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ABSTRACT

Today we can find many use cases for content-based speech classification. These in-

clude speech topic identification and speech command recognition. Among these, speech

command-based user interfaces are becoming popular since they allow humans to inter-

act with digital devices using natural language. Such interfaces are capable of identifying

the intent of the given query.

Automatic Speech Recognition (ASR) sits underneath all of these applications to

convert speech into textual format. However, creating an ASR system for a language

is a resource-consuming task. Even though there are more than 6000 languages in

the world, all of these speech-related applications are limited to the most well-known

languages such as English, because of the high data requirement of ASR. There is some

past research that looked into classifying speech while addressing the data scarcity.

However, all of these methods have their limitations.

This study presents a direct speech intent identification method for low-resource

languages with the use of a transfer learning mechanism. It makes use of three differ-

ent audio-based feature generation techniques that can represent semantic information

presented in the speech. They are unsupervised acoustic unit features, character and

phoneme features. The proposed method is evaluated using Sinhala and Tamil lan-

guage datasets in the banking domain. Among these, phoneme based features that can

be extracted from Automatic Speech Recognizers (ASRs) yield the best results in intent

identification. The experiment results show that this method can have more than 80%

accuracy for a 0.5-hour limited speech dataset in both languages.

Keywords: Speech Intent Identification, Spoken Language Understanding, Low-Resource

Languages.
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