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ABSTRACT

Semantic parsing of geometry problems is the first step towards automated

geometry problem solvers. Existing systems for this task heavily depend on

language-specific NLP tools and use hard-coded parsing rules. Moreover, these

systems produce a static set of facts and record low precision scores. In this study,

we present the two-step memory network, a novel neural network architecture for

deep semantic parsing of GWPs. Our model is language independent and opti-

mized for low-resource domains. Without using any language-specific NLP tool,

our system performs as good as existing systems. We also introduce on-demand

fact extraction, where a solver can query the model about entities during the

solving stage. This is impossible for existing systems; the set of extracted facts

with these systems are static after the parsing stage. This feature alleviates the

problem of having an imperfect recall.

We also investigate data augmentation techniques for low resource domains

to alleviate the difficulties in applying deep learning techniques in the domain

above. We also introduce an enhanced metric for evaluating language generative

models alleviating the the limitations of exiting metrics. Analysing the results,

we come up with a ranking of models on their suitability to be used o low resource

domains

Keywords: Semantic Parsing; Deep Learning; Memory Networks; Generative Adver-

sarial Networks; Temperature Sweep
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Chapter 1

INTRODUCTION

1.1 Background

Mathematics is a domain that involves high logical thinking and reasoning capa-

bilities. Mathematics involves several disciplines such as Arithmetic, Symbolic,

and Geometry. Among these fields, Geometry holds an important place as it help

students develop the skills of visualization, critical thinking, intuition, perspec-

tive, problem-solving, conjecturing, deductive reasoning, logical argument and

proof [4].

A proof problem in geometry (refer figure 1.1) normally involves discovering

new facts using a set of given facts and a pool of geometry theorems. Although

this type of deductions are common in Mathematics, many students find proof

problems difficult. According to a large-scale survey done in USA, it is only

about 30% of students completing full-year geometry courses that taught proof

reached a 75% mastery level proof writing [4]. The study also found that a

significant number from highly performing students also found these problems to

be difficult. The main reason behind this scenario can be recognized as the fact

that there is no definite pattern to solve these problems. A student must use

the theorems with the facts given in the problem with no set pattern or a list of

definite steps to follow. Thus, a student needs practice on a fairly large number of

problems to gain the required problem solving skills [5]. Also, assessing student

answers in geometric theorem proving is a time consuming activity. This high

time consumption limits the number of practice problems a teacher can solve and

discuss during the class [6].
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Figure 1.1: An example for a geometry proof problem

1.2 Research Problem

A platform for students to practise geometry problems without the guidance of

a teacher can alleviate above issues. There are already implemented systems

that partially serve this purpose. MathTutor [6] is a system that can assess a

proof written by students. However, this system needs the inputs to be in XML

format. Also, it needs the marking scheme of the geometry problem also as an

input. Therefore, this system cannot be used by students who are unfamiliar

with the input formats required by the system. The usage of the system is also

limited by its need for marking schemes.

Figure 1.2: An example for an MCQ in geometry

GEOS [3] is a system which does not need such formatted inputs; it can parse

the natural language description and any image associated with the geometry

problem. However, despite its capability to accept the question in the natural

language,GEOS can solve only solve Multiple Choice Questions (MCQs) related
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to geometry. An example for a problem of this kind is given in figure 1.2. GEOS

solves MCQs by comapring the matching between each choice in the MCQ with

the rules it produces parsing the geometry question. Thus, GEOS is neither

interpretable nor cannot be used in questions which needs proof. On the other

hand, GeoShader [7] is a system which is both interpretable and can be used to

generate proofs for geometry problems. GeoShader produces all possible paths

for arriving a target result using existing facts and geometry theorems. However,

GeoShader also accepts the question in a specific format limiting its usability.

Automatic solving of geometry problems can be modeled as a search problem

that traverses through a set of facts [8], or a numerical approach that checks the

satisfiability of a set of facts [3]. To use either of these techniques, the set of facts

have to be first extracted from the textual description (and the diagram if there is

any). As explained above, while most of the research in this line has assumed the

existence of a set of facts (a formal machine representation) to reason with [6],

little research has looked at parsing a given question in natural language into a

formal representation [3, 8].

Shallow forms of semantic parsing usually focus on parsing a sentence to a

sequence of word representations such as the case-role assignment of the con-

stituents [9], while deep forms focus on building more formal representations that

support automated reasoning. For geometric problem solving, we need the ex-

tracted set of facts to support automated reasoning. Thus, deep semantic parsing

techniques should be used.

The task of deep parsing of geometry questions is inherently difficult due to

several reasons. The inaccurate behavior of existing Natural Language Process-

ing (NLP) tools on this domain can be considered as a critical restriction. For

example, Figure 1.3 shows the dependency parse tree produced by the Stanford

Dependency parser [1] for the phrase “AB is a chord of the circle with center O.”

Even though the word “circle” should be closely related to “O”, the parse tree

only shows an indirect path between the two nodes. Another critical problem

is the lack of data [3], so using usual deep learning models for this task (due to

their data intensiveness) is not viable. Hence, existing systems such as GEOS
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AB is a chord of the circle with center O
NNP DTVBZ NN IN NNNN NNIN DT

Figure 1.3: Dependency parse tree for “AB is a chord of the circle with center O"
using Stanford CoreNLP Toolkit [1]

have resorted to using hard-coded parsing rules [3, 8]. This rule-based approach

brings forth a couple of limitations. Firstly, this limits the system only for one

language, and even within that language, the scalability and the maintenance

are difficult as changing or adding new variants of sentences require alterations

in those hard-coded rules. These alterations might also require domain-specific

knowledge. Secondly, these systems record low precision scores [3].

When solving geometry questions, students do deductive reasoning using ax-

ioms and theorems of geometry. [8]. Thus, a system that follows this procedure

for arriving at the solution, rather than a numeric approach, is proven to be more

user-friendly to the students [8]. Under this approach, a system goes on discov-

ering new relationships until it reaches the target answer. Hence, the importance

of entities to the system is dynamic. For an example, during a proof where the

goal is to prove the entities 𝐴𝐵 and 𝐶𝐷 are equal, and if the system deduces

a relationship such as 𝐴𝐵 = 𝐵𝐶, proving that 𝐵𝐶 equals 𝐶𝐷 would make the

system achieve the target. Thus, it will have to explore the facts of 𝐵𝐶. However,

due to the imperfect recall of the existing systems, the facts relevant to 𝐵𝐶 can

be missing in the extracted fact set. This can inhibit solving the problem.

Despite the limitations introduced by rule-based approaches, one of the main

reasons that the existing systems use mostly rule-based approaches is the lack

of data in the domain. One option to introduce deep learning techniques to this

domain is generating data. Even though an ample amount of text generation

models are available [10, 11, 12, 13], all these models are evaluated against large

corpora. Moreover, the metrics used to evaluate these models evaluate the gen-

erated sample either with respect to the diversity or with respect to the quality.

However, a model that produces sentences with a very low quality can produce
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those low-quality sentences with a high diversity. Similarly, a model can produce

a single high quality sentence over and over again which would result in a high

quality, but a very low diversity. So, the results reported for the evaluations of

these models are misleading [14]. With these metrics, it is impossible to decide

which models perform better in both diversity and quality aspects.

1.3 Research Objectives

Objectives of this research are as follows:

1. Design a language-independent system which can

(a) extract relations in a higher precision

(b) extract dynamic number of relations for a given sentence in natural

language

(c) extract facts dynamically about a given entity

(d) extract relations across multiple sentences

2. Identify and implement language generation mechanism to generate more

data from a given small seed corpora so that deep learning techniques can

be used on them.

1.4 Contributions

We make the following contributions in this thesis:

∙ Introducing a novel neural architecture that is optimized for low resource

domains, that can be used to parse a geometry problem given in natural

language

∙ Systematic evaluation of existing natural language generation techniques

for small seed corpora

∙ An enhanced metric to evaluate the performance of language generation

models on low resource datasets
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Chapter 2

BACKGROUND

2.1 Overview

A number of deep learning techniques has been used in this study. Some of the

most those techniques are discussed in this section. We start with highlighting

the importance of Recurrent Neural Networks (RNNs) compared to feed forward

networks. Then we discuss the limitations of RNNs in the context of encoder-

decoder architectures. There, we show its limitations and how attention mech-

anisms address them. Even though attention mechanisms alleviate many issues

found in RNNs, we show that the models in literature that have employed atten-

tion mechanisms have very large capacities, thus making it difficult to be used

in low resource domains. We then discuss memory networks, which were initially

introduced as a question answering system with the capability to query over mul-

tiple sentences considering their temporal order. We show how the issues found

in above models are alleviated in memory networks and highlight their ability to

provide a good capacity with a comparatively lower amount of trainable parame-

ters. Finally, we conclude this section by discussing Generative Adversarial Nets

(GANs) and their superior ability in data generation compared to auto-regressive

models. The models discussed in this section are referred throughout this study.

2.2 Recurrent neural networks

Deep Neural Networks (DNNs) are a class of machine learning models that are

very powerful in performing parallel computations. These have demonstrated

excellent performances on difficult tasks such as speech recognition [15, 16] and

object recognition [17, 18, 19, 20]. However, despite this power, the inputs and

the outputs for a DNN should have a fixed size limiting the application of DNNs.

This is a significant drawback as most of the real world scenarios are variable-size
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inputs.

Recurrent Neural Networks (RNNs) generalize feed-forward neural networks

to support variable length sequences [21, 22]. Given an input sequence of

(𝑥1, 𝑥2, ...., 𝑥𝑇 ), a standard RNN produced an output sequence of (𝑦1, 𝑦2, ......, 𝑦𝑇 )

using following equations [23].

ℎ𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊 ℎ𝑥𝑥𝑡 +𝑊 ℎℎℎ𝑡−1) (2.1)

𝑦𝑡 = 𝑊 𝑦ℎℎ𝑡 (2.2)

Here, 𝑊 ℎ𝑥 and 𝑊 ℎℎ are weight matrices. We can see how the hidden state

(ℎ𝑡) are updated depending not only with the current input (𝑥𝑡), but also with the

previous hidden state (ℎ𝑡1) making RNNs ideal for modeling sequences. However,

as we can see from the equations, the length of the output will be as same as

the input length. This is a restriction for scenarios where the output length can

be different to the input length. For example, in a machine translation task, the

number of words in the output translation needs not to be same as the number

of words in the input sentence.

The simplest approach used in the literature to support variable output lengths

is the encoder-decoder architecture. Here, the encoder maps the input sentence

to a fixed length vector. Then, the decoder generates the output based on the

fixed-length vector produced by the encoder [24]. An RNN or a Convolutional

Neural Network (CNN) can be used as the encoder [25, 26, 27, 28].

Equation 2.3 explains the function of the encoder when the encoder is an

RNN; it keeps outputting hidden states until it reaches the end of the sentence.

Here, 𝑓 can be any type of an RNN (such as an LSTM [2]).

ℎ𝑡 = 𝑓(𝑥𝑡, ℎ𝑡−1) (2.3)

After all hidden states are produced, i.e., when the end of the source sentence

is reached, the context vector 𝑐 is produced using the hidden states produced.

This is demonstrated in equation 2.4. Here, 𝑞 is a non-linear function. For an

8



instance, Sutskever et al. [23] used 𝑞 as 𝑞(ℎ1, ..., ℎ𝑇𝑥) = ℎ𝑇𝑥 .

𝑐 = 𝑞(ℎ1, ..., ℎ𝑇𝑥), (2.4)

The decoder then produces its output based on the context vector 𝑐 here

and previously generated words. This is explained in equation 2.5. Here, the for

probability modeling, either an RNN [23] or a de-convolutional neural network [29]

can be used.

𝑝(𝑦) =
𝑇∏︁
𝑡=1

𝑝(𝑦𝑡|{𝑦1, ..., 𝑦𝑡−1}, 𝑐) (2.5)

Equation 2.6 shows how the above probability distribution is modeled when

the decoder is an RNN. Here, 𝑠𝑡 is the hidden state of the RNN.

𝑝(𝑦𝑡|{𝑦1, ..., 𝑦𝑡−1}, 𝑐) = 𝑔(𝑦𝑡−1, 𝑠𝑡, 𝑐) (2.6)

Even though this setting supports different input and output lengths, it suffers

from the difficulty to model long term dependencies [30, 31, 32, 33]. Long short-

term memory networks (LSTMs) are known for their capability to learn long-term

dependencies [32] better than RNNs, so using LSTMs instead of RNNs in the

encoder-decoder architecture have been experimented to give better results [23].

RNNs and LSTMs are frequently used in a wide array of tasks such as se-

mantic parsing [34], sentiment analysis [35], logical inference [36], and question

answering [37]. However, it is a known fact that their memory is limited and they

have trouble in modeling long range dependencies [38, 39, 40]. To increase the

memory capacity of these recurrent models, we can increase the layer size. For ex-

ample, the machine translation model developed by Sutskever et al. [41] uses two

extremely large and deep LSTMs for encoding and decoding the sentences [42].

However, this is not possible if we do not have a substantial amount of data. In

other words, if we have a small amount of data, increasing the network capacity

would make the network prone to overfitting of data. Therefore, the applicability

of these models on low resource domains is minimal.
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2.3 Attention Mechanisms

The need to encode any given source sentence to a fixed-length vector can be iden-

tified as a main limitation with the above encoder-decoder based approaches [2].

Here, the encoder, which is a neural network, needs to be able to compress all the

important information of the sentence to a fixed length vector. This compression

would be difficult with long sentences especially for those that are longer than

the sentences in the training dataset. This scenario is empirically proven by Cho

et al. [43].

To alleviate this issue, Bahdanau et al. [2] introduced an enhancement to the

encoder-decoder model. Here, when the decoder is about to produce a word, the

decoder is capable of focussing only on the words of the source sentence which are

relevant to producing the word. In other words, the decoder produces each word

based on the context vectors associated with the relevant words of the source

sentence and the words it previously generated (see equation 2.7).This contrasts

with the original encoder-decoder architecture, where the decoder only has access

to the compressed fixed-length output vector from the encoder (see equation 2.6).

In equation 2.7, instead of having a constant context vector 𝑐 as in equation 2.6,

we have a dynamic context vector 𝑐𝑖, that is tailored to the current translation

state.

𝑝(𝑦𝑖|{𝑦1, ..., 𝑦𝑖−1}, 𝑐) = 𝑔(𝑦𝑖−1, 𝑠𝑖, 𝑐𝑖) (2.7)

Bahdanau et al. [2] achieved this dynamic calculation of the context vector

using an attention mechanism. Figure 2.1 explains this.

They use a bidirectional RNN as the encoder1. The context vector 𝑐𝑖 for the

𝑖𝑡ℎ step is calculated by,

𝑐𝑖 =
𝑇𝑥∑︁
𝑗=1

𝛼𝑖𝑗ℎ𝑗 (2.8)

The weight 𝛼𝑖𝑗 is calculated by,
1Bidirectional RNN is an RNN and a reversed RNN. This setting scans the source sentence

from both ends so that the resulting hidden states have contexts from both ends of the sentence

10



Figure 2.1: Attention mechanism introduced by Bahdanau et al. [2]. Image
source: [2]

𝛼𝑖𝑗 =
𝑒𝑥𝑝(𝑒𝑖𝑗)∑︀𝑇𝑥

𝑘=1 𝑒𝑥𝑝(𝑒𝑖𝑘)
(2.9)

where 𝑒𝑖𝑗 = 𝑎(𝑠𝑖−1, ℎ𝑗). Here, 𝑎 refers to the alignment model [2], that calcu-

lates the relevance of each hidden state ℎ𝑗 with the hidden state of the decoder

𝑠𝑖−1. This process of taking a weighted sum of all candidates is known as soft-

attention. This is opposite to considering only a couple of candidates, which is

known as hard-attention [44, 45]. Self-attention does not prevent gradients of

the loss function passing through backpropagation [2]. Thus, this whole model is

end-to-end trainable through backpropagation.

2.4 Memory Networks

Memory networks [39] were proposed as a means to query from multiple sentences.

Memory networks work iteratively. Consider we have an 𝑁 number of sentences

as memories, with the memory for sentence 𝑖 denoted as 𝑚𝑖. The memory network

11



first selects the most matching memory 𝑚𝑜1 with the query 𝑥. Then it goes for a

second iteration to select the most matching memory 𝑚𝑜2, but now, not only with

the query 𝑥 but also with the memory 𝑚𝑜1. This is explained in equations 2.10

and 2.11. We call these iterations as hops.

𝑜1 = argmax
𝑖∈1...𝒩

𝑠𝑂(𝑥,𝑚𝑖) (2.10)

𝑜2 = argmax
𝑖∈1...𝒩

𝑠𝑂([𝑥,𝑚𝑜1],𝑚𝑖) (2.11)

This process is repeated for the configured number of hops (2 in this case).

Finally, the most matching word (𝑎) from the vocabulary 𝑊 is selected based on

its similarity score with the query 𝑥 and the selected memories (𝑚𝑜1 and 𝑚𝑜2 in

this case):

𝑎 = argmax
𝑤∈𝒲

𝑠𝑅([𝑥,𝑚𝑜1,𝑚𝑜2], 𝑤) (2.12)

In the equations, 𝑠𝑂 refers to Output module of the memory network, which

makes the memory selection based on its matching with the information the

module is having. 𝑠𝑅 refers to the Response module, which is responsible for

creating the response in the desired format with the input from the Output module

and the query 𝑥.

Inside each iteration, memory networks use hard attention [41] for selecting

the relevant memory; it selects the most matching memory using the 𝑎𝑟𝑔𝑚𝑎𝑥

operation (see equations 2.10 and 2.11). Thus, memory networks cannot be

trained end-to-end with standard backpropagation methods. So, to train memory

networks without going for complex approaches such as variance reduction or

reinforcement learning [41, 46], supporting sentences for each iteration are also

included in the training data.

2.5 End-to-end Memory Networks

End-to-end Memory Networks [38] were introduced to eliminate the above lim-

itation of being unable to train end-to-end. Here, instead of selecting the most
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matching memory, this system follows a soft-attention mechanism where each

memory is given a score based on its matching with the query. Equation 2.13

explains this; the dot product between each memory and the query 𝑥 is com-

puted, and then those scores are normalized (with the 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 operation) to

get a probability distribution.

𝑝𝑖 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑇𝑚𝑖) (2.13)

Finally, we take the weighted sum of the memories according to their proba-

bilities as the selected memory for the first iteration (equation 2.14).

𝑜 =
∑︁
𝑖

𝑝𝑖𝑐𝑖 (2.14)

After a hop, the question is updated with the information from the selected

memory so that the selection of the next memory depends on the already selected

memories (equation 2.15).

𝑥𝑘+1 = 𝑥𝑘 + 𝑜𝑘 (2.15)

This process is considered a hop, and we repeat this process for the config-

ured number of hops. Selecting the memory in terms of a weighted sum of all

memories (soft attention) makes this system trainable end-to-end via standard

backpropagation methods. Finally, the answer 𝑟 is calculated by using a neural

network (𝑊 ). Input to 𝑊 is the sum of the final output and the query, i.e., 𝑜ℎ+𝑥ℎ

(equation 2.16).

𝑎 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊 (𝑜ℎ + 𝑥ℎ)) (2.16)

Similar to memory networks, this network can produce only one-word answers.

An RNN can be plugged instead of the neural network at the end (𝑊 ) to generate

answers with multiple words.

Three embedding matrices are used in an end-to-end memory network; one

(embedding 𝐴) for embedding sentences to compute scores, one (embedding 𝐵)

for embedding questions, and the remaining one (embedding 𝐶) for embedding

the sentences to compute the weighted sum. Therefore, the trainable parameter
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count under this setting roughly becomes, 3 * 𝑣𝑜𝑐𝑎𝑏_𝑠𝑖𝑧𝑒 * 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔_𝑠𝑖𝑧𝑒 for

one hop. This count gets multiplied by the hop count resulting in a high param-

eter count, which is undesirable for a low-resource dataset. There are two types

of modifications introduced by Sukhbaatar et al. [38] to reduce the parameter

count; (i) Adjacent; eliminating embedding 𝐵 altogether and using embedding

𝐴 for embedding the question as well, sharing embeddings between hops (using

embedding 𝐶𝑘−1 for embedding 𝐴𝑘), and using final embedding 𝐶𝑘 as 𝑊 , and (ii)

Layer-wise: having all input and output embeddings same throughout the hops

i.e., 𝐴1 = 𝐴2 = .... = 𝐴𝑘 and 𝐶1 = 𝐶2 = .... = 𝐶𝑘.

2.6 Generative Adversarial Nets

Deep generative models are recently been given a lot of attention because of

their ability to learn complex probability distributions from large unlabeled data.

This is in contrast to traditional rule-based generative models that require human

effort. Moreover, due to this requirement of human effort, maintainability and

generalizability are difficult with rule-based solutions. Deep generative models

alleviate these limitations and they have been proven to be more potential [47].

Deep Belief Nets (DBNs) [48] and Denoising Autoencoders (DAE) [47] are

two of the first deep generative models introduce and they both learn to encode

data to low-dimensional representations and generate the original data from the

encoded representation. Both DBNs and DAEs learn a low dimensional represen-

tation (encoding) for each data instance and generate it from a decoding network.

Variational autoencoder (VAE) use both deep learning and statistical inference

to represent a data instance while using neural models for encoding [49]. All

these models are trained by maximizing training data likelihood, which suffers

from the difficulty of approximating many intractable probabilistic computations

that arise in estimating maximum likelihood [50].

Goodfellow et al. [50] proposed Generative Adverserial Nets (GANs) as an

alternative training methodology to generative models. Two models are trained

here; a generative model G which that captures the data distribution, and a
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discriminative model D which classifies between real and synthetic data from G.

The training procedure is a minimax game between these two models where the

training goal for G is to maximize the probability of D making a mistake. This

framework alleviates the difficulty of maximum likelihood learning and has shown

very good results in image generation [51].
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Chapter 3

LITERATURE SURVEY

3.1 Automated solving and assessment of geometry problems

GEOS is the first system to focus on solving geometry questions in an end-to-end

manner [3]. First, this system builds a lexicon by extracting function keywords

along with their valences from the training dataset. For example, if there is a

rule like “line(AB)”, GEOS would extract the word “line” to be a function with

the valence 1. GEOS uses a hard-coded set of rules to identify entities. For

instance, if there is a word with two capital letters, GEOS records it to be an

entity. A concept is either an entity or a function keyword. During the training

phase, GEOS first scans a given natural language sentence to get the set of

concepts using the lexicon and the hard-coded set of rules for the entities. Then

the relationships within those concepts are generated, again, with a rule-based

approach. This approach creates a large number of facts in a brute force manner.

After this, the generated facts are scored for their accuracy using a discriminative

model (logistic regression). Finally, relation completion is carried out using a rule-

based approach. After this step, the accompanying diagram (if any) is used to

filter the generated rules even more and to identify new facts. GEOS only focuses

on solving SAT level MCQs in geometry. Hence, in the final step, the satisfiability

of each choice is measured with the generated set of facts. As the answer, the

choice that gets the highest matching probability is selected. Even though we can

observe a large number of inaccurate rules produced at the end of text parsing,

one reason this is not affecting GEOS is due to its limited scope to include only

MCQs. Also, GEOS uses the diagram (if any) given with the question to filter

the extracted set of facts even more. However, if this parser is used for problems

where proofs are needed, not only might the wrong facts lead to a wrong proof,

but also, the proving might even become impossible if some of the necessary facts
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are missing in the extracted set.

GEOS uses a numerical approach (in checking the satisfiability with each

choice to produce the answer) which is not intuitive for humans. GEOSV2 [8]

was introduced by Sachan et al. modifying GEOS to use demonstrations for

generating the answer instead of using this numerical approach, thus making a

massive step towards interpretable geometry problem solvers. They have con-

ducted a series of experiments to prove the user-friendliness and improved scores

compared to GEOS. However, for parsing the question text, they have only re-

placed the brute-force parser in GEOS with a log-linear model that uses beam

search to identify the concepts and the relations between them.

For extracting facts from the question text, both GEOS and GEOSV2 record

high recalls (0.82 and 0.85 respectively), but comparatively low precision scores

(0.57 and 0.59 respectively) i.e., these systems generate significant numbers of

wrong facts. Also, these systems cannot be used for languages other than English

as they depend heavily on prevailing NLP tools for the English language (such

as dependency parsers and POS taggers), and hard-coded rules. Moreover, they

generate a set of facts for a given single sentence, but cannot relate among multiple

sentences.

3.2 Relation Extraction

Extracting entities [52, 53] and relations between them [54, 55] from unstructured

text is a central task in information extraction [56]. Traditional approaches for

relation extraction have entity extraction as a predecessor step [57, 58]. Here,

entities are extracted first and then, the relations between those entities are dis-

covered. As this is a pipeline approach, errors in recognizing the entities will get

transferred to the relation extraction process.

Recently, there has been a surge of interest on end-to-end relation extraction.

Here, entities and relations are jointly recognized [59, 60]. This approach prevents

errors from entity recognition getting transferred to relation extraction. This ap-

proach also allows to model cross task dependencies. The neural model by Miwa
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and Bansal [61] is one of the first models for end-to-end relation extraction. It

used a biDirectional LSTM to learn hidden word representations and then used

a tree-LSTM [62] to encode the output of a parser. Then they used these repre-

sentations to make local decisions for entity and relation extractions. This model

outperformed the best statistical model [63] with much improved results. This

demonstrated the strength of neural models for end-to-end relation extraction.

However, the approach of taking local decisions in this model ignoring the

structural dependencies between incremental decisions is opposite to the approach

used by statistical models that use well-developed structured prediction meth-

ods [60, 63]. This way of taking local decisions has been observed to result label

bias, which would prevent globally optimal structures receiving optimal scores

from the model. Zhang et al. [64] addressed this issue by building a structural

neural model based on globally optimized models for structure prediction [65, 66].

This model not only outperformed the existing systems, but also showed the

effectiveness of global normalization. However, this model uses several LSTM

structures. (Our experiments showed that this model overfits to our data even

under its simplest settings.)

3.3 Text generation

There is a recent emergence in research in text generation [67, 68, 69]. Concern-

ing text generation, we can classify the tasks into two categories; text generation

in the supervised setting, and the unsupervised setting [70]. In the supervised

setting, the goal is to generate a text similar to a target set. From the refer-

enced examples above, image captioning, and machine translation fall under this

approach. In the second setting, where the task is unsupervised, the aim is to

generate samples that are following a probability distribution similar (or close) to

the probability distribution of a given reference set. In simpler terms, the models

are expected to generate samples that look like reference samples.

Text generation tasks such as the ones mentioned above have successfully been

implemented using neural models [67, 68, 69]. Two main variants of these models

18



can be identified; models based on Maximum Likelihood Estimate (MLE) and

Language Generative Adversarial Nets (Language GANs). In principle, MLE

models generate text using the context of prior generated words. During the

training phase, the next word of the sequence is predicted based on the ground

truth words, and in the inference phase, the prediction is done using already

predicted words [71, 12]. When it comes to GANs [50], they have been able to

make significant advances in the generation of synthetic data similar to real data.

Two neural networks are used here; the generator is responsible for generating

realistic looking data, while the discriminator’s responsibility is to differentiate

between synthetic and real data accurately. The gradient of the training error

from the discriminator is used to train the generator.

There are multiple identified issues with the MLE approach. Firstly, there is

no appropriate metric to evaluate the output of these models [12]. As discussed

above, MLE models use ground truth words as the context in the training phase

while predicted words are used as the context during the inference phase. This

discrepancy makes MLE models suffer from exposure bias i.e., model having to

operate on unseen contexts during inferencing [12, 71]. Scheduled Sampling in-

troduced by Bengio et al. [72] to address this problem was proved fundamentally

inconsistent by Huszar [71].

The original setting of GANs works well when they are operating on continu-

ous data (image pixel values). However, when it comes to text generation, GANs

have to deal with discrete tokens (sequence words) that are non-differentiable.

Therefore the usage of GANs is rather challenging due to the difficulty of back-

propagation through these random discrete variables [73].

Recent attempts to face this challenge could be classified into two categories.

Reinforcement Learning(RL) based approaches model this task as a sequential

decision-making problem. GANs in this category use policy gradient techniques

for optimization. SeqGAN by Yu et al. [10] is an example of this approach. One

of the main drawbacks of SeqGAN is that the generator only gets the reward

at the end of generating the whole sequence, thus making it difficult for the

generator to sufficiently learn the distribution [12]. MaliGAN [73] uses a modified
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optimization algorithm to reduce the high variance caused by the original form.

RankGAN[74] replaces the original discriminator, which is a binary classifier,

with a ranking to reduce the gradient vanishing problem experienced with the

binary form. This replacement is also a solution for the information given by

the binary classifier being inadequate. The discriminator being a binary classifier

also contributes to mode collapsing [12]. Mode collapsing refers to the problem of

a model generating samples only from a limited area of the latent space i.e., the

samples being less in diversity with each other. LeakGAN [12] was proposed to

mitigate the instability issues faced during the training phase under the standard

RL approach. Here, the generator is given access to the feature representation

learned by the discriminator. This specifically improves the generation of long

text, as this brings more information to the generator network compared to the

single binary signal in most of the previous GANs. Despite the performance

enhancements promised by the above GANs that follow the RL approach, still,

the high variance gradient they result makes the optimization challenging [11,

70, 75]. RL-free approach adheres to the original approach of GANs without

incorporating ideas from RL. This approach does not yield gradients with high

variance, so the GANs here are more stable and easier to train compared to the

first category. TextGAN [11], GSGAN [13], and FMGAN [70] have adopted this

approach and have generally reported better results compared to GANs in the

previous approach.

3.4 Evaluation of text generation models

When a generative model is trained, it attempts to learn a probability distri-

bution that is similar to the probability distribution of the training dataset.

Therefore, the perfect measure would be to measure the distance between the

two probability distributions, which is called the estimation error. However, this

is not practically feasible as we cannot use the total latent space to generate sam-

ples, and the reference set itself might not be fully representing its distribution.

Therefore, some other metrics have been adopted, which are more feasible in a
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practical setting. Test-BLEU is one such score that measures the similarity be-

tween two sets of text. It scores similar n-grams and their frequency. Therefore,

this reflects sample quality. Most GANs (such as RankGAN [74], MaliGAN [73],

TextGAN [11], LeakGAN [12]) focus only on sample quality in their performance

comparisons [14]. This method is severely flawed that if a GAN generates a single

quality sentence repeatedly, it will be able to get a perfect score [14]. Moreover,

mode collapsing is a known issue in GANs, so they would anyways be biased

towards generating sentences with less diversity.

Self-BLEU, a score to measure the diversity of a generated set of samples was

proposed by Zhu et al. [76]. Here, the sample is analyzed against itself, so a low

score(low similarity) means the sentences in the sample are diverse. Even though

this makes the problem above solved, this makes the comparison of GANs diffi-

cult. For an instance, consider figure 3.1a where the two markers represent the

scores of two GANs named A and B. Here, GAN A has a better diversity (low

self-BLEU), but a low quality (low test-BLEU). GAN B has the opposite; a better

quality, but a poor diversity. Hence this graph is not sufficient to decide on the

better performing GAN. For evaluating these models, Texygen [77] has been pro-

posed as a benchmark framework. This framework scores quality (using metrics

such as test-BLEU, EmbSim) and diversity (using metrics such as self-BLEU)

separately, so suffers from the same issue.

The entropy of a model is a value that decides the diversity of the results it

produces. A low entropy would force a model to produce results with high proba-

bility, thereby less diverse, but high-quality results. A model with a high entropy

would generate more diverse, but lesser quality samples. Boltzmann tempera-

ture [78] refers to the parameter that is used to change a model’s entropy. I.e.,

high-temperature values make a model’s entropy high, which results in generating

data with a high diversity and, similarly, low-temperature values make the model

stick to generating quality samples, which would not be much diverse from the

reference set. Caccia et al. [14] proposed a novel approach for evaluating text

generation models based on this scenario. This involves moving a model across a

set of temperature values so that its performance on both diversity and quality
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(a)
(b)

Figure 3.1: (a) Two examples NLG models named A and B plotted on a graph
with the x-axis as self-BLEU and the y-axis as test-BLEU. (b) Two example
temperature curves of two NLG models. The axes have the inverse metrics, so
the lower is better in both axes. When it comes to the model with the blue curve,
in any given quality, it has better diversity than the model with the red curve.
Therefore, this graph is sufficient enough to claim that the model with the blue
curve is better.

aspects could be assessed. If the diversity and quality of the generated samples at

each temperature are plotted, on a plot with the x-axis as 𝑞𝑢𝑎𝑙𝑖𝑡𝑦−1 and y-axis as

𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦−1, we can get a curve. We call this the temperature curve of a model.

Here, as both axes are inverted, the closer the curve to the origin, we can say the

model performs better with both quality and diversity aspects of the generated

samples. Hence, if a model’s temperature curve is situated below the temperature

curve of another model (refer to figure 3.1b), we can say the first model is better

than the second. This allows us to use the area under the curve as a performance

measure [14].
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Chapter 4

Deep semantic parsing of geometry problems

4.1 Task Definition

Table 4.1 illustrates the intended use of our model. Our model should initially

produce unary rules (rules with one child), binary rules (rules with two children),

and, finally, completed relations (merging unary and binary rules) for a given set

of sentences. Also, it should be capable of extracting facts related to a given

entity as shown under On-demand fact Extraction section in the table.

Considering the requirements above, we model this task of deep semantic

parsing of GWPs as a question answering (Q/A) task. Through this way of

modeling, in addition to the capability to extract facts similar to the other existing

systems, we also facilitate the solver to extract facts about interested entities

during the deduction process. This effectively increases the recall of the system

lessening the severity of the impact caused by imperfect recalls during the initial

fact extraction phase. We term this feature as on-demand fact extraction.

We build on memory networks. First, a list of keywords from the training

data is automatically extracted along with their valences. For example, if there

are two rules like {“parallel AB CD”, “line AB”}, words 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙, and 𝑙𝑖𝑛𝑒, along

with 2 and 3 as their valences, are extracted respectively. Then the unary model

is trained for unary rules by taking only the sentences that have unary rules.

Similarly, a model for binary rules is trained. The unary model produces single

word rules (“AB” as per the example above), while the binary model produces

rules with two words (“AB”, “CD”).

4.2 Limitations of existing memory networks

End-to-end memory networks, as discussed in the literature review, store a given

sentence as the sum of the embedding vectors of its words resulting in a sentence
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Table 4.1: Task Definition

Sentences
Line AB is parallel to line CD
AB is a chord of the circle with center O
Initial fact Extraction
Unary rules Line(AB), Line(CD), Circle(O)
Binary rules Parallel(AB, CD), IsChordOf(AB, O)
Relation Completion
Parallel(Line(AB), Line(CD))
IsChordOf(Line(AB), Circle(O)))
On-demand fact Extraction
AB→ {Line(AB), Chord(AB)}
CD→ Line(CD)
O→ Circle(O)

representation of the word embedding size. Even though this has not caused a

significant loss of information with the experiments carried out by Sukhbaatar et

al. [38], in our experiments, however, we saw this representation was not capable

of retaining the information needed enough to produce correct facts. Even though

increasing the network capacity will increase the model’s ability to retain data,

it is not viable in our task due to the small dataset size. On the other hand, if

we can store only the important memories (instead of storing all the memories),

we will not need to compress the information as much as above. This is our

motivation behind coming up with a model that can selectively store only the

essential data within a limited capacity.

4.3 Model Formulation

In order to store sentences in a less compressed manner within a limited capacity,

we propose storing only the important sentences. Thus, we first need to select

the sentences that are relevant to the query at hand. Taking 𝑥 as the query and

𝑚𝑖 as the 𝑖𝑡ℎ sentence, the probability for the relevance of sentence 𝑖 to the query

𝑥 is calculated by:

𝑝𝑖 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥𝑇𝑚𝑖) (4.1)
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Figure 4.1: Architecture of the sentence selection model. The lighter the color,
the higher the probability. This design relates to the single hop scenario, which
is sufficient for the task we focus on. However, for tasks needing to handle inter-
dependencies between sentences (such as coreference resolution), we can adopt
the same word-level model (figure 4.2) with having sentences instead of words.

Figure 4.1 shows an example for the resulting probability distribution. The

lighter colored sentences are sentences with higher probabilities. We do not con-

cern about handling inter-sentence dependencies (such as coreference resolution)

in this research. So we are not going for a multi-hops approach for selecting the

relevant sentences. As a hyper-parameter of the model, we maintain a threshold

for the lowest probability a sentence should get to be considered as a relevant

sentence; the lower the threshold, more sentences get to be considered for fact

extraction, which might result in more facts thus reducing the precision while

increasing the recall. The opposite will happen if a higher threshold is selected.

This process is called hard attention, and using this makes the network incapable

of being trained using standard backpropagation methods [41]. However, to make

the computations simple and to retain the interpretability, we give up end-to-end

trainable capability.

After selecting the relevant sentences, each of the selected sentences is fed

to the word-level memory network. Here, the model attends each selected

sentence in the word level. Figure 4.2 refers to this model in the single hop

scenario.

First, the words are embedded with the embedding matrix 𝐴, and the query

is embedded using the embedding matrix 𝐵. Then the dot product is calculated

between each word embedding vector and the query. These scores are converted

to a probability distribution using the 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 operation (equation 4.2).

25



Figure 4.2: Architecture of the Word-level memory network

𝑝𝑖 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑇𝑚𝑖) (4.2)

After that, the words are again embedded using the embedding matrix 𝐶, and

then the sum of these embedding vectors is calculated. When taking this sum,

each vector 𝑐𝑖 is weighted by its probability (𝑝𝑖) calculated above (equation 4.3).

𝑜 =
∑︁
𝑖

𝑝𝑖𝑐𝑖 (4.3)

Now the query embedding is updated with this sum so that the query for the

next hop contains the information from this hop (equation 4.4).

𝑥𝑘+1 = 𝑥𝑘 + 𝑜𝑘 (4.4)

In the single hop scenario (figure 4.2a), the words are embedded using a

second input embedding matrix (𝐴2), and the dot products are calculated with

the updated query. Then, these dot product values are converted to a probability
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distribution using the 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 operation. This process is similar to the process

described above (equation 4.2). Now, as the answer, the word with the highest

probability is selected (equation 4.5).

𝑎 = 𝐴𝑟𝑔𝑚𝑎𝑥(𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑇
𝑘+1𝑚𝑖)) (4.5)

In the multi-hop scenario (Figure 4.2b), equations from 4.2- 4.4 are executed

in a loop for the given number of hops. After each hop, the query is updated

with the weighted sum of the word embeddings. This process of updating the

query allows the forward-passing of information. Finally, similar to the single

hop scenario, the answer is selected based on the probabilities calculated in the

final hop.

4.3.1 Focus controlling (FC) with position encoding

If we consider the sentence “In the given figure, line AB is parallel to line CD”,

it contains two rules for the same keyword “line”. If we query the sentence just

with “line”, we will not be able to get both rules. We overcome this limitation

of being unable to retrieve multiple rules for the same keyword by introducing

a mechanism to "tell" the network where to focus. We do this by a customized

position encoding (PE) scheme. This scheme also serves the purpose of giv-

ing the model a sense of the order of the words. We build our scheme based

on the PE scheme introduced by Sukhbaatar et al. [38]. We first extend the

embedding matrices with a size of 2 * 𝑚𝑎𝑥_𝑙𝑒𝑛, where 𝑚𝑎𝑥_𝑙𝑒𝑛 refers to the

maximum sentence length in the training dataset. After that, instead of the

memory 𝑚𝑖 being simply the embedding of 𝑤𝑖, we modify the memory 𝑚𝑖 to be

the 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑤𝑖) + 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑚𝑎𝑥_𝑙𝑒𝑛 + 𝑑𝑖), where 𝑑𝑖 refers to the distance

between 𝑤𝑖 and the matched keyword in the sentence. Words before the query

word get negative values for 𝑑𝑖, whereas words after the query word get posi-

tive values for 𝑑𝑖. According to this scheme, the memory in the location of the

query always gets added to the same vector; 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑚𝑎𝑥_𝑙𝑒𝑛). So does the

words around the query word. Hence, we can expect the model to focus more on
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memories near the query word.

4.3.2 Unary Rule Extraction

This task only needs single word answers. Therefore, we use the model in Fig-

ure 4.2b as it is.

4.3.3 Binary Rule Extraction

Here, we focus on rules such as “parallel AB CD”. Unlike extracting unary rules,

not only do we have to extract two words, but also the second word depends on

the first word retrieved. Due to this dependency, we cannot model this problem

as a multi-class classification problem. Also, due to the reasons explained earlier,

introducing an RNN will bring in a large number of trainable parameters. This

large count is undesirable due to the limited dataset size. Therefore, inspired by

the original architecture of memory networks [39], we come up with a layer-wise

retrieving mechanism; assuming we have 𝑘 number of hops and 𝑙𝑎𝑦𝑒𝑟𝑘 as the

final layer, we retrieve the first literal (“AB” in this case) from 𝑙𝑎𝑦𝑒𝑟𝑘−1 and the

second literal (“CD”) from 𝑙𝑎𝑦𝑒𝑟𝑘. We define the loss function as the summation

of individual losses (categorical cross-entropies) from the two layers;

𝐿𝑜𝑠𝑠 =
𝑙∑︁
𝑖

(𝑡𝑖𝑘 𝑙𝑜𝑔(𝑠𝑖𝑘) + 𝑡𝑖𝑘−1
𝑙𝑜𝑔(𝑠𝑖𝑘−1

) ), 𝑖 = 1, 2...𝑙 (4.6)

Here, 𝑙 refers to the memory size (or the length of the sentence). 𝑡𝑖𝑘 refers

to the ground truth value for the 𝑖𝑡ℎ location for 𝑘𝑡ℎ layer. Usually (if label

smoothing or any such technique is not used), 𝑡𝑖𝑘 is 1 for the location of the

second literal (“CD”) and 0 for the other locations. Similarly, 𝑡𝑖𝑘−1
is 1 for the

location of the first literal (“AB”) and and 0 for the other locations. 𝑠𝑖𝑘 refers to

the probability computed by the model for 𝑖𝑡ℎ location for 𝑘𝑡ℎ layer.

4.3.4 On-demand Fact Extraction

This task makes the model interactive by facilitating to extract properties of

entities on-demand. Here, a user can query the system to retrieve information
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based on their needs, which can be dynamic. For example, during a proof, a solver

would change its focus on entities as it progresses on deducing new relationships

among entities. This feature also alleviates the problem of having an imperfect

recall. A solver can use this feature if it wants to retrieve the rules that were

missed in the tasks above. Existing systems do not provide this capability.

We model this task similar to unary rule extraction. Here, we query with

the interested entity. For example, if we consider the sentence “AB is a tangent

to circle O”, and if we query the sentence with “AB”, the system will produce

“tangent”. Through FC, as described above, we are capable of retrieving multiple

rules for a single entity.

4.4 Experiments

Experiments of GEOSV2 have been carried on a dataset that is around 7.5 times

larger than the dataset used in GEOS. This dataset is not publicly available. So

we are not able to compare the scores of our model with the scores recorded by

GEOSV2. Thus, we compare the scores of our model with the scores of GEOS and

GEOSV2 when all of them are trained on the dataset provided by Seo et al [3].

This the dataset used in GEOS. Table 4.2 shows the details of this dataset. We

use the training dataset there as our training dataset and the practice dataset as

our evaluation dataset,

For the tasks of unary and binary rule extractions, we use the keyword list

extracted from the training dataset. For example, if there are two rules like

“parallel AB CD”, “line AB”, the words “parallel”, and “line” are extracted along

with two and three as their valences respectively.

4.4.1 Unary Rule Extraction

Keywords with valence 1 are used for this task. First, the given sentence is

scanned for keywords. If a keyword makes a match with a word, the model is

queried with the keyword. Here we use 30 as the batch size, 3 hops, 70 epochs,

50 as the embedding size, and layer-wise weight sharing (𝐴1 = 𝐴2 = .... = 𝐴𝑘
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Table 4.2: Statistics of the dataset. Introduced by Seo et al. [3]

.

Total Training Practice Official
Questions 186 67 64 55
Sentences 326 121 110 105
Words 4343 1435 1310 1598
Literals 577 176 189 212
Binary relations 337 110 108 119
Unary relations 437 141 150 146

Table 4.3: Precision, Recall, and F1 score for the task of unary rule extraction

P R F1
End-to-end MN 0.51 0.25 0.33
Two-step MN without FC 0.52 0.42 0.46
Two-step MN with dynamic FC 0.55 0.58 0.56
Two-step MN with fixed FC 0.68 0.72 0.70

and 𝐶1 = 𝐶2 = .... = 𝐶𝑘).

Table 4.3 indicates the results of this task. We can see a significant improve-

ment in the F1-score when it comes to two-step memory networks from end-to-end

memory networks. This improvement validates our design for this task.

We handle multiple occurrences of the same keyword through FC. If not for

FC, the model will produce the same rule for each occurrence of the keyword.

Figure 4.3 demonstrates how multiple rule extraction happens for the same key-

word. In figure 4.3a, the query is focused on the first occurrence of the word “line”.

Second and third occurrences are focused in Figures 4.3b and 4.3c respectively.

These figures demonstrate how probability distributions change based on focused

locations.

Dynamic versus fixed FC: Dynamic FC refers to what we have discussed

above; changing the position encoding based on the location of the keyword.

Consider the sentence “In the figure below, line AB is parallel to line CD”. We

use {“line”, 5} and {“line”, 10} for querying under this setting. Fixed FC refers to

providing the network the first position of the keyword despite the occurrence we

are focusing on i,e, for both occurrences, we use the 5 as the query word position.

With fixed FC, a significant number of duplicate facts are produced. However,
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(a) Extracting the rule “line AB”

(b) Extracting the rule “line CD”

(c) Extracting the rule “line EF”

Figure 4.3: Querying the sentence “In the figure above, line AB, line CD, and
line EF intersect at P.” with the keyword “line”.

the duplicates are removed for every task as a post-processing step. Scores are

calculated after removing the duplicates.

Interestingly, when it comes to results, we can see that dynamic FC has lower

scores compared to fixed FC (3𝑟𝑑 and 4𝑡ℎ rows of table 4.3). We can see that

the network gives more confident results when trained without having to concern

multiple query word locations. The disadvantage caused by being unable to

produce multiple rules for the same keyword can be seen to be overridden by the

advantage of being able to ignore the query word position during training. As

expected, having FC in either setting above is better than having no FC (2𝑛𝑑 and

3𝑟𝑑 rows of table 4.3)
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Table 4.4: Precision, Recall, and F1 score for the task of binary rule extraction

P R F1
End-to-end MN 0.83 0.19 0.30
Two-step MN without FC 0.36 0.60 0.45
Two-step MN with fixed FC 0.49 0.62 0.55

Figure 4.4: Binary rule extraction for the keyword “lies” from the sentence “In
the figure above , point O lies on line AB.”. Here we can see how the the two
literals ( “O” and “AB”) are with high probabilities in the last two layers.

4.4.2 Binary Rule Extraction

First, the keywords with valence 2 are filtered for this task. Then, the same

process of scanning followed in unary rule extraction above is followed. Here we

use 10 as the batch size, 4 hops, 100 epochs, 100 as the embedding size, and layer-

wise weight sharing (𝐴1 = 𝐴2 = .... = 𝐴𝑘 and 𝐶1 = 𝐶2 = .... = 𝐶𝑘). We did not

use dynamic FC due to the complexity and low results even for the fixed FC here

(table 4.4). However, we can see a significant improvement in the f1-score with

the two-step memory network (two-step MN) and further improvement with FC.

So, we can claim that the improvements we present for the original architecture

of memory networks are valid for this task as well. Figure 4.4 shows an example

for this task.

4.4.3 On-demand Fact Extraction

Dataset Preparation

For training the model for this task, we modified the dataset of GEOS. We re-

moved the unary rules that were not focusing on entities (rules such as “six tri-

angles”). Then we manually annotated rules for entities that did not have unary
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Figure 4.5: Fact extraction for the entity “m” from “In the figure above, lines l
and m are not parallel.” Lighter colors indicate higher probabilities

rules. For example, the sentence “Lines AB and BC are parallel” contained a

unary rule only for “AB” as “Lines AB”. So we added another rule as “Lines BC”.

This step of adding rules was needed to prevent the misclassification of correct

rules produced by the model. Figure 4.5 demonstrates an example for this sce-

nario. There, even though the model extracts the rule “lines m”, there is no such

rule in the original dataset. Finally, we reversed the modified ruleset so that the

entity would be the querying word. For example, for the sentence given above,

the model would be queried with “AB” to get the rule “AB lines”. In the end, we

got a total of 319 rules.

Training and Evaluation

We train the model with this dataset. We use 10 as the batch size, 3 hops, 100

epochs, 50 as the embedding size, and layer-wise weight sharing as the hyper-

parameters for this task. For the testing phase, we assume all single characters

(both lower and upper case), and words with all capital letters as entities. Using

a regex expression, we first scan the sentence to retrieve all the candidates fitting

the above assumption. Then we query the sentence with each of those candidates.

It is important to notice that we use this regex rule only for evaluating the system

under this task. We do not need this rule for training the system and inferencing

afterwards. Figure 4.6 shows how multiple hops help here. We expect the model

to produce every rule related to the entity it is queried on. So we cannot use

fixed FC here. Table 4.5 shows our results under this task. Similar to the above

tasks, we can see substantial improvements in the results with the improvements
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Figure 4.6: Fact extraction for the entity “v” from “In rectangle ABCD above, the
area of the shaded region is given by v”. Here, we can see how the answer “area”
is refined over hops. If there were only a single hop, the answer would have been
the word “by” (word with the lightest color in row 1) which is incorrect.

Table 4.5: Precision, Recall, and F1 score for the task of on-demand fact extrac-
tion

P R F1
End-to-end MN 0.49 0.20 0.29
Two-step MN without FC 0.49 0.56 0.52
Two-step MN with dynamic FC 0.73 0.8 0.76

we introduce.

4.4.4 Relation Completion

In this section, we see whether our system outperforms the existing systems. As

already described, the problem of parsing MWPs in geometry is only explored

recently [3], and we have two systems named GEOS [3] and GEOSV2 [8] for

this task. Experiments of GEOSV2 have been carried on a dataset larger than

the dataset used in GEOS. This dataset is not publicly available. So we are not

able to compare the scores of our model with the scores recorded by GEOSV2.

Therefore, we train GEOSV2 on the public dataset introduced by Seo et al. [3].

We use the training dataset there as our training dataset and the practice dataset

as our evaluation dataset,

The results are indicated in table 4.6.

Compared to GEOS, we have an increment of 25% for precision even though

we have a drop of F1-score by 3%. Compared to GEOSV2, we have a precision

increment of 20% while we record a drop of 3% with F1-score. Both GEOS and

34



Table 4.6: Precision, Recall, and F1 score for relation completion

P R F1
GEOS 0.57 0.82 0.67
GEOSV2 0.59 0.83 0.69
Two-step MN 0.71 0.60 0.65

GEOSV2 have low precision scores despite the high recalls, which occurs when a

system produces a lot of false positives.

4.5 Discussion

Existing systems have better F1-scores and recalls than our system does. How-

ever, we record a higher precision than these systems and a close f1-score. These

systems have low precision scores despite their high recall scores, which occurs

when a system produces a lot of false positives. So we can claim that the rules

generated by our system are more reliable than the rules created by GEOS. Also,

our system can generate on-demand rules which alleviates the problem of having

a low recall. Most importantly, these systems are heavily dependent on NLP

tools and hardcoded parse rules. Our system depends on neither, yet achieve

comparable results. Since low-resource languages do not have NLP tools such

as POS taggers and dependency parsers, these systems cannot operate in those

languages. In contrast, our system is compatible with any language.

The success of applying two-step memory networks on this low resource dataset

without feeding any domain-dependent or language-dependent input lead the way

to many similar applications. The significance of our contribution lies in the fact

that we applied deep learning to a low resource dataset and achieved results

comparable with rule-based and language dependent systems.

As for the limitations, one main limitation of our system compared to end-

to-end memory networks is the inability to train end-to-end. In other words,

supporting sentences need to be annotated in the training dataset, whereas it is

not needed for end-to-end memory networks. Also, in using two memory networks

(sentence-level and word-level), we increase the number of training parameters
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compared to using a single memory network. If this increment is undesirable for

a task, one option is to parse individual sentences, i.e., use only the word-level

memory network. Also, the parameter count can be reduced using parameter

sharing techniques described above, and by decreasing the hop count.
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Chapter 5

TEXT GENERATION ON LOW-RESOURCE DOMAINS

Generating meaningful and coherent sentences has many applications in natu-

ral language processing. Hence, there is a growing interest in this area of re-

search [63, 79, 80, 81, 82, 83, 84]. The general idea is to estimate a distribution

over sentences from a corpus, then use it to sample realistic-looking sentences.

This task is important because it enables generation of novel sentences that pre-

serve the semantic and syntactic properties of real-world sentences, while being

potentially different from any of the examples used to estimate the model. For

instance, in the context of dialog generation, it is desirable to generate answers

that are more diverse and less generic (Li et al., 2016).

Recently, neural models have successfully been employed to generate text in

multiple contexts such as image captioning [67], machine translation [68], and

poem generation [69]. We can classify these tasks into two categories; text gen-

eration in the supervised setting, and the unsupervised setting [70]. Under the

supervised setting, the goal is to generate a text similar to a target set. From the

referenced examples above, image captioning, and machine translation fall under

this approach. Under the second setting, where the task is unsupervised, the aim

is to generate samples that are following a probability distribution similar (or

close) to the probability distribution of a given reference set. In simpler terms,

under the unsupervised setting, the models are expected to generate samples that

look like reference samples.

There are mainly two classes of the Natural Language Generative (NLG) mod-

els that fall under the supervised setting: models based on Maximum Likelihood

Estimate (MLE), and language Generative Adversarial Nets (language GANs).

Concerning language GANs, many different models have been proposed. These

models use different kinds of techniques. To compare these models under similar

settings, Texygen [77] has been introduced. Albeit the vast amount of exper-
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iments carried on this framework extensively comparing these models, all the

experiments reported by Texygen have been carried out on large corpora such as

MS COCO captions [85] and EMNLP2017 WMT News [12].

However, the availability of large datasets would not hold in many domains.

For example, the amount of data available in the GEOS [3] system for solving

geometry questions is under 500 sentences. With the questions being complex

and diverse, this low quantity inhibits any application of deep learning models

for parsing these questions. On the other hand, expert knowledge is required

to manually create such a dataset. Thus, mechanisms to automatically generate

more questions from such seed corpora are imperative. Machine translation in

low-resource languages is another such task where the developers have to resort to

manual feature engineering due to lack of data sufficient enough to go for neural

approaches.

5.1 Task Definition

Under this work, we analyze the applicability of the state-of-the-art NLG models

on small seed corpora. We evaluate the vanilla MLE language model [77] and four

language GANs (SeqGAN [10], TextGAN [11], LeakGAN [12], and GSGAN [13])

using small datasets extracted from the datasets used in Texygen, most impor-

tantly, with an eye to reducing the variance. We also analyze the applicability of

these NLG models in terms of the inherent properties of the reference datasets

such as the average sentence length and language complexity.

5.2 Experiments

5.2.1 Enhanced metric for evaluating NLG models

As discuused in the literature review, if a model’s temperature curve is situated

below the temperature curve of another model, the first model can be claimed to

be better than the second model. This allows using the area under the curve as

a performance measure [14]. However, we argue that this setting is misleading
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when the curves are are crossing each other. For example, consider a model that

is repeatedly producing the same high quality sentence over and over again, and

another model that produces a bit more diverse data with average quality. Here,

we claim that this metric would rank the first model above the second model

owing to the first model’s high contribution to the area with its very high quality

values.

For calculating the area needed by the Temperature sweep method, we adopt

summing the normalized areas under the curve with respect to x-axis and y-axis.

As discussed above, these area values can be misleading. On the other hand, the

areas under the x and y axes reflect the diversity and quality aspects respectively.

So, by analysing these areas separately, we can identify the models which gives

acceptable performances under each aspect. Thus, we can filter those models and

use the final graph (which is referred under the Temperature Sweep method) to

rank only the filtered models. Under this approach, manipulating the final area

by a model that is extremely good in one aspect while being worse with respect

to the other aspect is impossible.

5.2.2 Experiment Setup

Here, we aim to analyze the applicability of NLG models on low-resourced do-

mains. We also aim to analyze the accuracy of the Temperature Sweep method

in evaluating NLG models by individually considering the impact from individual

scores.

We use Texygen to run our experiments. We experimented with two datasets:

MS COCO captions [85], and EMNLP2017 WMT News [12]. Table 5.1 gives a

summary of the statistics of these two datasets. We make our low-resource by

extracting partitions from these two datatsets. We extract multiple partitions

here to reduce the variance which occurs when extracting a small dataset from a

large dataset. Our method is described below.

We experiment for dataset sizes ranging from 200 to 1000 in 200 step sizes

to cater to our need to examine the behaviours of NLG models on low-resource
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domains. For each data size, we increase the pre-epoch count (the number of

epochs the generator is pretrained for) by 10 starting from 10, and the adversarial

epoch count (the number of epochs the network is trained adversary for) by

10 starting from 20. These values were selected based on the values used by

Texygen and dataset size. To deal with the large variance that occurs between

small datasets extracted from a big dataset, we experiment with three different

partitions for a given large dataset and calculate the average. First, we separate

three random datasets of size 1000 from the training dataset as base training sets.

These three are used to get the data needed for experiments. For instance, if we

are evaluating when the dataset size is 400, we take three sets of data sized 400

from the three base training sets. The same process is followed with the test sets,

but with altered numbers. We take 5 sets of size 200 as testing sets. To analyze

the trend of performance with increasing dataset sizes, we kept test dataset size

(200) constant while varying training set sizes. So, to get its quality and the

diversity scores of a generated set of samples, it would be scored against each of

the 5 test sample sets, and then averaged.

After training a model with a training set, we generate samples of size 200 for

a set of temperatures ranging from 0.001 to 2.0 with 0.5 step sizes. Based on work

by Caccia et al. [14], the temperature value could be varied starting from zero

to positive integers, and normally, the syntax breaks down losing the coherence

of a sentence when the value is increased above 1.0. Therefore, we took 0.001 as

the value equivalent to zero (to reduce overflowing and underflowing issues due

to zero) and 2.0 as the temperature on the end. Compared to each test set, we

calculate the testBLEU and selfBLEU scores with the n-gram count 3. These

scores are averaged over the test sets.

Then this average score for each temperature is again averaged over the scores

from the other two training sets. This is done for sizes ranging from 200. At the

end of this process, we get a testBLEU score and a selfBLEU score per temper-

ature per size. Then, for each size, we can draw a graph taking (1−testBLEU)

as the x-axis and the selfBLEU as the y-axis. As the performance is directly

proportional to the testBLEU and inversely proportional to the selfBLEU, the
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area under this temperature curve is an accurate indicator [14]. Therefore, for

each size, we need to calculate the area under its temperature curve. We divide

this task into several steps: (i) compute the area under the curve w.r.t. the

x-axis (this area depends on the selfBLEU score and independent on testBLEU),

(ii) compute the area under the curve w.r.t. y-axis (this area depends on the

1−testBLEU score and independent on selfBLEU), (iii) normalize the area val-

ues to be between 0 and 1 so that the impacts from both quality and diversity

aspects are equal, and (iv) get the total area as the sum of the areas calculated

in the two steps above and normalize. The area calculated under step (i) relates

to the diversity of the generated sample. The lesser this value, the more diverse

is the sample. Similarly, the area calculated under step (ii) relates to the quality

of the generated sample. The lesser this value, the more quality is the sample.

The sum of these two values could be taken as the performance indicator for a

given training set size for a given GAN. We take these area values to plot the

final result graph. Algorithm 1 explains this.

5.2.3 Experiments with MS COCO captions

COCO captions [85] dataset contains a set of image captions that are smaller in

length compared to EMNLP News dataset (refer Table 5.1).

Figure 5.1a indicates the area (normalized) of the temperature curve w.r.t

(selfBLEU) axis. This graph relates to the quality of the generated data. So,

lower the area, the better the model at producing quality data. Here, we can see

GSGAN and TextGAN to have the largest values for all data sizes compared to

other models. This implies that they are the worst performing GANs concerning

quality. We can see other models in an improving trend (decreasing in area

values, thus increasing in quality). Figure 5.1b indicates the area (normalized) of

the temperature curve w.r.t 1-testBLEU axis. This graph relates to the diversity

of the generated data. So, lower the area, the better the model at producing

diverse data. We can see GSGAN going almost to zero when the dataset size is

1000. At this size, the generated samples from GSGAN have just spaces except
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Algorithm 1: Area generate area coordinates for different training dataset
sizes for a given GAN
Input: Two finite sentence sets Tr and Ts for training and test set

respectively, initSize, stepSize, and the finalSize of the dataset
sizes evaluated

Output: (size, area) coordinates for the considered GAN
1 𝑇𝑟1, 𝑇 𝑟2, 𝑇 𝑟3 ← 3 distinct sets of 1000 random rows from Tr without

replacement
2 𝑇𝑒1, 𝑇 𝑒2, 𝑇 𝑒3, 𝑇 𝑒4, 𝑇 𝑒5 ← 5 distinct sets of 200 random rows from Te

without replacement
3 𝑇𝑟 ← {𝑇𝑟1, 𝑇 𝑟2, 𝑇 𝑟3}
4 𝑇𝑒← {𝑇𝑒1, 𝑇 𝑒2, 𝑇 𝑒3, 𝑇 𝑒4, 𝑇 𝑒5}
5 𝑇𝑒𝑚𝑝𝑠← {0.0001, 0.5, 0.75, 1.0, 1.5, 1.75, 2.0}
6 𝐴𝑟𝑒𝑎𝑠← ∅
7 for 𝑠𝑖𝑧𝑒← 𝑖𝑛𝑖𝑡𝑆𝑖𝑧𝑒 to 𝑓𝑖𝑛𝑎𝑙𝑆𝑖𝑧𝑒 do
8 for 𝑡𝑟 in Tr do
9 get a random set of samples of size 𝑠𝑖𝑧𝑒 and train the model with it

10 for 𝑡𝑒𝑚𝑝 in 𝑇𝑒𝑚𝑝𝑠 do
11 generate sample of 𝑖𝑛𝑖𝑡𝑆𝑖𝑧𝑒 under 𝑡𝑒𝑚𝑝 temperature
12 compare this with the 5 testing sets, average the testBLEU and

selfBLEU scores
/* here we have a testBLEU score for each 𝑡𝑒𝑚𝑝 in

𝑇𝑒𝑚𝑝𝑠. Same goes for selfBLEU */

13 average the testBLEU and selfBLEU scores over the 3 training sets
/* now we have a testBLEU score for each 𝑡𝑒𝑚𝑝 in 𝑇𝑒𝑚𝑝𝑠 for

the 𝑠𝑖𝑧𝑒. Same goes for selfBLEU */
14 nomalize both scores to be in [0,1]
15 plot the scores in a graph with (1-testBLEU) as the x-axis and

(selfBLEU) as the y-axis.
16 calculate the area under the curve w.r.t. both axes

/* now we have got an area value for each size w.r.t. both
axes */

17 normalize the area values to be in [0,1]
18 return area scores
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Table 5.1: Summary statistics of the datasets used

Dataset Train Test Vocabulary size Avg. sentence length
MS COCO captions 120,000 10,000 27,842 11

EMNLP2017 WMT News 278,686 10,000 5,728 28

for a couple of words for the whole sample i.e. the generated set here has no more

than 20 words. This extremely sparse spread of 20 or so words results in very low

selfBLEU scores that the area has gone to zero or near zero. It can be seen that

LeakGAN and seqGAN are on an increasing trend, while the MLE based model

is diminishing on the increasing trend. TextGAN seems to follow the trend of the

MLE based model.

Figure 5.2 is the normalized sum of the above discussed two areas; so the

lower, the better. Interestingly, we can see how MLE model is at the bottom

compared to the rest of the models. This implies it performs the best in quality

and diversity combined. LeakGAN and SeqGAN can be seen performing alike as

the size grows.

Figure 5.2 is the graph proposed by Caccia et al. [14] to evaluate the perfor-

mance of NLG models alleviating the limitations of former metrics. Here, we can

observe a negative slope for GSGAN, which is a characteristic of a good model.

However, we saw that GSGAN is giving good diversity scores while being much

worse in the scores related to the quality. Hence, the negative slope of GSGAN

in this graph is misleading. Also, even though TextGAN seems to be performing

well, we saw it has a low quality from Figure 5.1a. Figure 5.2 is also misleading

due to the fact it shows as if TextGAN gets close to LeakGAN over the end,

but TextGAN had the worst quality along with GSGAN as per the figure 5.1a.

Therefore, in contrast to Caccia et al. [14], it is evident that the final graph alone

with the area under the curve is not sufficient to evaluate the models. To alleviate

this limitation, we suggest filtering the models that perform acceptably referring

the graphs indicating the area scores under (1-testBLEU) and selfBLEU axes,

and then ranking those filtered models from the final graph (graph of the sum of

areas).
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Figure 5.1: Area under the temperature curve of COCO dataset plotted with
respect to (a) selfBLEU axis (b) (1− testBLEU axis) axis. Area under the tem-
perature curve of EMNLP NEWS dataset plotted with respect to (c) selfBLEU
axis , and (d) (1− testBLEU axis). The area w.r.t. selfBLEU axis is inversely
proportional to the quality of the generated sample. Thus, higher values reflect
poor quality samples, and vice versa. Similarly, the area w.r.t.(1− testBLEU)
axis is inversely proportional to the diversity of the sample. Thus, higher values
reflect samples with lesser diversities.
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Figure 5.2: Experiment results on MS COCO dataset

5.2.4 Experiments with EMNLP2017WMT News Dataset

Sentences of this dataset are more complex and have a longer average length com-

pared to the previous COCO dataset(Table 5.1). Similar to the graphs for COCO

Dataset, figure 5.1c indicates the area of the temperature curve w.r.t selfBLEU

axis. The values here corresponds to the quality. This graph is quite similar to

the graph in figure 5.1a considering the worse behaviour shown by GSGAN and

TextGAN. However, here, LeakGAN produces samples with the best quality for

all the sizes while the MLE based model and SeqGAN perform quite similarly.

Figure 5.1d indicates the area of the temperature curve w.r.t (1-testBLEU) axis.

As explained above, the values in this graph relate to diversity; lower value means

a higher diversity.

Interestingly, the MLE model seems to be winning here as well. GSGAN be-

haves quite different to the way it behaved during the experiments with COCO

dataset. With COCO dataset, GSGAN generated a few words (around 20 words

for the whole sample) with a lot of spaces. Here, it generates a small set of words

repetitively. This makes its diversity score low. This happens when the dataset

size is low. As the dataset size grows, GSGAN resorts to its normal behavior of

generating a few words with a lot of spaces. This can be seen from the graph in

figure 5.1d as well. This graph relates to the diversity of the generated sample.
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Figure 5.3: Experiment results on EMNLP NEWS dataset

Here, while LeakGAN seems to be producing more diverse data when the data

size increases, SeqGAN seems to be performing quite acceptable compared to

TextGAN and LeakGAN. Figure 5.3 sums up these two areas. It can be observed

that GSGAN is approaching lower values when the size is 1000. Similar to fig-

ure 5.2, representation for TextGAN in figure 5.3 is misleading given its very low

quality. So, the need for insights from area graphs related to individual scores is

proven here as well. Apart from those facts, we can see the MLE based model

model as the best performing model along with SeqGAN and LeakGAN.

5.2.5 Experiments with Geometry Questions

Doing the experiments above serves the purpose of identifying the appropriate

models for text generation that will improve the performance as the dataset size

grows. We conducted experiments to generate geometry questions so that the

limitations we faced during our task of deep semantic parsing can be alleviated.

However, in our experiments with this dataset, none of the models above could

produce meaningful enough questions.

The dataset we have for the geometry domain consists of a huge variance

while being very limited in size (226 sentences). Moreover, in contrast to above

datasets, geometry questions need to be constrained. For instance, the entities
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should have the same meaning across the sentence and their lengths (if any)

should be meaningful. The experiment results showed no sign that this is learnt

by the models. So, we claim that this dataset, at this stage, is not currently

capable for being used as a training dataset for data augmentation with current

neural models.

5.3 Discussion

In this work, we studied the applicability of state of the art text generation mod-

els on low resource domains. We examined the vanilla MLE language model [77],

and four language GANs (SeqGAN [10], TextGAN [11], LeakGAN [12], and GS-

GAN [13]) using small datasets extracted from the datasets used in Texygen.

We experimented with two datasets where one has shorted sentences than the

other. When it comes to dataset sizes below 1000, we observed that GSGAN and

TextGAN perform worse than other models on both datasets. Hence, based on

our experiments, we can claim that GSGAN and TextGAN are not suitable to

be applied on low resource domains. On the other hand, SeqGAN and LeakGAN

showed fairly similar behavior in both datasets. Interestingly, the MLE based

model turned out to be best performing model on both datasets despite its sim-

plicity compared to the considered language GANs. This proves the claim made

by Caccia et al. [14] that MLE based models are underestimated is true for low

resource datasets as well. However, we saw that the final graphs with the sum

of areas are not sufficient and can be misleading. Hence, we suggest filtering the

models which perform acceptably referring the graphs indicating the area scores

under (1-testBLEU) and selfBLEU axes, and then ranking those filtered models

from the final graph.

We extended Texygen [77] (i) to be capable of evaluating text generation

models more accurately using Temperature Sweep [14] along with the capability to

analyze graphs related to individual scores, and (ii) to be capable of evaluating the

trend of the performance of text generation models with dataset size increasing.

There exist a plethora of language GANs, we evaluated only 4 of those in
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this study. To get a much broader and a generalized insight, setting up other

language GANs in Texygen is necessary so that the experiments can be carried

out in similar contexts. We only experimented for sizes under 1000, and we

kept the size of the testing size (200) throughout the experiments. It would be

interesting if we find a way to determine these values based on the qualities of the

reference dataset. Intuitively, if a dataset is more complex (higher vocabulary,

longer average length, lower selfBLEU, etc.) than another dataset, we need more

data to start generating data for the first dataset than the second dataset. This

was apparent from our experiments too in that EMNLP NEWS dataset needed

more data than 1000 to become equal to the raw (unnormalized) area scores of

the models which were trained with the COCO dataset. We believe it would

be useful if we could come up with a mechanism to decide on a minimum size

of data needed for a given reference set to generate more data. One approach

to this would be fixating on a raw area score and increasing the dataset size

until the model reaches that score. Experimenting this with a set of datasets

with distinguishable features such as vocabulary size, average sequence length,

SelfBLEU would make it possible to get some insight on the effect of these features

on the quality and the diversity of the samples.
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Chapter 6

CONCLUSION AND FUTURE WORK

Existing systems for semantic parsing of geometry problems use language-specific

NLP tools and hard-coded parsing rules. Hence, they are not extensible to other

languages. Also, maintainability of these systems is difficult as alterations of the

parsing rules need human effort. Existing systems have resorted to this approach

mainly due to lack of data in the geometry domain.

In this research, we implement a language-independent deep semantic parser

for geometry problems. We did not use any NLP tool or any hard-coded parsing

rules. Still our system shows a performance comparable to the performance of the

existing systems. We model the task of semantic parsing as a question answering

task. This way of modeling facilitates extraction of dynamic counts of rules per

sentence. This also provisions the capability to extract facts even after the initial

extraction, which is beneficial especially in geometry domain. For example, if this

system is used to feed facts for an automatic solver, missing facts can even inhibit

the solver from progressing. With our system, the solver gets the capability to

extract facts it needs on-demand. We use memory networks for this task. We

introduce structural changes to make them work in low resource domains. To

facilitate multiple facts for a given query, we introduce a mechanism to control

the focus areas of the model while retrieving facts.

Due to the challenges we faced in applying deep learning techniques on low

resource domains, we also analysed data augmentation techniques for low re-

source domains. We analysed current state-of-the-art language generative models

and the evaluation metrics used on them. Language Generative Adveserial Nets

(Language GANs) are the claimed to be performing better than the traditional

autoregressive approaches. However, based on the study by Caccia et al. [14], the

evaluation used for the evaluations are not accurate. They showed that, despite

the complexity of language GANs, still traditional approaches outperformed lan-
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guage GANs. In our research, we show that the approach suggested by Caccia et

al. [14] is not sufficient for accurate evaluations and we enhance that approach.

Moreover, Language GANs are evaluated on large corpuses. We improved the

existing platform for comparing these language models, Texygen [77], to include

our enhanced metrics to evaluating language models and we ran the experiments

with small-seed corpora. Our results were in the same line with Caccia that tradi-

tional autoregressive models performed better than the state-of-the-art language

models. However, we suspect that the complexity of language GANs may also

have an effect on the results. While autoregressive models are simple, language

GANs have very complex structures. We suspect that their low permance in low

resource domains might also be due to their inherent complexities. We leave the

analysis of this issue to future work.
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