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ABSTRACT   

Energy storage systems are frequently used to buffer the difference between 

intermittent renewable generations and energy demand in microgrids.  Different 

energy storage options are possible but the battery energy storage is in high demand in 

due to its advantages such as relatively fast response, less environmental impact, and 

diversity of technology and ability of recycling, over the alternative options such as 

ultra-capacitors, pump storage and flywheels.  But the operation of a Battery Energy 

Storage System (BESS) is affected by dynamics of charging/discharging current, 

internal temperature build up, extreme reaches of SOC level etc. Therefore a battery 

model that can represent dynamic and static load changes, thermal response and SOC 

is important to monitor and control the BESS for a longer life time, enhancing 

sustainability and reliability of the microgrid. 

This thesis describes the development of a comprehensive electro-thermal model for 

li-ion batteries that can be used to investigate dynamic and static performances of a 

microgrid under real time operating conditions.  The battery-model has the ability to 

self-update its parameters with the variation of core-temperature, and also to 

accommodate inherent hysteresis present on parameters between charging and 

discharging events.  The developed model is presented as a block in 

MATLAB/Simulink for easier use by others.  In parallel with that, the details of the 

development of a complete simulation platform of a microgrid is also described, which 

includes battery charging and discharging converter systems, bi-directional grid-end 

AC/DC converter system, wind energy input, solar PV energy input, load and closed 

loop control associated with converter systems.  The battery model is simulated within 

the microgrid platform with a chosen energy management criteria.  The results of the 

simulation are also presented and discussed. 

 

 

 

Keywords— Battery Energy Storage System; Dynamic modelling; Electro-thermal 

model; Energy Management System; Equivalent Circuit Models; Microgrids; State of 

Charge;  Thermal behavior  
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1. INTRODUCTION 

    Microgrids and their enabling technologies, such as Renewable Energy Generations 

and Energy Storage Systems, play vital roles when it comes to sustainable and clean 

energy [1].  Among different Energy Storage Systems (ESS), Battery Energy Storage 

System (BESS) have received greater attention at present due to their high reliability, 

possibility of implementing in medium scale-units, dynamic local voltage support, low 

environmental impact and many other factors [2] [3].  But the implementation and 

operation of   BESS are surrounded by several challenges, such unbalanced loading 

and single-phase distributed-generating units, short term loading by EV (Electric 

Vehicles) charges, load dynamics due to intermittency of renewable power sources, 

inherent thermal build up in BESS, possibility of wide range fluctuation of battery 

SOC (State Of Charge) level, variation of battery performance with battery 

temperature etc. Therefore, in order to investigate the influence of all such issues on 

BESS an accurate model is required for the battery itself and the microgrid as a whole 

[3].  

 

1.1 Problem Statement  

Several battery models have been developed to design and investigate performance of 

the systems of EVs and BESSs involving batteries, categorized as Equivalent Circuit 

models, electrochemical models, empirical model and data-driven models.  These 

models have their own advantages and disadvantages but none of the models had 

considered the combined thermal and electrical dynamics, despite the fact that two are 

highly interrelated.  In particular, the changes in core temperature affect the values of 

battery parameters which in turn influence the electrical response.  Similarly, electrical 

responses lead to changes in the core temperature.  

Other than the core temperature, the parametric hysteresis between charging and 

discharging processes influence the battery dynamics in real systems, where battery is 

subjected to frequent fluctuations between charging and discharging. Again, not a 

single model available currently had incorporated this hysteresis effects meaningfully 

in to battery models.   

The motivation of this research is to develop an advanced battery model incorporating 

the electrical, thermal and hysteresis type dynamics in to one model.  The biggest 
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challenge in this type of modelling is achieving computational efficiency while 

handling cross-effects among constituent sub-systems.  This will be addressed partly 

by adopting battery-type specific test data in to the model to characterize the hysteresis.  

Such battery data is obtainable by offline testing of different types of batteries and 

having them in a library. 

A model will be more useful if it is made available as a “battery block”, compatible 

with commonly used relevant simulation tools, such as MATLAB/Simulink with 

explicit terminals for external interconnections. Then the instantaneous values of 

terminal voltage and currents are readily available and other outputs such as 

instantaneous values of battery SCO, core-temperature, surface-temperature etc. needs 

to be separate outputs of the model. 

The battery model that will be required to investigate broader performance of a battery 

will have to focus on the following aspects. 

 Fast charging and discharging due to heavy current  

 Internal dynamics 

 Variation of battery voltage with temperature 

 Inherent hysteresis between Charging and discharging  

 Maintaining the battery SOC within an acceptable range 

 Variation of battery parameters and performance with temperature 

 The influence of ambient temperature on battery performance  

 The design cooling system  

 

1.2 Project Objectives and Scope 

The main objectives of the research are: 

 To develop a comprehensive electro-thermal combined model for a battery 

bank and present the same as a standard component in MATLAB/Simulink 

 To develop a simulation test bed and investigate the performance of the 

battery model under different charging/discharging scenarios to validate 

the model. 
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The structure of the test bed for simulating the battery is shown in fig.1.1. This is a 

microgrid system that integrates Distributed Energy Sources (DES), diverse Energy 

Storage Systems (ESS), variable loads, and power electronic converting systems in a 

stable manner to ensure a reliable operation with grid connected mode under different 

renewable generation and load variation.   

 

 

Figure 1.1: Scope of research 

 

1.3 Energy Storage techniques 

   Distributed Generators (DG) in micro-grids involve renewable and non-renewable 

energy sources. Intermittent nature of renewable energy sources (Wind, Photo-Voltaic 

Systems, Biomass, tidal/wave energy, geothermal) demands suitable Energy Storage 

Systems (ESS) having fast response [2] [4].  Commonly, ESSs have several categories 

according to their technology, capacity, response time and capital cost. Among 

different ESS systems batteries, super-capacitors, hydrogen Energy storage and 

electrochemical capacitors can be considered as small scale ESSs [5].   

Table 1.1: Characteristics of Energy Storage Systems [5] 
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1.3.1 Battery Energy Storage System and lithium-ion batteries 

   Selection of a particular Energy Storage for a given application needs careful 

considerations, since different ESSs have different capacities, energy densities, 

response time, discharge time and efficiencies as listed in the table 1.1.  Also, to 

balance the supply and demand in the long run (Energy Management) and the short 

run (Power quality management), the Energy Storage System must be adapted 

correctly [6]. In power quality management, the energy storage system must be able 

to respond to fluctuations very fast to preserve the power quality by maintaining the 

frequency and voltage level at the satisfactory range.  In Energy Management, the 

Energy Storage Systems need to be inherited high capacities with high discharge time. 

Considering the above aspects, for microgrid application, the BESS are considered as 

the better ESS [7][8]. In particular, BESS have the following positive features.  

 The possibility of implementation in medium-scale units (MW) 

Energy 

Storage 

System 

Key 

factors 

Response 

time 

Efficiency Discharge 

time 

 

 

Battery 

 

 

 Long life time 

 Minimal 

environmental  

impact  

 Technical diversity  

 

Seconds 

 

60%  -  80% 

 

 

min – 1 hour 

 

Hydrogen 

Energy 

Storage 

(Fuel cell) 

 Minimal 

environmental 

impact 

 Production cost is 

higher (usage of 

platinum as the 

catalyst) 

 

 

Seconds 

 

20% - 50% 

 

Sec – 24 

hours 

 

Super-

capacitors 

 

 High power density 

 High capital cost 

 

 

Milliseconds 

 

84% - 94% 

 

Milliseconds 

 

Capacitors 

 

 Technology 

development  

 high-capacity 

capacitors with 

different 

electrodes 

 

Milliseconds 
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 Longer life cycles  

As lifespan depends on several factors including depth of discharge, discharge and 

charge cycles and environmental factors.  

 Higher discharge time  

It is the maximum duration that ESS can discharge at rated power which depends 

on the available energy capacity, depth of discharge and operational conditions.  

 Shorter response time 

 Competitive cost 

 High round-trip efficiency 

Key determinant of the cost-effectiveness of an ESS which for BESS is greater 

than 75%.  

 Commercial availability of battery technology 

Availability of critical material (lithium-ion, Nickel Cadmium, Lead Acid, Sodium 

Sulfur)  

 High discharge rate 

 High re-charge rate 

 

1.3.2 Lithium-ion battery technology 

The diversity of different battery technologies is considerably broad. Table 1.2 shows 

the chemistry of lithium-ion, lead-acid, sodium-sulfur and nickel-cadmium type 

batteries [9] [10].  

Table 1.2: Different battery chemistries [9] 

Lead Acid  

Nickel Electrode  Nickel Cadmium (NiCd) 

Nickel Metal Hydride (NiMH) 

Sodium -Sulfur  

Lithium-ion Lithium Cobalt    Oxide (LCO) 

 Lithium Manganese Oxide (LMO) 

Lithium Iron Phosphate (LFP) 
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Lithium Nickel Cobalt Aluminum Oxide (NCA) 

Lithium Nickel Manganese Cobalt Oxide (NMC) 

 

Among different battery chemistries, lithium-ion can be considered as the most 

promising battery technology as it presents a considerable number of merit factors that 

prevails its own limitations as well as other batteries strengths. Even though lithium-

ion batteries can be regarded as key potential component of sustainable energy 

management, achieving the goal must be accomplished by establishing policies, 

practices and decisions.   

Table 1.3 shows the merits and demerits of lithium-ion battery technology [11]. 

Table 1.3:  Advantages and disadvantages of li-ion battery [11] 

 

 

Merits 

Remarkable specific power and energy  with high load capacity 

power cells 

High calendar and cycle lives 

Excellent round-trip efficiency 

High reliability 

Relatively low operational and maintenance requirements 

Wide range of operating temperature 

Technological diversity with various battery chemistries and low 

environmental  

Negligible self-discharging  

Relatively fast charging schemes 

Low internal resistance 

 

Demerits 

Requirement of advanced BMS 

High initial cost  

Hazardous situations due to thermal runaways (safety issues) 

 

Li-ion battery contains four components anode, cathode separator and 

electrolyte. Generally, lithium-ion batteries are specified according to the cathode 

material, which determines the key properties of the battery.  For commercial purposes 

several lithium-ion metal oxides are adapted along with li-cobalt oxide (LCO), li-ion 
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Phosphate (LFP), li nickel manganese cobalt oxide (NMC), li-manganese oxide 

(LMO) and li-titanium oxide (LiTiO). Table 1.4 shows details of the components of 

li-ion battery and table 1.5 shows the chemistries of different li-ion batteries. 

Table 1.4: Components of li-ion battery [11] 

Cathode LCO,  LFP,  NMC, LMO (lithium metal oxide) 

Anode Graphite 

Electrolyte A solation of lithium salt and organic solvent 

Lithium salt :  

 Lithiumperchlorate (LiClO4) 

 Lithium-hexafluorophosphate (LiPF6) 

 Lithium-hexafluoroarsenate (LiAsF6)   

 Lithium tetrafluoroborate (LiBF4) 

     Organic solvent 

 Ethyl-methylcarbonate (C4H8O3) 

 Diethylcarbonate (C5H10O3) 

 Ethylene-carbonate (C3H4O3) 

Separator Polyethylene (C2H4)n,  Polypropylene (C3H6)n 

 

Table 1.5: Characteristics of different li-ion battery chemistries [11] 

 Strengths Shortcomings 

LCO  High specific capacity and 

volumetric capacity 

  self-discharge is low 

 High cost (limited availability of 

Cobalt) 

 Low thermal stability (thermal 

runways)  

 Limited life span 

LFP  Wide SOC range 

 High power capability 

 High current rating 

 Long life cycle 

 Wide temperature range 

 Low specific energy 

 Lower electrical and ionic 

conductivity 

 Higher self-discharge than other 

batteries 

NMC  High specific energy  

 Acceptable cycling efficiency 

 Low specific energy 
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 Lower cost (reduction on 

Cobalt) 

LMO  Acceptable structural stability 

 Higher thermal stability 

 Eco-friendly materials  

 

 Limited capacity 

 Limited calendar and cycle life  

 Low energy density 

 

1.4 Battery dynamic modelling  

Most of the available battery models offer only the voltage and current responses 

at constant charging/discharging current, but the dynamic behavior due to fast varying 

charging/discharging current is not considered, due to the increases in complexity and 

the associated high computational cost [12]. Compromise between the model 

complexity and accuracy is an important factor when it comes to dynamic modelling 

of batteries. Also heat generation within the battery and rise of core temperature 

influence the battery characteristics in particular the internal resistance, Open Circuit 

Voltage (OCV) and the State of Charge (SOC) of the battery. Therefore, thermal 

modelling needs to be an important part of the dynamic modelling of a battery [13]. 

1.5 Energy Management System (EMS) 

Microgrid with ESSs can effectively utilize renewable energy sources to 

compensate the demand, through a good Energy management Strategy.  Such a system 

can minimize network losses and also lower the dependency on central generation 

without compromising reliability and other environmental concerns. Energy 

Management System coordinates the time varying energy profiles of the renewables 

sources with the variable demand through the BESS. Therefore the Energy 

Management System appropriately operates the power electronic subsystems 

incorporated with the ESS and other components in microgrid [14] [15]. Another 

prime objective of the Energy management Strategy is to observe the battery thermal 

behavior (distribution of battery core temperature, surface temperature) and initiate 

actions to preserve the safety of the battery. Monitoring the variation of battery 

characteristics is also a task of EMS [16].  Therefore, the main objectives of the EMS 

can be given as follows. 
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 To meet the demand by utilizing energy sources efficiently and economically 

without lowering power quality and continuity. 

 To preserve the SOC level of the battery within the designated range 

 To allow the battery to charge and discharge preserving the maximum 

chargeable and dischargeable power limits. 

 To monitor the core temperature and surface temperature variation of the 

battery and initiate necessary actions to safeguard the battery. 

 To operate the power electronic converting systems embedded with the 

microgrid components to achieve the intended energy management actions. 

 

1.6 Thesis outline 

 The structure of the thesis can be depicted as follows.  Chapter 2 summarizes different 

battery models presented in the literature.  As State of Charge (SOC) of a battery is a 

key factor that influences the battery parameters, the estimation methods of SOC are 

also summarized both qualitatively and quantitatively. 

Chapter 3 presents the thermal behavior of lithium-ion batteries and the impacts of 

temperature on battery properties and, eventually on the Battery Management System 

(BMS) that regulates charging/discharging. Furthermore, heat management of battery 

packs which ultimately leads to the control of temperature is also discussed with 

various cooling mechanisms. 

Chapter 4 presents the proposed comprehensive electro-thermal battery model which 

incorporates battery dynamics and thermal response with appropriate cross couplings 

between electrical and thermal sub systems. Additionally, the proposed battery model 

is developed as a standard circuit element in MATLAB/Simulink platform to ease its 

adoption by other users. 

Chapter 5 presents the test micro-grid platform, having a common DC busbar to which 

renewable energy sources, grid link, BESS and loads are connected.  The BESS 

comprises the battery-bank and a bidirectional DC-DC converter between the DC-bus 

and the battery-bank.  The battery-bank is modelled with the new battery model.  The 

bidirectional DC-DC converter is controlled in closed loop to deliver controlled 

charging and discharging current under the commands of the overall energy 



10 
 

management strategy.  Grid-link comprises a bidirectional AC-DC converter between 

the DC-bus and the grid AC system.  This bidirectional AC-DC converter is controlled 

in the closed loop to regulate the DC-bus voltage at the set value for all times by 

transferring power in either direction as appropriate. Details of all modellings and 

models are presented.   Energy Management Criterion of the microgrid is also 

presented.  

Chapter 6 presents simulation results and relevant discussion. In particular, the battery 

current, core-temperature, surface-temperature and SOC when the microgrid is on a 

typical daily load curve with typical renewable inputs are presented and discussed.   

Chapter 7 gives the conclusion and other salient achievements in the research followed 

by recommendation for future improvements and limitations. 

 

 

2.   Dynamic Modelling of battery cell 

Accuracy of battery-cell model predicting and reflecting battery performance on 

different loading, environmental and operational conditions is crucial for an effective 

design of a micro-grid system with BESS, targeting high level of reliability and power 

quality.   
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Figure 2.1: Classification of battery models [17][18][19] 

Figure 2.1 illustrates classification of different battery models found in literature. 

Different models have different emphasis on key modelling features, namely nonlinear 

electrochemical process, dynamic response, heat generation, impact of temperature 

rise, Open Circuit Voltage (OCV) and polarization time constants. These models 

include Empirical models, physical models, Electrical Equivalent Circuit models 

(ECMs) and electrochemical models each having different levels of complexity, 

accuracy and physical interpretation for their suitability for dynamic modeling. 

In order to express the chemical processes inside a battery, electrochemical models 

employ mathematical equations (Partial Differential Equations) and empirical data to 

derive the model coefficients [20]. On the contrary, the ECMs employ basic circuit 

elements of resistances, capacitances, and voltage sources to establish the relationship 

between the applied current and the battery terminal voltage [21]. 

 

2.1  Electrochemical models 

Electrochemical models present possibly the most precise and comprehensive parallel 

of the complex process inside the battery. These models are obtained from concepts of 

electrochemistry, and are more accurate compared to the other modeling techniques, 

but the complexity and computation time are far greater. The frequently used model is 

the Single particle Model (SPM) which is a reduced electrochemical model. 
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The single-particle model (SPM) is modelled as spherical particle and it is 

assumed that lithium-ion accumulation in electrolyte is constant. This assumption 

leads to more accurate results at low current rates, but for higher current rates, the error 

is considerably large. Since it excludes the effect of temperature, the battery terminal 

voltage is only presented as a function of the applied current and boundary conditions 

[19] (which include li-ion concentration and charging/discharging current).The model 

has two linear diffusion Partial Differential Equations that describes the material 

diffusion in electrolyte. The output voltage map is determined using electrical 

potential, electrode thermodynamic properties as well as other kinetics equations [20]. 

 

2.2  Equivalent Circuit Models (ECM) 

ECMs get the preference for accurate modelling of dynamics behavior at a reduced 

computational burden over the electrochemical models since the latter exhibits 

limitations, such as high complexity and inability to accurately represent dynamic 

behavior. ECMs are relatively simpler and widely employed in power system 

applications and Battery Management Systems. They simulate voltage-current 

behaviors of the battery bank and monitor the operation and control of the BMS. 

Accordingly, hazardous damages and disturbances in the BMS can be avoided with 

the application of properly implemented ECM. When it comes to selecting an accurate 

ECM, a great attention needs to be paid to strike a compromise between the complexity 

of the model and computational cost /time associated with the model 

ECMs are divided into several sub models such as Rint model, RC model, 

PNGV model, first order RC model (Thevenin model) and the second order RC model 

(improved Thevenin model) as given in figure 2.2, 2.3, 2.4, 2.5 and 2.6 respectively. 

Amongst them the second order RC model adequately reflects the response to static 

and dynamic conditions. 

 

 

 

2.2.1 Rint model  
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Figure 2.2: Rint model [21] 

𝑅𝑜    = internal resistance 

𝑈𝑜𝑐 = Open Circuit Voltage 

𝑉𝑡    = Terminal voltage 

I = Discharge current 

 

The Rint model is the simplest among all ECMs and its computational burden is 

significantly low. But it fails to capture the fast charging/discharging phenomenon as 

it only represents the internal impedance by 𝑅𝑜 .  Equation (2.1) shows the dependency 

between the applied current and battery terminal voltage. 

𝑉𝑡 =  (𝑈𝑜𝑐 − 𝑅0𝐼 )  (2.1) 

 

2.2.2 RC model 

 

Figure 2.3: RC model [21] 

𝐶𝑏 = Battery capacitance 

𝑅𝑡 = End resistance 

𝑅𝑐 = Resistance due to surface effect 

𝐶𝑐 = Capacitance due to surface effect 

𝑅𝑜 = Internal resistance 
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Capacitance 𝐶𝑐, which is much smaller than 𝐶𝑏, accounts for the phenomenon of fast 

charging/discharging.  The main drawback of RC model is that it has less ability to 

present the response to dynamics of charging/discharging current.  

 

2.2.3  PNGV (Partnership for a New Generation Vehicle) model 

 

Figure 2.4: PNGV model [24] 
 

𝑈𝑜𝑐 =  Open Circuit Voltage 

𝑅𝑜   =  Internal resistance   

𝑅1    = Polarization resistance 

𝐶1    = Polarization capacitance   

𝐶0    = Bulk Capacitance  

 

The PNGV model is more accurate than the RC model and Rint model [24].  𝐶0 

accounts for the changes of the OCV of the battery.  It captures the battery dynamic 

response to some extent.   

2.2.4 First Order RC ECM (Thevenin model) 
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Figure 2.5: First Order RC ECM 

𝑈𝑜𝑐 =  Open Circuit Voltage 

𝑅𝑜   =  Internal resistance 

𝑅𝑡ℎ     = Polarization resistance 

𝐶𝑡ℎ    = Polarization capacitance 

The first order RC ECM is a good compromise between the accuracy and the 

complexity, in which RC branch reflects the relaxation effect due to 

charging/discharging processes.  Even though it captures the dynamic behavior, the 

accuracy is still less than the PNGV model [22][23][25].   

2.2.5 Second Order RC ECM (Improved Thevenin model) 

 

Figure 2.6: Second Order RC ECM 

 

 

 

𝑈𝑜𝑐 =  Open Circuit Voltage 
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𝑅𝑜   =  Internal resistance   

𝑅𝑝𝑎    = Activation polarization resistance 

𝐶𝑝𝑎    = Activation polarization capacitance  

𝑅𝑝𝑐    = Concentration polarization resistance 

𝐶𝑝𝑐    = Concentration polarization Capacitance  

 

2.3 Estimation methods of Battery State of Charge (SOC) 

The SOC of a battery is expressed as the ratio between its current capacity Q(t) (see 

equation (2.2)) and  the nominal capacity Qn which demonstrates the maximum 

amount of charge which can be accumulated in the battery [26].  

𝑆𝑂𝐶(𝑡) =  
𝑄(𝑡)

𝑄𝑛
 (2.2) 

SOC is information on battery performance and remaining life, instrumental for 

effective management and a guideline to the maximum usage of battery’s power [27].  

With a precise estimation of SOC it is possible to regulate the battery over-discharging 

and over-charging and thereby to uphold battery life and avoid explosion, flame, 

accelerated aging and structural damages to batteries [28].  Also, accurate SOC 

indication is a convenience to the user to ensure battery’s efficiency, safety, and 

longevity.  Thus, an accurate estimation of SOC is a fundamental requirement for a 

proper use a battery, minimizing failures due to thermal runaways and regulating the 

cell balancing. 

Most of the SOC estimation techniques require precise analysis of either the battery 

chemical composition (type of electrolyte and its operating conditions) or cell 

variables (voltage, current).  So, they are only suitable for laboratory environments 

rather than real world applications.  One SOC estimation method that may be more 

convenient or applicable for a particular application may not be appropriate to another 

application [29].  Furthermore the SOC of a battery is not a state that can be measured 

directly but estimated through other parameters including current, voltage temperature 

and sometimes the battery history. 

The algorithm of SOC estimation is generally programmed in the Battery     

Management System (BMS).  The latter controls the energy flow in the battery pack 
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according to voltage of single cell, temperature, state of charge and state of health. The 

main function of BMS is to provide a safe operating condition for the battery system, 

and to prevent hazardous situations [30][31].  Even though the estimation of battery 

SOC is an essential function of BMS, its accuracy and online estimation is 

challengeable due to non-linear complex electrochemical process in the battery. 

 

2.3.1 Direct Measurement Methods 

In these methods, to estimate SOC, physical measurements of voltage and impedance 

of the battery are employed [33]. The frequently used direct measurement methods are 

OCV method, terminal voltage method, impedance method and impedance 

spectroscopy method. 
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2.3.1.1. OCV Method 

 

OCV is defined as the thermodynamic potential of the battery under no load condition. 

And it has a non-linear relationship with SOC for lithium ion batteries [34].  So, by 

knowing the OCV-SOC relationship, it is possible to find SOC in terms of the 

measured value of OCV. The OCV is usually acquired through offline OCV 

assessments at definite temperatures and aging levels.  

Even though the OCV method is the simplest method, it requires a rest time to estimate 

the SOC and hence it is difficulty to apply in real world scenarios. 

Furthermore different batteries have distinct OCV–SOC relationships and therefore an 

unacceptable error can occur if a different OCV–SOC data is used [35]. Generally, the 

dependency of OCV on SOC is estimated by calculating the OCV at each SOC stage. 

Even for the batteries of same chemistries and structures, the OCV-SOC curves can be 

different for different battery capacities. Moreover, obtaining of OCV-SOC curve for 

a given battery is a considerably time-consuming process [35]. 

 

OCV hysteresis can significantly influence SOC estimation. Hysteresis can be defined 

as the dissimilarity between the OCV on charging process and the OCV on discharging 

process [36]. Therefore it can be stated that the information of OCV alone is not 

sufficient to determine the SOC and the history of charge-discharge is also required. 

Furthermore the hysteresis characteristics differ with the type of electrodes in li-ion 

batteries. To establish the impact of hysteresis, OCV should be measured for different 

SOC against charging and discharging, separately. The OCV-SOC relationship is then 

implemented either as an analytical expression or look-up table, the former being 

attractive in terms of data processing efficiency [37]. 

 

2.3.1.2. Terminal voltage method 

This is an extension of the OCV method, where OCV is computed from measured 

values of terminal voltage and battery current (knowing the internal resistance) [33]. 

It can be stated that only a minimal emphasis has been given in literature to determine 

SOC using terminal voltage method.  

2.3.1.3. Impedance method 
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AC impedance of a battery depends on the AC frequency and the SOC.  The change 

of the impedance with frequency is greater when the SOC is lower and negligible when 

the SOC is higher.  In the impedance-method, the SOC is estimated in terms of the 

measured impedance over some range of frequency.  Impedance is measured by 

injecting a current of the desired frequency and measuring the voltage arising between 

the battery terminals. 

 

2.3.1.4. Impedance Spectroscopy method 

Electrochemical Impedance Spectroscopy (EIS) method brings significant information 

about the complex electrochemical processes occurring inside the battery.  Even 

though there are many EIS methods of estimating SOC, the complexity of each is 

considerably high [38].  In one approach, an impedance model is constructed with EIS 

data as a Nyquist plot, where the measured impedance is plotted as the real part against 

the imaginary part. The Nyquist plot impedance spectra is parted into three section: 

low frequency, mid frequency and high frequency. 

2.3.2 Book keeping Methods 

The coulomb counting method and modified coulomb counting method fall under this 

category. The battery charging/discharging current is taken as the input to these 

methods. These methods allow adding several internal effects of the battery, such as 

capacity-loss and self-discharge in to SOC estimation [33].  Nominal battery capacity 

is also an input to the estimation. 

2.3.2.1. Coulomb Counting method 

In the coulomb counting method (Ampere-hour method), the SOC estimation is done 

by cumulating the charge flowed in and out of the battery [39]. The accuracy of the 

coulomb counting method is affected by the accuracy of initial SOC estimation and 

measurement of the battery current (accuracy of current sensors). The coulomb 

counting method is convenient for batteries with high discharging and charging 

efficiencies and required long time monitoring. Even though the method is not 

applicable for real-time SOC estimation, it can be employed to verify accuracy of the 

results obtained by other estimation methods.  
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𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶0 −  
1

𝐶𝑟𝑎𝑡𝑒𝑑
∫ 𝑖(𝑡)𝑑𝑡      (2.3) 

According to the equation (2.3),  𝑆𝑂𝐶0 is the initial SOC value and i(t) is the current 

with a negative value at charge, 𝐶𝑟𝑎𝑡𝑒𝑑  is rated capacity. The initial SOC value (𝑆𝑂𝐶𝑜) 

can be obtained by OCV method. Even though the method is simple and inexpensive, 

there are several drawbacks as listed below [40]. 

 Since the coulomb counter is an open loop estimator, deviations due to the 

current measurement is added by the estimator. The cumulative error becomes 

larger, when the SOC estimator operates through a longer time period. Also, 

an incorrect result can be generated faster, when then current sensor has larger 

errors. 

 When the battery ages in real time, the battery capacity varies, but the coulomb 

counter cannot detect or take measures for the issue. As a result, the estimation 

might not be accurate, if the real pattern of the battery estimation deviates from 

the expected pattern. 

 The initial SOC should be estimated by the terminal voltage of the battery pack. 

So any error contained in the initial estimation method will be carried 

throughout the process and this method cannot detect or repair the initial error. 

The Coulomb Counting method can be improved by considering the Coulombic 

efficiency (Ah) at different temperature and charge rates. According to the equation 

(2.4), Coulombic efficiency is expressed as the ratio between the amount of charges 

extracted during the discharging process and the amount of charges entered during the 

charging process or the ratio of the discharging capacity to the charging capacity [41]. 

𝜂𝐴ℎ =  
𝑄𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝑄𝑐ℎ𝑎𝑟𝑔𝑒
       (2.4) 

Since 𝜂𝐴ℎ  depends on the current rate (discharge or charge) as mentioned above, an 

Equivalent Coulombic Efficiency (ECE) (𝜂𝑒𝑞) is developed including the discharge 

and charge Coulombic Efficiency. According to the equation (2.5), the modified 

Coulomb Counting equation can be depicted with 𝜂𝑒𝑞  and 𝐶𝑎, representing the ECE 

and the currently available capacity, that differs from the rated capacity 𝐶𝑟𝑎𝑡𝑒𝑑  due to 

temperature and age effect [42]. 
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𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶0 −  
1

𝐶𝑎
∫ 𝜂𝑒𝑞𝑖(𝑡)𝑑𝑡    (2.5) 

Among the different battery chemistries, li-ion batteries offer the highest Coulombic 

efficiency in the normal SOC region (exceeds 99%) [41]. But the estimation of 

Coulomb efficiency is difficult task as it requires highly accurate equipment. 

2.3.3   Indirect measurement 

The adaptive systems are consistent, because of their ability to deal with the 

nonlinearities of battery systems and show considerably excellent accuracy. Yet, in 

order to obtain good results from the adaptive systems, the specific information of 

battery characteristics or an accurate Equivalent Circuit Model (ECM) are required 

[43]. 

 

2.3.3.1 Neural Network method 

Neural Network is a model (subfield of artificial intelligence) that contains interrelated 

artificial neurons stimulated by biological neural networks to forecast output based on 

past data. Neural Network methods do not depend on electrical, physical, thermal or 

chemical model and need small time period to generate results compared to Extended 

Kalman Filter (EKF) [44].  Neural Network consists of inputs and outputs and is made 

of a several number of processing units named neurons interconnected with each other. 

The accuracy of Neural Network method depends on how far the network is trained.  

The training process is the most important phase. 

The most two common network architectures to estimate the SOC are the nonlinear 

input-output (NIO) feed-forward network and nonlinear autoregressive with 

exogenous input (NARX) feed-back network. Figure 2.6 presents the structure of a 

feed-forward neural network. In order to represent the input variables and output 

variables, the neural network contains an input layer with nodes and output layer, 

respectively. Additionally there are one or more hidden layers to simulate the 

nonlinearity between the input variables and output variable and each adjacent layers 

are interconnected [45]. Only the output layer and the hidden layers are the processing 

layers with activation functions at each nodes. There are several types of activation 

functions such as logistic tanh-hyperbolic tangent and ReLu-rectified linear units. In 
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most scenarios hyperbolic tangent sigmoid function and the linear transfer function are 

used as functions of activating the hidden layer and the output layer, respectively.  As 

there are no theoretical criteria when it comes to deciding the number of hidden layers 

and the neurons, it will be done using the expertise knowledge. In regarding to the 

SOC estimation, the neural network method determines the SOC direct from the 

terminal voltage and applied current without the mapping OCV-SOC. The following 

steps can be considered as the constructive approach to the neural network SOC 

estimation. 

1. Initialization (determination of the dimensions of the input layer and 

the number of neurons in the hidden layer). 

2.  Train the neural network with input variables (current, voltage, 

temperature) and output variable (SOC). 

3. Error calculation between the actual inputs and the estimated output 

4.  If the error is within the expected level searching is ended; otherwise 

repeat the step 2 

 There are several factors that affect the SOC.  Input current, terminal voltage and 

temperature [46] can be considered as the most vital parameters; these three parameters 

are selected as the input to the network. The battery SOC value is the output.  The 

number of neurons in the hidden layer is set in accordance the experience [46].  

 

Figure 2.6: Predicting model for SOC based on neural network 

 

 



23 
 

2.3.3.2  Kalman filter 

Kalman filter (KF) is a recognized method, used to determine the inner state of 

dynamic linear system with an optimal estimating technique. Basically, KF is a 

recursive set of equations which has two steps: prediction step which predicts the 

system output, system state and error [47] and correction step which corrects the 

present state estimate based on the output value of the system [47]. The block diagram 

of Kalman filtering process is shown in figure 2.7. In order to design estimate SOC 

using Kalman filter, a battery state-space model is developed using the equivalent 

circuit model. Considering the system noise and observation noise, the discrete state-

space model is developed. Since the battery OCV and SOC has a non-linear 

relationship and KF algorithm is only suitable for linear systems, a linearization 

method should be followed with an acceptable accuracy as a supplementary part. As a 

result of the linearization process, the discrete space-state model equation (output 

equation) is reduced to a less complex condition. The error between the measurable 

value and system state variable (ex: SOC) is calculated the KF using the output 

equation. Then the Kalman gain is adapted to update the system variables (SOC). Due 

to the highly nonlinear characteristics of battery system and unsuitable battery model 

inaccurate outputs can be generated in KF method. 

Basically, input is the applied current, output is the terminal voltage, and SOC 

is placed as the hidden state [48]. Then the hidden state is estimated by one of KF, 

EKF, Unscented Kalman Filter (UKF) or Particle Filter (PF). In the EKF method, the 

Jacobian matrix must be constructed and if the system is highly nonlinear with non-

Gaussian noise, the results may be generated with large errors [49]. But as an 

advantage, if there is an incorrect initial SOC value, the KF system can conquer it and 

could detect and represent cell aging. 

 

Figure 2.7: Kalman Filter Process 
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2.3.3.3 Extended Kalman Filter 

Extended Kalman Filter (EKF) is the improved version KF which is employed to 

determine the inner state of a nonlinear dynamic system using a state-space model 

[50]. Simply it predicts the future state of system based on the previous data [51]. 

When it comes to estimating SOC, it employs advanced battery models, therefore 

computation cost and time is relatively high. 

 

The EKF consists of two equations. One equation consists of matrices constructed 

using the parameters of ECM, along with the system state matrices (SOC), measurable 

input matrices and non-measurable process noise [52]. The parameters will be 

identified performing standard test procedures. The second equation is the 

measurement equation which shows the output voltage in terms of system state 

vectors, measurable input matrices and measurement noise. Employing appropriate 

software tool (MATLAB Simulink) SOC can be estimated. 

In some EKF methods, an inner filter is constructed to adjust the SOC and the battery 

model is adjusted by an outer filter [53]. According to the SOC and the cell model, the 

inner filter presents a corresponding voltage according to the input current. The SOC 

is adjusted by comparing the measured voltage and proposed voltage. Then, the system 

feedback is voltage and its output is SOC. After monitoring the applied current and 

voltage over a long period of time, the outer filter gradually modifies the parameters 

of the model. In this method, the cell aging and other lifetime effects are considered 

and modeled in real time. An advanced battery model should be established in order 

to achieve better results from the EKF method and the battery system must be treated 

as a nonlinear time-variant dynamic system [50]. Most common models are shepherd 

model, Unnewehr Model, Linear Model, Nernst Model, Thevenin model and RC 

Model [54]. The EKF algorithm not only can be used for online SOC estimation and 

track the battery state of charge parameter, but also can be utilized to estimate the 

parameter of the battery model [54]. 

2.3.3.4 Unscented Kalman filter 
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Since SOC estimation of lithium-ion battery system inherits highly non-linear 

characteristics [55], it can produce large errors for EKF method, because it is a first or 

second order Taylor series expansion to estimate the nonlinear functions [54]. Apart 

from the above disadvantage, EKF must compute the Jacobian matrix and if the system 

consists of non-Gaussian noise, the produced results may not be at an acceptable level. 

So Unscented Kalman Filter (UKF) has been established to improve the accuracy of 

KF and EKF methods. Since the UKF deals with non-Gaussian noises as well and 

Jacobian matrix is not calculated, it is more suitable for SOC estimation [49]. 

In this method the battery’s SOC is selected as a component of the state vector. The 

two sub models in the UKF methods are the process model and measurement model, 

which illustrate the relationship between the SOC and cell states such as, input current, 

voltage and temperature. 

2.3.3.5 Fuzzy logic 

Fuzzy logic method can be used to model, non-linear and time-varying systems 

without the need for mathematical models or ECMs of a battery [56]. For the 

estimation of SOC using Fuzzy logic method, environmental temperature, applied 

current and battery terminal voltage are considered as the input variable balancing the 

complexity and accuracy well. The higher the number of input variables (dimensions 

of fuzzy controller), more accurate are the results. But when the dimension is higher, 

the rules of fuzzy control will be much complex to implement [57]. As the first step, 

Fuzzification is the mapping from the above input with fuzzy variables using 

membership functions. Membership functions can be triangular-shaped or trapezoidal-

shaped functions considering the memory storage and efficiency. In the second step, 

the relationship between the input and output is described using rule based 

representation of expert knowledge [58]. The third step is the rationalizing mechanism 

that conducts inference procedure. Defuzzification is the third step that converts the 

modified control outputs into real valued outputs. The membership functions and rule 

sets are defined by generating as a result of neural network algorithm or an expert. To 

accurately forecast the SOC of the battery without considering the initial capacity 

using fuzzy logic model, a “training” data array are constructed [59]. 
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In most fuzzy logic methods, the SOC value of the battery is predicted without the 

rated capacity or previous data of the discharge history of the cell and only by 

calculating the imaginary part of the impedance at a few selected frequencies [60]. 

In most scenarios, clustering algorithms are employed to construct input membership 

functions and rules. The output membership parameters are optimized using least 

square fit. 

 

 

2.3.3.6 Support Vector machines 

Support Vector Machines (SVM) are a set of interconnected learning methods adopted 

for regression and classification that can be generally appropriate for any multi-

variable function to a higher accuracy level [54] and have been effectively applied 

especially in highly nonlinear systems. 

In order to estimate SOC using SVM regression model temperature, current 

measurement and voltage are considered nonlinear input variables [55]. Using a kernel 

function in the SOC estimation process, a training data set of the above input variable 

which covers the expected range of operation should be selected [33], [56],. Then the 

proposed SVM model is validated using the new data not used for training. 

 

2.3.3.7 Particle filter algorithm 

Particle filter (PF) is an effective nonlinear filter technique that can obtain the particles 

and corresponding weight values through random sampling [62]. The principle is to 

represent the probability densities with a set of weighted particles [62]. The 

preciseness of the PF algorithm relies on the experimental data and the structure of the 

PF. In order to estimate SOC using PF algorithm method, it is necessary to establish a 

discrete state-space model which consists of state equation and observation equation 

[63]. The state equation is derived by the SOC definition which is expressed in the 

coulomb-counting method. The observation equation is obtained considering the 

terminal voltage of the second order RC equivalent circuit as the observed valued. The 
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parameters of the second order RC ECM is acquired through standard test procedures 

[64]. 

The collected data from charging process or discharging process data are stored as 

experimental data. Then to establish the state equation of the state-space model, the 

SOC estimation equation is discretized and considering the characteristics of collected 

data. 

The particle filter algorithm has high accuracy for SOC estimation and the estimation 

error is comparatively small [65]. Using PF algorithm as an individual SOC estimation 

method, combination of PF and KF, PF and EKF, PF and EKF will improve the 

robustness of the KF algorithm while solving probability distribution function 

selection of PF algorithm [65]. 

 

2.3.4   Analyze of the SOC estimation methods 

2.3.4.1 Qualitative analysis 

Considering the ability to represent dynamic response and less complexity of the 

model, the second order RC Equivalent Circuit Model can be considered as the most 

suitable model for microgrid environment (see figure 2.6)  

Since the OCV in the second order ECM varies nonlinearly with SOC, when 

identifying the OCV, it is necessary to consider the battery SOC as an input to the 

simulation process [69]. So an appropriate SOC estimation method should be included 

for the modelling of BESS. Therefore it is important to identify a suitable SOC 

estimation approach to update the OCV (controllable voltage source) of the ECM. Also 

when selecting a method, the dynamic modelling of the battery must be preserved. The 

objective can be achieved by either adopting model-based SOC approach which 

calculates SOC and update OCV in the same procedure or adopting non-model based 

method to estimated SOC as an input to the ECM. The most frequently used ECM 

model-based SOC techniques are Kalman Filter methods such as EKF, UKF, CKF 

(Cubature Kalman Filter) and PF algorithm which consist of both estimator and battery 

model [70]. All other methods considered are non ECM-based methods which usually 

use physical parameters, with mathematical or artificial intelligence algorithms. 
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A very important aspect to be considered is the thermal behavior of li-ion battery and 

how it affects the operation of the BESS. The battery internal resistance and battery 

capacity are influenced by temperature distribution in terms of battery lifetime 

degradation or battery performance [92].  Furthermore round-trip efficiency, operation 

of electrochemical reactions and charge acceptance are influenced by the temperature 

[93]. Also higher temperature will be a cause for hazardous situations of lithium [27]. 

Therefore to maintain the temperature within the safe region, suitable cooling and 

heating systems are required.  The operations of such cooling or heating systems 

depend on the battery-cell surface temperature and the internal temperature [69]. 

Battery SOC and ECM parameters are varied with the temperature and such variations 

should be taken into considerations for a better account of the battery behavior. In one 

approach, temperature can be considered as an input to the SOC estimation method.  

The ambient temperature alone is not sufficient enough to model the heat generation 

and heat transfer (conductive, convective and radiation) [27] to accurately represent 

thermal behavior. 

As KF is suitable for linear system, EKF, UKF and CKF can be considered as an 

optimum state estimator for nonlinear systems such as li-ion battery systems. The 

advantage of KF based method is that it is not affected by the initial SOC error [97], 

but there are disadvantages such as high computational cost and complexity. Since 

these methods involve complex matrix operations, it is difficult to implement the 

algorithms in ordinary micro-controllers. Also they exhibits limitations such as 

linearization inaccuracy and uncertainties due to measurement noise. Even though the 

temperature is taken as an input for ECM based SOC estimation, KF methods do not 

consider the above mentioned heat generation and heat transfer. So applying KF 

methods with coupled electro-thermal battery model to calculate SOC and update 

OCV (of ECM) will require considerable time and computational cost. 

The neural network method exhibits limitations such as errors due to the over-training, 

effects of the previous sample data set on the present data set and the existence of too 

many neurons. The risk of over-fitting increases due to the presence of excessive 

neurons while limited neurons will under-fit the data. Neural network method requires 

high computation as well as a large number of data set to train. Fuzzy logic method 

requires high computational cost, expertise knowledge as well as clearly defined fuzzy 

rules. The support vector machines method demonstrates the superiority over the 
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neural network method including no requirement to select the number of neurons, no 

requirement to identify the network topology and less problems regarding overfitting. 

Additionally, both neural network method and Support vector method present better 

results only for constant current situations and for dynamic situation the error is not in 

an acceptable level. 

Hence non model based methods (direct measurement) are more suitable and among 

them OCV method and coulomb counting method are widely used. But adopting one 

of these methods alone may generate inaccuracy in results. Therefore combination of 

the OCV method and coulomb counting method is suggested as the SOC estimation 

method for the work in this thesis. The limitation of coulomb counting method can be 

overcome by adopting high accuracy current sensor and calculating the initial SOC 

value using the OCV-SOC method. The inputs are ambient temperature, current and 

OCV. The initial SOC is estimated using OCV-SOC method where the SOC values 

are stored using three dimensional table. The calculated SOC value will be an input to 

the electro-thermal model. 

2.3.4.2 Quantitative analysis 

Error of the estimated value of SOC by indirect methods has been calculated against 

the coulomb counting method in previous research works.   In calculating the value of 

SOC using the coulomb counting method, a high sensitivity calibrated current sensor 

has been used so that the integration error was minimal. LiFePO4 batteries have been 

tested under different temperature (0°C–60°C) and current profiles. 

Neural network method emphasized that the Roots Mean Square (RMS) errors were 

within 4%, but the maximum error at some temperature ( 10°C–50°C) was larger than 

10%. The errors are presented in the middle range of SOC (30%–80%). The most 

important fact is the inability of solving this problem by increasing the number of 

neurons or hidden layers because of the over-fitting of neural network [45]. As a 

different approach, the estimated SOC curve using neural network method has been 

compared with the reference SOC curve, estimated using coulomb counting method in 

terms of current disturbance response [71]. In the normal situation without a current 

disturbance, the RMS error was less than 0.006% which is acceptable, but for a 

dynamic situation with a current disturbance, even though the calculated SOC 
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converged to the reference value after some time, the deviation at the moment of the 

disturbance was at a considerable level. 

In support vector method, for a normal condition the RMS error was over 5% where 

the maximum error was about 15%. For a dynamic situation error was about 2.5% 

where the maximum error was recorded as 13% [40]. For the fuzzy logic method the 

RMS error was roughly about 5% [60]. 

As for extended Kalman filter, the RMS error varied according to the adopted battery 

model [53].  For an example, for Thevenin model, the error was less than 0.6% which 

is acceptable.  For the second order RC ECM the RMS value was close to 0.75% where 

the maximum error was close to 2% [72]. 
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3  Thermal behavior of cylindrical batteries 

 

To determine battery performance accurately and to estimate battery 

characteristics including lifetime, State of Charge (SOC) and State of Health (SOH), 

it is required to acquire an extensive battery model that reflects phenomena occurring 

within the battery [73].  In respect of battery phenomena, thermal behavior can be 

considered one of the most influential phenomenon to be reflected through 

comprehensive thermal modelling.  In thermal modelling, it is essential to reflect how 

the ambient temperature, core temperature and surface temperature affect the battery 

performance, as well as the heat generation inside the battery [74] [75].  

Because of various chemical, thermal and electrochemical reactions occur during the 

charging and discharging, heat is generated inside the battery. At deep discharging 

conditions, high current rates and other different environmental conditions, heat 

generation can substantially increase and so to maintain the temperature within the 

desire range, it is essential to obtain effective heat transfer mechanism, which includes 

heating and cooling. In the case of poor heat transfer, it can lead to thermal runaways 

[76]. 

Regarding battery temperature, high temperature (core temperature or surface 

temperature exceeding the safe upper temperature limits) and low temperature (core 

temperature or surface temperature lowering below the safe lower temperature limits) 

can cause adverse effects on the battery performance and characteristics including 

thermal runways, fire and explosion (see table 3.1) [76]. Safe temperature range 

slightly differs according to the cathode material of the lithium-ion battery and further 
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on the mode of operation, typically the discharging phase safe temperature range is 

about -20℃ to 60℃ and the charging phase it is about 0℃ to 40℃ [76]. 

 

 

 

 

3.1. Impact of temperature on lithium-ion batteries 

Table 3.1: Impact of li-ion batteries [76] 

Lower temperature effects Higher temperature effects 

1. Decrease of energy and power. 

2. Chemical reactions will be slow 

down along with charge transfer 

velocity leading to reduction of 

ionic conductivity of electrolyte. 

3. Reduction of battery capacity  

4. Due to the deposit of lithium-

ion on the electrode surface . 

5. Increase in the internal 

resistance. 

1. Heat generation. 

2. Thermal runway which leads to 

fire and explosion. 

3. Decomposition of electrode 

materials. 

4. Reduction of life time. 

(Including cycle aging and 

calendar aging.  

5. Reduction in internal resistance. 

6. Higher self-discharge.  

 

When batteries operate outside the desired temperature range, it causes hazardous 

consequences which affects the Battery Management System (BMS) functions [76]. 

Hence a precise representation of battery thermal behavior will ensure the 

performance, safety and lifespan of battery.  There are many detailed thermal models, 

most of them are computationally exhaustive and inappropriate for the real time 

implementation. Most importantly, the thermal model must be able to anticipte the 

core temperature since it is crucial to determine the core temperature and its influence 

over other parameters of the model [75].   

 

3.2. Battery Management System 
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The key function of a battery Management System (BMS) is maintaining the battery 

operation as smooth as possible by estimating the battery states including SOC, SOH, 

and such other characteristics as core temperature, surface temperature and coolant 

temperature; most importantly voltage and charging/discharging current while 

effectively communicating with the sub-systems of BMS [77].  The conventional or 

simplest BMS may only monitor the battery pack just to cater the power demand while 

preserving the temperature, charging/discharging current at the desired level, but an 

advanced BMS should consist of functions including fault diagnosis, lifetime 

degradation assessment and data acquisition and storage. The key functionalities of the 

BMS are identified below [75].  

3.2.1. Management of battery charging/discharging current and voltage     

The key function of a BMS is to avoid any abnormalities in the discharging/charging 

current as it may causes to fail not only the battery pack but also the other 

interconnected components. Having an accurate battery model along with an EMS will 

be beneficial to perform this task as it can monitor the deviation between measured 

data from the model along with the desired values [75]. 

 3.2.2. Heat Management and operating temperature control 

The main tasks of heat management and operating temperature control is continued 

operation of cooling and heating mechanisms to achieve an even distribution of the 

core and the surface temperatures of the battery pack. The temperature controlling 

block will give feedback to the cooling system/heating system when the battery pack 

temperature (core, surface) is not within the acceptable range. Cooling mechanism can 

be either active or passive where in passive cooling only the surrounding environment 

is employed and in active cooling some external cooling media is forced. As most of 

BMS have external cooling mechanisms that remove the heat at the surface, the 

righteous method is to remove the heat inside, because the maximum temperature is 

located inside the battery. Cooling media can be categorized as liquid cooling, air 

cooling and phase change (solid to liquid, liquid to gas). In the phase change cooling 

method, large amount of energy is released and absorbed when a phase change 

happened [78].  
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 Air cooling media : natural or forced air, cost beneficial, less complicated, low 

maintenance, light weight, low thermal conductivity 

 Liquid cooling media: oil, direct cooling (the battery pack is submerged in the 

coolant), indirect cooling( the coolant flows around battery pack), leakages, 

structural complexity  

 Phase change cooling (solid to liquid):  

 Phase change cooling (liquid to gas):  

 

 

4. The proposed comprehensive electro-thermal battery model 

4.1. Overview of the proposed model 

As stated before, an accurate battery model is very important to predict the behavior 

of a battery pack in a given application and thereby to identify the best battery 

management plan to preserve the long life of the battery. 

Existing battery models are not comprehensive enough to accommodate the combined 

and inter-related electrical and thermal behavior of a battery, simultaneously. This 

limitation has led to significant modelling inaccuracies.  

To address this vital gap, a new battery model is proposed in this research that has the 

following essential attribution. 

1) Ability to model electrical and thermal responses simultaneously 

2) Ability to model transient responses due to dynamics of battery charging and 

discharging currents 

3) Ability to self-adapt battery parameters with changes in internal temperature. 

4) Ability to model inherent hysteresis between charging and discharging 

currents. 

5) Ability to present itself as a new block in MATLAB/Simulink for easy use by 

system designers and researchers. 

The proposed battery model is based on second order ECM that has the ability to 

account for the dynamics of charging or discharging currents and the second order 

thermal model that has the ability to represent internal heat transfer and temperature. 
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Parameters of the ECM model are adapted by the model itself according to the State 

of internal temperature according to the electro-thermal data embedded within the 

model. Similar adoption of parameter is done to account for the parametric hysteresis 

charging and discharging state, that is as for the data embedded within the model. 

Figure 4.1.shows the appearance of MATLAB/Simulink block that presents the battery 

model. It has two power terminals and three outputs for information of SOC, core 

temperature (𝑇𝐶) and surface temperature (𝑇𝑠). Basic data for the battery is input 

through a mask as shown in figure 4.2. Other electro-thermal data that depends on the 

particular type of battery are fixed to the model and not recognized from the user. 

Figure 4.1: Overview of the proposed battery model 
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Figure 4.2: Battery model (mask) 

 

The model consists of two parts; electrical model and thermal model which can 

be shown in figure 4.3 along with inputs, outputs and correlation of two models.  

Figure 4.3: Coupling of electrical model and thermal model 

Inputs 𝑁1  (number of series cells) and 𝑁2  (number of parallel cells) are 

common to both electrical and thermal models, 𝑆𝑂𝐶0 (initial SOC0 and 𝐶𝑝 (nominal 

cell capacity) are inputs to electrical model and 𝑇𝑓 (ambient temperature) is an input 
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for the thermal model. The heat loss (𝑄) which is calculated from the electrical model 

is fed to the thermal model and 𝑇𝐶   of the thermal model is fed back to the electrical 

model.  SOC is an output from the electrical model and 𝑇𝐶 and 𝑇𝑠 are outputs from the 

thermal model.   

4.2. The electrical model (second order RC ECM) 

 

 
Figure 4.4: The second order RC ECM 

 

Figure 4.4 shows the part of electrical model. This is second order RC Equivalent 

Circuit model (ECM), which consists of two number of RC branches, representing 

activation polarization and concentration polarization, with a series internal ohmic 

resistance. This ECM can model transient responses caused by dynamics of 

current/voltage applied on inputs. The more the number of RC branches the greater 

will be the closeness of the model to real behavior but the computational time will be 

greater.  We stayed within the second order RC ECM as a compromise between the 

accuracy and computational time. First order ECM would have been computationally 

more efficient but it suffers from accuracy issues due to not accounting for the 

concentration polarization. Model parameters are functions of core temperature (𝑇𝑐)  

and SOC, and listed below. 

 𝑈𝑜𝑐 = Open Circuit Voltage (OCV) 

 𝑅𝑜 = Ohmic resistance (internal resistance) 
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 𝑅1, 𝐶1 = Elements that model activation polarization. This branch models 

deviation in OCV due to the charge transfer dynamics inside the battery for 

conquering the impedance of the separator. 

 𝑅2, 𝐶2 = Elements that models concentration polarization. This branch 

models the voltage fall due to mass transfer dynamics within the cell. 

Value wise, voltage drop across 𝑅1, 𝐶1 branch is greater than that across 𝑅2, 𝐶2 

branch. Response wise 𝑅1, 𝐶1 branches is faster. 

4.3. Thermal model (Two-State lumped Thermal model) 

Figure 4.5 shows the thermal part of the battery model. This is two-state 

thermal model or second order lumped thermal model, which is an advanced model 

that predicts the core temperature and surface temperature. Here the heat generation is 

considered to a concentrated Joule heating at the core. To reduce the complexity, the 

effect of reversible entropic heat is omitted in the model since it is comparatively 

smaller compared to the total heat generation inside the battery.  Also it assumes that 

the heat flux at the centre is negligible.  Only the radial thermal dynamics are 

considered and the temperature variation along the axial direction is assumed 

homogeneous. 

Figure 4.5: Two-state thermal model [74] 

 𝑇𝑐 = core temperature  

 𝑇𝑠 = Surface temperature  



39 
 

 𝑇𝑓 = Ambient temperature  

 𝑅𝐶  = Thermal resistance that represents conduction heat transfer between core 

and surface 

 𝑅𝑈  = Thermal resistance that represents convection heat transfer between 

surface and ambient 

 𝐶𝐶  = Thermal capacitance that represents heat storage in the core. 

 𝐶𝑈 = Thermal capacitance that represents storage in the surface 

 Q =   Generated net heat 

Capacitance 𝐶𝐶  and 𝐶𝑆 bring out thermal dynamics inside the battery. This complex 

mathematical model is given by the following equations (4.1), (4.2) and (4.3). 

 𝐶𝑐
𝑑𝑇𝑐

𝑑𝑡
  =   Q   +  

𝑇𝑠 −  𝑇𝑐

𝑅𝑐
                 (4.1) 

 𝐶𝑠
𝑑𝑇𝑠

𝑑𝑡
   =     

𝑇𝑓 −  𝑇𝑠

𝑅𝑢
   +   

𝑇𝑐 −  𝑇𝑠

𝑅𝑐
        (4.2) 

𝑄 = 𝐼 ∗  ( 𝑉𝑡   −   𝑉𝑜𝑐)             (4.3) 

Other parameters 𝑅𝐶 , 𝑅𝑈  and 𝐶𝑆  are constant for a given battery cell. Values of 

parametric 𝑅𝑈 depends on the cooling system used for the battery according to the 

BMS. For the testing purposes, this was also assumed to be constant. Table 4.1 shows 

the values of different parameters for a single battery-cell.  The corresponding values 

for the entire battery-pack is determined by knowing the number of cells in series (N1) 

and the number such series-strings in parallel (N2) in the battery pack. Figure 4.6 shows 

modelling basis.  

Table 4.1: Thermal model parameters [74] 

Parameter Value 

𝑅𝑈 (𝐾𝑊−1) 3.19 

𝑅𝐶  (𝐾𝑊−1) 1.94 

𝐶𝑐  (𝐽𝐾−1) 62.7 

𝐶𝑠  (𝐽𝐾−1) 4.5 
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Figure 4.6: cylindrical single cell radial lumped thermal model [74] 

 

4.4. Combining of electrical and thermal model 

Figure 4.7 shows functional descriptions of the combined electrical and thermal 

models. The block that updates ECM parameter holds battery-type specific data for a 

single cell, namely 3D lookup tables for the values of  𝑅1, 𝑅2, 𝐶1, 𝐶2, 𝑅𝑜 and 𝑉𝑜𝑐 for 

values of 𝑇𝐶 and SOC, for both state of charging (positive current) and discharging 

(negative current). Figure 4.8 shows the format of lookup for charging and discharging 

and figure 4.9 shows the stocking of different lookup tables in the block. 

Similarly thermal parametric block holds basic thermal data for a single cell, for a 

particular battery type. Using inputs 𝑁1  and 𝑁2  the block computes  𝑅𝐶 , 𝑅𝑈, 𝐶𝐶 , 𝐶𝑆 

for the entire battery pack (see table 4.3). Using the values of parameters, SOC and Q 

from the ECM model, and ambient temperature from the mask, the thermal model 

computes  𝑇𝐶 and 𝑇𝑆. 
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Table 4.2 : Thermal parameterization of battery pack  

 

(𝑅𝑈)𝑝𝑎𝑐𝑘  = 1 𝑁1𝑁2
⁄ ∗ (𝑉𝑜𝑐)𝑐𝑒𝑙𝑙                      (𝐶𝐶)𝑝𝑎𝑐𝑘 = 𝑁1𝑁2 ∗ (𝑉𝑜𝑐)𝑐𝑒𝑙𝑙  

(𝑅𝑈)𝑝𝑎𝑐𝑘  = 1 𝑁1𝑁2
⁄ ∗ (𝑉𝑜𝑐)𝑐𝑒𝑙𝑙                       (𝐶𝑆)𝑝𝑎𝑐𝑘  = 𝑁1𝑁2 ∗ (𝑉𝑜𝑐)𝑐𝑒𝑙𝑙 
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Figure 4.7: Combining of electrical model and thermal model 
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Figure 4.8 : Details of ECM parameter identification process 

 

 

Figure 4.9: ECM parameters at different SOC and 𝑻𝑪  values 
 

 

4.5. MATLAB/Simulink structure to represent battery as a circuit element 

One of the important targets is to represent the battery model as a circuit element since 

it gives the user an effective and straightforward freedom to utilize the battery model 

in power systems and other applications to simulate, various scenarios, including 

implementation of BMS and EMS etc. Figure 4.10 shows the concept of modelling on 

a circuit element. The model provides three outputs of SOC, 𝑇𝐶 and 𝑇𝑆 from its output 

port, and other required outputs are directly measures at the input terminals, eg:  𝑉𝑖𝑛  , 

𝐼𝑖𝑛 and 𝑃𝑖𝑛 
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Figure 4.10: The proposed MATLAB model as a circuit element 

 

The MATLAB/Simulink consists of three sub models which can be further divided in 

to sub sections performing the tasks listed in table 4.2. 

Table 4.2: Sub-models of the proposed model 
 

Electrical model 

SOC calculation model 

OCV calculation 

ECM model parameter calculation 

Terminal voltage calculation 

Heat loss calculation 

Thermal model Core and surface temperature calculation 

    

4.5.1. SOC calculation model 

As the first stage, SOC is estimated using the coulomb counting method using inputs 

of applied current and initial SOC values as shown figure 4.11. 𝐶𝑟𝑎𝑡𝑒𝑑  is a data 

supplied via mask, which represents Ampere-hour  capacity of the battery cell.   
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Figure 4.11: SOC calculation  
 

Charging/ discharging state of the battery is identified using output Q and Qb where 

Q=1 for charging and Qb=1 for discharging. 

 

4.5.2 OCV calculation (𝑽𝒐𝒄) 

 

 

Figure 4.12: OCV calculation  
 

The block estimates the value of OCV corresponding to the pair of TC and SOC using 

interpolations or extrapolations, on appropriate in terms of the nearest entity in the 

look up table. Here, we used linear interpolation (see figure 4.12). To obtain the 

OCV value for the battery pack, the cell-wise value is multiplied by N1. 
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4.5.3. ECM parameter calculation 

Each of 𝐶1, 𝐶2, 𝑅1, 𝑅2 and 𝑅𝑠  exhibits hysteresis between charging and discharging 

states. Therefore two lookup tables, one for charging state and the other for discharging 

state were stored for each parameter. Based on the polarity of the current (i.e. state of 

charging or discharging) the table is selected and then based on the SOC and 𝑇𝐶 the 

value is computed using interpolation (extrapolation, as appropriate) in terms of closest 

entries. Figure 4.13 shows the computations of capacitances, figure 4.14 computation 

of resistances (𝑅𝑠) and figure 4.14 computation of  𝑅1. 

Figure 4.13: Capacitance (𝐶1 , 𝐶2) calculation 

 

Figure 4.14: Resistance (𝑅𝑠 ) calculation 
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Figure 4.15: Resistance (𝑅1  , 𝑅2 ) calculation 

 

4.5.4 Terminal voltage calculation 

Once ECM parameters are updated, terminal voltage 𝑉𝑡 for a given current is 

computed using the following mathematical expression (eq. 4.4), derived from the 

ECM model. Here Z-transform based computation is chosen to reduce the 

computational time. Figure 4.16 shows the terminal voltage calculation. 

 

𝑉𝑡(𝑧) = 𝑉𝑜𝑐(𝑧) + (
𝑇𝑅1

𝑇+𝑧𝑅1𝐶1
) 𝐼(𝑧) + (

𝑇𝑅2

𝑇+𝑧𝑅2𝐶2
) 𝐼(𝑧) + 𝑅𝑠

   

𝐼(𝑧)       (4.4) 
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Figure 4.16: Terminal voltage ( 𝑉𝑡 ) calculation 

 

4.5.5 Heat generation calculation (Q) 

The heat generation is calculated taking the terminal voltage, current and OCV as 

inputs, shown in figure 4.17. 

 

 

Figure 4.17: Heat calculation 
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4.5.6 Temperature calculation (𝑻𝒄, 𝑻𝒔) 

 Core temperature (𝑇𝑐)  and surface temperature (𝑇𝑠) are computed using the following 

mathematical expressions (equations 4.5 and 4.6), which were established from the 

thermal models. Heat generation (Q) and ambient temperature (𝑇𝑓) are inputs. 𝑇𝑠(𝑜)  

and  𝑇𝐶(𝑜)  are initial values of surface temperature and core temperature respectively 

which are two inputs. Figure 4.18 shows the computation of  𝑇𝑐 and 𝑇𝑠 . 

 

TC(Z (
(𝑍−1)RCCC+𝑇

𝑇RCCC
)          =

Q(Z)

CC
 + 

TS(Z)

RCCC
+  

ZTC(0)

T
           (4.5) 

T𝑆(Z)(
(𝑍−1)RUCSRC+𝑇(RC+RU)

𝑇RUCSRC
= 

Tf(Z)

RUCS
+

TC(Z)

RCCS
+

ZTS(0)

T
          (4.6) 

 

Figure 4.18: Temperature ( 𝑻𝒄 ,𝑻𝒔 ) calculation 

 

 

4.5.7 Considerations on the developed model 
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The developed model is comprehensive in accounting the dynamics of electrical and 

thermal performances of a battery including the parametric hysteresis between 

charging and discharging processes. In fact the basic model is representing one cell of 

the battery, and after providing inputs for the number of cell in series and parallel the 

model can update itself to represents the entire battery pack.  So one of the underlying 

assumptions is that the cells are identical in all respects and there are no circulation 

current between parallel paths of cells inside the battery pack.  In other words, the 

model assumes that appropriate other measures are in place in the battery pack to 

eliminate circulation current among parallel paths of cells. 

If the requirement is to investigate the circulation current among the parallel paths, 

then cell-wise models should be used to represent individual cells in parallel paths 

accommodating tolerances in cell-parameters. This will be an attractive option of 

application of the developed model. 

The developed model uses some data for the battery, obtained by prior tests conducted 

on the battery. These data are specific to the type and the capacity of the battery, so if 

a library of such data is maintained for different capacities and types the model can 

directly select the correct set at the simulations.  This set of data includes the 

followings: 

1) 𝑅𝑆, 𝑅1, 𝑅2, 𝐶1, 𝐶2 for different SOC and TC (under charging and discharging). 

2) 𝑉𝑜𝑐   for different SOC and TC  (under charging and discharging ).  

3) 𝑅𝑈, 𝑅𝐶 , 𝐶𝑐 and 𝐶𝑠. 

 

 

 

 

 

 

5. Testing of the developed battery model 
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In general, battery is part of the microgrid system undergoing charging and discharging 

events, as detailed by the overall energy management system of the microgrid. Often, 

the battery has to undergo fast and steep charging and discharging processes activated 

following sudden variation of output of distributed generation (i.e solar PV and wind) 

in the system and change in the load. Energy Management System should ensure that 

battery operation is restricted to the safe limits of the battery in particular the limits on 

SOC, limits on charging/discharging current (C-rate), limits on surface temperature or 

core temperature etc. To realize controlled charging and discharging, the battery must 

be fitted with a bidirectional power electronic converter having ability to transfer 

power in either direction. 

5.1 Micro-grid layout 

In order to test the performance of the developed battery model, battery system is 

considered as a part of a microgrid system along with renewable energy generations 

(solar PV and wind) and loads as shown in figure 5.1. It is assumed that the microgrid 

is connected to the grid. Typical daily profiles of the solar-PV, wind power and load 

are acquired which ensure both charging and discharging states for the battery in the 

full range. The operation with a selected energy management criteria over a span of 

one full day is considered. The system characteristics are in table 5.1. 

Table 5.1: The system characteristics 

Microgrid (kW) 100  

Battery  (maximum power) (kW) 24 

Nominal capacity (Ah)  40  

Maximum charging/discharging current (A) 200 
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Figure 5.1: The configuration of the proposed battery test system 

As shown in figure 5.1, battery system, load system, solar system and wind system are 

connected to the DC bus and the grid is connected through a separate grid –end 

bidirectional AC/DC converter. 

5.2. Energy Management Criteria 

Energy management criteria determines the extent of charging and discharging current 

subjected to the specified limits on SOC, 𝑇𝑆 (𝑇𝐶) and power. For this implementation, 

𝑇𝑆  was chosen to specify thermal limits due to the ease of measuring the surface 

temperature. 𝑇𝑆 = 60°C was the thermal limit, beyond which battery current is forced 

to zero. SOC range was restricted to 0.3 and 0.9 in that the battery will be charged only 

if the battery SOC is less than 0.9 and battery will be discharged only if SOC is greater 

than 0.3. Since the battery maximum power is limited to 24kW, the maximum 

charging/discharging current is limited to 200A. When the wind and solar generation 

exceeds the load the battery is charged according to the respective rate and when the 

renewable generation cannot meet the load, the battery is discharged according to the 

required rate. Furthermore the excess/deficit power that the battery cannot handle is 

sent/taken to or from the grid. The test microgrid is a DC grid with a DC backbone of 

220V. 



53 
 

5.2.1 Energy Management Algorithm 

Figure 5.2 illustrates the chosen energy management criteria in terms of a 

flowchart. 

Figure 5.2: Energy Management Algorithm 

The algorithm, receives solar power, wind power, load, SOC and 𝑇𝑠 as inputs. As given 

in the flowchart, there are four distinct cases for charging and discharging of the 

battery, when  𝑇𝑠 < 60℃. 

 

1) Case 1: Excess generation and SOC< 0.9   

∆P= (𝑃𝑃𝑉 + 𝑃𝑊) - 𝑃𝐿  (5.1) 

𝐼𝑐ℎ𝑎𝑟𝑔𝑒 = {

∆𝑃

220
, ∆𝑃 ≤ 24 kW

24000

220
, ∆𝑃 > 24 kW

 

 (5.2)  

2) Case 2: Excess generation and SOC > 0.9   

𝐼𝑐ℎ𝑎𝑟𝑔𝑒 = 0  (5.3) 
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3) Case 3: Less generation and SOC > 0.3   

 

∆P = 𝑃𝐿 - (𝑃𝑃𝑉 + 𝑃𝑊)  (5.4) 
 

𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 = {
−

∆𝑃

220
, ∆𝑃 ≤ 24 kW

−
24000

220
, ∆𝑃 > 24 kW

 

 (5.5) 

4) Case 4: Less generation and SOC < 0.3   

𝐼𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒  =0  (5.6) 

MATLAB code that implements the algorithm is given in Appendix B. 

 

5.2.2. Battery System 

As stated below, the battery is supplied with a bidirectional converter, which in this 

case is a bidirectional DC-DC converter. At one end is 220V DC bus and at the other 

end 120V battery. The converter uses a mid- DC link architecture with a 350V DC bus 

supplied with an energy storage capacitor. The 220V bus end converter is controlled 

to give an input current equal to that commanded by the energy management 

algorithm. Depending on whether there is a charging current or discharging current, 

the mid DC link capacitor voltage rises up or falls down respectively. The battery end 

converter is sensitive to the DC-link voltage and it always acts to regulate the DC-link 

voltage at the pre-set value of 350V by either giving energy from the capacitor or 

transferring energy to the battery. Then two converter, as a whole, implement the 

required energy transfer between the 220V bus and the battery at the respective voltage 

levels. 

Control wise, 220V bus end converter is operating on current control PWM, and the 

battery end converter is closed loop voltage control with internal current loop control 

using hysteresis current control. 

The PI compensator at the battery end converter plays an important role in maintaining 

the DC-link voltage at 350V with response time compatible with the rate of change of 

power in the distributed generation. 
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Figure 5.3: Battery system 
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5.2.3. Grid-end bidirectional converter 

Figure 5.5: Grid-end bidirectional converter 

• Three-phase bidirectional AC/AC converter 

• Controller regulates voltage across output capacitor at 220V by 

drawing/returning sinusoidal current from the grid  

• Controller determines magnitude of current according to deviation of output 

voltage from 220V through PI controller 

• Hysteresis current controller is used to implement current 

Grid end converter is a bidirectional AC/DC converter. Its primary task is to maintain 

the DC bus voltage at 220V, irrespective of changes in generation, load, and battery 

operation at all times. This converter has to take power from the AC grid when there 

is a net deficit of power in the microgrid, or return power back to the AC grid when 

there is a net excess of power in the microgrid. This can happen when there is an excess 

generation of a time when battery SOC is already at its upper limit at 0.9, or deficit of 

generation at a time when the battery SOC at its lower limit of 0.3. In all times, the 

current at the AC grid side is maintained in phase with the voltage (unity p.f.) while 
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the current waveforms are synthesized to be sinusoidal. This operation is ensured by 

the control implemented on the converter.  

 

5.2.4. Modelling of renewable generations and loads 

Renewable sources were modelled on controlled current sources injecting power into 

the 220V DC bus. To represent typical daily profile of generation, extracted power 

data from real sources were stored lookup tables to determine the instantaneous current 

reference for the controlled current source over a span of day. 

Loads were also modelled in the same way but current now not injected to the bus, it 

is absorbing from the bus. 

Figure 5.6, 5.7 and 5.8 show the model of wind, PV source and load. 

 

Figure 5.6: Wind model 

 

 

Figure 5.7: Solar model 
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Figure 5.8: Load model 

The power variation of the renewable energies (wind and solar) and load are 

shown in the following table 5.2. 

Table 5.2: Renewable energy and load power variation 

Solar (kW) 0 < 𝑃𝑝𝑣< 31.6 

Wind (kW) 30 < 𝑃𝑤< 60 

Load (kW) 22 < 𝑃𝐿  < 85 

 

Current references for the source and loads were determined by the respective power 

values in the look up tables at that point of time. 

The equations (5.9), (5.10) and (5.11) shows how current references were computed 

from power references. 

𝑰𝒓𝒆𝒇_𝒘𝒊𝒏𝒅 =  
𝑷𝒘𝒊𝒏𝒅

𝟐𝟐𝟎
            (5.9) 

𝑰𝒓𝒆𝒇_𝒔𝒐𝒍𝒂𝒓 =  
𝑷𝒔𝒐𝒍𝒂𝒓

𝟐𝟐𝟎
       (5.10) 

𝑰𝒓𝒆𝒇_𝒍𝒐𝒂𝒅 =  
𝑷𝒍𝒐𝒂𝒅

𝟐𝟐𝟎
              (5.11) 
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6  Simulation results 

6.1 Battery data  

As stated before, some data specific to the type and capacity of the battery are required 

to be stored within the model.  These data are obtained by prior tests conducted on 

such types and capacities of batteries.  For the simulations described below, a set of 

data found in the literature [75] is used (see Appendix A).  This set included data on 

the parameters 𝑅𝑆, 𝑅1, 𝑅2, 𝐶1, 𝐶2 and their variations with SOC and TC, variation of 𝑉𝑜𝑐 

with SOC and TC (under both charging and discharging states), and thermal 

parameters 𝑅𝑈, 𝑅𝐶 , 𝐶𝑐 and 𝐶𝑠.  

6.1.1 Variation of resistance (𝑹𝑺, 𝑹𝟏, 𝑹𝟐) values with SOC and 𝑻𝑪 

The variation of resistances (𝑅𝑆, 𝑅1, 𝑅2) with SOC and TC  was obtained using 2-D 

cubic line interpolation to obtain the continuously differentiable surface plot seen in 

the figure 6.1, figure 6.2 and figure 6.3 respectively. It can be seen that there is an 

increase in the resistance values as the SOC increases. At lower SOC and higher SOC, 

the variation of values of resistances is significant and at the middle SOC range, the 

variation of values of resistances is less. Also the resistance values significantly 

depend on the temperature.   
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Figure 6.1: variation of R1 with SOC and 𝑇𝐶 

 

Figure 6.2: variation of 𝐑𝟐 with SOC and 𝑻𝑪 

 

 

Figure 6.3: variation of 𝐑𝐬 with SOC and 𝑻𝑪 
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6.1.2 Variation of capacitances ( 𝑪𝟏, 𝑪𝟐) values with SOC and 𝑻𝑪 

 

The variation of capacitances ( 𝐶1, 𝐶2) with SOC and TC was obtained using 2-D cubic 

line interpolation to obtain the continuously differentiable surface plot seen in the 

figure 6.4 and figure 6.5 respectively. It can be seen that there is an increase in the 

capacitance values as the SOC increases. At lower SOC and higher SOC, the variation 

of values of capacitances is significant and at the middle SOC range, the variation of 

values of capacitances is less. Also values significant depends on temperature.   

 

 

Figure 6.4: variation of 𝐂𝟏 with SOC and 𝑻𝑪 

 

 

Figure 6.5: variation of 𝐂𝟐 with SOC and 𝑻𝑪 
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6.1.3 Variation of open circuit voltage (𝑽𝒐𝒄) values with SOC and 𝑻𝑪 

The variation of OCV with SOC and TC  was obtained using 2-D cubic line 

interpolation to obtain the continuously differentiable surface plot seen in the figure 

6.6. It can be seen that there is an increase in OCV value as the SOC increases. At 

lower SOC and higher SOC, the variation of OCV is significant and at the middle SOC 

range, the variation of OCV is less. Also OCV value significant depends on 

temperature.   

 

 

Figure 6.6: variation of 𝐎𝐂𝐕 with SOC and 𝑻𝑪 

 

6.2 Battery response (Electro-thermal dynamics) 

The proposed electro-thermal battery model was tested in the micro-grid setup in 

MATLAB/Simulink with variable renewable energy and load profiles covering the 

span of one full day, as shown in figure 6.7. The daily load profile (which has two 

peaks naming morning peak and evening peak), wind power profile and solar profile 

were scaled to ensure typical charging/ discharging events over the day.  
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Figure 6.7: Renewable Energy Profiles 

 

Figure 6.8: DC bus voltage 

According to the figure 6.8, it can be observed that the DC bus voltage is maintained 

at 220V irrespective of the variations of generation, load and battery operation.  This 

indicates that the micro-grid is operating healthily as a platform for the tests of BMS. 

Figure 6.9 shows the traces of battery current, battery SOC, battery terminal voltage, 

battery core-temperature and battery surface-temperature over the day. 
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Figure 6.9: Simulation results  

𝑰𝒃 (Battery current) 

With reference to battery current profile, it could be noticed that the battery discharged 

at two time periods (hour 6-8 and 18-22) where battery current became negative value. 

During the hour 18-22, the battery discharged with the maximum discharging current 

(200A) as the generations could not meet the load. During the hour, 8-18, battery 

charges at the maximum rate as the generations exceeded the load.  

State Of Charge (SOC) 

The initial SOC value was assumed as 0.5. During the two intervals, where battery 

discharged (hour 6-8 and 18-22), the SOC value of the battery decreased and the other 

times SOC value increased. 
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Terminal voltage (𝑽𝒕) 

The terminal voltage varies between about 117V and 128V.  Over the two discharging 

intervals (hour 6-8 and 18-22), terminal voltage decreases. With times, terminal 

voltage varies in accordance with the battery current and variation of ECM parameters.  

Core temperature (𝑻𝑪) 

Core temperature varies approximately between 30℃ and 35℃.  The initial core 

temperature is taken as the ambient temperature (30℃).  During times when the 

battery is charging at constant current, the core temperature is also remains steady at 

35℃. 

Surface temperature (𝑻𝑺) 

Surface temperature varies approximately between 30℃ and 32℃. The initial surface 

temperature was taken as the ambient temperature (30℃). The variation of surface 

temperature has a close follow up of the variation of the core temperature as expected.  

Figure 6.10 shows the variations in the battery parameters R0, R1, R2, C1 and C2 during 

the day. 
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Figure 6.10: Simulation results (ii) 

Resistance (𝑹𝒐, 𝑹𝟏, 𝑹𝟐) values variation with time 

It can be clearly seen that resistances are varying with time, according to the level of 

SOC, core temperature and state of operation, i.e. charging or discharging. It is 

apparent that charging/discharging hysteresis is having a significant impact.  

Resistance (𝑪𝟏, 𝑪𝟐) values variation with time 

Capacitances are also varying with time, on evident in the graph. These changes are 

also governed by the level of SOC, core temperature and state of charging/discharging. 
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7 Conclusion and future work 

 7.1 Conclusion 

The need of a computationally efficient battery model capable of accounting 

for the dynamics of electrical and thermal performances simultaneously has been long 

felt, especially, in the designing of battery energy storage systems for micro-grids 

involving renewable energy sources, and in electric vehicles.  Thermal impacts and its 

influence on battery performance are two crucial aspects that must be accounted for 

ensuring the safety and longevity of batteries. Beside this vital fact, not a single 

battery-model available so far had accounted for the combined electrical and thermal 

responses.  Moreover, the inherent hysteresis exhibited by battery performance 

between charging and discharging states must also be incorporated within the model 

if the model is to be more accurate.  One of the reasons for this bottleneck is the high 

computational time. 

This thesis presented details of the development of a computationally efficient 

combined and comprehensive electro-thermal battery model, incorporating the 

hysteresis between charging and discharging states.   The conclusions that can be 

drawn out of this work are: 

1) A comprehensive battery model incorporating electro-thermal combined 

behavior and charging-discharging hysteresis has been developed. 

2) The developed model is computationally efficient.  

3) The developed model is user friendly, because it is presented as a circuit 

component in MATLAB Simulink. 

4) The model is easily adaptable to individual battery banks using relevant battery 

pack-data. 

 

The battery model is a two-terminal block in Simulink that can be connected to the 

external system.  Therefore, the dynamics of terminal voltage and input current are 

directly measurable. Three separate outputs of the block give the instantaneous values 

of SOC, core-temperature and surface-temperature.  Input data to the model are 

provided through a mask, which are initial SOC, numbers of cells in series and parallel 

in the pack, ambient temperature, and nominal cell capacity.   
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Development of a micro-grid platform to test the performance of batteries under real 

world conditions was another parallel task presented in this thesis.  The micro-grid was 

having a common DC-busbar to which the grid is connected via a bidirectional AC-

DC converter, battery bank is connected via a bidirectional DC-DC converter and solar 

PV inverters, wind power inverters and loads were connected directly.  AC-DC 

converter was tasked to regulate the voltage of the DC busbar against changes in the 

generation and consumption in the micro-grid by either taking or returning power from 

or to the grid.  A separate energy management criterion determined the instantaneous 

charging and discharging current for the battery bank within its stipulated safe limits, 

which the DC-DC converter was tasked to establish.  Simulation of the battery bank 

with the developed battery model within the micro-grid over the course of a typical 

day, involving charging and discharging revealed that the predicted performance of 

the battery was a close match of the true behavior of the the battery.  Also, the 

simulation times were acceptably lower, indicating that the model was 

computationally efficient.   

 

7.2 Future work 

An important further work will be a development of a test bench containing a thermal 

chamber, programmable DC current supply, programmable DC load, precision current 

and voltage sensors, fast data acquisition system and a host computer, as in figure 7.1.  

This test bench can then be used to obtain data for the model of a given type and 

capacity of a battery.  

Parameter 𝑅𝑆 of the thermal model will change if batteries are cooled with an external 

cooling system. Therefore, the effective value of 𝑅𝑆 under different cooling conditions 

needs to be estimated and adopted accordingly. 

Ambient temperature can vary over the time depending on climatic and other causes.  

Therefore, the value of ambient temperature input in the model should be updated 

appropriately to match with what actually encountered in practice. 
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To make the battery model a still better model, battery degradation factors should also 

be included into the battery model.  This requires operation-specific battery aging 

experiments involving advanced test facilities, which may take several months or 

years. 

Finally, for a realistic validation of the battery model, the practical measurements of   

 𝑇𝑆, 𝑇𝐶 , 𝑉𝑡 and SOC for an applied profile of input current over a period of time should 

be compared with the simulated results on the same input current over the same period 

of time.  For this purpose, the chosen battery-bank should be pre-tested for the model 

data and then simulate.  This again comes to the need of a test bench of Fig. 7.1. 

 

 

Figure 7.1: Battery test bench 
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APPENDIX A-   Equivalent Circuit Parameters  

𝑹𝟎 (Discgarge) 

        Tc (℃) 

SOC 

5 15 25 35 45 

0.1 0.0190 0.0136 0.0106 0.0090 0.0084 
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0.2 0.0184 0.0134 0.0104 0.0088 0.0082 

0.3 0.0182 0.0134 0.0104 0.0090 0.0082 

0.4 0.0184 0.0134 0.0104 0.0090 0.0082 

0.5 0.0188 0.0136 0.0106 0.0088 0.0082 

0.6 0.0190 0.0136 0.0106 0.0086 0.0082 

0.7 0.0194 0.0136 0.0104 0.0086 0.0080 

0.8 0.0192 0.0136 0.0102 0.0086 0.0080 

0.9 0.0194 0.0136 0.0102 0.0086 0.0080 

 

𝑹𝟎 (Charge) 

        Tc (℃) 

SOC 

5 15 25 35 45 

0.1 0.0166 0.0128 0.0100 0.0088 0.0082 

0.2 0.0162 0.0126 0.0100 0.0088 0.0082 

0.3 0.0161 0.0124 0.0100 0.0088 0.0082 

0.4 0.0160 0.0124 0.0100 0.0088 0.0082 

0.5 0.0160 0.0126 0.0100 0.0088 0.0082 

0.6 0.0161 0.0126 0.0090 0.0088 0.0082 

0.7 0.0164 0.0127 0.0090 0.0088 0.0082 

0.8 0.0166 0.0127 0.0090 0.0088 0.0082 

0.9 0.0168 0.0126 0.0090 0.0088 0.0082 

 

 

 

 

𝑹𝟏 (Discharge) 

        Tc (℃) 

SOC 

5 15 25 35 45 

0.1 0.0500 0.0280 0.0180 0.0130 0.0110 

0.2 0.0420 0.0250 0.0170 0.0120 0.0100 
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0.3 0.0360 0.0230 0.0160 0.0110 0.0090 

0.4 0.0350 0.0240 0.0190 0.0130 0.0110 

0.5 0.0330 0.0230 0.0170 0.0120 0.0100 

0.6 0.0300 0.0200 0.0140 0.0100 0.0080 

0.7 0.0280 0.0180 0.0130 0.0100 0.0080 

0.8 0.0270 0.0190 0.0150 0.0130 0.0110 

0.9 0.0260 0.0200 0.0160 0.0110 0.0090 

 

 

𝑹𝟏 (Charge) 

        Tc (℃) 

SOC 

5 15 25 35 45 

0.1 0.0230 0.0160 0.0110 0.0090 0.0070 

0.2 0.0230 0.0170 0.0120 0.0100 0.0080 

0.3 0.0240 0.0180 0.0130 0.0110 0.0090 

0.4 0.0240 0.0190 0.0140 0.0120 0.0100 

0.5 0.0260 0.0210 0.0160 0.0160 0.0110 

0.6 0.0270 0.0220 0.0150 0.0150 0.0100 

0.7 0.0280 0.0220 0.0180 0.0150 0.0090 

0.8 0.0340 0.0240 0.0180 0.0170 0.0110 

0.9 0.0440 0.0490 0.0280 0.0270 0.0130 

 

 

 

 

 

𝑹𝟐 (Discharge) 

        Tc (℃) 

SOC 

5 15 25 35 45 

0.1 0.1000 0.0750 0.0600 0.0500 0.0400 
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0.2 0.0400 0.0390 0.0229 0.0171 0.0171 

0.3 0.0380 0.0243 0.0186 0.0129 0.0080 

0.4 0.0658 0.0328 0.0229 0.0114 0.0080 

0.5 0.0357 0.0243 0.0157 0.0100 0.0080 

0.6 0.0300 0.0200 0.0143 0.0080 0.0171 

0.7 0.0400 0.0414 0.0229 0.0171 0.0171 

0.8 0.0729 0.0429 0.0271 0.0157 0.0170 

0.9 0.0400 0.0243 0.0157 0.0100 0.0080 

 

𝑹𝟐 (Charge) 

        Tc (℃) 

SOC 

5 15 25 35 45 

0.1 0.0243 0.0171 0.0171 0.0129 0.0129 

0.2 0.0243 0.0186 0.0186 0.0157 0.0143 

0.3 0.0243 0.0200 0.0157 0.0143 0.0114 

0.4 0.0329 0.0243 0.0186 0.0114 0.0080 

0.5 0.0343 0.0229 0.0186 0.0129 0.0080 

0.6 0.0343 0.0200 0.0186 0.0143 0.0114 

0.7 0.0300 0.0229 0.0171 0.0114 0.0114 

0.8 0.0429 0.0300 0.0214 0.0157 0.0170 

0.9 0.0450 0.0643 0.0386 0.0300 0.0157 

 

 

 

 

 

 

𝑪𝟏 (Discharge) 
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        Tc (℃) 

SOC 

5 15 25 35 45 

0.1 1700 1900 2200 2500 3000 

0.2 1850 2050 2300 2600 2900 

0.3 1700 2100 2400 2700 2900 

0.4 1850 2150 2300 2500 2750 

0.5 1800 2200 2500 2750 2850 

0.6 1700 2150 2500 2800 3100 

0.7 1450 1850 2400 2750 3300 

0.8 1100 1600 2100 2650 3100 

0.9 900 800 1600 2100 3000 

 

 

𝑪𝟏 (Charge)  

        Tc (℃) 

SOC 

5 15 25 35 45 

0.1 800 1300 1900 2400 2900 

0.2 1000 1500 1900 2200 2600 

0.3 1300 1800 2100 2500 2700 

0.4 1500 2100 2500 2850 2900 

0.5 1600 2000 2200 2500 2450 

0.6 1700 1900 2300 2650 2900 

0.7 1800 2250 2700 3300 3500 

0.8 1900 2500 3300 3700 3800 

0.9 2000 2500 2800 2800 2800 

 

 

 

𝑪𝟐 (Discharge) 
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        Tc (℃) 

SOC 

5 15 25 35 45 

0.1 15789 31579 36842 39474 34211 

0.2 31579 50000 65789 84211 100000 

0.3 28947 44737 73684 100000 121053 

0.4 21053 31579 39474 76316 134211 

0.5 26316 44737 71053, 105263 134211 

0.6 42105 63158 86842 123684 144737 

0.7 39474 36842 47368 47368 60526 

0.8 23684 31579 36842 55263 76316 

0.9 26316 39474 65789 92105 115789 

  

𝑪𝟐 (Charge) 

        Tc (℃) 

SOC 

5 15 25 35 45 

0.1 52632 60526 71053 92105 84211 

0.2 52632 73684 89474 105263 121053 

0.3 50000 68421 84211 105263 110526 

0.4 36842 47368 39474 76316 134211 

0.5 31579 44737 57895 81579 134211 

0.6 31579 55263 73684 100000 110526 

0.7 36842 50000 73684 105263 121053 

0.8 26316 34211 47368 63158 86842 

0.9 15789 28942 34211 92105 60526 

 

 

 

 

 

𝑶𝒄𝒗 
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        Tc (℃) 

SOC 

5 15 25 35 45 

0.1 3.2378 3.2111 3.1714 3.1714 3.1714 

0.2 3.2622 3.2444 3.2333 3.2311 3.2311 

0.3 3.2733 3.2711 3.2622 3.2600 3.2600 

0.4 3.2778 3.2822 3.2822 3.2844 3.2867 

0.5 3.3000 3.3000 3.3000 3.3000 3.3000 

0.6 3.3000 3.3000 3.3000 3.3000 3.3000 

0.7 3.3429 3.3429 3.3429 3.3429 3.3429 

0.8 3.3429 3.3429 3.3429 3.3429 3.3429 

0.9 3.5000 3.5714 3.5714 3.5429 3.5429 

 

 

APPENDIX B-   MATLAB code for Energy Management Criteria 

function [I_batref,solar_current,wind_current,load_current]  = fcn(P_pv, P_w, P_L, 

SOC, Ts) 

delta_P = (P_pv+ P_w) - P_L;   

P_max = 24000; 

solar_current= P_pv/220; 

wind_current= P_w/220; 

load_current= P_L/220; 

if (Ts>60) 

    I_batref=0; 

else 

    if ((delta_P)<=0) % load is higher than generation 

        if (SOC >0.3) 

            if((-delta_P)> P_max) 

                I_batref= (-P_max)/220;%24000%220  

                %state=1; 

            else 

                I_batref=(delta_P)/220;  

                %%state=2; 

            end 

        else 

            I_batref=0; 

            %state=3; 

        end 
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    else 

        if (SOC<0.9) 

            if ((delta_P)> P_max) 

                I_batref= (P_max/220); 

                %state=5; 

            else   

                I_batref= (delta_P)/220; 

                %state=6; 

            end 

        else 

            I_batref=0; 

            %state=7; 

        end           

    end 

end 

 

 

 

 

 

 

 

 

 

 


