

ANALYSIS OF EARLY DROPPING MECHANISM FOR OPTICAL BURST SWITCHED NETWORKS

This dissertation was submitted in partial fulfillment of the requirement for the Degree of Master of Science in Telecommunications Department of Electronic and Telecommunication Engineering University of Moratuwa.

> Supervised by, Dr. Priyantha Thilakumara

> > Presented by, Thilini Amarasinghe

> > > 2009

93922

Abstract

Quality of Service in Optical Burst Switched Networks using Early Dropping Mechanism with Different Network Characteristics

Keywords: Optical Burst Switching (OBS), Absolute Quality of Service (QoS), Early Dropping Mechanism, Dense Wave Length Division Multiplexing (DWDM).

Optical Burst Switching is a promising bufferless DWDM switching technology that can potentially provide high wavelength utilization. Quality of Service support has become an important issue in OBS networks. There are two models to guarantee QoS in OBS networks. Those are relative QoS guarantee and absolute QoS guarantee. Most existing schemes are based on relative QoS model and in those models the service levels can be defined relative to the service requirements of another class of traffic. In absolute QoS model it provides a bound for loss probability of the guaranteed traffic. This kind of hard guarantee is essential to support applications with bandwidth constraints. Further efficient admission control and recourse provisioning mechanisms will enhance the service of absolute QoS model to guarantee the service requirements in the OBS networks. Early dropping mechanism is proposed to maintain the dropping probability in Absolute QoS model in OBS networks. Due to the bufferless nature of the OBS core nodes, the early dropping mechanism computes the intentional dropping probability based on measured, online loss probability. In early dropping mechanism it can be simply implemented by using a threshold value which is responsible to maintain the maximum acceptable loss probability. But in this mechanism the lower priority class of traffic suffers from high loss probability when higher priority Glasses exceed its threshold vales of loss probability. Early dropping by Span mechanism introduces a span of acceptable loss probabilities rather than using one threshold value andthis mechanism has improved QoS guarantee in higher priority classes of traffic while reducing the loss probability of lower priority classes as well. Further the performance of this mechanism can be

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

applied in a dynamic wave length assigning network in order to guarantee the absolute QoS with efficient recourse provisioning.

Declaration

I certify that this dissertation does not incorporate without acknowledgement any material previously submitted for a degree in any University to the best of my knowledge and believe that it does not contain any material previously published, written or orally communicated by another person or myself except where due reference is made in the text. I also hereby give consent for my dissertation, if accepted, to be made available for photocopying and for inter-library loans, and for the title and summary to be made available to outside organizations.

Signature of the Candidate

Date: ACL C * acc *

To the best of my knowledge, the above particulars are correct.

UOM Verified Signature

······

Supervisor

Acknowledgments

- "I believe 1 am here to express my sincere thanks because of the great support and encouragement of all of you."
- First of all, I would like to express my deep and sincere gratitude to my supervisor, Dr. Priyantha Thilakumara. It was an opportunity for me to start my research work under his supervision during the period in the Department of Electronic and Telecommunication Engineering, University of Moratuwa, Sri Lanka. His knowledge as well as the understanding and personal guidance provided a very good basis for me to do my research. Further I value his continuous support and encouragement to compete this dissertation even after he is far from the county.
- I wish to extend my warm and sincere thanks to Dr. Ajith Pasqual Senior Lecture of the Department of Electronic and Telecommunication Engineering, University of Moratuwa, Sri Lanka; for his guidance and effort to encourage us to complete the research work.
- I have a great regard to the Department and I wish to express my warmest thanks to all those who have helped in the Department of Electronic and Telecommunication Engineering, University of Moratuwa, Sri Lanka.
- I owe my loving thanks to my family and my friends. Without their encouragement and understanding it would have been impossible for me to complete this work.

List of Figures

Figure 1	: OBS Network Architecture			
Figure 2:Samp	ble Network Connections [1~8: Edge Nodes, 9~12:Core Nodes]			
Figure 3: Burst los	s probability at each network node with wavelength conversion			
Figure 4 :Network burst loss	s probability for 3 classes of traffic with wavelength conversion			
Figure 5 :Network wide loss probability variation with Number of Wavelengths Available at				
Each Network Node	niversity of Moratuwa, Sri Lanka. 37			
Figure 6	ectronic Theses & Dissertations 			
Figure 7	Blocking Probability Variation with Burst Length			
Figure 8:Lower Priority C	lass Traffic Blocking Probability Variation with Expected Loss			
Probability of Highest Prio	ority Class of Traffic			

List of Abbreviations

BA	Burst Assembler
BHP	Burst Header Packet
EDS	Early Drop by Span
EDT	Early Drop by Threshold
FDL	Fiber Delay Line
FEC	Forward Equivalent Class
IETF	Internet Engineering Task Force
JET	Just-Enough-Time
LAUT	Latest Available Unscheduled Time
LOBS	Labeled Optical Burst Switching
MPLS	Multi-Protocol Label Switching
OBS	Optical Burst Switching Joratuwa, Sri Lanka.
OPS	Optical Packet Switching S & Dissertations
OXC 🛛 🐸	Optical Cross Connect
PQ	Priority Queuing
QoS	Quality of Service
RAM	Random Access Memory
RED	Random Early Detection
RM	Routing Module
SCU	Switch Control Unit
TAG	Tell-And-Go
TAW	Tell-And-Wait
WADM	Wavelength Add-Drop Multiplexers
WDM	Wavelength Division Multiplexing

List of Contents

1.	INTRODUCTION	1
1.	1. EVOLUTION OF OPTICAL NETWORKING	
1.	2. OBS NETWORK ARCHITECTURE	
1.	3. QUALITY OF SERVICE OF OBS	
1.	4. ABSOLUTE METHOD FOR QOS GUARANTEE IN OBS NETWORKS	10
2.	LITERATURE SURVEY ON OPTICAL BURST SWITCHED NETWORKS	
2.	1. BURST ASSEMBLY	12
2.	2. Just Enough Time Signaling (JET)	14
2.	3. ROUTING AND WAVELENGTH ASSIGNMENT	
2.	4. BURST SCHEDULING	
2.	5. CONTENTION Resolution Languages in the Advantage Strict Languages	
2.	5. OPTICAL BUFFERING. Electronic Theses & Dissertations	
2.	7. WAVELENGTH CONVERSION	
3.	THEORY AND APPROACH TO MODEL EARLY DROPPING MECHANISM I	NOBS
	NETWORKS	21
3.	ABSOLUTE QOS DIFFERENTIATION	21
3.1	2. MAXIMUM OFFERED LOAD OF TRAFFIC	22
3	3. MINIMUM WAVELENGTH REQUIREMENT FOR EACH CLASS OF TRAFFIC	22
3.4	4. Early Dropping Mechanism	23
3.:	5. EARLY DROP BY THRESHOLD (EDT)	24
3.0	5. EARLY DROP BY SPAN (EDS)	25
3.1	7. FLOWCHART FOR THE OPTICAL BURST SWITCHED NETWORK SIMULATION	
4.	OBSERVATIONS AND RESULTS	34
5.	DISCUSSION AND CONCLUSION	41

REFERENCES
APPENDIX I – MATLAB PROGRAM FOR STARTING THE SIMULATION
APPENDIX II – MATLAB PROGRAM FOR NETWORK INITIALIZATION
APPENDIX III – MATLAB PROGRAM FOR BURST ARRIVAL GENERATION
APPENDIX IV – MATLAB PROGRAM FOR CALCULATING MAXIMUM ACCEPTABLE LOSS PROBABILITY
APPENDIX V – MATLAB PROGRAM FOR CALCULATING MINIMUM WAVELENGTH REQUIREMENT
APPENDIX VI – MATLAB PROGRAM FOR MANAGING RESERVED WAVELENGTHS FOR PROCESSING TIMESLOT58
APPENDIX VII - MATLAB PROGRAM FOR DIRECTING BURSTS FOR PROCESSING
APPENDIX VIII – MATLAB PROGRAM FOR PROCESSING HIGHEST PRIORITY CLASS TRAFFIC
APPENDIX IX – MATLAB PROGRAM FOR PROCESSING LOWER PRIORITY CLASS TRAFFIC
APPENDIX X – MATLAB PROGRAM FOR DROPPING MECHANISM67
APPENDIX XI – MATLAB PROGRAM FOR WAVELENGTH CHECKING
APPENDIX XII – MATLAB PROGRAM FOR WAVELENGTH ASSIGNING
APPENDIX XIII – MATLAB PROGRAM FOR RESULTS SUMMARIZING

www.lib.mrt.ac.lk