysis of variance is done and the F 

statistic is calculated.  

H0 : Model is not significant   

H1 : Model is significant 

From the Anova table it’s evident that the significance of the calculated F statistic is less than 

5%. Therefore, the null hypothesis is rejected. It can be concluded that under a confidence level 

of 95% there is a significant correlation between the two variables. 
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3.2.2 Establishing time span for neural network      

Training and validation of the neural network was done on a data set from 2016 January to 

December. Neural networks were created and trained for the span of the whole year and another 

twelve for individual months. The aim was to establish if the monthly models could capture 

monsoon seasonal effects better than the annual model.  

Table 3-2 Correlation coefficient and mean error of monthly neural network models 

Time span R e_mean 

January 95.06948 -1.3213 

February 95.22771 0.60817 

March 92.2588 -9.89884 

April 94.04515 0.852014 

May 91.19639 -2.23707 

June 93.7885 -2.18534 

July 94.88098 1.551123 

August 96.70551 -0.93861 

September 96.96935 -0.11287 

October 90.01435 -0.25667 

November 95.17279 0.479164 

December 96.48266 1.55862 
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Performance statistics for the annual model 

Table 3-3 Correlation coefficient and mean error of annual neural network model 

Time span R Mean error 

Annual 94.26625 0.794578 
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The results of the model was compared to the actual data on following parameters  

 Error variation with time 

 Regression coefficient 

Though monthly models had better predictions they weren’t significantly accurate than the 

annual model. A model trained on a span of a year is more generalized and more advantageous 

in usability and ease of analysis. Therefore it was decided to continue the study with a single 

annual model. 

 

3.2.3 Design of the artificial neural networks 
 

The network has five inputs and one output (electricity generation in kWh). The number of 

neurons in the hidden layer is decided on following empirical formula, which states that the 

number of training observations must be of a factor of alpha of the number of weights in the 

network.  

 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 𝑁𝑖 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 𝑁𝑜 

𝑁𝑢𝑚𝑒𝑟 𝑜𝑓 ℎ𝑖𝑑𝑑𝑒𝑛 𝑛𝑒𝑢𝑟𝑜𝑛𝑠 𝑁ℎ 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = 𝑁𝑖 ∗ 𝑁ℎ + 𝑁ℎ ∗ 𝑁𝑜 = 𝑁ℎ(𝑁𝑖 + 𝑁𝑜) 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 = 𝛼 ∗  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 = 𝛼 ∗ 𝑁ℎ(𝑁𝑖 + 𝑁𝑜) 

𝛼~(2 − 10) 

Alpha is in the range of 2-10. As alpha increase the model becomes more generalizable but 

the accuracy will reduce [21] . Exact value for alpha is experimental on each case. The 

starting value for alpha is chosen as 𝛼 = 3. 

 

A typical month has 30 days and 390 observation points (13 per day from 6am to 6 pm). 

Since 30% of the data is used for validation and testing 273 points of observations are 

available for training of the ANN. The design of the ANN would differ with alpha as follow 
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Table 3-4 Variation of number of hidden layer neurons with alpha 

 

 

 

 

 

 

 

 

The following is a test on the number of neurons needed for modeling data from January 

2016. The number of observations for training is 283. The table has correlation coefficient 

values for each of training validation testing an overall stages of modeling.  

 

Table 3-5 Correlation coefficient of training validation testing and overall model with 

number of hidden neurons 

Neurons 5 6 7 8 10 12 16 18 25 30 

Training 90.92 95.97 95.58 91.65 93.93 95.3 96.21 96.37 97.57 97.01 

Validation 93.12 94.61 96.51 94.12 90.32 95.5 95.45 88.66 94.55 90.63 

Testing  86.25 91.91 93.26 89.56 90.69 94.85 93.81 94.27 92.8 90.98 

Overall 90.58 95.17 95.38 91.7 92.78 95.17 95.69 95.01 96.46 95.23 
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Figure 3-6 Correlation coefficient of training validation testing and overall model with number of hidden 
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The correlation coefficient of validation decreases as the number of neurons increase owing 

to the overfitting of the ANN. Further this cause the training correlation to increase as well. 

The best combination of accuracy and generalizability is at 12 neurons where alpha is equal 

to 4. This analysis was done on all months and they too resulted in optimum correlation 

coefficients at 12 neurons. Therefore a two-layer feed-forward network with 12 sigmoid 

hidden neurons and linear output neurons is used to for mapping using the available data. The 

first layer consists of input neurons, which connects via synapses to the second layer of 

neurons (hidden layer) and then via more synapses to the third layer, which includes the 

output neuron.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Input layer 5 inputs       Hidden layer   Output 

layer                  12 Neurons 

Figure 3-7 Structure of the artificial neural network for each 

month 
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Each neuron is connected with a synapse which has a weight. Notation is such that  

𝑊𝑠𝑡𝑎𝑟𝑖𝑛𝑔 𝑛𝑒𝑢𝑟𝑜𝑛−𝑒𝑛𝑑𝑖𝑛𝑔 𝑛𝑒𝑢𝑟𝑜𝑛
(𝑙𝑎𝑦𝑒𝑟 𝑛𝑢𝑚𝑏𝑒𝑟)

 

 

 

Figure 3-8 Synaptic weights nomenclature of the monthly neural network models 

 

The neural networks take in five inputs 

1. Rainfall (mm) 

2. Irradiation(MJ/m2) 

3. Morning cloud cover (Octas)  

4. Evening cloud cover (Octas) 

5. Hour number ( 6 am =1  6 pm=13) 

 

 The five inputs are mapped to the output of a 300kW solar PV system. 

3.2.4 Training neural network with data from existing solar PV project 
 

The network was trained with Levenberg-Marquardt backpropagation algorithm where the 

data is divided into three groups as follow to ensure accuracy coupled with generalizability. 

The annual hourly data set of 2016 has 3900 observation points.   
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Table 3-6 Allocation of data Training Validation and Testing sets 

Data group Percentage Number of observations 

Training data 60% 2340 

Validation data 20% 780 

Testing data 20% 780 

 

 

To ensure the generalizability of the model a considerable percentage (40%) of data was used 

to validate and test the model. Selecting data to these two groups is done randomly.  

The size of the hidden layer is decided by training multiple neural networks. The network 

with the best performance is selected. The hidden layer size was 15 for the best performing 

neural network. 

 

 

Figure 3-9 Overall correlation coefficient variation with number of hidden layer 

neurons for annual model 
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Training of a neural network is optimizing the synapse weights such that the Mean Squared 

Error over the whole input data is minimized. The optimization is done by gradient decent 

method. The solution converges and training is stopped at six consecutive increments of the 

validation error. The following figure shows the error variation with optimization iterations 

 

 

 

 

   

Figure 3-10 Convergence of mean square error with training 

iterations 

Figure 3-11 Error Histogram 
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 At convergence the MSE and correlation coefficient is as follow. 

Table 3-7 Mean square error and coefficient of correlation for training, validation and testing data sets 

Data group MSE R 

Training data 492.91 .944 

Validation data 529.24 .937 

Testing data 423.81 .951 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3-12 Regression of Training Validation and Testing 
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3.2.5 Validation of model  

Data from February of 2016 was not used in any of the training processes. They were left out 

to further test the generalizability of the neural network after training. The prediction using the 

trained model for February is as follow. The correlation coefficient between the target data and 

predicted is 93.92%. The first of the following graphs depicts that the model output closely 

follows the actual daily power cycles.  

 

 

Figure 3-13 Predicted power cycles to target cycles 

The following graph clearly shows the model output is in significant agreement with the 

target data. 

 

Figure 3-14 Comparison of prediction to target data 
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Analysis of error terms reveal that error terms are randomly distributed.   

 

 

Figure 3-15 Random distribution of error terms 

 

 

 

 

Figure 3-16 Histogram of residuals for February 
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3.2.6 Evaluation of adequacy and significance of the predictive model 
  

3.2.6.1 Analysis of the hourly error  

3.2.6.1.1 Hourly error distribution 

 

Outliers caused by maintenance outages, inverter tripping and power outages were found and 

eliminated. The eliminated data points are 

Table 3-8 Outlier data points 

Sorted e Day time 

-148.52 4/10/2016 11:00 

-125.64 5/30/2016 13:00 

-122.03 8/22/2016 11:00 

-116.52 10/18/2016 13:00 

-115.09 10/9/2016 11:00 

-112.97 1/15/2016 11:00 

-106.80 10/12/2016 11:00 

-100.80 7/29/2016 14:00 

 

Error between prediction and actual values were calculated. The error terms were classed as 

follow for further analysis.  

 

Table 3-9 Classed error terms 

Class 

low class upper  Freq class mark PDF Normal Z 

-113.04 -95.55985727 1 -104.2999 0.000257 -5.11475 

-95.5599 -78.0798097 17 -86.81983 0.004369 -4.26644 

-78.0798 -60.59976212 30 -69.33979 0.00771 -3.41812 

-60.5998 -43.11971455 82 -51.85974 0.021074 -2.5698 

-43.1197 -25.63966697 197 -34.37969 0.05063 -1.72148 

-25.6397 -8.159619394 603 -16.89964 0.154973 -0.87316 

-8.15962 9.320428182 1820 0.580404 0.467746 -0.02484 

9.320428 26.80047576 808 18.06045 0.207659 0.823477 

26.80048 44.28052333 267 35.5405 0.06862 1.671796 

44.28052 61.76057091 51 53.02055 0.013107 2.520114 

61.76057 79.24061849 11 70.50059 0.002827 3.368433 

79.24062 96.72066606 4 87.98064 0.001028 4.216752 
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The class mark of error terms were normalized and plotted to obtain the distribution 

of error. It is observed that the error terms have a symmetric distribution closely 

resembling a normal distribution. Further tests were done to establish this fact. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Descriptive statistics of the error distribution were calculated. The values suggest a normal 

distribution with Mean error percentage is 3.1%. Which is a favorable value for a significant 

model 

Table 3-10 Descriptive statistics of error term distribution 

Descriptive statistics of error 

  
Mean 1.092280668 

Standard Error 0.330333768 

Median 1.418776841 

Mode 0.288470185 

Standard Deviation 20.60552038 

Sample Variance 424.5874703 

Kurtosis 2.588083893 

Skewness -0.52386842 

Range 187.159949 

Minimum -95.71766717 

Maximum 91.44228183 

Sum 4250.06408 

Count 3891 
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Figure 3-17 Normalized distribution of error 
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3.2.6.1.2 Randomness of error 

Randomness of error suggests that there is no autocorrelation within the error terms. Durbin 

Watson statistic is evaluated for this purpose 

Durbin Watson statistic 

𝑑 =
∑ (𝑒𝑖 − 𝑒𝑖−1)

2𝑛
𝑖=2

∑ (𝑒𝑖)2
𝑛
𝑖=1

 

∑(𝑒𝑖)
2

3900

𝑖=1

= 1,666,450 

∑(𝑒𝑖 − 𝑒𝑖−1)
2 = 2563970

3900

𝑖=2

 

𝑑 = 1.54 

Since Durbin Watson statistic is larger than 1 and closer to 2, it can be determined that the 

errors are not auto correlated, therefore can be considered random. 

 

3.2.6.1.3 Normal distribution of error 

The QQ plot compares the Z score of a distribution with the Z scores of a standard normal 

distribution. It a measure to evaluate if the error distribution is normal. The Z scores of the 

error terms closely follow the standard normal distribution values.  
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Figure 3-18 Comparison of error distribution to standard normal curve 
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3.2.6.2 Comparison of predicted monthly total energy to actual monthly total energy 

 

Monthly total energy of the prediction and the actual were compared to establish the 

deviation. The results show a deviation between 2% to -4%. This error percentage is very 

favorable and is better than estimations done by commercial software.  

 

Table 3-11 Actual and predicted monthly total energy error percentage 

 

 

 

 

 

 

 

 

 

 

  

Month E_pre E_act (Epre- Eact )/Eact % 

Jan 37254.48 36586.80 1.8 

Apr 40355.08 42036.02 -4.0 

May 30778.61 30351.80 1.4 

Jun 34488.07 34903.67 -1.2 

July 35935.31 36652.23 -2.0 

Aug 37835.03 38214.81 -1.0 

Sep 35896.97 36657.91 -2.1 

Oct 31404.96 31311.99 0.3 

Nov 30840.86 31661.73 -2.6 

Dec 36758.59 36411.91 1.0 
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Figure 3-19 Predicted monthly total energy comparison with actual 

monthly total energy and error percentage 
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3.3 Calculate energy storage requirement under different 

operating schemes 

Upon creating a successful prediction scheme for solar electricity output, the energy storage 

requirement is calculated for an Energy Storage System (ESS) to mitigate fluctuations. 

Determining the energy storage requirement the ESS was done under the following 

smoothening schemes 

1. Controlled ramp rate scheme( Constant ramp, constant power, constant de-loading 

ramp)     

2. Moving average smoothening scheme 

 

3.3.1 Operation under controlled ramp rate 
  

This scheme controls the energy output of a system in three segmented as follow 

 Ramp up stage: Output increases at constant rate to reach a maximum 

 Constant stage: Output remains constant at maximum power 

 Ramp down stage: Output decreases at constant rate to reach a minimum 

 

 

 

Figure 3-20: Ramp rate control scheme 
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Ramping (kW/min) rate is an important parameters which effects the stability of the system. 

The frequency controlling machines respond to a ramping of an energy source in the system 

by de-loading and vice versa. The amount of power change required to change the system 

frequency by 1Hz for the Sri Lankan power system has an average value of 85MW/Hz. The 

value of the parameter is dependent on the combination of power plants dispatched at the 

time. Operating at a known constant ramp rate aids the stability of the power system. A 

controlled ramp rate has the following variables 

1. Ramp rate (R) 

2. Ramping time (t1) 

3. Constant power time (t2) 

4. Ramp down time (t3) 

Conditions of the ramp rate control method studied in the  

1. Constant ramping rate 

2. Ramp up time and ramp down time is assumed to be equal.  

3. Cycle time of the process is limited to 24 hr (Daily cycled) 

4. Starting time of the system operation is 6 am. 

5. Daily total energy of the controlled output is equal to the energy of the 

uncontrolled daily output 

 

 

 

Figure 3-21 Ramp rate control compared to uncontrolled PV power output for an day 
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When the normal output (Blue) is greater than the delivered power of the ramp rate controlled 

scheme, the excess energy is stored in an Energy Storage System (ESS). Similarly when the 

energy output requirement is less than the produced energy the ESS is discharged. When a 

zero reference is considered for the state of charge (SOC) of the ESS, charging results in 

positive SOC and discharging results in negative SOC. The maximum of the charging SOC 

and minimum SOC is the required energy storage capacity. (The study is limited to 

calculating the energy storage capacity and does not move ahead to designing an actual ESS, 

which would depend heavily on the chosen technology.) 

 

𝐸𝑆𝑆𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 𝑆𝑂𝐶𝑚𝑎𝑥 − 𝑆𝑂𝐶𝑚𝑖𝑛 

 

The parameters of ramp rate control scheme can be optimized such that the required the ESS 

capacity is minimized. Optimization limits are as follow 

1. Maximum output of RRC scheme <1.5x maximum normal output.  

2. Time of constant power output >0 to avoid a sudden shift from ramping up to 

ramping down stage 

3. Energy storage system is cycled every 24 hrs 

Following figure is an optimization process carried out for the 1st of August 2016. From the 

different paths a ramp rate controlled scheme can take the path which requires the least of 

energy storage is selected.  

 

Figure 3-22 Potential ramp rate controlled paths identified in the optimization program 
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The graph in red color represents the actual output of the system. The numerous trapezes are 

outputs of the optimizing iterations. For each of them the energy storage requirement is 

calculated, and the path which offers the smallest storage requirement is selected as the optimal 

path.  

The optimal path is the graph in blue color. The figure below shows the variation of the state 

of charge (SOC) of the energy storage system when following the optimum path. SOC is shown 

by the light blue graph and it has a reference of zero.  

 

Figure 3-23 Optimum ramp rate controlled path and variation of SOC of the storage 

system 

     

 

  



 

83 

 

 

 

3.3.2 Operation under moving average smoothening 
 

This power output control scheme controls the energy output of a system by smoothening 

based on moving average. The output is not as smooth as the ramp rate controlling scheme. 

Moving average window is selected such that the output energy profile is constrained by an 

upper limit to the hourly fluctuations. Actual power output typically shows fluctuations above 

20%. The fluctuations are limited to 15% by moving average smoothening. 
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Figure 3-24 Operation under moving average output control scheme 
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Chapter 4 Results and Discussion 
 

The research was aimed at establishing a neural network model to forecast the weather induced 

fluctuations in power output of a Solar PV power plant. The first step is to identify the input 

parameters. Power output of a solar electricity system is dependent on meteorological 

parameters.  

Through statistical analysis a linear correlations between monthly solar energy output and 

monthly rain was established with 95% confidence interval. The regression shows there is a 

negative correlation between monthly energy output (kWh) with monthly rain fall (mm) 

𝑌 = −0.9 𝑋1 + 37691 

A positive correlation exists between Monthly energy output (kWh) with monthly 

irradiation(kW/m2). The linear correlations established at 95% confidence interval. Correlation 

is as follow 

𝑌 = 51.59𝑋1 + 6462.01 

The effect of clouds on monthly solar energy output is not significant compared to other 

variables. The effect of cloud cover is at lower time scale. Cloud cover is a main cause of hourly 

and daily solar irradiance fluctuations and fluctuations in solar energy output of PV systems. 

The correlation is negative and is as follow.  

𝑌 = −209.56𝑋1 + 2301 

The effect of all three variables on solar energy output was established as 

𝑌 = 52.92𝑋1 − 5.70𝑋2 − 0.03𝑋3 + 225 

 

Y : Solar energy output 

X1  : Monthly Solar irradiation 

X2 : Monthly rainfall 

X3 : Monthly cloud cover 
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The artificial neural network was built and trained for a 300kW solar electricity system in 

Colombo for the year of 2016. The model fits the data with significant accuracy. Two separate 

methods of analysis were carried out. The first was to develop a separate ANN for each month. 

The results were compared to a model made for the complete year. The annual model is more 

generalizable since it’s trained validated and tested on a larger data set and easier to use in 

analysis. Further there is no significant advantage of the monthly models in terms of regression 

coefficient and mean error. Therefore developing a model for the complete year was selected. 

Performance of the neural network for the complete year of 2016 graphs. 

Figure 4-1 Monthly energy output successfully modeled by identified variables  
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Figure 4-2 Comparison of model agreement to the training, validation, testing and 

overall data sets. 

 

Model is validated by two methods. The first is by a randomly selected validation data set. The 

data and shows a very significant correlation coefficient of 0.94. The second method was by 

the excluded data set of February from the main data set . This data was not used for training 

and it is completely alien to the model. The correlation coefficient between the target data and 

predicted is 93.92%. Error percentage between predicted and actual total monthly energy 

generation is 1.6%. Therefore model is validated for generalizability.  
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The ANN model is evaluated for adequacy by analysis of error terms distribution. Error terms 

are distributed normally. Autocorrelation within error terms was evaluated by Durbin Watson 

statistic. Durbin Watson statistic for the error term distribution is close to 2. Therefore suggests 

error terms are random. 

Comparison between predicted total monthly energy and actual total monthly energy for 2016 

reviled the percentage difference was between -4% to 1.8% . Under these criteria it is evident 

that the neural network model is significantly accurate and generalizable. 

 

4.1 Evaluation of energy storage requirement. 
 

Forecasts of the neural networks were used to evaluate the energy storage requirement of two 

power output controlling schemes.  

1. Controlled ramp rate scheme( Constant ramp, constant power, constant de-loading 

ramp)     

2. Moving average smoothening scheme 

In the ramp rate control scheme numerous combinations of ramping rate (kw/h), ramping time 

and constant power output time were assessed to find viable combinations. The viable 

combinations were evaluated for the energy storage requirement of each and the one with the 

least energy storage requirement was selected as the optimum path for the day. This 

optimization was carried out over all the days of the year to create a vector of least energy 

requirement for each day of the year.  

Under the moving average smoothening scheme the energy storage requirement for each day 

was calculated with specified averaging window size.  

The following figures show the energy storage requirement for each day of the year under the 

ramp rate controlling scheme and moving average smoothening scheme after optimizations. 

The data is split into two graphs for ease. First graph consists 152 days of January April, May, 

June and July. Second graphs consists 148 days of August, September, October November and 

December. Maximum energy storage requirement for ramp rate control scheme is 146.2 kWh 

and Maximum energy storage requirement for moving average control is 62.2kWh 
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Figure 4-3 Energy storage requirement variation with time for ramp rate controlled 

scheme and moving average control scheme part 1 

 

 

Figure 4-4 Energy storage requirement variation with time for ramp rate controlled 

scheme and moving average control scheme part 2 

 

It is evident that the moving average smoothening scheme requires less energy storage than 

the ramp rate controlled method. Variations in the moving average method is less. Standard 

deviation of energy storage requirement is 5.6 kWh from a mean of 35kWh. The energy 

storage requirement is dependent on the averaging window size. Following graph shows that 

there is a linear relationship between averaging window size and energy storage requirement. 
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Figure 4-5 Mean energy storage requirement variation with averaging window size 

 

The ramp rate control method energy storage requirement has more dispersion and variations 

in its data. Therefore a frequency distribution analysis is more suited over selecting the 

maximum value as the design criteria. 

 

 

Figure 4-6 Histogram of energy storage requirement for ramp rate controlled scheme 
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The energy storage requirement is dependent on the following characteristics of the scheme. 

 Maximum allowable ramp rate ( RRmax) 

 Minimum allowed time of continuous power delivery( t2min) 

The following diagram shows the variation of required energy storage capacity under variable 

combinations of RRmax and t2min. The variation of energy storage requirement with t2min is 

quadratic under constant maximum ramp rate. As t2min increase there is more storage 

requirement and the system performs as a load shifting scheme.  

 As the maximum ramp limit is decreased there is a limit imposed on the variability of the 

system. This limitation must be enforced by the energy storage system. Therefore when RRmax 

decrease the energy storage requirement increase, resulting in the curve moving upwards. 

There is a change in curvature a well. As the maximum allowed ramp rate increase the effect 

of t2min diminish.   

 

 

Figure 4-7 Variation of energy storage requirement 
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From the frequency distribution of t2>0 and RRmax=40 it was observed that by considering 

only up to 95% of the days the energy storage requirement can be reduced by 25%. This is an 

important design criteria considering the high cost of energy storage.   

 

 

 

Figure 4-8 Cumulative probability of energy storage requirement under t2>0 and 

Rmax=40 condition 

 

 

This is a common tendency under all Rmax and t2min conditions. It is important to note that the 

gain in reduction of energy storage requirement comes at the cost of imposing operating limits 

on the system as well as reducing availability i.e if the storage requirement is selected for 95% 

of cumulative probability, there is a loss of 5% in availability.    

The relationship between Rmax and t2min was evaluated on the mean of the distribution at 

95% cumulative probability mark. The curves shows similar characteristics to the previous 

curves.   
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Figure 4-9 Variation of energy storage requirement for 95% of the days 
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Chapter 5 Conclusion and future work 
 

Artificial neural networks (ANN) can be used to successfully model and predict the output 

energy of a solar PV system using five input parameters. The resulting model was used to 

evaluate the energy storage requirement to control fluctuations of the power output. The neural 

network was trained to model the output of a 300kW solar PV system installed in Colombo. 

The mean of hourly energy output of the PV system during the period was 90.55kWh which 

accounted to a mean daily energy production of 1177 kWh. The ANN model proved to deliver 

forecasts with significant accuracy and generalizability. Correlation coefficients for training, 

validation and testing were 0.945, 0.948 and 0.939 respectively. Further validation was done 

using an isolated data set of a month which was not used in the process of training. Model was 

able to achieve a correlation coefficient of 0.93 for the isolated data set. Residual analysis 

confirmed the error terms were random and free of autocorrelation. Error terms were normally 

distributed with mean 1.09kWh and standard deviation of 20.06kWh.  

A direct mapping was established between meteorological parameters and power output of a 

solar PV system, as oppose to estimating solar irradiance. The training process maps physical 

properties of the system to the network provided a suitable structure is provided for the neural 

network. Therefore including inverter function, PV panel performance, orientation etc. in the 

model is not required in this approach.  

The model was used to evaluate energy storage requirement for two power output control 

schemes. First scheme evaluated was controlling of ramp rate. This method has a specified 

ramp up and ramp down rate, and a continuous power delivery period. By means of an 

optimizing algorithm the combination of parameters corresponding to the least energy storage 

requirement was established and the mean energy requirement was 15% of the average daily 

energy generation. The optimization was carried out in the rages of 15kW/h-40kW/h for ramp 

rate and 0-8 hr for constant power output time. Curves for energy storage requirement were 

developed under each operating condition. The second output control scheme evaluated is 

moving average smoothening. The energy storage requirement for moving average scheme is 

8% of the daily energy generation. 

 Ramp rate control while having better performance requires twice the energy storage capacity 

compared to the moving average scheme. It must be noted that imposing strict conditions on 
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maximum ramp rate and minimum continuous power delivery time will increase this 

percentage up to 50% of the daily energy generation. The effect of imposing restriction on 

operating parameters of the schemes were examined in detail.  

A common trend was identified by analyzing cumulative probability curves of energy storage 

requirements. For a small drop in availability of the energy storage a significant saving can be 

made on the energy storage capacity i.e. for a drop of 5% of availability a 25% reduction in 

energy storage requirement can be achieved under some operating conditions . This is a 

common tendency under all ramp rate (RRmax) limits and constant power delivery time limits 

(t2min ) . It is important to note that the gain in reduction of energy storage requirement comes 

at the cost of imposing operating limits on the system as well as reducing availability i.e. if the 

storage requirement is selected for 95% of cumulative probability, there is a loss of 5% in 

availability.    

The forecasting model is depended on meteorological parameters. With the advancement of 

weather prediction technologies, ANN can have more accurate inputs which can increase the 

accuracy of forecast. Considering a solar PV plant in operation, there is a limited number of 

years of power output data available to evaluate potential fluctuations, but weather data is 

available for a much longer time period. A neural network can use this data to estimate 

corresponding power output, which will give a wider time frame to evaluate potential 

fluctuations characteristic to the location.   

Knowledge of potential fluctuations can assist to control the output of the solar power plant. 

The study focuses on two control schemes. Simple ramp rate control scheme assures a known 

ramp up rate, ramp down rate and a constant power output time period. This knowledge is 

critical for the power system operator to stabilize the system. The second scheme uses moving 

average to smoothen the output by reducing drastic fluctuations.  

Neural networks are adapting systems to new developments and changes in the system such as 

degradation of inverter and panel efficiency or climate changes. With a continuously updating 

data stream the ANN can form a self-learning forecasting model. Operation of an energy 

storage system (ESS) can be assisted through a predictive model as well. Depending on the 

requirement of the system operator and the prediction of the model, an operator can take 

decisions on selecting the smoothening scheme i.e. Ramp rate control or Moving average and 

setting limits to maximum ramp rate, ramp up time, constant power delivery, ramp down rate 

and moving average window size. A group of power plants with the knowledge of the potential 
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output for the next 24 hrs can decide on specific output control schemes and use a shared energy 

storage optimally. A cluster of power plants that mitigate each other’s fluctuations have a 

higher inertia against instability.  

The results of the ANN model can be compared to other solar PV systems in close proximity 

to the 300 kWp solar PV system used for the research. By comparison adjustments for 

differences in static properties i.e. inverter characteristics, PV panel performance, orientation 

and etc. can be evaluated. Results of such a study would improve the versatility of the ANN 

modeling approach. It is important to note that artificial neural networks are data driven. There 

is a clear lack of access to meteorological data in Sri Lanka, which effects the performance of 

the model.  Increasing the time period of input data will greatly improve the accuracy and 

generalizability. Clouds are a major factor in determining fluctuations in solar energy. The type 

of cloud and cloud cover on an hourly basis (cloud profile) can be set as an input to increase 

accuracy. Incorporating satellite data, sky imaging data as inputs is an area where further study 

should be extended to. 

This study is structured to focus on a single solar PV system. The research can be further 

extended to modeling the combined effect of power fluctuations in multiple solar PV power 

systems geographically dispersed. A research of such nature can shed light to the effort of 

quantifying limits and effects of solar PV integration to the power system.  
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