DESIGN AND IMPLEMENTATION OF A LIGHT WEIGHT, SCALABLE AND ASSISTIVE APPLICATION PROGRAMMING INTERFACE FOR INTERNET OF THINGS

Ahesh Perera

(168251M)

Degree of Master of Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

June 2018

DESIGN AND IMPLEMENTATION OF A LIGHT WEIGHT, SCALABLE AND ASSISTIVE APPLICATION PROGRAMMING INTERFACE FOR INTERNET OF THINGS

Hetti Arachchige Ahesh Suranga Perera

(168251M)

Thesis submitted in partial fulfillment of the requirements for the degree Master of Science in Computer Science and Engineering

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

June 2018

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature: Name: H.A.A.S. Perera Date:

The above candidate has carried out research for the Masters Thesis under my supervision.

Name of the supervisor: Dr. Indika Perera

Signature of the supervisor: Date:

Abstract

Cloud computing and Internet of Things (IoT) brings various physical devices which generate and exchange data with the services promoting the integration between the physical world and the computer world into a single common page. Together they have been providing various applications, use cases and services over the past few years, that has made a significant benefit on both industrial applications as well as day to day needs of humans.

On the other side of the coin, programming of the IoT based applications has become very challenging due to the vast knowledge base required in various technical domains, from low-power networking to the embedded operating systems, from low level calculations to the distributed algorithms and so on. It is certain that a well designed, reliable and scalable, easy configurable and high performance Application Programming Interfaces (APIs) are much needed in this paradigm to offer sophisticated services for an IoT cloud. APIs are generally exposed to its consumers as service endpoints to get pre-defined jobs done, and are offering convenient ways for developers to design and implement applications as well as vendors (OEMs) to design and manufacture their devices.

In this research I have mainly focused and discussed about the true challenges, issues and the concerns that we may face when designing and implementing high performance APIs for IoT cloud. I have also elaborated the technical and theoretical limitations come along with the performance issues in such APIs. Most importantly I have tried to design a platform for small start-ups who start developing their IoT based products with a limited knowledge, time, funds and resources so that they can build their products without worrying about the production level challenges in terms of scaling and performance once the business is grown up.

This research will provide a solution for most of the challenges when it comes to IoT cloud in terms of self configurations and elasticity with auto scaling whilst keeping better performance. Considering the massive variety of devices and the resource constraints we have in IoT, an architecture has been proposed for devices to be self-configured to the maximum extent with the API. The proposed solution will have a well designed RESTful API which comes in plug-and-play mode with developer convenience, supporting horizontal scaling as and when needed. In a nut-shell this gives a framework which takes care of all the architectural level challenges and best practices in IoT cloud where the engineering team focuses more on the business and the product.

ACKNOWLEDGEMENTS

I am grateful to Dr. Indika Perera, my supervisor for accepting my research under his supervision and for the guidance, continuous support and the direction given throughout to make this research a success.

My sincere appreciation goes to my family for the support and the motivation given for making this thesis a success.

I would also like to thank my colleagues at work place, Sysco Labs for spending their valuable time with me to discuss about my research and opening gates to discover new areas.

Finally, I wish to thank all the academic and nonacademic staff of Department of Computer Science and Engineering, University of Moratuwa and my colleagues of MSC'16 batch for the support and encouragement provided throughout past 2 years.

TABLE OF CONTENTS

DECLARATION		i
Abstract		ii
ACKNOWLEDGEMENTS		iii
TABLE OF CONTENTS		iv
LIST OF FIGURES		viii
LIST OF TABLES		X
LIST OF ABBREVIATIONS		xi
Chapter 1 INTRODUCTION		1
1.1 Background		2
1.2 APIs are Driving the I	nternet of Things	3
1.3 Common IoT Challeng	ges	4
1.4 Problem Statement		5
1.5 Motivation		6
1.6 High Level Research (Objectives	8
Chapter 2 LITERATURE REV	VIEW	10
2.1 IoT based related work	5	11
2.2 Web Service Protocol	for Interoperable IoT Tasking Capability	11
2.2.1 Capabilities of IoT		12
2.2.2 IoT Architecture		13
2.3 Integrated Middleware	e Framework for Heterogeneous Internet of Things	14
2.3.1 Requirements of M2N	A APIs for IoT Architecture	15
2.3.2 Convergence of M2M	1 APIs to RESTFul Web services	16
2.4 Web API Managemen	t Meets the Internet of Things	17
2.4.1 Challenges for the Int	ernet of Things and Web APIs	18
2.4.2 IoTGw - an API Gate	way for IoT protocols	18
2.5 Problems and Limitati	ons when designing a WEB-API of IOT	20
2.5.1 Implementation issue	S	20

2.6	A Self-Configuration Architecture for Web-API of IoT	21
2.6	5.1 Requirements of WEB APIs in IoT	21
2.6	5.2 Related work	24
	 2.6.2.1 ThingSpeak 2.6.2.2 NimBits 2.6.2.3 Cosm 2.6.2.4 SensorCloud 2.6.2.5 Evrythng 2.6.2.6 iDigi 2.6.2.7 GroveStreams Ad Hoc Networks 	25 25 25 25 26 26 26 26 27
2.7	7.1 Data Confidentiality	28
2.7	7.2 Privacy	28
2.7	7.3 Trust	29
2.8	RESTful Sensor Data Back-end	31
2.9	WSO2 IoT Server	33
2.9	0.1 Architecture	34
2.9	9.2 Limitations for the target group	36
Chapter	3 METHODOLOGY	37
3.1	Proposed Solution	38
3.2	Components	40
3.2	2.1 Cloud API	40
3.2	2.2 Front End Dashboard	40
3.2	2.3 Device / Agent	40
3.3	Cloud API	41
3.4	Technology stack	42
3.4	4.1 Node JS	42
3.4	4.2 JSON	43
3.4	4.3 Mongo DB	44
3.5	High Level Modular Architecture	44
3.6	How does this work?	46

3.6.1 Io	T devices registration	46
3.6.2 A	gents registration	46
3.7 Ev	aluation Plan	48
3.7.1 A	PI performance	48
3.7.2 A	bility to scale	48
3.7.3 A	ccuracy of the configuration scripts	49
Chapter 4	SOLUTION ARCHITECTURE AND IMPLEMENTATION	50
4.1 So	lution Architecture	51
4.2 Im	plementation	52
4.2.1 C	oud API	53
4.2.2 A	gent API	54
4.3 Ho	w does Scaling work?	55
4.3.1 D	atabase layer	56
4.3.2 C	onfigurations Scripts store	56
4.3.3 A	PI Service layer	56
4.3.4 C	ongestion Controller / Queue Management Layer	56
4.3.5 Fi	ont End Application	57
4.3.6 A	nalytics Engine	58
4.4 Sa	mple Results	58
4.4.1 H	ow will Agent send data?	59
4.4.2 H	ow will Cloud API receive data?	59
4.4.3 H	ow will Database save data?	60
4.5 Be	st Practices	61
Chapter 5	SYSTEM EVALUATION	63
5.1 Ho	w was the evaluation done?	64
5.2 To	ols used for the evaluation	65
5.2.1 H	ow K6 works?	65
5.2.2 Sa	mple Evaluation Results for API Performance	67
5.3 At	ality to Scale	70

5.3	.1 What is PM2?	70
5.3	.2 Sample Evaluation Results in terms of Scaling ability	71
Chapter	6 CONCLUSION	77
6.1	Research Contributions	78
6.2	Research Limitations	78
6.3	Future Work	79
REFER	ENCES	80

LIST OF FIGURES

Figure 2-1 : Architecture of Internet of things14
Figure 2-2 : Overall System Architecture
Figure 2-3 : Graphical representation of security challenges in Internet-of-Things30
Figure 2-4 : Overview of the first PHP-based RESTful IoT Back-end prototype32
Figure 2-5 : High level System Architecture of WSO2 IoT Server
Figure 3-1 : High-level Architecture of the system
Figure 3-2 : Modular Architecture of the API
Figure 3-3 : Registration process
Figure 4-1 : Components diagram of API
Figure 4-2 : Source Structure of Cloud API
Figure 4-3 : Source Structure of Agent API
Figure 4-4 : Components level scaling architecture
Figure 4-5 : LM-35
Figure 4-6 : Console logs when agent sends data to Cloud API
Figure 4-7 : Console logs when Cloud API receives the same data
Figure 4-8 : Database snapshot of current data set
Figure 5-1 : 10 Virtual users send request per second for 5 seconds
Figure 5-2 : 1000 Virtual users send request per second during 10 seconds for 4 times.68
Figure 5-3 : Average values for 1000 users , send requests during 10 Seconds for 4 times
Figure 5-4 : PM2 shows a single node process is running in cluster mode71
Figure 5-5 : HTOP shows how the CPU and the memory are utilized for single node
process
Figure 5-6 : Average values for 1000 users, send requests in 10 Seconds in a single
instance
Figure 5-7 : HTOP shows how the CPU and the memory are utilized for two node
processes
Figure 5-8 : PM2 shows that 2 node processes are running in cluster mode
Figure 5-9 : Average values for 1000 users, send requests during 10 Seconds in 2
instances
Figure 5-10 : HTOP shows how the CPU and the memory are utilized for 4 node
processes
Figure 5-11 : PM2 shows that 4 node processes are running in cluster mode73
Figure 5-12 : Average values for 1000 users, send requests during 10 Seconds in 4
instances

Figure 5-13 : HTOP shows how the CPU and the memory are utilized for 8 node
processes
Figure 5-14 : PM2 shows that 8 node processes are running in cluster mode74
Figure 5-15 : Average values for 1000 users, send requests during 10 Seconds in 8
instances
Figure 5-16 : Sent and Received data variation against number of clusters

LIST OF TABLES

Table 3-1 Initially identified modules	38
Table 5-1: K6 Built in Matrices	67

LIST OF ABBREVIATIONS

Abbreviation

Description

OEM	Original Equipment Manufacturer
WWW	World Wide Web
ІоТ	Internet of Things
RFID	Radio Frequency Identification
ITU	International Telecommunication Union
API	Application Programming Interfaces
M2M	Machine to Machine
REST	Representational State Transfer
SDK	Software Development Kit
SLA	Service Level Agreement
НТТР	Hypertext Transfer Protocol
MQTT	MQ Telemetry Transport
CoAP	Constrained Application Protocol
IOT-OAS	IoT Open Architecture System
ROM	Read Only Memory
XML	Extensible Markup Language
YAML	Yet Another Markup Language
JSON	JavaScript Object Notation
URI	Uniform Resource Identifier
IP	Internet Protocol
IDE	Integrated Development Environment
LAN	Local Area Network
URL	Universal Resource Locator
XMPP	Extensible Messaging and Presence Protocol