

A MECHANISM TO REDUCE WASTE DUE TO VOLTAGE DIPS IN NARROW FABRIC LOOMS

A dissertation submitted to the Department of Electrical Engineering, University of Moratuwa in partial fulfillment of the requirements for the Degree of Master of Science

> by H.K.L GAMINI

Supervised by: Dr. J. P. Karunadasa

Department of Electrical Engineering University of Moratuwa, Sri Lanka

2010

94846

Abstract

Like any other industry, apparel industry too tries to minimize their product cost by reducing production waste. Voltage fluctuations and power failures are two of the most concerning factors affecting the production. Even though these voltage fluctuations & voltage failures affect different kinds of looms at different degrees, its effect on the weaving looms which manufacture elastics is severe. As a narrow fabric elastic manufacturer it has been faced difficulties in minimizing the number of joints in the fabric (tape), which is a direct consequence of the same.

There are no research papers or commercial devices found to minimize the fabric joints in case of voltage dips or short period voltage interruptions. The significance of the proposed system is its ability to sense the voltage dips/sags or interruption with the fast AC to DC converter and take decisions intelligently to suit the situation prevailed, e.g. whether to let the machine run or stop depending on the time elapsed.

The brain of the controller 0" isa '--peripheral interface controller (PIC) and is programmed as assembly language. MPLAB Software compiles assembly to hex codes and the required sequence of signals is generated from PIC. This signal is sent to control unit of the loom via the DPDT relay to hold down the control. switches to perform the controller operations of the looms within a 3 second period during the short-time voltage variations such as interruptions and dips.

Numerous other applications are possible with this system in other industries too. One is in the rubber extruder and another is mixing mill in manufacturing rubber tires.

DECLARATION

The work submitted in this dissertation is the result of my own investigation, except where otherwise stated.

It has not already been accepted for any degree, and is also not being concurrently submitted for any other degree.

University of Moratuwa, Sri Lanka. UOM Verified Signature ronic Theses & Dissertations

> H.K.L Gamini Date 21. c ... 20 11

I endorse the declaration by the candidate.

UOM Verified Signature

Dr. J.P. Karunadasa

Supervisor

i

ACKNOWLEDGEMENT

First I pay my sincere gratitude to Dr. J.P. Karunadasa who encouraged and guided me to conduct this research and on perpetration of final dissertation.

I make this opportunity to extend my thanks to Prof. J.R Lucas and Dr. Nalin Wickramaarachchi, Dr. Lanka Udawatta and course coordinator Mr W.D Prasad for the valuable instructions given to me during the project.

I further thank to the officers in post graduate office and people who serve in the department of Electrical Engineering office, faculty of engineering, University of Moratuwa for helping in various ways.

University of Moratuwa, Sri Lanka.

I would like to take this opportunity to extend my sincere thanks to Mr. D.G Subasinghe (Manager Powergen Trade Promoters (Pvt) Ltd), Mr. N.M Berky (Senior Technician Stretchline (Pvt) Ltd), Mr. H.I Hettiarachchi (Senior Engineering Executive – Stretchline (Pvt) Ltd), Mr. P.Sugath (Electrical Engineer – Schneider Electric), Mr. H.W Jayantha Hewawaduge (Senior Engineer Executive – Stretchline (Pvt) Ltd), Mr Shammie de Silva (Project Executive- Stretchline (Pvt) Ltd), Mr N.P Athukorala (Marketing Manager – Harris & Menuk(Pvt) Ltd), Mr Krishan Weerawansa (Director – Stretchline (Pvt) Ltd) .Mr Kuma Ganegoda and Mr A.J.R Chandrakumara (Manager Personnel & Admin – Stretchline (Pvt) Ltd), who gave their co-operation to conduct the research and to develop the Prototype design successfully.

It is a great pleasure to remember the kind cooperation extended by the colleagues in the post graduate programme, friends, my subordinates in the office and especially my wife who helped me to continue the studies from start to end. Finally, I should also admire the patience of my beloved kid during the project.

CONTENTS

	Page No.
Declaration	i
Abstract	ii
Acknowledgement	iii
Contents	iv - vi
List of Tables	vii
List of Figures	vii - viii

1.	Intro	oduction	1
	1.1	Background	1
	1.2	Motivation	2
	1.3	Goals	4
		1.3.1 Hardware Design	4
		1.3.1.1 Selection of Relay (PCB driver) Lanka	4
		1.3.1.2 Selection of transistor (Relay Driver)	4
		1.3.1.3 Selection of optocoupler	4
		1.3.1.4 Selection of Peripheral Interface (PIC)	4
		1.3.2 Software Development	5
		1.3.3 Implementation	5
	1.4	Achievement in brief	5
2.	Prol	blem statement	7
	2.1	Identification of the machine states	7
	2.2.	Behavior of the machine controller to the voltages	8
	2.3.	Identification of the Problem	10
		2.3.1 Stop mark	11
	2.4	Objective of the project	11
3.	Har	dware Design of the system	13
	3.1	Microcontroller type for the application(MCU)	13
	3.2	Some related features of peripheral interface controller (PIC)	13
	3.3	Selection of Microcontroller unit (PIC)	13

		3.3.1	The PIC16F887A basic features	15
		3.3.2	PIN Assignment of PIC 16F877A	17
		3.3.3	Device block diagram	20
		3.3.4	Program memory organization	20
		3.3.5	Data Memory Organization	21
		3.3.6	Oscillator	22
			3.3.6.1 Types of oscillators	22
			3.3.6.2 XT oscillator	22
			3.3.6.3 RC oscillator	23
		3.3.7	High speed 10 bit A/D converter	25
			3.3.7.1 Ports	25
			3.3.7.2 Input Output ports	26
			3.3.7.3 PORT and TRIS	26
		3.3.8	Timer TRM1	27
	3.4	Photo	transistor Optocoupler	28
	3.5	Precis	sion AC/DC Converter of Moratuwa, Sri Lanka.	30
	3.6	Calcu	lation of the components heses & Dissertations	32
		3.6.1	Pull down resistor of the optocoupler	32
		3.6.2	Current limiting resistor (Rv)	33
		3.6.3	Current limiting resistor (Rb)	34
4.	Soft	ware D	Design of the system	36
	4.1	Introd	luction	36
	4.2	Metho	od	37
	4.3	Algor	ithm	37
		4.3.1	Software development flowchart	38
	4.4	Resol	lution and Time	39
		4.4.1	Resolution of the Analog signal	39
		4.4.2	Acquisition time for the Analog module	39
		4.4.3	Basic operation of the program	40
	4.5	Scher	natic circuit diagrams	41
		4.5.1	Some photographs of the SPVDA	44
		4.5.2	Machine controller circuit diagram	45

5.	Stati	istical analysis of data	46
	5.1	Category of waste	46
	5.2	Monitoring of results	47
	5.3	Analysis of time waste	48
	5.4	Analysis of production waste	49
	5.5	Budgetary Requirement	49
6.	Expe	rimental Results and Conclusion	50
	6.1.	Testing at sight	50
	6.2.	Conclusion	51

References

53

Appendix	Α	Assembly codes of the program	54
Appendix	В	Transistor Datasheet	59
Appendix	С	Silicon Rectifier Diode Datasheet	60
Appendix	D	PCB Relay Datasheet	62
Appendix	E	Contactor Relay Threshold voltages	65
Appendix	F	Operational Amplifier Datasheet	66
Appendix	G	Optocoupler CNY17-1 Datasheet	69
Appendix	H	Photographs of the machine	72

List of tables

Table number	Description
Table 2.1	Combinations of machine states.
Table 2.2	Behavior of machine controller to different voltage levels.
Table 2.3	. Behavior of other component to different voltage levels.
Table 3.1	PIC 16F Device Features
Table 3.2	PIN Assignment of PIC 16F877A
Table 3.3	PIN Assignment of PIC 16F877A (continued)
Table 3.4	PIN Assignment of PIC 16F877A (continued)
Table 3.5	Bank selection
Table 3.6	Capacitor selection
Table 3.7	Optocoupler Parameters
Table 3.8	Optocoupler Electrical Characteristics
Table 3.9	Resistors of optocoupler circuit a, Sri Lanka.
Table 5.1	Solid waste data in year 2008 Dissertations
Table 5.2	Voltage dips analysis report

List of figures

Figure number	Description
Figure 1.0	Sequence of design.
Figure 2.1	Schematic diagram for machine controller
Figure 3.1	PIC 16F877 Pin diagram
Figure 3.2	Internal architecture of PIC microcontroller
Figure 3.3	Memory map
Figure 3.4	Connections of the crystal Oscillator.
Figure 3.5	RC Oscillator
Figure 3.6	Oscillator clock signal
Figure 3.7	I/O Unit

Figure 3.8	Port and Tris
Figure 3.9	Optocoupler
Figure 3.10	Fast AC/DC Converter
Figure 3.11	Pull down resistor
Figure 3.12	Current limiting resistor at RB1
Figure 3.13	Current limiting resistor at RB2
Figure 4.1	Process of communication between a man and a microcontroller.
Figure 4.2	Flow chart for software development
Figure 4.3	Analog module for Acquitting time.
Figure 4.4	Control circuit of the microcontroller circuit
Figure 4.5	Power circuit of the AC/DC converter
Figure 4.6	External appearance of the design
Figure 4.7	Design circuit with machine controller
Figure 4.8	Weaving loom main control unit circuit diagram
Figure 5.1	Waste analysis, of Moratuwa, Sri Lanka.
Figure 6.1	Motor current variation for momentary interruption
	www.lib.mrt.ac.lk