

ii

DECLARATION OF THE CANDIDATE AND SUPERVISOR

“I declare that this is my own work and this thesis/dissertation2 does not incorporate

without acknowledgement any material previously submitted for a Degree or Diploma in

any other University or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another person

except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and

distribute my thesis/dissertation, in whole or in part in print, electronic or other medium.

I retain the right to use this content in whole or part in future works (such as articles or

books).

Signature: Date:

The supervisor/s should certify the thesis/dissertation with the following declaration.

The above candidate has carried out research for the Masters/MPhil/PhD thesis/

dissertation under my supervision.

Signature of the supervisor: Date

iii

ABSTRACT

“DesignPlus” is an automated Software and Test Design tool which is capable of generate UML

diagrams, User scenarios and System level Test Cases for the given software requirement

specifications which is written in natural language. When it comes to software development life

cycle Software Design and Testing phases are required considerable high amount of time and

human effort which means it is cost to the Software project. In System designing there are some

diagrams needs to be drawn and user scenarios need to be written in order to improve the clarity

of requirement specification.

DesignPlus is capable of generating UML diagrams (Usecase Diagram) and user scenarios for the

given requirement specification in a way accelerate the Software Design phase. And also designing

Test cases also need be done in the Test phase of the software life cycle in order to do proper

testing on different levels. The developed system is capable of generating system level test cases

for the entered functional and non-functional requirement specifications. Technology has used for

the Process requirement specification is Natural Language Processing (OpenNLP). Taking

altogether I call this is an Integrated Software Design Accelerator since this maintains a link

between Software design and Test Design and also this accelerate the process of Software

development in a way to save time and reduce cost.

iv

ACKNOWLEDGEMENT

We have taken many efforts in this research. However, it would not have been possible

without the kind support and help of many individuals. We would like to extend our

sincere thanks to all of them. First, we are grateful to our project supervisor DR. Charith

Chitraranjan for his kind guidance, inspiration and constructive suggestions that were

helpful for me in the preparation of this project and as well as this document.

Finally, my thanks goes to my friends and parents who helped me in many ways, and

others who are not mentioned here, for the support and assistance provided in all the ways

to make this a successful project.

Thank you.

v

Table of contents

DECLARATION OF THE CANDIDATE AND SUPERVISOR ... ii

ABSTRACT ... iii

ACKNOWLEDGEMENT .. iv

List of figures .. vi

List of Tables .. vi

List of Abbreviations ... vii

1. INTRODUCTION .. 8

1.1 Background Context (Literature Survey).. 8

1.2 Research Gap ... 9

1.3 Research Problem .. 12

1.4 Research Objective .. 14

1.4.1 Implement an algorithm to match a set of certain grammar 14

1.4.2 Develop a tool which Provide Assistance to software test designers 15

1.4.3 Designing a tool to assist software testers .. 16

2 METHODOLOGY ... 17

2.1 Methodology .. 17

2.1.1 Addressing literature.. 23

2.1.2 Project development process .. 25

2.1.3 Feasibility study .. 25

2.2 Testing And Implementation ... 26

2.2.1 Software implementation .. 26

2.3 Research Findings .. 37

3 CONCLUSIONS AND RECOMMENDATIONS .. 38

4 REFERENCES ... 39

vi

List of figures

Figure 2-1 System Diagram .. 19

Figure 2-2 NLP Core Functionality.. 27

Figure 2-3 Grammar matching algorithm .. 28

Figure 2-4 getActor() method .. 29

Figure 2-5 getAction() method... 29

Figure 2-6 rules .. 30

Figure 2-7 Interface Home ... 31

Figure 2-8 : Interface for Browse ... 31

Figure 2-9 Content Loaded Interface ... 32

Figure 2-10 Clear all Prompt .. 32

Figure 2-11 : Results in the Right Corner ... 33

Figure 2-12 XML file ... 33

Figure 2-13 Actor Identification ... 35

Figure 2-14 Actors and function drawing algorithm .. 36

List of Tables

Table 1 :NLP functions .. 20

file:///C:/Users/janani.t.SLIITSTAFF/Desktop/Final%20Thesis_158253L.docx%23_Toc2876897
file:///C:/Users/janani.t.SLIITSTAFF/Desktop/Final%20Thesis_158253L.docx%23_Toc2876908

vii

List of Abbreviations

Abbreviation Description

Xml Extensible Markup Language

NLP Natural Language Processing

NL Natural Language

SDLC Software Development Life Cycle

IT Information Technology

UML Unified Modeling Language

CDAP Comprehensive Design & Analysis Project

SAX Simple API for XML

DOM Document Object Model

ID Identification

8

1. INTRODUCTION

1.1 Background Context (Literature Survey)

There are various software development approaches that are defined and designed and

used during the software development process, these approaches are also referred to

as “software development process models." (Such as Waterfall model, agile model and

etc.) To ensure success in software development processes, each process model

follows a particular life cycle. Software life cycle models describe the phases of the

software life cycle and the order in which those phases are executed. There are six

phases in the software life cycle model .They are

 Requirement gathering and analysis

 Design

 Implementation

 Testing

 Deployment

 Maintenance

User requirements are converted to system design, then code will be produced

considering the design created from the requirements. After the implementation it will

be tested, using different types of testing ways, against the requirements. When

building a Software, Requirements of the Client is main thing we should consider

about. Because if we build a software that does not fulfill the client requirement,

obviously that is going to be rejected.

When it comes to Testing very first thing is designing test cases for the various levels

of testing. Basically the test design do based on business requirements and it takes

considerable amount of effort and time. Here the one of major problem I have

identified is requirements can be change in the middle of implementation. So Business

9

Analyst has to change Requirement Specification document. After the change, every

next phase have to be change accordingly. Usually this is a redundant work and again

takes time and human effort. Because in each phase, changes have to be done manually.

The system I have developed mainly connect with Design and Test phases of the

software life cycle with the aim of accelerating the software life cycle by automating

the main task in the Design and Test phase. System consist with the five major views.

Once user open up the system user first directs to the home page of the system which

named as “Dashboard”. Dashboard is the place where user can create a project, get an

existing project to the working panel and view recent projects. Second view is

“Project” once user creates a project, they will be directed to the project view where

user can enter requirement specification and generate system actors and relevant

functionalities. “UML” is the third view of the system which is for generate UML

diagram like Use case diagram fourth view is “Scenario” where user can generate user

scenarios for the given requirement specifications fifth or final view is “Test” where

user can generate test cases as functional and non-functional test cases.

1.2 Research Gap

Because a proper system that meets this satisfactory level cannot be found yet. There

are some researches that can be found on Internet which are related to the domain of

this software. Shown below is how these researches are differing from ours.

In Novel Approach to Generate Test Cases from UML Activity Diagrams done by

Debasish Kundu and Debasis Samanta [5] they were using Activity diagrams to

generate test cases. In this case their major setback was, when considering the activity

diagrams, typically it carry a higher abstraction to the system and the functionality and

shows mostly the logical overview only. Therefore the information that can be

observable from activity diagrams is a bit more insufficient. Another problem is that,

their approach can only be used to find faults like synchronization faults or faults in

10

loop. It is also because of the insufficient information gatherable from an activity

diagram.

And there is another major drawback identified about their approach which is, their

system automates the process to derive test cases from activity diagrams but when it

comes to designing those activity diagrams they have lost the idea of automating a

process. So when the user has to design an activity diagrams in order to derive the test

cases, the user could get confused like why I have to design an activity diagram to get

my test cases when I can design test cases meanwhile. These mentioned problems will

not occur in the proposed system because first, when I derive regression level test cases

I am not relying on class diagrams alone or requirement specification alone, but I insist

on using the both requirement specification and use case diagrams so it’ll cover a larger

area of testing and the accuracy of the test cases will be at a higher level since those

are based on both requirement specification and use case diagrams.

The DrawPlus Application's NLP core will have following functionalities

 Actor identification

 This process is to identify the actors out and is defined under NLPCore module.

With the help of OpenNLP API, the Actor is taken out analyzing the requirements

given. The extractions is done by a large scale algorithm and a set of pre-defined

rules.

 Function identification

Belongs in the Major functionality criteria in NLPCore. Functions are referring to the

actions executed by each identified actor and are extracted according to the actor's

references with correspond to the pre-defined rules.

11

 Advance co-referencing

This functionality comes in the effort to maintain a higher accuracy to the output.

The textual content will scored for the Co-referensive expressions. The co-reference

are extracted with different set of rules.

 UML structure generation

The extracted actors and functions are passed into a XML file for further references.

Co-relation of each function and actor is also mapped into the XML which will be

used for the UML diagram generation section.

 Improved Accuracy

Rich Algorithms combined with state-of-the-art technology enables the Draw Plus to

enhance & reach a higher level of accuracy.

 Improved Efficiency

Each element in the given requirement is process by a complex large-scale algorithm

yet the unnecessary processing's are avoided to improve overall performance and

efficiency. The more accuracy the software produce, the higher the complexity it

gets.

12

1.3 Research Problem

There are so many problems with some existing software and manual

drawing.

 • Time Consuming

 • Hard working

 • System requirements may change quickly without informing

• Lengthy Requirements are difficult to read and remember

• It’s hard to find out one tool or software that can draw UML diagrams, user Scenarios

and test cases.

• Cost effective

Manual processing of reading requirements is very time consuming process. It takes

more time to update starting from first phase to last phase of software development

process when requirements are changing in the middle. In the IT industry business

analysis draws UML diagram in design phase by reading and remembering special

points which is mentioned in the requirement document. And also software testers re-

read that document and create test cases as well as the user scenarios in the testing

phase. Currently the Agile methodology is used from world popular software company

to small work group. In that process user scenarios are the basic inputs to create test

cases. User scenarios are that much important. And requirements are updated or added

from sprint to sprint in this methodology. Updating requirements are normally happed

in this process. In order to support that, diagrams and other stuffs should be

modernized. Reading same document by few people in several times is time

consuming. Another problem is in certain situation client may request to change

requirements, In that case according to those changes diagrams, user scenarios and

test cases should be updated. Nowadays there are some websites, software available

for the drawing Use case diagrams and user scenarios separately. To use those tools

13

business analyst need to have clear understanding in the given description before

he/she draw diagram. It is rare to find out a system to find, which can draw them

automatically. The problem with the currently available system is the accuracy level

of the output as well as there is difficult to find a system to develop user scenarios. If

available it can be provide a template to create user scenario instead of generating it.

Regression level test cases are more essential part of the testing phase. Why because it

is started as a first level of testing for a new software. Software development group

may have to create test cases mean while developing the software. The huge problem

is managing resources to do both tasks. While starting the development of software,

the requirements might be changed by client with day to day updates.

DrawPlus will basically works as an accelerator between the software requirement

specification and the relevant stakeholders like business analysts, test case designers

and requirement analysts. During this process a considerable amount of time and

resources are being spent by organizations because this process provide groundwork

for almost every other phases and process of the software development lifecycle. The

main research problem that I considered in this research is to develop a system that can

accelerate this process at least up to 75% with rich algorithms to enhance and provide

the outcome with a higher accuracy.

Other problem that was identified during the research time was, even though the all

test case designs are based on system requirement specifications there is no such

system which maintain a link between requirement specification and test cases. Reason

that I have to have a link between requirement specification and test cases is in any

phase of software life cycle, requirement specification can be changed and if those

changes were not properly communicated to the test designers there can be a miss

match between the requirement specification and written test cases.

14

1.4 Research Objective

1.4.1 Implement an algorithm to match a set of certain grammar

The algorithm takes a set of grammars and text phrase and searches for a possible

match. All these grammar can be identified by the rule number. The findings of the

algorithm is the rule number. Then the rule number is passed into particular methods

to acquire actors and functions.

 Implement algorithms to identify Actors and Functions

Two algorithms are implemented for extracting actor and extracting function.

The inputs for these methods are the output of the grammar matching

algorithm.

When the grammar number is passed the algorithm can the run necessaries to

filter out actor and their relevant action.

 Improve accuracy of the NLPCore results

The algorithm is not only producing an output but it has a greater accuracy.

Accuracy is gained through having more effective filtrations inside these

algorithms.

The number of grammar rules is another factor that improves accuracy.

But having more and more grammars will eventually reduce performances and

therefor these factors are kept well balanced.

15

1.4.2 Develop a tool which Provide Assistance to software test designers

DrawPlus is well formatted to gather requirements specification as functional

requirement and non-functional requirements and Testers can generate their test

system level test cases as functional and non-functional test cases.

 Accelerate the Test design process in a way reducing considerable amount of

resources and time.

Basically when designing test cases based on requirement specifications tester

has to get a good idea about the system by reading the whole system requirement

specification document. Then only tester can start designing test cases.

 Improve the reliability and the accuracy of the test design.

 Accuracy is one of the main key when it comes to an automated system, it does

not matter how easily or how fast the system works unless it gives accurate results.

DrawPlus is a NLP (Natural Language Processing) based system which process

Requirement specification written in natural language in to UML, User scenarios and

Test Design. As developer of the system I use NPL techniques with my own

algorithm in a way producing most accurate outputs.

 Reduce huge redundant works which occur due to requirement changes.

By this Objective once a user, generate test cases from the given requirement

specification and after generating it if any changes happened in requirement

specification, this system is capable to show how the changes effect to the already

generated test cases.

16

1.4.3 Designing a tool to assist software testers

Improve a reliable and accurate system which easily can be generate use case

diagram. So no need to waste more time reading and remembering things. Just users

can enter the requirements and generate the diagram

 Develop an algorithm to draw actors and functions for Use case diagram in a

certain area

 If Number of actors and function count is more than three then automatically

change the side of actors and functions.

 Software testers/business analysts will be benefitted through the performances

of this tool

 Recognition of the relationship between Actors and Functions

 Draw the functions and write the function name in the middle of the circle.

When the function name is longer than the Circle height then the function

name automatically write into two lines.

 Background of the diagram will be automatically adjusted according to the

space it required.

 Defining specific rules for Use case diagrams referring specific requirements

17

2 METHODOLOGY

2.1 Methodology

The research is based on developing a tool for software design and testing phase.

I. Process Natural Language.

• Develop an algorithm which detects system Functionalities from given requirement

(Text) with

 Highest accuracy.

• Develop an algorithm which detects system Actors from given requirement

• Identify the relationships among detected system Actors and Functions

II. Generate UML Diagrams

• Generate a UML diagrams (Usecase diagram) for the system generated file (Xml).

• Develop an algorithm to draw actors and function avoiding overlapping on top of

one.

• Identify relationship and rules using given requirement (Text).

III. Generate User Stories

 Generate a User scenario for the system generated file (Xml).

 Detect conditions and steps for the scenarios using given requirement (Text).

DrawPlus provide a desktop application to achieves above mentioned goals. The main

purpose of this smart software is to maintain the software projects more efficiently and

effectively without involving or less involving IT related people. Software companies

can reduce lots of cost and time by using this system. This product can provide the

more accuracy diagram and user scenarios to test any software product by using client

18

documents, requirements etc. And also it has ability to create test cases as well.

Currently there is many more software, web application to draw, generate UML

diagram.

UML is a one of website which is used to generate use case diagram. But the problem

with that is it is not intelligent. User has to provide keywords to draw diagram. The

Lucidchart [2] is another type of web application which can be edited as drawer

opinion.

Even though there are many software available, Drawplus has special place from all

other software. It is a user-friendly one. Where from one button click use case diagram

is generated. From few steps user scenarios, test cases are generated. That is the

uniqueness of this product.

Figure 3.1 system diagram shows the main flow of this product. How it will work.

Normally requirements will be referred by all the parties. Requirements and extracted

data then will be passed as an input to generate use case diagram. Requirements,

extracted data output and Use case diagram will be passed as an input for generating

user scenarios. Requirements, extracted data, use case diagram and user scenario will

be then taken as an input to generate test case.

Manual process is following these steps during SDLC

 Read and understand software requirements

 Identify actors, functions and relationship(Ex: Include) between functions

 Draw Usecase diagram

19

Figure 2-1 System Diagram

All these steps are done by this tool. As a first input, it will read and study the

requirements using Natural Language processing. Several xmls are created according

to the each NLP process functions. The entire xml file has same format which can be

read by SAX Parse or DOM parser. Figure 3.1 is representing sample xml file. Mainly

there are three xml files are produced. One of them is used as an input for use case

diagram which is providing all the details like actors, functions, functions name,

reference number and number that need to draw the diagram. Another xml file is

proved in details to create user scenarios. And last one to build test cases. It should

have more description details about requirements since generating test case need to

add some more text by additional. Where it has to identify relationship among the

functions.Simply those two terms can be call as include and extend.

20

DrawPlus introduces a beneficial way to accelerate any IT organization’s business

outcome by reducing long hours spent on Design and testing phase of the SDLC. The

project has a considerable amount of research in the field of Natural Language

Processing (NLP). The Entire DrawPlus application including the NLPCore is

developed in JAVA combining existing OpenNLP libraries with set of algorithms

newly developed. The algorithms are ensuring whether the input is complying with

certain set of rules defined in the NLPCore. These rules are combined with pattern

matching mechanism and there comes algorithms which are highly complex &

advanced.

Apache

OpenNLP

The groundwork for the Natural Language Processing functionalities in DrawPlus

applications is provided by OpenNLP library released by Apache. The Apache

OpenNLP library is a machine learning based toolkit for the processing of natural

language text. It supports the most common NLP tasks, such as tokenization, sentence

segmentation, part-of-speech tagging, named entity extraction, chunking, parsing, and

co-reference resolution. These tasks are usually required to build more advanced text

processing services. OpenNLP also includes maximum entropy and perceptron based

machine learning. In the DrawPlus System, the most frequently used NLP functions

are Sentence Detector, Tokenizer and POS tagger. These functions are used to derive

and extract relevant information from a given input for further processing purposes.

The extracted information will forwarded through advanced algorithms throughout the

entire process.

Shown in the Table below is the NLP functions that are used in the application, further

describing how they have applied

Table 1 :NLP functions

21

Method Name Description Use

Sentence Detector As in the method name

mentions, sentence

detector is for detecting

sentence boundaries.

Capable of detecting

sentences lie throughout

multiple lines

The initial step in the

application is detecting

sentences. The input is

process sentence by

sentence which enable the

program to find and map

the relation each section

has, when it’s needed. The

input is divided into

separate sentences.

Tokenizer A given input text will be

separated into tokens.

Normally sentences are

separated into works by

using spaces, but in some

case it is different. For an

example if we take “isn’t “

it should be separated as

“is “ and “not” since it a

brief format of “is not”

The sentences divided by

the sentence detector are

then divided again into

small fractions call token.

Tokenizing enables the

program to go through

each word and inspect

them existence of an

Actor. If an actor is found

then any actions executed

by the actor

POS tagger Any text runs through the

POS tagger will be given a

tag at the end of each

word. This helps to

identify the content of a

given text such as noun,

verb , adjective etc.

POS tagger performs the

magic inside the program.

In order to apply the

algorithms with grammar

rules, there exist some

positional parameters that

needs to be identified with

in the text input. With the

entire sentence is tagged

22

by the POS tagger, the

program sees where lies

the Nouns, verbs,

Prepositions , Modal etc.

File Structure

In order for the DrawPlus to work properly, as all other regular applications The

DrawPlus has to save some data for system operations. When a user is working in a

project the user might want save the progress for resume the work in a later time.

Therefor the system has to maintain some mechanism to save the progress of both

application and the user’s work. For this purpose I defined a file structure. There are

two main file structures,

• System file structure

• Project specific file structure

The system file structure is verified when the system is starting up. It contains recent

projects and application usage logs. If the file verification fails the system will get

terminated with giving an error message detailing about the fault. The project file

structure is verified only when an existing project has loaded into the application. If

the relevant files are not found in the project folder the project will not open up and

prompt an error message to the user. In both file structure text data will be saved under

XML file format. For as a better security mechanism the project specific XMLs are

always kept encrypted.

23

2.1.1 Addressing literature

There are similar kinds of applications available in the world. The uniqueness of

proposed system will be described here. The rules must have access to some level of

syntactic knowledge, at least distinguishing major syntactic constituents such as

subject, verb, and direct object. Otherwise CRYSTAL could not tell who is the Person

In and who is the Person Out in \Mr. A succeeds Mr. B as chairman" and \Mr. B

succeeds Mr. A as chairman". The rules will also need to is distinguish affirmative

from negative phrases and distinguish active from passive verbs [6]. This document

mentions that they can only access to some level of syntactic knowledge. It means that

the rules are defined to identify Subject, Verb, and Object formats sentence only. When

considering about UML diagrams these rules are not enough. Need to identify and

define more rules to display <<include>> and <<extend >> relationships. The

proposed system will consider all the factors and give good results to draw use case

diagram.

Natural language processing based automated system for UML diagrams

generation[7]

This research paper has proposed natural language processing based automated system

for generating UML diagrams by analyzing input text. Their system extracting relative

and required information by analyzing natural language which is written in simple

English in a few sentience. They have illustrated their methodology of extracting

relative and required information using an example as bellow.

24

“Zia is playing with the red ball.”

Lexicons Phase-I Phase –II

Zia Noun Object

Is Helping-Verb ……….

Playing Verb Method

With Preposition ……….

The Article ……….

Red Noun Attribute

Ball Noun Object

In the mentioned research in order to find the ability to read and understand as well

grab the desired information a rule based algorithm is designed. Normally for a

language a grammar is necessary and it contains verbs, nouns, adjectives and etc. So

those will be first extracted and then from the extracted details further processing will

be done. They have done really a good methodology to demonstrate the research

problem and solution, but further they have mentioned that their one not in 100%

accuracy level and it can be improved further by using different algorithms.

25

2.1.2 Project development process

I decided to follow the agile methodology [02] for the development process. The

Reason why it is selected this methodology is because this project has a higher risk

since it is based on Natural Language Processing which is still under research level.

And the other reason is that the outcome of this system required to reach a degree of

accuracy more than 70% as I assumed. As according to the agile methodology this

project is divided into small cycles known as sprint with a specific durations is given

for each.

2.1.3 Feasibility study

I went through an analysis since this is a complex system I had to go via a feasibility

study.

When a feasibility study is carried out, there are four main areas of consideration

 • Technical => Is it technically possible to build up the system?

• Financial =>Will Carrying this out it financially possible ?

• Organizational => Will the new system works from the existing system?

• Ethical => Is it have any ethical Issues?

In order to answer these questions doing a feasibility study is important.

In technical feasibility study, when considering drawing part, main challenge was

positioning actors and functions without replacing and overlapping. In every small

point had to be managing with accurate X and Y location values. Reading XML

document and only get most useful data was another area that tested in this section. At

this point I developed a rich algorithm to avoid all the problems mention early.

26

2.2 Testing And Implementation

2.2.1 Software implementation

Drawplus is a desktop application. It should have user friendly interfaces. After

brainstorming I came up with this interface which anyone can easily use to it. By doing

the literature review I came up with most suitable tools and technologies. While

designing the NLPCore, due to its higher level of complexity, the module is considered

to be implemented as sub modules rather developing the entire module as one. The

Figure shows a high level abstract view of the NLPcore functionality, where the

methods are been used for dependencies each sub module to one another. The sub

modeling methods also allowed me the ease of updating & upgrading of the system.

Means that any additional phase, lines of code, sub- modules can be added to the

system later without much fuzz. With the sub modules, behavior of some larger and

complex algorithms can be simply for better understating.

27

Grammar matching algorithm was one of a significant achievement in the NLPCore.

The reason is, the grammar matching algorithm provides more of a framework for all

of the parts where need to deal with Grammar matching. With this algorithm it was

possible to define own way of grammars and check whether the grammar exists in a

text content by parsing the grammar and the text phrase to the algorithm.

Bellow figure shows the simplified view of the grammar matching algorithm. The

basic loops and conditions.

Figure 2-2 NLP Core Functionality

28

Figure 2-3 Grammar matching algorithm

Figure 3.4 shows in the highlighted area, where the getActor() and getAction()

methods are been called. The figure 3.5 shows a simplified view of the getActor()

method. After a rule has matched, the getActor() method is called. The matched rule

no is an input to this function. Where it refers to the matched grammar and the

respective rule and returns a string if the actor is found. After the actor has returned

the getAction() is called to get the actions executed by the respective actor. Which also

takes the matched rule number as an input. The figure 3.5 and figure 3.6 show an over

simplified view into the above mentioned functions whereas Figure 3.5 is the

getActor() method and the Figure 3.6 is getAction() method.

29

Figure 2-4 getActor() method

Figure 2-5 getAction() method

30

Shown in the Figure 3.7 is a sample set of grammars and rules as it is applied inside

the application. The orange shaded highlight section shows the grammars while the

blue shaded highlight section shows the rule for the respective grammar. These two

are highly co-related to one another. For an instance if the grammar matching

algorithm get a correct hit at grammar no #5 in the Grammar section, the rule to be

applied in order to derive the actors & functions are mentioned in the Rules sections.

After finding the correct match of a grammar, the algorithms shown in Figure 3.5 and

Figure 3.6 will use the rules shown in Figure 3.7 to extract the correct output.

Figure 2-6 rules

User can able to create a project and after the successful creation of the project user is

automatically redirected to the project section where user can provide a scenario for

the project. The same description will mostly be the main input to the system.

31

Figure 2-7 Interface Home

User can import a scenario directly into the system from a file or from the hard disk or

from web. Allowed file types are (.doc / .docx /.txt)

Figure 2-8 : Interface for Browse

A successful import will parse the file and the text content will be loaded into the

screen for analyzing or further modifications.

32

Figure 2-9 Content Loaded Interface

User can clear out the scenario from the system after the confirmation of the action

form user. When successfully removed, notification will be prompted in the bottom

line of the screen as shown in the second figure. User can still recover the content by

simply pressing undo keys or redo keys.

Figure 2-10 Clear all Prompt

After user has finished writing, after the last key press of a ‘.’ if not disturbed for few

seconds, the System will automatically initiate application of NLPCore functions for

33

the text given. Or the user can manually perform the task by a pressing the generate

button. The result will be then displayed in the right compartment of the screen.

Figure 2-11 : Results in the Right Corner

The XML file with all the finding will be generated in the project folder. Each actor’s

& function’s relationship will mapped during the process.

Figure 2-12 XML file

34

Use case generating part is one of major function. It has one main frame under

FrameHome class. Main input for the diagram is XML file. Xml file is read using SAX

Parser. Then identified all attributes and tags. After that catch all the values that are

necessary to draw usecase diagram. Simplify actors and functions get through the

Array List to DP_UML class. All the data get in this format.

 Attribute name"+"/"+Attribute value”

When the attribute name is equal to “Actor” split it from “/” and get Attribute value

to array. And also get the number of actors count. According to that decide how

many actors need to draw on top of Jpanel. When this attribute name is equal to

“Function name” get those values as previous mention. Count the number of

functions for one actor and get those functions names to the array up until next

“Attribute name=Actor”.

35

Next main problem is moving those actors and functions with proper connection in

between an actor and functions. To do this rich algorithm is developed. At the very

first step all the values are initialized like currentActorX, currentActorY,

currentFunctionX, currentFunctionY and windowsHight etc. draw first actor in

initialized location and get the number of functions width, height and differences.

Using summation of those values algorithm will decide next Y axis position. Once

the window size is exist more than Y location of the last function it will

automatically swapped the side.

Figure 2-13 Actor Identification

36

Figure 2-14 Actors and function drawing algorithm

Next main component is creating user scenarios according to requirements. Apache

OpenNLP 1.5.3 software is used to detect sentences. The Apache OpenNLP library is

machine learning based toolkit for the processing of natural language text. It supports

the most common NLP tasks, such as tokenization, sentence segmentation, part-of-

speech tagging, named entity extraction, chunking, parsing, and core reference

resolution. These tasks are usually required to build more advanced text processing

services. OpenNLP also includes maximum entropy and perceptron based machine

learning.

37

2.3 Research Findings

There are lots of new things I had to learn. For the information extraction first I need

to identify extract information from which part of the document. For evaluation the

NLPCore functionality, I asked few colleagues to use the software and let me know

what they think of the software meanwhile I can gather the gather user experience.

The accuracy of the resulting output is mentioned to be very accurate by viewers. There

I figure out that the NLPCore needs to have much more grammars included because

each new grammar includes into the grammar section also increases the accuracy of

the application result. When I increase grammar rules, that covers up the distinguish

way of telling of an idea. Since in human language humans can do spell out a single

idea in thousand s of ways and there is not limit in that. It’s a mere miracle for me to

cover up all that possible combination. But what i can do is including a very new

grammar and the accuracy will increase gradually & eventually. One other finding is

that the OpenNLP lacks some functionality in some ways where in English same one

word could stand up as a Noun; and in another place the same word could stand up as

verb. But the OpenNLP doesn’t always catch the idea correctly. Avoiding this situation

is technical unfeasible for the moment, but reducing is always possible.

This is a very challenging part. Then that extracted information should separate

sentence by sentence, for that i use some libraries in the NLP. Then that information

should store in xml document. Again it is a challenging part of this system. Then using

those requirements, system should generate use case diagram, user scenario and test

cases generation. Another main problem is identifying relationships in between two or

more function when they have reuse functionality or optional functionality.

38

3 CONCLUSIONS AND RECOMMENDATIONS

Content extracted from the given description is a non- trivial through an important task

for this application since everything there onwards will be done will based on that data,

I have introduced an intelligent algorithm to match the grammar of many different

forms. The algorithm is smart enough to notify the user the certainty of the particular

piece of findings.

39

4 REFERENCES

[1] Part-Of-Speech tags [Online]

https://www.ling.upenn.edu/courses/Fall_2003/ling001/pen

n_treebank_pos.html

[2] Stuart J. Russell and Peter Norving “Artificial Intelligence A Modern

Approach” 1995

[3] "Natural Language Processing ",Wikipedia,16 March

2016, Available:http://en.wikipedia.org/wiki/Natural_language_processig,

[Accessed: 2016/02/30]

[4] Debasish Kundu and Debasis Samanta, "A Novel Approach to Generate Test

Cases from UMLActivityDiagrams", may–june 2009,Available:

http://www.academia.edu/download/31228256/article1.pdf [Accessed:

2018/03/24].

[5] Magda G. Ilieva, Harold Boley, "REPRESENTING TEXTUAL

REQUIREMENTS AS GRAPHICAL NATURAL LANGUAGE

 For UML DIAGRAM GENERATION"

[6] Imran Sarwar Bajwa, M. Abbas Choudhary, "Natural language processing

based automated system for UML diagrams generation", 18th National

Computer Conference 2006[Accessed: 2018/07/01]

[7] Test Cases from Software Requirements Research Available

http://ieeexplore.ieee.org/Xplore/home.jsp [Online]

[8] David Nadeau, Satoshi Sekine: A survey of named entity recognition and

classification – 2006

[9] Undo & Redo in JAVA [Onine] Available:

https://web.archive.org/web/20100114122417/http://exampledepot.com/egs/j

avax.swing. undo/UndoText.html

[10] XML encryption and decryption [Online] Available:

http://stackoverflow.com/questions/8395877/encrypting-and-decrypting-xml

[11] Covington, M., Bates, M. and Weischedel, R. (1995). Challenges in

Natural Language Processing. Language, 71(2), p.402.

https://www.ling.upenn.edu/courses/Fall_2003/ling001/pen%20n_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/pen%20n_treebank_pos.html
http://en.wikipedia.org/wiki/Natural_language_processig,
http://stackoverflow.com/questions/8395877/encrypting-and-decrypting-xml

40

APPENDIX A: High level system diagram

	ganera
	Final Thesis_158253L

