A MECHANISM TO REDUCE WASTE DUE TO VOLTAGE DIPS IN NARROW FABRIC LOOMS

A dissertation submitted to the Department of Electrical Engineering, University of Moratuwa in partial fulfillment of the requirements for the Degree of Master of Science

by
H.K.L GAMINI

Supervised by: Dr. J. P. Karunadasa

Department of Electrical Engineering
University of Moratuwa, Sri Lanka

2010

Abstract

Like any other industry, apparel industry too tries to minimize their product cost by reducing production waste. Voltage fluctuations and power failures are two of the most concerning factors affecting the production. Even though these voltage fluctuations \& voltage failures affect different kinds of looms at different degrees, its effect on the weaving looms which manufacture elastics is severe. As a narrow fabric elastic manufacturer it has been faced difficulties in minimizing the number of joints in the fabric (tape), which is a direct consequence of the same.

There are no research papers or commercial devices found to minimize the fabric joints in case of voltage dips or short period voltage interruptions. The significance of the proposed system is its ability to sense the voltage dips/sags or interruption with the fast AC to DC converter and take decisions intelligently to suit the situation prevailed, e.g. whether to let the machine run or stop depending on the time elapsed.

The brain of the controller 0 " isa '--peripheral interface controller (PIC) and is programmed as assembly language. MPLAB Software compiles assembly to hex codes and the required sequence of signals is generated from PIC. This signal is sent to control unit of the loom via the DPDT relay to hold down the control. switches to perform the controller operations of the looms within a 3 second period during the short-time voltage variations such as interruptions and dips.

Numerous other applications are possible with this system in other industries too. One is in the rubber extruder and another is mixing mill in manufacturing rubber tires.

DECLARATION

The work submitted in this dissertation is the result of my own investigation, except where otherwise stated.

It has not already been accepted for any degree, and is also not being concurrently submitted for any other degree.

TTniversity of Moratuwa, Sri Lanka

UOM Verified Signature

ronic Theses \& Dissertations

II.K.L Gaynini

Date $21.0,20 \%$

I endorse the declaration by the candidate.

UOM Verified Signature

Dr. J.P. Karunadasa

Supervisor

ACKNOWLEDGEMENT

First I pay my sincere gratitude to Dr. J.P. Karunadasa who encouraged and guided me to conduct this researeh and on perpetration of final dissertation.

I make this opportunity to extend my thanks to Prof. J.R Lucas and Dr. Nalin Wickramaarachchi, Dr. Lanka Udawatta and course coordinator Mr W.D Prasad for the valuable instructions given to me during the project.

I further thank to the officers in post graduate office and people who serve in the department of Electrical Engincering office, faculty of engineering, University of Moratuwa for helping in various ways.

I would like to take this opportunity to extend my sincere thanks to Mr. D.G Subasinghe (Manager Powergen Trade Promoters (Pvt) Ltd), Mr. N.M Berky (Senior Technician Stretchline (Pvt) Ltd), Mr. II.I Hettiarachchi (Senior Engineering Executive ... Stretchline (Pvt) Ltd), Mr. P.Sugath (Electrical Engineer . Schneider Electric), Mr. H.W Jayantha Hewawaduge (Senior Engineer Executive -. Stretchline (Pvt) Ltd). Mr Shammie de Silva (Project Executive- Stretchline (Pvt) Itd), Mr N.P Athukorala (Marketing Manager -- Harris \& Menuk (Pvt) Lttd). Mr Krishan Weerawansa (Director -- Stretchlinc (Pvt) Lid) .Mr Kuma Ganegoda and Mr A.J.R Chandrakumara (Manager Personnel \& Admin Stretchline (Pvt) L.td). who gave their co-operation to conduct the research and to develop the Prototype design successfully.

It is a great pleasure to remember the kind cooperation extended by the colleagues in the post graduate programme, friends, my subordinates in the office and especially my wife who helped me to continue the studies from start to end. Finally. I should also admire the patience of my beloved kid during the project.

CONTENTS

Page No.
Declaration i
Abstract ii
Acknowledgement iii
Contents iv vi
list of Tables vii
List of Figures vii - viii

1. Introduction 1
1.1 Background 1
1.2 Motivation 2
1.3 Goals 4
1.3.1 Hardware Design 4
1.3.1.1 Sclection of Relay (PCB driver) 4
1.3.1.2 Selection of transistor (Relay Driver) 4
1.3.1.3 Selection of optocoupler 4
1.3.1.4 Selection of Peripheral Interface (PIC) 4
1.3.2 Software Development 5
1.3.3 Implementation 5
1.4 Achievement in bricf 5
2. Problem statement 7
2.1 Identification of the machine states 7
2.2. Behavior of the machine controller to the voltages 8
2.3. Identification of the Problem 10
2.3.1 Stop mark 11
2.4 Objective of the project 11
3. Hardware Design of the system 13
3.1 Microcontroller type for the application(MCU) 13
3.2 Some related features of peripheral interface controller (PIC) 13
3.3 Selection of Microcontroller unit (PIC) 13
3.3.1 The PIC16F887A basic features 15
3.3.2 PIN Assignment of PIC 16F877A 17
3.3.3 Device block diagram 20
3.3.4 Program memory organization 20
3.3.5 Data Memory Organization 21
3.3.6 Oscillator 22
3.3.6.1 Types of oscillators 22
3.3.6.2 XT oscillator 22
3.3.6.3 RC oscillator 23
3.3.7 High speed 10 bit Λ / D converter 25
3.3.7.1 Ports 25
3.3.7.2 Input Output ports 26
3.3.7.3 PORT and TRIS 26
3.3.8 Timer TRMI 27
3.4 Phototransistor Optocoupler 28
3.5 Precision AC/DC Converter 30
3.6 Calculation of the components 32
3.6.1 Pull down resistor of the optocoupler 32
3.6.2 Current limiting resistor (Rv) 33
3.6.3 Current limiting resistor (Rb) 34
4. Software Design of the system 36
4.1 Introduction 36
4.2 Method 37
4.3 Algorithm 37
4.3.1 Software development flowehart 38
4.4 Resolution and Time 39
4.4.1 Resolution of the Analog signal 39
4.4.2 Acquisition time for the Analog module 39
4.4.3 Basic operation of the program 40
4.5 Schematic circuit diagrams 41
4.5.1 Some photographs of the SPVDA 44
4.5.2 Machine controller circuit diagram 45
5. Statistical analysis of data 46
5.1 Category of wastc 46
5.2 Monitoring of results 47
5.3 Analysis of time waste 48
5.4 Analysis of production waste 49
5.5 Budgetary Requirement 49
6. Experimental Results and Conclusion 50
6.1. Testing at sight 50
6.2. Conclusion 51
References 53
Appendix A Assembly codes of the program 54
Appendix B Transistor Datasheet 59
Appendix C Silicon Rectifier Diode Datasheet 60
Appendix D) PCB Rclay Datasheet 62
Appendix E Contactor Relay Threshold voltages 65
Appendix F Operational Amplifier Datashect 66
Appendix G Optocoupler CNY17-1 Datasheet 69
Appendix II Photographs of the machine 72

List of tables

Table number	Description
Table 2.1	Combinations of machine states.
Table 2.2	Behavior of machine controller to different voltage levels.
Table 2.3	. Behavior of other component to different voltage levels.
Table 3.1	PIC 16F Device Features
Table 3.2	PIN Assignment of PIC 16F877A
Table 3.3	PIN Assignment of PIC 16F877A (continued)
Table 3.4	PIN Assignment of PIC 16F877A (continued)
Table 3.5	Bank selection
Table 3.6	Capacitor selection
Table 3.7	Optocoupler Parameters
Table 3.8	Optocoupler Electrical Characteristics
Table 3.9	Resistors of optocoupler circuit a, Sri Lanka.
Table 5.1	Solid waste data in year 2008 issertations
Table 5.2	Voltage dips analysis report

List of figures

Figure number	Description
Figure 1.0	Sequence of design.
Figure 2.1	Schematic diagram for machine controller
Figure 3.1	PIC 16F877 Pin diagram
Figure 3.2	Internal architecture of PIC microcontroller
Figure 3.3	Memory map
Figure 3.4	Comnections of the crystal Oscillator.
Figure 3.5	RC Oscillator
Figure 3.6	Oscillator clock signal
Figure 3.7	I/O Unit

Figure 3.8	Port and Tris
Figure 3.9	Optocoupler
Figure 3.10	Fast AC/D) C Converter
Figure 3.11	Pull down resistor
Figure 3.12	Current limiting resistor at RB1
Figure 3.13	Current limiting resistor at RB2
Figure 4.1	Process of communication between a man and a microcontroller.
Figure 4.2	Flow chart for software development
Figure 4.3	Analog module for Acquitting time.
Figure 4.4	Control circuit of the microcontroller circuit
Figure 4.5	Power circuit of the $\mathrm{AC} / \mathrm{DC}$ converter
Figure 4.6	External appearance of the design
Figure 4.7	Design circuit with machine controller
Figure 4.8	Weaving loom main control unit circuit diagram
Figure 5.1	Waste analysis of Moratuwa S.
Figure 6.1	Motor current variation for momentary interruption

Chapter 1

Introduction

1.1 Background

Apparel industry requires to provide efficient and on time service to the customers with no compromise on the quality of goods being delivered. One major determinant of the quality of the narrow fabric elastics is the number of joints of one tape per unit length which is predetermined.

The textile industry is an amalgam of related industries which uses variety of natural \& synthetic materials. Among the machines which are used in apparel industry the machine type that it has been chosen to carry out my project is a narrow fabric weaving loom. However this can be implemented to other machinery in different industries with small changes.

Current loom capacity in the factory is $120(100$ nos of single deek and 20 nos of double deck). Each single deck loom can be produced 10 tapes and 20 by double deck looms which leads to an average daily production of 0.4 million meters.

Narrow fabric manufacturers face difficulties in reducing the number of joints in the continuous fabric tapes. Since there is a particular number of joints that the narrow fabric can have which is of course pre-specified by the customer. any instance which exceeds the same will lead to heighten the factory production waste since it will not be accepted by the customer. The study helped in identifying following reasons as the causes of waste generation.

1. Voltage variation
2. power interruption
3. Machine break downs
4. Quality problems
5. Yarn breakages
6. Generator change over \& vice versa
7. Process problems and many more

1.2 Motivation

The company categorizes its total waste initially as controllable \& uncontrollable waste. One major contributing factor for uncontrollable wastes is the voltage variations which last less than 3 seconds.

As an Engineer with a background of electrical installation the author selected this project to study the production waste generation activities and the mechanism that could be implemented to minimize it. This thesis proposes a new automated approach to detect the voltage variation and react accordingly. The brain of the controller is a peripheral interface controller (PIC).By using PIC the design was done with low cost comparatively. This device can be named as Short Period Voltage Dip Actuator ($\mathrm{SPVD} \wedge$) which helps automating the machines, leading to the following advantages.

1. No joints will be generated due to short period voltage variations(time less than 3 sec)
2. No waste generation due to consequence voltage variations
3. No re-processing time \& hence man hours can be saved.
4. Reduce customer complaints
5. No waste generation during the power changeover and vice versa and many more.

- If the above voltage variation occurs successively within short periods causing to have two joints within 10 meters it has to be disposed as waste. Implementation of the new actuator helps to climinate this problem.
- In the case of short period voltage variations such as voltage dips and momentary interruptions clastic tape damages can be seen and machine operators have to reconnect it after removing unwanted portions. Helps immensely in saving time, which results in higher productivity.
Block Diagram of the expected design of the controller

Figure 1-Scquence of Design

1.3 Goals

To achieve the final target the project work was broken further down to a set of goals. they are as follows.

1.3.1 Hardware Design

1.3.1.2 Selection of Relay (PCB driver)

Correct selection of the relay is very important because it drives the control PCB of the loom. Therefore several features need to be considered when choosing a relay such as switching rating, coil resistance, coil voltage, physical size \& dielectric strength. As the relay was used for low voltage applications dielectric strength was not important. So that SPIDT 5 V DC/1A micro relay was selected. Features of the relay were.

- Coil rating $=5 \mathrm{VDC} .90 \mathrm{~mA}$
r Coil resistance - 55 ohm
r Coil size - 1-1/32"x3/8"x1/4"

1.3.1.2 Selection of transistor (Relay Driver)

Selection of transistor was very eritical because the relay was driven by transistor which was initially controlled by the PIC. Out of many transistors available in the market correct one needs to be selected. General purpose C1815, NPN transistor was chosen [4| base on the calculations done [10].

1.3.1.3 Selection of optocoupler

Optocoupler was used to isolate the signals for protection and safety between a safe and a potential hazardous or electrically noisy environment. The interfacing of the optocoupler between digital or analog signal needs to be designed properly for proper protection and operation.

1.3.1.4 Selection of Peripheral Interface (PIC)

This is the controller of the design. There are varieties of PICs in the market. So that the required controller with right features needs to be selected (PIC16F877A).

1.3.1 Software Development

Instructions to the PIC should be given in hex. If the instructions are given in assembly language, it needs to be converted to hex by MPLAB software, also there is a facility to program using C with C compiler.

1.3.2 Implementation

- Control circuit was designed and installed on board
- Power supply of 5 V \& 9 V to the PIC and $\mathrm{AC} / \mathrm{DC}$ converter separately.
r Programmed the PIC using MPLAS Software \& Programmer.
- Checked the functionality of the PIC by a simulation in MPI $\triangle B$ and then incorporated PIC to the control circuit and checked functionality of all possible inputs.

1.4 Achievements in brief

Completion of literature survey, integrated the designing of Short Period Power Dip actuator. Series of theoretical calculations were done to calculate and find the required components such as on-line resistor, pull down resistor to protect the optocoupler. input voltage stability and base limiting resistor of the driver transistor(C1815) of the relay circuit.
Fast Precision AC/DC converter which was built by cascading two LM101A operational amplifiers. It was selected among the other converters which can be done the same job. because it was a full wave rectifier and the response time was less than 54 ms . The converter was converted AC voltage to DC analog voltage and it was sent it to PIC AN0 pin as an analogue input signal.

Machine operating state signal was supplied to the RC5 pin of the PIC through the optocoupler CYN-17-1. It was used to isolate power side from the control side. Selected PIC 16F877A offers lot of features like, interrupt handling capacity, A/D module, timers apart from that digital inputs \& outputs. Components were ordered after designing. It took time to find the PIC because the one it was initially planned was very rare in the local market to purchase (PIC16I870). Then PIC16F877 which was available in the market was purchased. PIC program was written in assembly language. It took time because it was needed to learn more about assembly language to develop the program [1]. Writing the program was time consuming too. Finally the
program was developed and programmed in MPLAB, this was tested using MPLABSIM (MPLAB Simulator).

The PIC was debugged and programmed again. This was done many times until the correct program was obtained. Since PIC16F877A was flashed version, it could be programmed about 100,000 times without doing any damage to the PIC.

University of Moratuwa, Sri Lanka. Electronic Theses \& Dissertations www.lib.mrt.ac.lk

Chapter 2

Problem statement

2.1 Identification of machine states

Study about the machine operation and identifying problems was very useful to develop a system to minimize the effect due to the problem or problems. The weaving loom includes mainly three types of switches and two kinds of motors to run the loom. These are named as Tip switch, Stop switch. Start switch, Tip motor and main motor. Combinations of the operation of the switches and motors can be categorized in the table 2.1.

	Raw	Tip	Start	Stop	Tip	Main	Machine
	power	switch	switch	switch	motor	motor	status
1	0	0	0	0	0	0	Stop
2	1	0	0	0	0	0	Stop
3	1	1	0	0	1	0	Tipping
4	1	0	1	0	0	0	Stop
5	1	1	1	0	0	1	Running
6	1	0	0	1	0	0	Stop
7	1	1	1	0	0	1	Running
8	0	0	0	0	0	0	Stop
9	1	0	0	0	0	0	Still
							Stop

Table 2.1-Combinations of machine states

State $4 \& 6$ can be explained that even though voltage is available machine is not able to run with Start switch itself. Tip switch is used to operate the machine at a moderate speed in order to setup or careful positioning of the moving parts in the machine. When Start switch is pressed with the Tip switch simultaneously \& the machine can be run at its maximum set speed. The Stop switch is used to stop the machine and state 8 is very similar to the situation where power interruptions can be happened during the machine running. By seeing states 8 and 9 this situation can be identified as similar as to short period interruption or voltage dip situation and shutdown the machine. In the instance if the mechanism is developed to keep holding the two switches Stop and Tip simultaneously during the voltage variation or short period interruption
(time $\mathrm{t}<3$ second) operation of the machine can be continued without having any production losses.

2.2 Behavior of the machine controller to the voltages

For the weaving machines electrical power for the controller starts from external transformer which is fitted into the machine. External transformer is capable of generating three levels of voltages. Those are $48.27 \& 18 \mathrm{VAC}$ and is fed into the weaving machine control PCB . The main motor contactor was energized by 48 VAC through the internal relay system of the machine to control PCB and rest of the voltages ($18 \mathrm{VAC} \& 27 \mathrm{VAC}$) were accommodated for the functions of balance activities of the control panel such as break, stop motions \& other control circuits ctc). The machines were operating with the CEB power and anytime voltage variations \& interruptions can be happened. This will cause to stop the machine operations and consequently generate waste. So that investigations were done to find the behaviors of the machine controller and related motor contactor during the voltage variations. Trials were done with variac and experimental results were tabulated as following tables. 2.2 and 2.3.

$\begin{aligned} & \mathrm{AC} \\ & \mathrm{I} / \mathrm{P} \end{aligned}$	\% of Volt	$\begin{gathered} 48 \mathrm{~V} \\ \mathrm{AC} \end{gathered}$	$\begin{gathered} 27 \mathrm{~V} \\ \mathrm{AC} \end{gathered}$	$\begin{aligned} & 17 \mathrm{~V} \\ & \mathrm{AC} \end{aligned}$	COMMENTS ON CONTROL PCB
230 V	100	47.1	26.5	17.5	Control functions of the machine PCB is ok
225 V	98	45.9	25.9	17.15	Do
220 V	96	44.9	25.35	16.8	Do
215 V	93	43.8	24.7	16.3	Do
210 V	91	42.7	24.12	16	Do
205 V	89	41.7	23.58	15.6	Do
200 V	87	40.6	22.96	15.2	Do
195 V	85	39.8	22.5	14.9	Card functions are satisfactory up to this point
190V	83	38.99	21.84	14.45	Internal relays start to vibrate but card stays on condition
185 V	78.4	38.06	21.25	14.1	More noise but card functions are stable
180 V	78	36.94	20.66	13.72	Noise disappeared and the Power failure indicator LED (red) is ON and the card functions are stopped

Table 2.2 - Behavior of Machine Controller to different Voltage Levels

Behaviors of the component for the different voltage levels

Table 2.3 - Behavior of other component to different Voltage Levels

As per the above results operation of the main motor contactor fails at 83% of single phase voltage, because of that voltage is less than the minimum threshold voltage (Appendix-E) of the coil (38.4 VAC). The machine controller PCB functions were
disabled when the voltage reaches at 78% of single phase voltage because of low control voltage of the PCB and de-energized the internal relays of the PCB . As a result of that main motor contactor would be de-energized and shat down the machine operation. The basic operation of the machine controller is explained by figure 2.1.

Figure 2.1-Schematic diagram for machine controller

2.3 Identification of the Problem

Due to the voltage variations production waste was generated significantly. Therefore the project was focused on minimization of waste due to voltage variations such as voltage dips. According to the survey was done there was a commercial device developed in UK was called high voltage traction capacitor device [8]. This device can be used to power the electrical devices in the case of voltage drops or in absence of power. But it is still in the development stage and also cost is high. Therefore still there is no any low cost mechanism to overcome this problem. But battery powered UPSS are one of perfect solutions. On average power consumption per loom is 1.5 kW and plant capacity is 120 looms. Thercfore at lease 180 kW UPS units are required to run the full capacity of the plant. But due to high capital cost it is not viable. Apart from the high capital cost following disadvantages were there.

- Frequent maintenance cost
- Fairly large space required
- Toxic waste
- Ileat dissipation

Another one was fly wheel UPSs. This gives lot of advantages compared to the above. But the disadvantage is capital cost which is very much higher than the regular UPS systems.

In this research it was found approximately 50% of the power failures were less than 3 seconds and generated waste was 6% of the total waste. Therefore weaving looms in the Textile industry is very sensitive to the voltage variations and power quality problems and get stopped immediately. As a result of it. stop marks can be seen on the fabric tapes. It is the damage that can not be accepted by the customers.

2.3.1 Stop mark

The defeet "stop mark" in the fabrie tape was found on a continuous fabric due to the variation in tension building up along the yarn path from the yarn beam to elastic tape in case of machine stop.

The raw material (yarn) is wrapped on the aluminum beam which is about $40-70 \mathrm{~kg}$ loaded to the machine creel. The beam can be rotated freely with their center bearings and movement is controlled by the tension balance weights. If there is a sudden power failure or voltage variations happen free motion can be taken placed due to momentum of the beam. Therefore it causes a tension variation along the tapes. As a result of this a stop mark can be created. If there is a possibility to reset the machine within 3 seconds stored energy of the beam is enough to maintain the tension of the tape and creating stop mark can be minimized.

2.3 Objective of the project

The expectation of the projects was to reduce the waste and down time during the voltage variation. Since it linally affects the total revenue that can be generated from the plant.

This will require development of a new control system which should be facilitated to keep the machine start switches hold down during the voltage variations.

The new design involves digital control principles for practical implementation of control algorithms in a microcontroller unit (MCU). The following areas need to be focused.
r How to detect voltage variations which effecting to the machine operation?

- What hardware components to be sourced and what to be produced to make the photo type design?
- Programming the microcontroller according to the control algorithm.
- How to obtain the experimental results?
 Electronic Theses \& Dissertations www.lib.mrt.ac.lk

Chapter 3

Hardware Design of the system

3.1 Microcontroller types for the application (MCU)

Single chip microcontroller device is ideal to control waste due to the voltage variations in many applications. The advantage of a MCU for the application is the MCUs program can be changed, revised by changing a few lines of text in the source code. This source code is then converted in to machine code by software compiler and is programmed into MCU.
The MC is a single chip computer. It operates as stored program machine that is it must be read its program code and data values from its memory in order to operate. Two common methods are used to accomplish this. One is called von Neumann architecture and has been employed in many MCUs. This method uses one data bus and memory space for both program code \& data values. Saving cost but stowing down the code execution. The other approach is called I Iarvard architecture, separates the program code \& data values into two memory structures allowing parallel loading of both at the same time. In this case data exceution is essential therefore Harvard architecture can be selected during the selection of MCs.

3.2 Some related features of peripheral interface controller (PIC)

A microcontroller [2] differs from a microprocessor in many ways. First and most important is its functionality. In order to a microprocessor to be used, other components such as memory, or components for receiving and sending data must be added to it. On the other hand microcontroller is designed to be all of that in one. No other external components are needed for its applications other than an oscillator because all necessary peripherals are already build into it. Thus, it can be saved the time and space needed to construct devices.

3.3 Selection of Microcontroller unit (PIC)

Different types of Peripheral Interface Units (PICs) are available in the market. In this thesis PIC16F series was considered. Features that considered for the application are given in the following table 3.1.

Device	Program memory Single word instructions	Data memory SRAM (bytes)	$\begin{aligned} & \text { I/O } \\ & \text { Pins } \end{aligned}$	Operating speed (MHz)	$\begin{gathered} 10 \mathrm{Bit} \\ \mathrm{~N} \mathrm{D} \end{gathered}$ Modules	Timers 8/16 Bits	I/O Ports
PIC16F84A	1024	68X8	13	20	-	1	2
PIC16F85	1024	128x8	15	20	4ch;8bit	1	2
PIC16F870	2048	128x8	22	20	5ch:8	3	3
PIC16F871	2048	128x8	33	20	8ch;8	3	4(A,B,C, D)
PIC16F86	2048	128×8	15	20	4ch;8bit	1	2
PIC16F873A	4096	192	22	20	5ch;8bit	$2 / 1$	3
PIC16F874A	4096	192	33	20	8ch:8bit	2/1	5
PIC16F876	8192	368	22	20	5ch:8bit	2/1	3
PICI6F877A	8192	368	33	20	8ch:8bit	2/1	5

Table 3.1-PIC16F Device Features

According to the above comparison in PIC16F87XA scries PIC16F877A has 8 K instructions of program memory, 368 bytes of SRAM data memory, 33 I/0s. 5 Ports. 10 bit A/D modules, two 8 bit timers and many more. But it was required inputs \& outputs for software development such as,
, Three Ports A.B and C

- Two Analog modules
- Two digital outputs
- One digital input

Therefore except PIC16F84A all the other Peripheral Interface Units can be used for the software development of this project. But on top of that priority must be given to the product which is available in the market due to the time constrain. PIC16F877A is one of the largest program memory capacity chip available in the local market. Therefore PIC16F877A [2,5] was selected as the controller of the proposed system.

Pin Diagram

Figure 3.1 - PIC16F877 Pin Diagram

3.3.1 THE PIC16F887A BASIC FEATURES

- Architecture
- Only 35 instructions to learn
- All single-cycle instructions except branches
- Operating frequency $0-20 \mathrm{MHz}$
- Precision internal oscillator
- Factory calibrated
- Software selectable frequency range of 8 MH 7 to 31 KIIz
- Power supply voltage $\mathbf{2 . 0 - 5 . 5 V}$
- Consumption: $220 \mathrm{uA}(2.0 \mathrm{~V}, 4 \mathrm{MHz}), 11 \mathrm{uA}(2.0 \mathrm{~V}, 32 \mathrm{KILz}) 50 \mathrm{nA}$ (stand-by mode)
- Power-Saving Sleep Mode
- Brown-out Reset (BOR) with software control option
- 33 input/output pins
- Iligh current source/sink for direct LED drive
- Software and individually programmable pull-up resistor
- Interrupt-on-Change pin
- 8K ROM memory in FLASH technology
- Chip can be reprogrammed up to 100.000 times
- In-Circuit Serial Programming Option
- Chip can be programmed even embedded in the target device
- 256 bytes EEPROM memory
- Data can be written more than 1.000.000 times
- 368 bytes RAM memory
- \mathbf{A} / \mathbf{D} converter:
- 08-channels
- 10-bit resolution
- 3 independent timers/counters
- Watch-dog timer
- Analogue comparator module with
- Two analogue comparators
- Fixed voltage reference (0.6 V)
- Programmable on-chip voltage reference
- PWM output stecring control
- Enhanced USART module
- Supports RS-485. RS-232 and LIN2.0
- Auto-Baud Detect
- Master Synchro nous Serial Port (MSSP)
- Supports SPI and I2C mode

3.3.2 PIN Assignment of PIC16F877A

Pin Name	$\begin{aligned} & \text { DIP } \\ & \text { Pin\# } \end{aligned}$	$\begin{aligned} & \text { PLCC } \\ & \text { Pin\# } \end{aligned}$	$\begin{aligned} & \text { QFP } \\ & \text { Pin\# } \end{aligned}$	$\begin{aligned} & 1 / \mathrm{O} / \mathrm{P} \\ & \text { Type } \end{aligned}$	Buffer Type	Description
$\begin{gathered} \text { OSCTMCLK } \\ \text { OSC1 } \end{gathered}$ ClK	13	14	30	1	ST/CMOS ${ }^{(4)}$	Oscillator crystal or external clock mput. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode. Otherwise CMOS. External clock source impu. Always associeted with pin function OSC1 (see OSC1/CLKL, OSC2/CLKO pins).
$\begin{gathered} \text { OSC2CLKOUT } \\ \text { OSC2 } \\ \text { CLKO } \end{gathered}$	14	15	31	0	\cdots	Oscillator crystal or clock output. Oscilator crystal output. Connects to crystal or resonator in Crystal Osciliator mode. In RC mode: OSC2 pin outputs CLKO. which has $1 / 4$ the frequency of OSC1 and denotes the instruction cycle rate.
$\begin{gathered} \text { MCLRNPP } \\ \text { MCLR } \\ \text { VPP } \end{gathered}$	1	2	18	$1 / \mathrm{P}$	ST	Master Clear (input) or programming voltage (output). Master Clear (Reset) input. This pin is an activo low RESET to the device. Programming voltage input.
$\begin{gathered} \text { RAOIANO } \\ \text { RAO } \\ \text { ANO } \end{gathered}$	2	3	19	$\begin{gathered} 10 \\ 1 \end{gathered}$	TTL	PORTA is a bi-directional $1 / 0$ port. Digital $1 / 0$. Analog input 0
$\begin{array}{r} \text { RA1/AN1 } \\ \text { RA1 } \\ \text { AN } \end{array}$	3	4	20	10	ITL fTVI	Digital l/O Analog input 1 \qquad
RAZ/AN2NRTF/CVRER RA2 AN2 VPEF:- CVPE	4	5	21	$\begin{gathered} 10 \\ 1 \\ 10 \\ 0 \end{gathered}$	TTL	Soigitalnoertations Anatog input 2. A/D reference voltage (Low) input. Comparator VREF output.
$\begin{aligned} & \text { RAB/AN3VRfF+ } \\ & \text { RA3 } \\ & \text { AN3 } \\ & \text { VREF }+ \end{aligned}$	5	6	22	$\begin{gathered} 1 / 0 \\ 1 \\ 1 \end{gathered}$	TTL	Digital I/O. Analog input 3. AD reference voltage (High) input.
$\begin{aligned} & \text { RAATTOCKIICIOUT } \\ & \text { RA4 } \\ & \text { TOCKI } \\ & \text { CIOUT } \end{aligned}$	6	7	23	$\begin{gathered} 10 \\ 1 \\ 0 \end{gathered}$	ST	Digital $1 / 0$-- Open drain when configured as output. Timer0 external clock input. Comparator 1 output.
$\begin{aligned} & \text { RA5/SS/AN4/C2OUT } \\ & \text { RAS } \\ & \text { SS } \\ & \text { AN4 } \\ & \text { C2OUT } \end{aligned}$	7	8	24	$\begin{gathered} 10 \\ 1 \\ 1 \\ 0 \end{gathered}$	TTL	Digital ilo. SFI slave select input. Analog input 4. Comparator 2 output.
Legend: 1 = input	$\begin{aligned} & =\text { outh } \\ & =\text { No } \end{aligned}$			$\begin{aligned} & \mathrm{O}=\mathrm{inpu} \\ & \mathrm{TL}=T \mathrm{~T} \end{aligned}$	output input	$\begin{aligned} & P=\text { power } \\ & S T=\text { Schmit! Trigger input } \end{aligned}$

Note 1:This buffer is a Schmilt Trigger input when configured as an external interrupt.
2: This buffer is a Schmit Thgger input when used in Serial Programming mode
3: This buffer is a Schmitt Triger input when configured as general purposel:O and a TTL input when used in the Parallol Slave Port mode (for interfacing to a microprocessor bus).
4: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

Table 3.2 - Pin Assignment PIC877A

Pin Name	$\begin{aligned} & \text { DIP } \\ & \text { Pin\# } \end{aligned}$	PLCC Pin\#	$\begin{aligned} & \text { QFP } \\ & \text { Pin\# } \end{aligned}$	$\begin{aligned} & \text { I/O/P } \\ & \text { Type } \end{aligned}$	Buffer Type	Description	
						PORTB is a bi-directional $1 / O$ port. PORTB can be soltware programmed for internal weak pull-up on all inputs	
RBOINT RBO NT	33	36	8	110	TTLST ${ }^{(1)}$	Digital $/ 10$. External interrupt.	
RB1	34	37	9	110	TTL	Oigital $\\|$ O.	
RB2	35	38	10	10	TTL	Digital/O	
RE3/PGM	36	39	11		TTL		
RB3 PGM				10 10		Digitallo Low voltage ICSP programming enable pin.	
RB4	37	41	14	10	THL	Digitallo.	
Re5	38	42	15	10	TTL	Digital I/O	
RE6:PGC	39	43	16		Tusst ${ }^{(2)}$		
RB6 PGC				$\begin{aligned} & 110 \\ & 1 / 0 \end{aligned}$		Digital 10 In-Circuit Debugger and ICSP programming dock	
RE7/PGD	40	44	17		TTLST ${ }^{(2)}$		
$\begin{aligned} & \mathrm{RB7} \\ & \mathrm{PGD} \end{aligned}$				$1 / 0$ $1 / 0$		Digital $1 / 0$ In-Circut Debugger and ICSP programming data.	
						PORTG is a bi-directional llo port.	
RCOT1OSOTTACK	15	16	32		ST		
- RCO				110		Oigital 10.	
T10SO				0		Timer 1 osciliator output.	
T1CKI				1		Timer 1 external clock input.	
RC1/T1OSI/CCP2 RC1	16	18	35	10	ST	tuwa Sri Lanka. Digital lo	
T1051				1	These	Q Timeri oscillator input. S	
CCP2				0		Capture2 input, Compare2 output. PWM2 output.	
$\mathrm{PC2CCP1}$	17		36		ST		
$\mathrm{RC2}$				10		Digitallo.	
CCP1				110		Capture 1 input/Compare 1 outputPWM 1 output.	
RC3:SCKISCL	18	20	37		ST		
RC3				$1 / 0$		Digitallo.	
SCK				$1 / 0$		Synchronous serial clock inputloutput for SPl mode.	
SCL				$1 / 0$		Synchronous serial ciock input/output for $1^{2} \mathrm{C}$ mode	
RC4/SDI/SDA	23	25	42		ST		
$\begin{aligned} & \mathrm{RC} 4 \\ & \mathrm{SDl} \end{aligned}$				1/0		Digitallo. SPI data in.	
SDA				110		$\mathrm{P}^{2} \mathrm{C}$ datall O .	
RCG/SDO	24	26	43		ST		
RC5				10		Digital $1 / 0$	
S00				0		Spl data out.	
RCE/TX/CK	25	27	44		ST		
RC6				110		Digital $1 / 0$	
TX				0		USART asynchronous transmit.	
CK				10		USART 1 symehronous clock.	
RCTIRXIT	26	29	1		ST		
RC7				$1 / 0$		Digital lo.	
RX				1		USART asynchronous receive	
OT				10		USART synchronous data.	
Legend: I = input	$\begin{aligned} 0 & =\text { output } \\ & =\text { Not used } \end{aligned}$		$1 / 0-\text { inputioutput }$$T T L=T T L \text { input }$			$\begin{aligned} & P=\text { power } \\ & S T=\text { Schmitt Trigger input } \end{aligned}$	

Note 1:This buffer is a Schmitt Trigger input when configured as an extermal internut.
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.
3: This buffer is a Schmit Trgger imput when configured as general purpose lo and a Themput when used in the Parallel Slave Port mode (for interfacing to a nicroprocessor bus).
4: This buffer is a Schmitt Trigger input when configured in RC oscilator mode and a CMOS input otherwise.

Table 3.3 - Pin Assignment PIC877A

PIC877A Pin out Description (Continued)

Note 1:This buffer is a Schnitt Trigger inout when configured as an extemal interrupt.
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.
3: This buffer is a Schnitt Trigger imput when configured as generalpurpose 10 and a TTL inpul when used in tho Paratlet Slave Port mode for interfang to a mioroprocessor bus).
4: This buffer is a Schmit Trigger input when configured in RC oscilator mode and a CMOS input otherwise

Table 3.4 - Pin Assignment PIC877A

3.3.3 Device block diagram

Fig 3.2 - Internal architecture of PIC microcontroller

Above Figure 3-2 describe the device block diagram of the 16FPIC877

3.3.4 Program memory organization

There are three memory bloeks in each of thePlC16F87XA devices. The program memory and data memory has separate buses so that concurrent access can be occurred. The program memory can be read internally by user code The PIC16F87XA devices have a 13 -bit program counter capable of addressing an 8 K word x 14 bit program memory space. The PIC16F876A/877A devices have 8 K
words x 14 bits of Flash program memory, The below hig 3.3 is the memory allocations of the PIC16F877A.

Program memory map and stack

Fig 3.3-Memory map

3.3.5 Data Memory Organization

The data memory is partitioned into multiple banks which contains the General Purpose Registers and the Special Function Registers. Bits RP1 (Status<6>) and RP0 (Status<5>) are the bank select bits. Fach bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as static RAM. All implemented banks contain Special Function Registers. Some frequently used Special Function Registers from one bank may be mirrored in another bank for code reduction and quicker access.

RP1:RP0	Bank
00	0
01	1
10	2
11	3

Table 3.5 - Bank selection

3.3.6 Oscillator

Oscillator circuit is used to provide a micro controller with a clock. Clock is needed so that micro controller could be executed a program or program instructions.

3.3.6.1 Types of oscillators

PIC16F877A can be worked with four different configurations of an oscillator. Since configurations with crystal oscillator and resistor-capacitor (RC) are the ones that are used most frequently. Microcontroller type with a crystal oscillator has in its designation Xl . and a microcontroller with resistor-capacitor pair has a designation RC. This is important because during the time of purchasing a MC need to mention the type of oscillator. The user can program two configuration bits ((FOSC1 and FOSCO) to select one of these four methods.
r LP Low-Power Crystal

- XT Crystal/Resonator
r HS High-Speed Crystal/Resonator
- RC Resistor/Capacitor

3.3.6.2 XT Oscillator

Crystal oscillator is kept in metal housing with two pins where you have written down the frequency at which crystal oscillates. One ceramic capacitor whose other end is connected to the ground needs to be connected with each pin.

Oscillator and capacitors can be packed in joint case with three pins. Such element is called ceramic resonator and is represented in charts like the one below. Center pins of the element are the ground, while end pins are connected with OSC1 and OSC2 pins on the microcontroller. When designing a device, the rule is to place an oscillator nearer a microcontroller, so as to avoid any interference on lines on which
microcontroller is receiving a clock. Following figures shows how to connect both oscillator options using a ceramic resonator is normally less expensive. This project 4MHz crystal oscillator has been used because it is the most accuracy one out of the others.

Figure 3.4-Oscillator connection

3.3.6.3 RC Oscillator

For timing insensitive applications, the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (RIEXT) and capacitor (CEXT) values, and the operating temperature. In addition to this. the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXl values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 3.5 shows how the R / C combination is connected to the PIC16F87X.

RC Oscillator mode

Figure 3.5-RC Oscillator

For the design purpose ceramic disc capacitors for the crystal oscillator of the PIC16I:877A can be taken from the following table 3.6

Capacitor selection for crystal oscillator

Osc Type	Crystal Freq.	Cap. Range C1	Cap. Range C2
LP	32 kHz	33 pF	33 pF
	200 kHz	15 pF	15 pF
XT	200 kHz	$47-68 \mathrm{pF}$	$47-68 \mathrm{pF}$
1 MHz	15 pF	15 pF	
	4 MHz	15 pF	15 pF
HS	4 MHz	15 pF	15 pF
	8 MHz	$15-33 \mathrm{pF}$	$15-33 \mathrm{pF}$
	20 MHz	$15-33 \mathrm{pF}$	$15-33 \mathrm{pF}$

Table 3.6 - Capacitor selection

Following a supply, oscillator starts oscillating. Oscillation at first has an unstable period and amplitude, but after some period of time it becomes stabilized. The signal of an oscillator clock after receiving the supply of microcontroller is given below

Signal of an osillator cock after receiving the supply of a microcontroller
Figure 3.6 - Oscillator clock signal

To prevent such inaceurate clock from influencing microcontroller's performance. we need to keep the microcontroller in reset state during stabilization of oscillator's clock. Diagram above shows a typical shape of a signal which microcontrofler gets from the quartz oscillator.

3.3.7 Iligh speed 10 bit A / D converter

The Analog-to-Digital (A / D) converter module has cight inputs for the PIC16F877A. The analog inputs charges a sample and hold capacitor. The output of the sampler and hold capacitor is the input into the converter. The converter then generates a digital result of this analog level via successive approximation. The A / D conversion of the analog input signal results in a corresponding 10 bit digital number. The A/D module has high and low voltage reference input that is software selectable to some combination of $V_{D D} V_{S S}$ and RA2 or RA3.

A new feature for A / D converter is the addition of programmable acquisition time. This feature allows the user to select a new channel for conversion and to set the GO/DONE bit immediately. When the GO/DONE bit is set the selected channel is sampled for the programmed acquisition time before a conversion is actually started.

3.3.7.1 Ports

Term "port" refers to a group of pins on a microcontroller which can be accessed simultaneously, or on which we can set the desired combination of zeros and ones, or read from them an existing status. Physically, port is a register inside a microcontroller which is connected by wires to the pins of a microcontroller. Ports represent physical connection of Central Processing Unit with an outside world.

Microcontroller uses them in order to monitor or control other components or devices. Due to functionality, some pins have twofold roles. Selection of one of these two pin functions is done in one of the configuration registers.

Figure 3.7 I/O Unit

3.3.7.2 Input Output ports

Those locations it has just been added are called "ports". There are several types of ports input, output or bidirectional ports. When working with ports, first of all it is necessary to choose which port we need to work with, and then to send data to, or take it from the port.
In order to synchronize the operation of I/O ports with the internal 8-bit organization of the microcontroller, they are, similar to registers. grouped into five ports denoted by A. B. C. D and E. All of them have several features in common. When working with it the port acts like a memory location. Something is simply being written into or read from it, and it could be noticed on the pins of the microcontroller.

3.3.7.3 PORT and TRIS

For practical reasons, many I/O pins are multifunctional. Every port has its satellite". i.e. the corresponding TRIS register: TRISA. TRISB, TRISC etc. which determines the performance of port bits, but not their contents.

Figure 3.8-Port and Tris

All port pins can be designated as input or output, according to the needs of a device that's being developed. In order to define a pin as input or output pin. the right combination of \%eros and ones must be written in TRIS register. If the appropriate bit of TRIS register contains logical " 1 ", then that pin is an input pin. and if the opposite is true, it's an output pin. Every port has its proper TRIS register. Thus, port A has TRISA. and port B has TRISB. Pin direction can be changed during the course of work which is particularly fitting for one-line communication where data flow constantly changes direction. PORTA and PORTB state registers are located in bank 0. while TRISA and TRISB pin direction registers are located in bank 1.

3.3.8 TIMER TMR1

Timer TMR 1 module is a 16 -bit timer/counter, which means that it consists of two registers (TMR1L and TMR1H). It can be counted up 65.535 pulses in a single cycle. i.e. before the counting starts from zero. These registers can be read or written to at any moment. In case an overflow occurs, an interrupt is generated if enabled. The timer TMRI module may operate in one of two basic modes, that is as a timer or a counter. Unlike the TMR0 timer, both of these modes have additional functions.
The TMR 1 timer has following features:

- 16-bil timer/counter register pair:
- Programmable internal or external clock source;
- 3-bit prescaler;
- Optional LP oscillator:
- Synchronous or asynchronous operation;
- Timer TMR1 gate control (count enable) via comparator or TlG pin;
- Interrupt on overflow;
r Wake-up on overflow (external clock); and
- Time base for Capture/Compare function.

3.4 Phototransistor Opticoupler

The CNY17 contains a light emitting diode optically coupled to a photo-transistor. It is packaged in a 6 -pinDIP package and available in wide-lead spacing option and lead bands option. Collector-emitter voltage is above 70 V . Response time. (tr), is typically $5 \mu \mathrm{~s}$ and minimum CTR is 40% at input current of 10 mA .

Figure 3.9-Optocoupler
It is most important to note that there is no direct electrical connection between the left side of the optocoupler and the right side. The left side is the connection to the outside world. Anything could be happened on that side. The right side is the delicate internal workings of our device.
The optocoupler will help prevent some kinds of electrical damage to the device. However, as with any engineering object, it has its limits. The LED part of the optocoupler is very much like the LEDs that anybody is familiar with. LEDS are tough and not casily damaged. however it is possible to burn them out. If the LED is made to pass 100 much current, it will be burnt out. The external resistor will be connected to anode to prevent the damage. Also, if lightning strikes the optocoupler a spark could
possibly go across the terminals from left to right and this could cause damage to the derice too

Absolute Maximum Ratings:

	Parameter	Symbol	Rating	Unit
Input	Peak forward current	$I_{R M}$	1	A
	Reverse voltage	V_{R}	6	V
	Power dissipation	P_{D}	70	mW
	Collector-emitter voltage	VClO	70	V
Output	Emitter-collector voltage	VECO	6	V
	Collector-base voltage	$\mathrm{V}_{\text {cbo }}$	60	V
	Emitter-base voltage	$\mathrm{V}_{\text {EbO }}$	6	V
	Collector current	I_{C}	50	mA
	Collector power dissipation	$\mathrm{P}^{\text {c }}$	150	mW
	Total power dissipation	$\mathrm{P}_{\text {tot }}$	200	mW
	Isolation voltage 1 minute	$V_{\text {iso }}$.	5300	Vrms
		$\mathrm{V}_{\text {iso }}$	7500	Vpk
	Operating temperature	Topr	-55 to +100	C
	Storage temperature	$\mathrm{I}_{\text {st }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
	Soldering Temperature er	T_{501}	UWV260	C

Table 3.7 - Optocoupler Parameters

1:lectrical Characteristics:

	Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Input	Forward voltage	VF	$1 \mathrm{~F}=20 \mathrm{~mA}$	-	1.2	1.4	V
	Peak forward voltage	VFM	1FM-0.5A	-	--	3.5	V
	Reverse current	R	VR-4V	-	-	10	$\mu \mathrm{N}$
	Terminal capacitance	Ct	$V=0, f=1 \mathrm{kHZ}$	-	30	-	pF
Output	Collector dark current	ICEO	$\mathrm{VCE}=20 \mathrm{~V}$	-	-	0.1	$\mu \mathrm{A}$
	Current transfer ratio	CTR	$1 F=10 \mathrm{~mA}, \mathrm{VCE}-5 \mathrm{~V}$	40	-	80	\%
	Collector-emitter saturation voltage	VCE(sat)	$\mathrm{IF}=10 \mathrm{~m} \Lambda . \mathrm{Ic}^{-2} 2.5 \mathrm{~mA}$	-	0.1	0.4	V
	Isolation resistance	Riso	DC500V	5×10^{717}	10^{11}		ohm
	Floating capacitance	Cf	$\mathrm{V}-0, \mathrm{f}^{-1} \mathrm{Mll} 7$.	-	0.6	1.0	Pf
	Cut off frequency	7	$\begin{gathered} V c c^{-5 V} \\ I c=2 \mathrm{~mA}, R L-100 \mathrm{ohm} \end{gathered}$	-	80	-	kH/
	Response time (Rise)	$T \mathrm{~T}$	$\mathrm{VCe}=2 \mathrm{~V}, \mathrm{Ic}=2 \mathrm{~mA}$	-	5	20	$\mu \mathrm{s}$
	Response time (Fall)	tf	RL-100ohm	-	4	20	us

Table 3.8 - Optocoupler Electrical Characteristics

3.5 Precision AC/DC Converter

Precision \triangle C/DC Converter

Figure 3.10 - Fast AC/DC Converter

1 his precision rectifier functions [3] somewhat different. The input signal is applied through R1to the summing node of an inverting operational amplifier. When the , ignal is positive. D1 is forward biased and develops an output signal across R2. As with any inverting amplifier, the gain is $\mathrm{R} 2 / \mathrm{R} 1$. When the signal gocs negative, D 1 is mon-conducting and there is no output. However, a negative feedback path is provided n. D2. The path through D 2 reduces the negative output swing to -0.7 V , and prevents the amplifier from saturating.

Since* the LM101A is used as an inverting amplifier, feed forward compensation can he used. Feed forward compensation increases the slew rate to $10 \mathrm{~V} / \mathrm{ms}$ and reduces the gain error at high frequencies. This compensation allows the half wave rectifier to -perate at higher frequencies than the previous circuits with no loss in accuracy. the addition of a second amplifier converts the half wave rectifier to a full wave ectifier. As is shown in Figure 3.10, the half wave rectifier is connected to inverting amplifier A2. A2sums the half waves rectified signal and the input signal to provide a full wave output. For negative input signals the output of Al is \%ero and no current Hows through R3. Neglecting for the moment C 2 . the output of $\Lambda 2$ is $\frac{R_{2}}{R_{6}} \times E_{1}$

For positive input signals, A2 sums the currents through R3 and R6; and $E_{0 r r}$ $R\left[\begin{array}{cc}E_{1 心} & E_{\text {s }} \\ R_{3} & R_{6}\end{array}\right]$ If R_{3} is $1 / 2 R_{6}$. the output is $\frac{R_{7}}{R_{6}} \times E_{\text {ハ }}$. Hence, the output is always the absolute value of the input.

Filtering, or averaging, to obtain a pure de output is very easy to do. A capacitor. C2. placed across R 7 rolls off the frequency response of A 2 to give an output equal to the average value of the input. The filter time constant is $\mathrm{R}_{7} \mathrm{C}_{2}$. and must be much greater than the maximum period of the input signal. For the values given in Figure 3.10. the time constants about 0.22 seconds. This converter has better than 1% conversion accuracy to above 100 kHz and less than 1% ripple at 20 Hz . The output is calibrated to read the RMS value of a sine wave input.
As with any high frequency circuit some care must be taken during construction. Leads should be kept short to avoid stray capacitance and power supplics bypassed with $0.01 \mu \mathrm{~F}$ disc ceramic capacitors. Capacitive loading of the fast rectifier circuits must be less than 100 pF or decoupling becomes necessary. The diodes should be reasonably fast and film type resistors used. Also, the amplifiers must have low bias currents.

3.6 Calculations of the components

3.6.1 Pull down resistor of the optocoupler $\left(\mathrm{R}_{\mathrm{L}}\right)[9]$

Figure 3.11 Pull down Resistor

Supply voltage V_{C} ? University of Moratuwa, Sri

Operating temperature
www.lib.mrt.ac.lk

$$
-55 \text { to } 100{ }^{\circ} \mathrm{C}
$$

Typical CTR value selected as 100% at $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ At -20 to $+60{ }^{\circ} \mathrm{C}$
From the graph(see Optocoupler data sheet in appendix-G)
CTR undergoes a change in between $+5 \%$ to -12%
Assuming a $10 y$ yar service life period
allowances for additional CTR reduction $\quad=20 \%$
allowances for additional CTR safe value $\quad-25 \%$
Therefore CRT min
$=100 \% \times(0.88) \times(0.80) \times(0.75)$
52.8%
Referring the PIC Data sheet $V_{H L}$ for the smith trigger input is 1 V and $\mathrm{V}_{\text {III }}$ is 4 VIDC
Max input low voltage to $\mathrm{PIC}\left(\mathrm{V}_{1 L}\right)$
$-\mathrm{V}_{\mathrm{II}} \leq 1 V$
Input low current (I_{12})
ICEO
$1 \mu \mathrm{~A}$

Therefore it is negligible,
I_{1}.
$=0.1 \mu \mathrm{~A}$

而
$=I_{\text {IL }}$

For Max value of R_{L}

$$
\mathrm{R}_{\mathrm{L} \cdot\langle }\left\langle\frac{V_{I I}}{I_{I I}}=\frac{1 V}{1 \times 10^{-6}}=1 \mathrm{M} \Omega\right.
$$

Therefore Max R_{I}
$1 \mathrm{M} \Omega$
For safety high state at output $V_{\text {III }}$

$$
\mathrm{V}_{1 \mathrm{HI}}>\frac{V_{\mathrm{II}}}{I_{l}}=\frac{4 V}{5.3 \mathrm{~mA}}=188.6 \Omega
$$

Resistance of the pull down resistor RL is vary between $1 \mathrm{M} \Omega\left\langle R_{i},\langle 188.6 \Omega\right.$ Therefore Pull down resistor R_{L} can be selected as $\mathbf{1 k} \Omega$

3.6.2 Current limiting resistor(Chopping resistor) ($\mathrm{R}_{\mathbf{V}}$) [9]

The $\mathrm{R}_{\mathrm{I}}, \cdots 1 \mathrm{k}$ is selected and 20% safety is computed to the minimum V_{IH} in respect of the high state
$\mathrm{VIH}=\mathrm{VIH} \times 20 \%=2.4 \mathrm{~V}$
This will then permit 1 C . IF and the chopping resistor RV at the input of the optocoupler to be determined.
$\left.I_{4}=I_{1},\right)_{R_{l}}^{2.4}=2.4 \mathrm{~mA}$, Where $R_{1}=1 \mathrm{k} \Omega$ nic Theses \& Dissertations
$\left.I_{F}\right) \frac{2.4 m A}{(T R}=\frac{2.4}{0.53}=4.5 \mathrm{~mA}$
Where Forward voltage of the $I R$ diode $V F=1.2 \mathrm{~V}$
$\left.R_{v}\right) \frac{V_{\text {I }}-V_{V}}{4.5 \mathrm{~mA}}=\frac{68-1.2}{4.5 \times 10^{-3}}$
$\mathrm{R}_{\mathrm{v}}>14.8 \mathrm{k} \Omega$
Therefore Chopping resistor can be selected as $\mathbf{1 5 k} \Omega$
$\left[\begin{array}{c|c}R_{\mathrm{L}} & 1 \mathrm{k} \Omega \\ R_{V} & 15 \mathrm{k} \Omega \\ \hline\end{array}\right.$

Table 3.9 - Resistors of the optocoupler circuit

3.6.3 Current limiting resistor (R_{b}) and Transistor (Tr) [10]

Figure 3.12 - Current limiting resistor at RB1
(a) Selection of transistor

Resistance of the relay coil University of Mo: 55 ohm Sri Lanka.
Max current out from the $\mathrm{PIC}\left(\mathrm{I}_{\mathrm{PIC}}\right)$ ctronic Theses 25 mA sertations
Supply voltage V_{CC}
$-5 \mathrm{~V}$
Transistor at saturation I_{C} is max when $V_{C E}=0, R_{C R}=0$
Therefore Load current I_{C} at transistor saturation $=\frac{V_{r C}}{R_{l}}=\frac{5}{55}$

$$
=91 \mathrm{~mA}
$$

Therefore transistor must have

$$
\begin{aligned}
& \mathrm{I}_{C \text { (пах) }}>91 m A
\end{aligned}
$$

$$
\begin{aligned}
& \min \mathrm{h}_{\mathrm{IE}}>\frac{5 \times 91 \mathrm{~mA}}{25 \mathrm{~mA}}>18.2
\end{aligned}
$$

Therefore C1815, NPN transistor was selected as min $h_{\text {EF }}=70$ and I_{Cl} max) 150 mA

(b) Selection of current limiting resistor R_{B}
$R_{B}=\frac{V_{S} \times h_{F F}}{5 \times I_{S}}$ where V_{S} is supply voltage of the PIC
For this application supply voltage of the PIC and transistor circuit is same. So that $V_{5}=V_{C C}$ and above formula can be re-arranged as

$$
\begin{aligned}
R_{B}= & 0.2 \times h_{F:} \times R_{L} \\
= & 0.2 \times 70 \times 55 \times 770 \mathrm{ohm}
\end{aligned}
$$

Therefore Current limiting resistor RB was selected as 820 ohm
(C) Current limiting resistor R1 output port RB2

Figure 3.13-Current limiting resistor at RB2 i -

For safe operation $1 \mathrm{~d}=15 \mathrm{~mA}$ and $\mathrm{Vd}=1.7 \mathrm{~V}$
Output voltage of the PIC $=5 \mathrm{~V}$
Iherefore
Id $=\frac{5-V d}{R 1}=\frac{5-1.7}{R 1}$

Limiting resistor
$\underline{\mathrm{RL}}=2200 \mathrm{hm}$

Chapter 4

Software Design of the system

4.1 Introduction

The ability to communicate is of great importance in any field. However, it is only possible if both communication partners know the same language. i.e follow the same rules during communication. Using these principles as a starting point. we can also define communication that occurs between microcontrollers and man. Language that microcontroller and man use to communicate is called "assembly language". The title itself has no deeper meaning. and is analogue to names of other languages, ex. English or French. More precisely, "assembly language" is just a passing solution. Programs written in assembly language must be translated into a "language of zeros and ones" in order for a microcontroller to understand it. "Assembly language" and "assembler" are two different notions. The first represents a set of rules used in writing a program for a microcontroller, and the other is a program on the personal computer which translates assembly language into a language of zeros and ones. A program that is translated into "\%eros" and "ones" is also called "machine language".

Figure 4.1-The process of communication between a man and a microcontroller

Physically. "Program" represents a file on the computer dise (or in the memory if it is read in a microcontroller). and is written according to the rules of assembler or some other language for microcontroller programming. Man can understand assembler language as it consists of alphabet signs and words. When writing a program, certain rules must be followed in order to reach a desired effect. A Translator interprets each
instruction written in assembly language as a series of zeros and ones which have a meaning for the internal logic of the microcontroller.

4. 2 Method

Before writing the assembly codes it is convenient to draw a flow chart for the whole program. The mechanism develop to recover the production waste (SPPDA) of the weaving machine using embedded microcontroller is developed as per the flow chart in figure 4.2. Practical testing was done in the factory at Biyagama.

4.3 Algorithm

The algorithm used for developing embedded programming as follows

- Implement the microcontroller based integrated control system
- The permissible values obtained from practical test and results were entered as reference value in microcontroller unit.
- Start the machine at rated condition.
- Competition are made between measured values with reference value.
- If $V_{\text {mecesmert }} \leq V_{\text {wef }}$ then generate signal to operate the relay where $\mathrm{V}_{\text {measured }}$ and $\mathrm{V}_{\text {rel }}$ are connected to AN 0 and ANl respectively.
- If time $1 \geq 3 \mathrm{sec} \& V_{\text {mesesmere }}\left\langle V_{\text {at }}\right.$ stop the relay function and shit down the machine.
- Prototype model is developed and tested on a machine. The microcontroller base control system (SPPD \wedge) respond to all types of voltage variations perfectly specified by and reenergized the relay after the specified time delay (3second) .

4.3.1 Software development flowehart

Figure 4.2 - Flow chart for software development

4.4 Resolution and Time Calculation

4.4. 1 Resolution of the Analog signal

Speed of the crystal used for the PIC $=4 \mathrm{MHz}$
Time period per instruction $\quad=1 \mu$ second
Machine controller functions fail voltage $=180 \mathrm{VAC}$
Reference voltage at pin AN0 $\quad=5 \mathrm{VDC}$

Voltage at the pin $\Lambda \mathrm{N} 1$

$$
=\frac{5 \times 180}{230}=3.9 \mathrm{VDC}
$$

Required bits for the A/D conversion

Voltage resolution $=10$ bits

$$
\frac{5}{\left(2^{10}-1\right)} \approx 5 \mathrm{mV/Div}
$$

Thercfore resolution of the analogue conversion is $5 \mathrm{mV} / \mathrm{Div}$

4.4.2 Acquisition time for the Analog module
 atuwa, Sri Lanka.

Figure 4.3 - Analog module for Acquisition time

As per the above figure 4.3 Acquisition time $\mathrm{T} \Lambda \mathrm{CQ}$ - Amplifier setting time
Hold capacitor charging time

+ Temperature coefficient
TACQ-TAMP $+\mathrm{TC}+\mathrm{TCOFF}$

$$
\begin{aligned}
& -2 \mu \mathrm{~s}+\mathrm{TC}+\left[\mathrm{Temp}-25^{\circ} \mathrm{C} \mid\left(0.05 \mu \mathrm{~s} / /^{\circ} \mathrm{C}\right)\right. \\
& \mathrm{TC}=\mathrm{C}_{\| \rho 1}(\mathrm{R} 1 \mathrm{C}+\mathrm{Rss}+\mathrm{Rs}) \ln (1 / 2047)
\end{aligned}
$$

As per the Figure 4.3 resistors and capacitor values for the equivalent circuit to calculate acquisition time related to analog input AN 0 and AN are respectively as follows. The Rs value which is output resistance of the input circuit of the analog input AN 0 is approximately zero because output impedance of the OP amp is negligible. When AN1 is considered two possible values can be considered which are at half presen $(3.9 \mathrm{~V})$ and at full preset.
(a) Rs $0 \Omega, R 1 C 1 \mathrm{k} \Omega$, Rss $=7 \mathrm{k} \Omega$ from the graph of fig 4.3 at 5 V
(b) Rs 22k $\Omega, \mathrm{R} 1 \mathrm{C} \sim 1 \mathrm{k} \Omega$ and $\mathrm{Rss}=7 \mathrm{k} \Omega$ @ 5 VIDC and $\mathrm{CHOLD}=120 \mathrm{pF}$
(c) $\mathrm{Rs}=100 \mathrm{k} \Omega \cdot \mathrm{R} 1 \mathrm{C}=1 \mathrm{k} \Omega$ and $\mathrm{Rss}=7 \mathrm{k} \Omega$ (a) 5 VDC and $\mathrm{CHOLD}=120 \mathrm{pF}$

According to the above equation calculated TACQ at AN) is $10.55 \mu \mathrm{~s}$ and offset value of the pre-define general purpose register for the acquisition delay in the waiting loop in the program is 254 and likewise TACQ at AN1 is 30.6μ s and offset value is 248 . But maximum Rs value could be taken as $100 \mathrm{k} \Omega$ at full preset position. So that calculated TACQ at AN1 is $103 \mu \mathrm{~s}$ and related offset value is 231.when the assumptions are taking to calculate the Rs some errors can be happened. Therefore safe value for the offset can be selected as 231 to get highest acquisition time.

4.4.3 Basic operation of the program

1) $\mathrm{AC} / \mathrm{DC}$ converter monitor present voltage level in the main supply which is supplied to the analog input $\mathrm{A} N 0$ at pin5 of the microcontroller portA and it could be varied in between 0 V to 5 V during the voltage variation or interruption.
2) Reference analog voltage 3.9 VDC which is the threshold voltage level of the woven machine controller is applied to the AN 1 at pin no 3 in port A
i) As usual V_{DD} and $\mathrm{V}_{S S}$ of the microcontroller are connected to 0 VDC and 5 VDC respectively.
3) The machine run state is monitored by the optcoupler circuit which is connected to digital input RC5 at pin no 24 in portC.
-) Crystal oscillator 4 Mhz oscillator is connected to the CLKOUT \& CLKIN to perform the internal timing requirement. And all inputs that are used are pull down externally while turning on all internal pull ups of the unused inputs to avoid voltage floating
(1) RB1 and RB2 in portB were used as outputs of the controller. RB1 is assigned to indicator LED and relay which is informed machine controller to keep the machine running once the voltage back to normal is driven by the out put RB2 of portB.
()nce the controller is powered digital signal at pin 24 (RC5) is checked whether the machine is running. If the machine is in running condition program continues its testing throughout one minute time and turn on LED. Because it needs the stability of the machine. If the condition is correct, it is being checked the machine state to contirm status of running .If the condition is not fulfilled the program will be commenced from the initial start.
Once the above conditions are fulfilled program of the microcontroller checks the boltage of ANO at the pin2 of port A and ensure it is above or below the reference voltage of AN 1 at pin $3(3.9 \mathrm{VDC})$. If the result of the competition is positive, ${ }^{\circ} 0$ ' bit of the status register is set as "one "because no borrow bit is required. If not it is set as "ero". So that output RB1 at pin 34 is set as digital out 1 or 0 by the program.
Once the digital out put appears at RB1 pin numbers, $10,11,12$ pins of the machine controller in fig 4.4 which are relevant to the Start, Tip and Stop switches of the machine are connected through the DPDT relay and de-energize after 3 seconds.
the meaning of connecting above points resembles starting the machine at the beginning. When the machine is started, Start and Tip switches are simultaneously kept in the holding stage. This action is done by microcontroller by connecting above three points. The machine controller holds this through the relay volt free contact and releases it after 3 seconds because stored energy in the tensioned yarn beams release their energy to relax the yarns which are between beams and machine as explained in chapter 2 section 2.3.1.

4.5 Schematic circuit diagram

(a) Control circuit for the microcontroller base SPVD \wedge
(b)Power circuit for the $\mathrm{AC} / \mathrm{DC}$ converter and microcontroller

Figure 4.4 - Control circuit for the microcontroller

Figure 4.5 - Power circuit of the $\mathrm{AC} / \mathrm{DC}$ converter

In order to provide $D C$ power supply to the micro controller and fast $A C$ to $D C$ converter separate 5 V and 9 V power supply were used. AC step down eenter tapped fransformer with full bridge rectification, smoothing capacitors and high frequency filtering capacitors were used for each DC supply. Since the output DC voltage levels have to be constant LM 7805 , LM7809 and LM7909 regulators were used in $5 \mathrm{~V}, 9 \mathrm{~V}$ and -9 V supply circuit respectively as shown the figure 4.5 . In addition to the above regulators two 9VDC rechargeable batteries were used to supply power to the circuit during the voltage interruptions.
4.5.1 Some photographs of the implemented Short Period Voltage Dip Actuator

Figure 4.6 - External appearance of the designed microcontroller bases circuit

ligure 4.7 - designed microcontroller bases circuit in the machine control unit

4.5.2 Machine controller circuit diagram

Figure 4.8 -Weaving loom main control unit circuit diagram

Chapter5

Statistical analysis of data

5.1 Category of waste

Data \wedge s described in the chapterl there are two categories of waste which are controllable and uncontrollable waste. Since the solid waste contributing major portion of waste generated in the process, it is very important to analyo the information of solid waste in order to make decision in the company. The waste figure of the weaving department can be shown as below.

Solid waste analysis in year 2008 in kg

	2008											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Controllable												
Yarn waste	533	578	430	281	554	407	818	638	652	767	521	620
Quality Improvement	847	709	863	514	882	789	1325	1045	1292	1100	938	950
Beam Gating	121	88	70	60	41	80	86	110	115	89	95	88
Alteration	332	231	245	115	332	188	385	275	441	348	318	352
Ware House	291	169	218	55	211	301	288	254	189	193	222	198
Uncontrollable												
Bad Raw Material	13	25	29	65	54	39	48	53	92	32	27	39
Power cut	425	300	295	198	395	388	422	401	375	359	425	482
Maintenance	502	535	381	346	650	743	463	369	379	411	266	295
Mini Bulk	200	205	325	179	255	195	184	204	232	245	211	182
Total	3264	2840	2856	1813	3374	3130	4019	3349	3767	3544	3023	3206

Table 5.1 - Solid waste data in year 2008

Percentage waste of different categories in year 2008
Waste analysis-2008

Figure 5.1-Waste Analysis

5.2 Monitoring of results

Voltage Dips Analysis Report					
Date	Time	M/C Run	M/C Stop	$t<3 \mathrm{Sec}$	$t>3 \mathrm{Sec}$
12.08.2009	9.11 am	X		x	
13.08.2009	12.17 pm	x	-	x	
13.08 .2009	07.30 pm	X		X	
15.08 .2009	11.15 am		x		x
15.08 .2009	11.45 am		X		X
17.08 .2009	1.35 pm	x		X	
19.08 .2009	11.05 am	X		x	
20.08.2009	3.05 am	X		x	
21.08 .2009	10.05 am	X		X	
22.08 .2009	4.15 am		X		x
24.08 .2009	8.31 am		X		X
24.08.2009	12 noon	X		x	
27.08 .2009	4.00 pm		x		X
27.08 .2009	740 pm	X		x	
29.08 .2009	1.45 am		X		X
29.08.2009	2.55 am	X		X	
29.08 .2009	4.10 am		X		X
30.082009	7.30 am	x		x	
30.08 .2009	9.10 am	x		X	
30.08 .2009	1.58 pm	X		x	
01.09 .2009	11.52 pm		X		X
02.09.2009	6.20 am	x		x	
02.09 .2009	10.23 pm	X		X	
06.09 .2009	3.00 pm	X		X	
07.09 .2009	8.05 am		X		X
07.09 .2009	8.00 pm	x		x	
09.09 .2009	11.10 pm	x		X	
10.09 .2009	7.40 am	X		x	
10.09 .2009	2.00 pm	X		X	
11.09 .2009	8.00 am		X		X

Table 5.2-Power failure analysis report

The model unit in figure 4.6 microcontroller base Short Period Voltage Dip Actuator "as installed to the weaving machine and monitored and recorded the results during the period from $12^{\text {th }}$ Aug 2009 to $11^{\text {th }}$ Sept 2009. The results were tabulated as per the above table 5.2.
Reference to the table 5.2 approximately out of 30 voltage failures 16 can be managed (1) run the loom within a period of one month. It is approximately 50% of total waste due to voltage failures. Therefore referring the table 5.2 and figure 5.1 percentage of waste due to voltage dip is approximately 6% of the overall waste. Therefore approximately 2234 kg of mixed product can be saved by installing this controller.

5.3 Analysis of time waste

There are two kinds of machines, these are single and double deck. Each single deck machine includes 10 weaving heads and 20 for the double deek machines. The most significant part of the voltage failure is removing damages and reconnecting tapes (Tagging). In average time taking for the whole process per single tape would be isecond.

(a) Single deck 100 machines

Tagging time - 5 sec/tape
Tagging time for 100 looms
Average voltage failures per month
Therefore total loss time

- $100 \times 10 \times 5 \mathrm{sec}$
$t<3 \mathrm{sec}-20$ nos
- $20 \times 100 \times 10 \times 5 \mathrm{sec}$
- $\quad 27 \mathrm{hrs} / \mathrm{month}$

(b) Double deck 20 machines

Tagging time
Tagging time foe 20 looms
Average voltage failures per month
Therefore total loss time

$$
\begin{aligned}
& -5 \text { sec } / \text { tape } \\
& -20 \times 20 \times 5 \mathrm{sec} \\
\mathrm{t}<3 \mathrm{sec} & -20 \mathrm{nos} \\
& -20 \times 20 \times 20 \times 5 \mathrm{sec} \\
& -11 \mathrm{hrs} / \text { month }
\end{aligned}
$$

Therefore total loss time per year due to voltage dips less than 3 sec is approximately 456 hours . This is equivalent to Rs 1.9 million per month due to total capacity of 0.4 million meters per day production. So that annual time loss is approximately equivalent to Rs 23.2 million.

5.4 Analysis of production waste

According to the table 1
Overall mixed production waste in all categories $\quad=38185 \mathrm{~kg}$
Overall mixed production waste due to voltage failures $\quad=4465 \mathrm{~kg}$
Overall waste percentage due to voltage failures $=12 \%$
After installing SPPDA waste percentage $\quad=6 \%$
Therefore equivalent waste due to voltage dips approximately $\quad-2232 \mathrm{~kg} /$ year
This is equivalent approximately
$=$ Rs2. 4 million

per year

So that overall estimated annual saving after installing SPPDA =Rs 25.6million

5.5 Budgetary Requirement

One of the objectives on this project is to design an economical device to minimize production waste due to voltage failures less than 3 sec . The estimated cost for the whole project is as follows

Cost for the components	$=$ Rs 3000
Cost for the printed board	$=$ Rs 800
Cost of assembly	$=$ Rs 500
Total cost per unit	$=$ Rs 3300
Estimated cost for 120 units	$=$ Rs 516.000

Total Estimated cost is approximately 2% of the annual saving
Pay back period would be approximately $\quad=8$ days
By considering this SPVDA will be installed for the weaving machines in the weaving department, it will be saved at least Rs 25 million.

Chapter 6

Experimental Results and Conclusion

6.1 Testing at site

The new controller was temporally set up at site and a power analyzer model Fluke 1735 was used to take the normal current and voltage Vs time readings during short period interruptions. The machine was given the starting signal and was allowed to run as of normal operation after setting up the new controller and power analyzer. The testing was done for three successive interruptions. The motor current before \& after the voltage interruptions were recorded under the short period interruptions as shown in Figure 6.1.

Figure 6.1-Motor Current Variation for momentary interruptions

As the supply voltage to the induction motor decreases the motor speed decrease. Depending on the size and the duration of the voltage dip. the motor speed may recover to its normal value as the voltage amplitude recovers. If the voltage dip magnitude and or duration exceed certain limits the motor would be taken out of the system by the machine controller or protection [6].
In this case if the dip or short period interruption is less than 3 sec the motor would be taken out from the machine and consequence restarting must be done. As shown in the Fig. 6.1 during and after the interruption current rises to 2.5 to 3.7 times its normal value during the time less than 3 seconds. Under this seenario the current does not reach higher values for long enough time to trigger any of the motor's protection systems [6]. 17ig 6.1 shows that machine operation was not effected by the momentary or voltage dips within time 3 second.

6.2 Conclusion

In this thesis it has been proposed a new approach for reducing waste through automation. The core innovation was triggered to reduce an excessive waste generation due to voltage variations or short period interruptions. It has been used micro controller and other related components to perform this task.
This device can be applied to any application that needs to operate safely during predefine time and voltage levels. The practical results obtained from the application shows that it has no effeet to the motor and have a benefit to the organization.
The device was built \& integrated with the machine controller to demonstrate the concept. The system was built up with very few pre-made components in an attempt to better understand the technology limits. cost and conditions of building the controller. In doing so it has been noticed the difficulties of the system operation with the number of features and components in the polluted power environment. Therefore the probability of the system working correctly, being the product of all its parts probabilities of working properly.
The new device was built considering all the possible power pollution causes that could be effected to proper operation of the device and mitigation actions were taken during the design stage and while testing.

The developed micro controlled base controlled can be set to operate at different time spans. The controller timing was set at 3 seconds maximum for the weaving looms. According to the results collected during one month period approximately 50% of voltage problems can be categorized as short period interruptions or voltage dips. Therefore production waste duc to this reason could be recovered by doing small modification at low cost.
According to the Fig 5.1 in cheaper 5 waste due to the voltage problems was 12%. The results were based on average waste figures taken during a period of one year. After installing this new controller, It could be reduced approximately up to 6%. It is equivalent to 2232 kg per year of product saving and 456 hours per year of loss time saving. In terms of financial terms annual saving would be approximately Rs 23.4 million.
Another advantage is rejection of the batches due to high number of joints could be minimized and as a result of customer complains and reprocessing will be reduced.

References:

11) Programming the PIC microcontroller with MBasic-Chapter 4.

121 Website, http:/www microcgip.com/pic 16987 xa datashcet.
13| National Operational Amplifiers data book-Section 1.
$1+1$ http://www.lldatasheet.com/datashect-pdf/30084/TOSHIBA/C1815.html .
151 PIC micro Mid-Range MCU Family Reference Manual
101 M. Teresa Correia de Barros, Andria Leiria "Journal of Induction Motor Response to Voltage Dips", International Conference on Power Systems Transients-IPST 2003 in New Orleans, USA.

171 Juan C. Gomez, " Behavior of Induction motor due to voltage sag and short interruptions" IEEE Transactions on power delivery, Vol. 17, no 2. April 2002

181 Magazine of Engincering \& Technology-IET.
191 Website, htip://minw vishay com/docs/83741/83741.pdf
10] Website, http://wwi. kpsec.freeuk.com/trancire.htm

Appendix - A

ASSEMBLY CODES OF THE PROGRAM

Program	Short Period Voltage Dip Actuator
Microcontroller	PIC 16F877A
Crystal Frequency	4 MHz
Author	H.K.L Gamini

" This part of the program includes defining registers "

"This part of program includes defining variables "

:define	me_runing flag	flag register.2
detine	uv flag	flag register.3

"This part of the program includes macros "
INCLUDE "pl6f877a.inc"
LIST
bank0
macro
;Selection of bank0
bcf
status, 5
bcf status,6
endm
bank 1
macro
bsf status. 5
bcf status. 6
endm

start ade	macro	; Start N / D convention
	bsf	Uniadcon0,2 of Moratuwa, Sri Lanka.
	endm	Electronic Theses \& Dissertations
off adc	macro	WWW. lib ; Stop A/D Module
	bcf	adcon0,0
	endm	
	org	0x000 ;assign the starting address of a program

start
one min delay
call
bef
bed \quad tlcon, 0
clrf time count_ I min
call mc state
btfss me runing flag
goto start
call timerl on
call me state
btfss mc_runing flag
goto start
btfss pirl.0
goto one min delay

	bef	pir 1.0
	incl	time_count $1 \mathrm{~min}, 1$
	btfss	time count $1 \mathrm{~min}, 6$
	goto	one min delay
	bcf	11 con, 0
	bsf	portb, 2
after 1 min	call	mc state
	btfss	mc runing flag
	goto	start
volt loop	call	read voltage
	btfss	uv flag
	goto	runing volt
	bcf	uv flag
relay on	bsf	portb, 1
	call	timer 1 on
	movly movw	0x00 of Moratuwa. Sri Lanka time count 3 s \& Dissertations
thr sec delay	butss	pir1.0 L.ac.1k
	goto	thr sec delay
	bef	pir 1.0
	incf	time count 3s.1
	bufss	time count 3s, 2
	goto	thr see delay
	btfss	time_count_3s, 1
	goto	thr sec_delay
	bef	t 1 con,0
	ber	portb, 1
	goto	after 1 min
runing volt	call	mc state
	btfss	mo runing flag
	goto	what failure
	goto	volt loop
what failure	call	read voltage ; check the type of failure
	btfss	uv flag

read voltage	goto	start
	goto	relay on
	clrf	voltage
	movlw	b'01000001' ; clock ; channel 0;module on
	movwf	adcon0
	call	read adc
	movfiw	adres msb
	movwf	voltage
"This part includes selection of clock and $\triangle D O N$ "		
read us setting	movlw	$\mathrm{b}^{\prime} 01001001^{\prime}$;clock (FOSC/8) ;ch1.module on
	movwf	adcon0
	call	read adc
	clrf	uv setting
	movfw	adres msb
	movwf	Unuv setting :save the uv setting Sri Lanka.
check volt	bef	Eluv flag ic Theses \& Dissertations
	movfw	Wuv setting ritac.lk
	subwf	voltage, 0
	btfsc	status. 0 ; Is there a uv
	return	;no
	bsf	uv flag ;yes
	return	
me state	clrwdt	;Reset watch dog timer
	bcf	mc runing flag
	btfsc	portc. 5
	bsf	me runing flag
	return	
read ade	call	wait : For acquisition delay
	start adc	;Start A/D conversion
ade loop	btfse	adcon0,2 :Is end of conversion
	goto	ade loop
	off adc	;0ff A/D Module
	return	

"This part includes acquisition delay "
wait
wait loop
timerl on
movlw 0xE7 :acquisition delay
movwf dly count lsb
clrwdt
incfs\% dly count lsb
goto wait loop
return
clrf tmrlh
clrf tmrll
movlw b'00110101'
movwf ilcon
return

* This part includes configuration of porth as inputs and outputs "
sys init
bank 1
movew b'11111001'; configer portb(input/output)
movwl drish
"This part includes configuration of porta as A / D port

```
movlw why b'00110000' ;conliger porta( \(\Lambda / D\) port)/ \(\Lambda / \mathrm{D})\)
                                    result format
movwf adconl
```

* This part includes configuration of porte as digital input "

moviw	b'1111111'	:configure porte inputs
movwf	trisc	
movlw	$\mathrm{b}^{\prime} 01010100^{\prime}$;portb pull-up enable
movwf	option reg	
bank()		
clrf	adres msb	:initialy clear A / D result register
bef	adcon0.7	; Λ / d conversion clock select
bsf	adcon0,6	;A/d conversion clock select
bcf	portb, 1	:initialy OFF the relay
call	read uv sett	ng ; Read under voltage setting
return		
END		

Transistor Datasheet:

TOSHIBA

2SC1815

AUDIO FREQUENCY GENERAL PURPOSE AMPLIFIER APPLICATIONS. DRIVER STAGE AMPLIFIER APPLICATIONS.

- High Voltage and High Current

VCEO $50 \mathrm{~V}(\mathrm{Min}), \mathrm{I}_{\mathrm{C}}:=150 \mathrm{~mA}(\mathrm{Max})$

- Excellent haf linearity
: heres - 100 (Typ.) at $\mathrm{VCE}-6 \mathrm{~V}, \mathrm{I} \mathrm{C}=150 \mathrm{~mA}$
$\mathrm{h}_{\mathrm{FE}}\left({ }^{(1} \mathrm{C}=0.1 \mathrm{~mA}\right) / \mathrm{h}_{\mathrm{FE}}\left(\mathrm{I}_{\mathrm{C}}-2 \mathrm{~mA}\right)=0.95$ (Typ.
- Low Noise : NF $=1 \mathrm{IAB}$ (Typ.) at $\Gamma \because 1 \mathrm{kHz}$
- Complementary to 2 SA 1015 ($0, \mathrm{Y}, \mathrm{GR}$ class)

MAXIMUM RATINGS (Ta=25 $\left.5^{\circ} \mathrm{C}\right)$

CHARACTERISIIC	SYMBOL	RATING	UNIT
Collector-Base Voltage	VCBO	60	V
Collector Emitter Voltage	$\mathrm{V}_{\mathrm{CeO}}$	50	V
Emitter-Base Voltage	VEBO	5	V
Collector Current	${ }^{1} \mathrm{C}$	150	$\mathrm{m} ⿵$
Base Current	IB	50	$\mathrm{m} \Lambda$
Collector Power Dissipation	PC_{C}	400	mW
Junction Temperature	T	125	C
Storage Temperature Range	$\mathrm{T}_{\text {ste }}$	$-55-125$	${ }^{\circ} \mathrm{C}$

Unit in mm

ELECTRICAL CHARACTERISTICS (Ta $\left.=25^{\circ} \mathrm{C}\right)$

CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Collector Cut off Current	${ }^{\text {I CBO }}$	$\mathrm{V}_{\mathrm{CB}}=60 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$	---	-	0.1	A
Emitter Cut-off Current	$\mathrm{I}_{\mathrm{FBO}}$	$\mathrm{V}_{\mathrm{EB}}=5 \mathrm{~V}, \mathrm{l}_{\mathrm{C}}=0$	-	-	0.1	A
DC Current Gain	hres(1) (Note)	${ }{ }^{\text {CE }}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}$	70	-	700	
	$\mathrm{h}_{\mathrm{FE}}(2)$	$\mathrm{V}_{\mathrm{CF}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=150 \mathrm{~mA}$	25	100	--	
Collector-Emitter Saturation Voltage	$\mathrm{V}_{\text {CEI }}(\operatorname{sat})$	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=10 \mathrm{~mA}$	\cdots	0.1	0.25	V
Base Emitter Saturation Voltage	VBE(sat)	$\mathrm{I}_{C}=100 \mathrm{~mA}, I_{B}=10 \mathrm{~mA}$	-	-	1.0	V
Transition Frequency	f_{T}	$\mathrm{V}_{\mathrm{CF}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}$	80	-		M11z
Collector Ouput Capacitance	Cob	$\mathrm{V}_{\text {CB }}=10 \mathrm{~V}, \mathrm{IE} \because 0, \mathrm{f} \because 1 \mathrm{MHz}$	-	2.0	3.5	pF
Base Intrinsic Resistance	$r^{\text {b }}$ '	$\begin{aligned} & V_{C E}=10 \mathrm{~V}, I_{E}=-1 \mathrm{~m} \mathrm{\Lambda} \\ & \mathrm{f}=30 \mathrm{MHz} \end{aligned}$	-	50	-	a
Noise Figure	NF'	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0.1 \mathrm{~mA} \\ & \mathrm{f}=1 \mathrm{kII} 2, \mathrm{R}_{\mathrm{G}}=10 \mathrm{k} \Omega \\ & \hline \end{aligned}$	-	1.0	10	dB

1997-04-10 1/3

Appendix - C

Silicon Rectifier Diode Datasheet :

67MOSPEC

GENERAL PURPOSE SILICON RECTIFIER
voltage range 50 to 1000 Volts Current 1 Ampere

MAXIMUM RATINGS AND ELECTRICAL CHARATERISTICS

PCB Relay Datashcet:

omROn

PCB Relay

G5V-2

Miniature Relay for Signal Circuits

- Wide switching power of $10 \mu \mathrm{~A}$ to 2 A
- High dielectric strength coll-contacts: 1,000 VAC; oper contacts: 750 VAC
- Conforms to FCC Part 68 requirements
- Ag + Au clad bifurcated crossbar contacts and fully sealed for high contact reliability.
- New $150-\mathrm{mW}$ relays with higt-sensitivily.

미다앙N

Ordering Information

Classification	Contact form	Contact type	Contact material	Enclosure ratings	Model
Stancard	DFUT	Bifurcatecl crossbar	Ag + Als - Alloy	Fully sealed	Gov. 2
High-sensitivity					Gsvor-nt

Note: When ordering. add the rated coil voltage to the model number Example: G5V-2 12 VDC

Rated coll voltage

Model Number Legend

G5V $-2, ~ V D C ~$		
1 2 2. Classitication 1. Contact Form 3. Rated Coil Voltage 2: DPDT $3,5,6,9,12,24,48$ VDC		

Specifications

- Coil Ratings

Standard Models

Rated voltage		3 VOC	5 VDC		9V0C	$12 . \mathrm{VDC}$	24 VOC	48 VDC	
Rated current ---		166.7 mA	100 mA	83.3 mA	55.6 mA	41.7 mA	20.8 mA	12 mA	
			18.1	$50 \leq 1$	72.2	1629	288 92	1.152 d	4,00011
Coil inductance	Armature OFF	0,04	0.09	0.16	0.31	0.47	1.98	7.23	
(H) (ref. value)	Armature ON		10.17	0.19	0.49	0.74	2.63	10.00	
Must operate voltage		$75^{\circ} \mathrm{c}$ max of rateo valtage.					--	-- -	
Must release voltage		5\% min. o'rated voltage							
Power consumption		$\left\lvert\, \begin{aligned} & 120 \ldots \text { of rated vollage at } 23 \cdot \mathrm{C} \\ & \text { Approx } 500 \mathrm{mliw} \end{aligned}\right.$			--	--		Approx 580 mW	

Note. 1. The rated current and coil ressiance are measured at a coll temperaturc of $23 . \mathrm{C}$ with a tolorance o. $\pm 10 \%$
2. Operating characteristics ate measured at a co:l tempera:ure of 23 C
3. The maximum voltano is the hicghesi votenge that can be imposed on the relay cot

Rated voltage	3 voc	5 VDC	6 VDC	9 VDC	12 VDC	24 VDC	48 VOC
Rated current	50 ma	30 mA	25 mA	16.7 mA	12.5 mA	8.33 FIA	6.25 mA
Coil resistance	60 S2	1667	2.409	5400	9603	$2.880 \leq 2$	$\underline{1600 s}$
Coil inductance Armature On	0.18	0.45	0.10	- 4.67	290	6.72	20.1
(H) (ref. value) Armature OFF	0.51	0.11	0.97	233	3.99	9.27	26.7
Must operate voltage	15%	raced volt					
Must release voltage	5\%,min	teri votag					
Max, voltage	180\%	vatago					$\begin{aligned} & 160^{\prime 2} \text { nal materl } \\ & \text { voltage at } \\ & 23 \mathrm{C} \end{aligned}$
Power consumption	Appriox	nW				$\begin{aligned} & A_{p} \text { pox } \\ & 200 ~ \Gamma 14 \end{aligned}$	- Approx. 300 mW

Note: 1. The rater furrent and conil resismance are measured at a coil :emperature of 23 C with a colerance of +10 s
2. Operating characterisacs ame measured at a coil temperature of 230
3. The maximum volinge is the highesi woltage that can be imposed on the velay coil

- Contact Ratings

Note: P leums ; an $=0.1 \times 10^{-6}$ inporation
 may vary depencling on :ho swiching frequency and operating environmen: Always double-check relay suitabil ity uncer actual op. orating concitions

ristics Item	Standard models High sensitivity models
Contact resistance (See note 1.)	50 mas max 100 mas max
Operate time	7 m
Release time	3 ms max
Max. operating frequency	Mechanical. 36.000 operations, hir Etecticat: 1.800 cperations'in (uncer rated load)
insulation resistance (See note 2.)	$1,000 \mathrm{mg}$ min (at $500 \mathrm{VOC)}$
Dielectric strength	
Impulse withstand voitage	$1.500 \vee(10 \times 180$ sis bewwor coil and con:acts (conforms to FCOC Fart 6B)
Vibration resistance	Desenction $10: 055: 010 \mathrm{~Hz} .0 .75 \mathrm{~mm}$ sirgio ampliam (1.5-men double amplitude) Malliunction. 10 to 55 to 10 Hz .0 .75 - m im single amplitude ($1.5-\mathrm{mm}$ double ampliuge
Shock resistance	Des:ruction $1.000 \mathrm{mis}^{2}$ (approx. $100 \mathrm{Gi} \quad$ Destruction: $1.000 \mathrm{~ms} \mathrm{~s}^{3}$ (approx. 100G) liaturtion: $200 \mathrm{~ms} \mathrm{~s}^{2}$ (approx. 20 Gi Matuncion. $100 \mathrm{mis}^{2}$ (approx. 10 Gi)
Endurance	Meghanical: 15,000000 uperations min. (a: 36.000 operationsint) Flectrical: 100,000 operations min , at 1,500 operatons:hn)
Ambient temperature	
Ambient humidity	Operaing: 5% to 85%
Weight	Approx 5 g

Note: The abrye values are inital values
Note: 1. I he contac: renistance was measurd with 10 mA a: 1 VDC with a volage cron method
2. The insulation resistance was, masured with a 500 -VDC megranmeder appliec to the same para as thoso used for checking he dielectric s;renglh

- Approved Standards

UL478, UL1950, UL508 (File No. E41515)/CSA C22.2 No.0, No. 14 (File No. LR31928)

Engineering Data
Maximum Switching Power G5V-2

Endurance

 G5V-2Swithining current (A)
Ambient Temperature vs. Maximum Coil Voltage
G5V-2

Ambient tomperature (") Note: The maximum coil volage reters to the maxi-sintim value ir a varyirg range of operating power voliage mot a contirluous
voltage.

Contactor Relay Threshold voltages:

Operational Amplifier Datasheet :

LM 101A/LM201A/LM301A Operational Amplifiers

General Description

The LM10才A series are general purpose operational amplift ers which toature improved performance over industry stan dards like the LM709. Advanced processing techniques make possible an order of magnitude reduction in input currents, and a redesign of the biasing circuitry reduces the temperature drift of input current. Improved specifications include:

- Offset voltage 3 mV maximum over temperature (LM10tA/LM201A)
- input current 100 nA maximum over temperature (LM101A/LM201A)
- Offset current 20 nA maximum over temperature (LM101A/LM201A)
- Guaranteed drift characteristics
- Offsets guaranteed aver entire common mode and supply voltage ranges
- Slew rate of $10 \mathrm{~V} / \mu \mathrm{s}$ as a summing amphfier

Thus amplifier offers many features which make its applicathon nearly foolproof: overload protection on the input and output, no latch-up when the common mode range is ex-
ceeded, and freedom from oscllations and compensation with a single 30 pF capacitor. It has advantages over internally compensated amplifiers in that the frequency compensation can be tallored to the particutar application. For ex ample, in low frequency circuits it can be overcompensated for increased stabilty margin. Or the compensation can be optimized to give more than a factor of ten improvernent in high frequency performance for most applications.
In ardition, the device provides better accuracy and lower noise in high impedance circuitry. The low input currents also make it paricularly well suted for long interval integra tors or timers. sample and hold circuits and low frequency waveform generators. Further, replacing circuits where matched transistor pairs buffer the inputs of conventional IC op amps. it can give lower offsel voltage and a drift at a lower cost.
The LM101A is guaranteed over a temperature range of $\cdots 55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, the LM201A from $\cdots 25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. and the L.M301A from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

Connection Diagrams (Top View)

Dual-In-Line Package

TLHMTGKC
Order Number LM101AJ, LM101J/883*,
LM201AN or LM301AN
See NS Package Number J08A or N08A

Order Number LM101AW/883 or LM101W/883 See NS Package Number W10A

THH/SC2 2
Note: Br 4 connected to case
Order Number LM101AH, LM101AH/883', LM201AH or LM301AH See NS Package Number H08C

Order Number LM101AJ-14/883* See NS Package Number J14A

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage
Differential Input Voltage
Input Voltage (Note 1)
Output Short Circult Duration (Note 2)
Operating Ambient Temp. Range
TJMax
H-Package
N-Package
J-Package
Power Dissipation at $T_{A}=25^{\circ} \mathrm{C}$
H-Package (Stll Air)
(400 LF/Min Air Flow)
N.Package

J-Package
Thermal Resistance (Typical) $\theta_{\text {a }}$
H-Package (Still Air)
(400 LF/Min Air Flow)

NPackage
J-Package
(Typical) tio
H-Package
Storage Temperature Range
Lead Temperature (Soldering. 10 sec .
Metal Can or Ceramic
Plastic
FSD Tolerance (Nole 5)

LM101A/LM201A
$+22 \mathrm{~V}$
30 V
$-15 \mathrm{~V}$
Continuous
$55^{\circ} \mathrm{C}$ to :125 C (LM101A)
$25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (LM201A)

$150^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
$150^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
$150^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
500 mW	300 mW
1200 mW	700 mW
900 mW	500 mW
1000 mW	650 mW
$165^{\circ} \mathrm{C} / \mathrm{W}$	$165 \mathrm{C} / \mathrm{W}$
$67^{\circ} \mathrm{C} / \mathrm{W}$	$67{ }^{\circ} \mathrm{C} / \mathrm{W}$
$135^{\circ} \mathrm{C} / \mathrm{W}$	$135^{\circ} \mathrm{C} / \mathrm{W}$
$110^{\circ} \mathrm{C} / \mathrm{W}$	$110^{\circ} \mathrm{CmW}$
$25^{\circ} \mathrm{C} / \mathrm{W}$	$25^{\circ} \mathrm{C} / \mathrm{W}$

$65^{\circ} \mathrm{C}$ to $-150^{\circ} \mathrm{C}$

$300^{\circ} \mathrm{C}$	300 C
$260^{\circ} \mathrm{C}$	260 C
2000 V	2000 V

Electrical Characteristics (Note 3) $T_{A}=T_{J}$

Parameter	Conditions		LM101A/LM201A			LM301A			Units
			Min	Typ	Max	Min	Typ	Max	
Input Offsei Voltage	$T \mathrm{~A}=25^{\circ} \mathrm{C} \cdot \mathrm{AS}^{\text {- }} 50 \mathrm{k} \Omega$			0.7	2.0		2.0	7.5	mv
Input Offset Current	TA		3	9.5	10		113.0 IS	50	nA
Input Eias Current	TA $25^{\circ} \mathrm{C}$ WVWVV 110.10011 .2			30	75		70	250	nA
Input Fresistance	$T_{A}=25^{\circ} \mathrm{C}$		1.5	4.0		0.5	2.0		M 2
Supply Current	$T_{A}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{s}=+20 \mathrm{~V}$		1.8	3.0				mA
		$V_{S} \ldots+15 \mathrm{~V}$					1.8	3.0	mA
Large Signal Voltage Gain	$\begin{aligned} & T_{A}=25^{\circ} \mathrm{C}, V_{S}+15 \mathrm{~V} \\ & V_{\text {OUT }} \pm 10 \mathrm{~V} . R_{L}=2 \mathrm{kr} \end{aligned}$		50	160		25	160		V / mv
Input Offse: Voltage	$R_{S}=50 \mathrm{kst}$				3.0			10	mV
Average Temperature Coefficient of lnput Offset Volfage	Rs 50 ks			3.0	15		6.0	30	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	.				20			70	nA.
Average Temperature Coefficient of Input Offset Current	$\begin{aligned} & 25^{\circ} \mathrm{C} \cdot T_{A}=T_{M A X} \\ & T_{\text {MIN }}-T_{A}=25^{\circ} \mathrm{C} \end{aligned}$			0.01	0.1		0.01	0.3	$n A /{ }^{\circ} \mathrm{C}$
				0.02	0.2		0.02	0.6	$n A /{ }^{\circ} \mathrm{C}$

Electrical Characteristics (Note 3) $T_{A}-T_{J}$ (Continued)

Parameter	Conditions	LM101A/LM201A			LM301A			Units
		Min	Typ	Max	Min	Typ	Max	
Input Bias Current				0.1			0.3	4 A
Supply Curreat	$T_{A}-T_{M A X} V_{S}-+20 \mathrm{~V}$		1.2	2.5				mA
Large Signal Voliage Gain	$\begin{aligned} & V_{S}: 15 \mathrm{~V}, \text { VOUT }-10 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \\ & \hline \end{aligned}$	25			15			V / mV
Output Voltage Swing	$V_{S}=15 \mathrm{~V}$	+12	± 14		± 12	± 14		V
		± 10	13		:10	113		V
Input Voltage Range	$V_{S} \cdots \cdots 20 \mathrm{~V}$	+15						\checkmark
	$V_{s}-\mu+15 \mathrm{~V}$		-15, - 13		+12	15. - 13		\checkmark
Common-Mode Rejection Ratio	$R_{S}=50 \mathrm{kr}$	80	96		70	90		dB
Supply Voltage Rejection Ratio	$\mathrm{R}_{5} \quad 50 \mathrm{~km}$	80	96		70	96		dB

 Smporivety for L.MO1A

Note 5: Human body modei 100 of discharged through 15 kt
Guaranteed Performance Characteristics LM101A/LM2O1A

Guaranteed Performance Characteristics Lm301A

supply voltage (:V)

SUPply voltage $\{\cdot \mathbf{V}$)

SUPPA Y VOLTAGE $\{ \pm \mathrm{V} \mid$

Optocoupler CNY17-1 Datashect:

+ optol

Global Supplier of Optoelectronic Solutions

 AlL Product Lead Free, RoHs Compliant
CNY17-1 UL \# E244343

Schematic

For dimensions and pin-outs, see the last page of this document.

Orderina:

Suffix to Standard Part Number

$$
\begin{aligned}
& V=\text { VDE Compliant } \\
& G=10 \mathrm{~mm} \text { Lead Spread } \\
& S=\text { Surface Mount Lead-form } \\
& T=\text { Tape \& Ree }
\end{aligned}
$$

Features:

1. Current transter ratio

$$
(C T R ~ 40-80 \% \text { at } I F=10 n A \quad V \subset=5 V)
$$

2. High isolation voltage between input and output $($ Viso $=5300 \mathrm{~V} / \mathrm{ms}, 7500 \mathrm{~V} \mathrm{pk})$.

Superior OPTO Part Number:

OPTO611

Absolute Maximum Ratings:

Electrical Characteristics:

	Prandes	Sxancil	Conditis,	MN	Th	MAX	Unit
mput	Foread wituye	\%	if $=20 \mathrm{~mA}$	-	S. 2	1.4	v
	Pea formar walaye	VF/	EM $=0.5 \mathrm{~A}$	-	-	35	\checkmark
	Rexeme curent	R	VR=4V	..		10	A
	Texmiral capactance	0	$V=0, f=1 \mathrm{kHz}$	-	30	...	UF
Ottpa	Culecter taty curent	160	va $=20 \mathrm{~V}$..	-	0.1	$1: 4$
Terefer chatic terstics	Cinctitarster ato	C'R	$1:=10 \mathrm{~mA}, \mathrm{U}^{\prime}=-5 \mathrm{y}$	40		80	$\%$
	Collectoremitiersaturon volace	What	=10mA, $\mathrm{c}=2.5 \mathrm{~m} 4$.	0.1	0.4	V
	ludetion resistance	Pas?	D0500V	$5 \times 10^{\circ}$	$10^{\text {t/ }}$	--	crum
	Floamg capambane	Of	$V=0, \quad=1 / \mathrm{H}+\mathrm{C}$	\cdots	06	10	Pf
	Cit-fit fruency	E		-	80	.	k 47
	Response time 7 sol	!		-	5	20	(15)
	Response moraril	11			4	0	IE.

[^0]Fig. 1 Current Transfer Ratio
Vs. Forward Current

Fig. 2 Collector Power Dissipation vs. Ambient Temperature

Fig. 4 Forward Current vs Ambient Temperature

Ambient temperature $\mathrm{Ta}\left({ }^{\circ} \mathrm{C}\right)$

Fig. 3 Collector Dark Current vs. Ambient Temperature

Fig. 5 Forward Current vs. Forward Voltage

Forward Voltage $\operatorname{Vr}(\mathrm{V})$

[^1]Fig. 6 Collector Current vs.

Collector-emitter Voltace

Collector-emitter Voltage VCE (V)
Fig. 8 Collector-emitter Saturation Votage vs. Ambient Temperature

Ambient Temperature Ta(${ }^{\circ} \mathrm{C}$)

Fig. 7 Relative Current Transfer Ratio

Ambient Temperature $\mathrm{Ta}\left({ }^{\circ} \mathrm{C}\right.$)

Fig. 9 Collector-emitter Saturation Voltage vs. Forward Current

Forward Current F (mA)

Fig. 10 Response Time vs. Load Resistance

Load Resistance RL(Kohm)

Fig. 11 Response Time vs. Load Resistance

Load Resistance Rl_(Kohm)

[^2]Photo graphs of the machine in production:

[^0]:

[^1]:

[^2]:

