APPLICABILITY OF CARBON PRICING INSTRUMENTS TO REDUCE ENERGY BASED CARBON EMISSIONS OF APPAREL SECTOR IN SRI LANKA

Thesis submitted in partial fulfilment of the requirements for the degree Master of Science by Research

T.L.W. Karunaratne

(178094R)

Degree of Master of Science by Research

Department of Building Economics

University of Moratuwa

Sri Lanka

July 2019

DECLARATION

Declaration, Copyright Statement and the Statement of the Supervisor

"I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature of the Student:	Date			
The above candidate has carried out research f supervision.	For the Masters thesis under my			
Signature of the Supervisor:	Date			

ABSTRACT

Global warming and subsequent climate change have been identified as critical global issues which need urgent and close attention. Nevertheless, addressing this has become a problem due to the direct relationship between development and greenhouse gas (GHG) emissions. However, with the introduction of Paris agreement, countries are trying to reduce GHG emission by using various emission reduction policy instruments. Price based emission reduction instruments are deemed to be effective in achieving emission reductions, as they induce emission reductions through price signals, and also generate revenues which can later be used. Carbon tax systems and emission trading schemes are identified as the most popular pricing instruments. However, implementation of carbon pricing instruments in not that common seen. Hence, this research focuses on identifying the applicability of carbon pricing instruments to reduce GHG emissions in apparel sector, which is also a highly energy intensive sector in Sri Lanka. Data collection was done through semistructured interviews and questionnaires. Data collected through questionnaire survey was analysed using Fuzzy Extended Analytic Hierarchy Process (FEAHP), while data collected through interviews were analysed through content analysis. A preliminary survey was done to validate literature findings, which was used in the questionnaire. Questionnaire survey was conducted to evaluate the response of apparel firms to carbon pricing instruments. When evaluating the response of firms, the importance given by firms to decision alternatives was analysed using FEAHP. Accordingly, investing in new technologies was found as the most important decision alternative for apparel firms with an importance weight of 0.24, while shifting cost to customers was found as the decision alternative with lowest importance with a weight of 0.17. From the expert interviews, it was found that the carbon pricing revenue should be used to programmes which targets emission reductions. Further, the expert interviews revealed that there could be barriers at organization level, sector level and national level when implementing a carbon pricing instrument. Hence, it was found that the necessary steps should be taken at all those three levels to overcome the barriers and implement a lasting carbon pricing instrument which is capable of achieving emission reductions.

ACKNOWLEDGEMENT

This research study would not have been possible without the assistance and dedication of numerous individuals and organizations. Therefore, I take this opportunity to convey my gratefulness to each and every one of them.

First and foremost, I would like to thank Dr. Thilini Jayawickrama, my research supervisor who has been helpful in numerous ways during my research study. Without for her guidance, this study would not have been completed. I am truly indebted to her for conveying her knowledge and experience to improve my study. My sincere gratitude is also extended to Head of the Department, Dr. Yasangika Sandanayake and research coordinator Dr. Sachie Gunathilaka for their support throughout the study. Further, I would like to thank Technical Officers Mr. A. Srithayannada Rajah and Mr. A.D. Waruna Vidya Adikari and all the other non-academic staff members of the Department of Building Economics.

It is also my duty to mention that this study is funded by Senate Research Committee of University of Moratuwa, under the grant number SRC/LT/2018/21.

I am greatly thankful for my family members, peers and friends for their support and dedication during this period.

TABLE OF CONTENTS

DE	CLA	RA	ΓΙΟΝ	i	
AB	STR	AC7	Γ	ii	
AC	KNO	OWL	EDGEMENT	iii	
LIS	T O	F FI	GURES	viii	
LIS	T O	F TA	ABLES	ix	
AB	BRE	VIA	TIONS	X	
1.0	Ι	INTRODUCTION1			
1	.1	Ba	ekground	1	
1	.2	Problem statement			
1	.3	Aim6			
1	.4	Objectives			
1	.5	Methodology6			
1	.6	Scope and limitations			
1	.7	Ch	apter breakdown	8	
2.0	L	ITE	RATURE REVIEW	9	
2	.1	Int	roduction	9	
2	.2	Ke	y principles of environmental economics	9	
	2.2	1	The circular flow model in economics	. 11	
	2.2	2	The Pigouvian principle	. 13	
2	.3	Inte	ernational agreements on global warming	. 14	
	2.3	.1	The Kyoto protocol (1997)	. 15	
	2.3	.2	Doha amendment (2012)	. 16	
	2.3	.3	The Paris agreement (2015)	. 16	
2	.4	Em	ission reduction policy instruments	. 17	

	2.4	.1	Carbon tax system	20
	2.4	.2	Emission trading system (ETS)	22
2	.5	Exi	sting carbon pricing initiatives in the world	26
2	.6	Dec	cision alternatives available for firms in response to carbon p	ricing
iı	nstru	ment	ts	29
	2.6	.1	Shifting cost to consumers	29
	2.6	.2	Shifting cost to suppliers	30
	2.6	.3	Adjusting inputs, outputs or production processes	30
	2.6	.4	Absorbing the additional costs	30
	2.6	.5	Investing in new technologies	30
2	.7	Car	bon pricing revenue utilisation	31
	2.7	.1	Funding carbon mitigation programmes	32
	2.7	.2	Using revenue to supplement government budgets	32
	2.7	.3	Reduction of other taxes such as income taxes	32
2	.8	Dra	wbacks of carbon pricing instruments	33
2	.9	Sri	Lankan apparel industry	34
2	.10	The	eoretical framework	35
2	.11	Sun	nmary	37
3.0	R	RESE	EARCH METHODOLOGY	38
3	.1	Intr	oduction	38
3	.2	Res	search design	38
3	.3	Res	search approach	38
3	.4	Res	search process	39
	3.4	.1	Initial study (literature survey)	40
	3.4	.2	Literature review	41
	3.4	.3	Preliminary survey	41

	3.4.	4	Detailed questionnaire survey	42
	3.4.	5	Expert opinion survey	43
3	.5	Dat	a analysis techniques	43
	3.5.	1	Content analysis	43
	3.5.	2	Fuzzy Extended Analytic Hierarchy Process (FEAHP)	44
3	.6	Cha	pter summary	50
4.0	R	ESE	ARCH FINDINGS	52
4	.1	Intr	oduction	52
4	.2	Fine	dings of the preliminary survey	52
	4.2.	1	Decision criteria considered by apparel firms when responding	to
	carb	on p	pricing instruments	52
4	.3	Eva	luation of level of importance of decision alternatives	53
	4.3.	1	AHP hierarchical structure	55
	4.3.	2	Normalised weights of decision criteria/ alternatives	56
	4.3.	3	Final overall weights of decision alternatives	58
	4.3.	4	Consistency of the pairwise judgement of each comparison matrix	59
4	.4	Fine	dings of expert interviews	60
	4.4.	1	Suitable revenue utilisation options in Sri Lanka	60
	4.4.	2	Barriers in implementing carbon pricing instruments in Sri Lanka	66
	4.4.	3	Strategies to overcome existing barriers towards the implementation	O
	carb	on p	pricing instruments	70
4	.5	Disc	cussion of results	76
4	.6	Upo	lated theoretical framework	79
4	.7	Cha	pter summary	81
5.0	C	oncl	usion and Recommendations	82
5	.1	Intr	oduction	82

5.2	Revisiting objectives	82
5.3	Contribution to knowledge	87
5.4	Recommendations to practitioners	88
5.5	Areas for further studies	88
6.0	References	90
7.0	Annexures	106
7.1	Fuzzy synthetic extent values	106
7.2	Minimum degree of possibility	107
7.3	Preliminary survey- Interview guideline	109
7.4	Questionnaire	112
7.5	Expert Opinion Survey- Interview guideline	123

LIST OF FIGURES

Figure 1: Chapter breakdown	8
Figure 2: Standard circular flow model	11
Figure 3: Extended circular flow model	12
Figure 4: Theoretical framework	36
Figure 5: Research process	40
Figure 6: Levels of AHP hierarchy	47
Figure 7: AHP hierarchy	55
Figure 8: Updated theoretical framework	80

LIST OF TABLES

Table 1: Jurisdictions which have implemented carbon pricing instruments
Table 2: Profile of respondents in preliminary survey
Table 3: Applicability of decision alternatives4
Table 4: FEAHP rating scale4
Table 5: Decision criteria considered by apparel firms when responding to carbo
pricing instruments5
Table 6: Profile of respondents in questionnaire survey
Table 7: Normalised weights of decision criteria
Table 8: Normalised weights of decision alternatives
Table 9: Final overall weights of decision alternatives
Table 10: Consistency of comparison matrices5
Table 11: Profile of respondents in expert interviews
Table 12: Suitable revenue utilisation options in Sri Lanka
Table 13: Barriers for the implementation of carbon pricing instruments in Sri Lank
6
Table 14: Strategies to overcome existing barriers towards implementation of carbo
pricing instruments

ABBREVIATIONS

AHP- Analytic Hierarchy Process

CEA- Central Environment Authority

CEB- Ceylon Electricity Board

CEYPETCO- Ceylon Petroleum Corporation

CFC- Chlorofluorocarbon

CSR- Corporate Social Responsibility

ETS- Emission Trading Scheme

FCM- Fuzzy Comparison Matrix

FEAHP- Fuzzy Extended Analytical Hierarchy Process

GHG- Greenhouse gas

HFC- Hydrofluorocarbon

NCPC- National Cleaner Production Center

NDC- Nationally Determined Contributions

PFCs- Perfluorocarbons

SAC- Sustainable Apparel Coalition

SEA- Sustainable Energy Authority

UNFCCC- United Nations Framework Convention on Climate Change