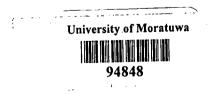
LB/DON/182/10

CLEARANCE TO BUILDINGS FROM OVERHEAD TRANSMISSION LINES

A dissertation submitted to the Department of Electrical Engineering, University of Moratuwa in partial fulfillment of the requirement for the Degree of Master of Science


By

WINVERSITY OF MORATUWA. SEI LABA MORATUWA KODITHUWAKKU KANKANAMGE SHYAMALI

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations Supervised by Prof. J.R. Lucas Eng. W.D.A.S. Wijayapala

Department of Electrical Engineering, University of Moratuwa Sri Lanka

February 2010

94848

T 17

621.3 10

621.3(043)

94348

L

Declaration

The work submitted in this thesis is the result of my own investigations except where otherwise stated.

This subject has not been accepted for any degree, and is also not being concurrently submitted for any other degree by me or any other individual.

UOM Verified Signature

K.K. Shyamali

I endorse the declaration by the candidate.

University of Moratuwa. Sri Lanka. UOM Verified Signature Electronic Theses & UOM Verified Signature WWW.lib.mrt.ac.lk

Prof. J.R. Lucas

Eng. W.D.A.S. Wijayapala

4

ð

TABL E OF CONTENTS

TABL E OF CONTENTS	
ABSTRACT	
ACKNOWLEDGEMENT	IV
LIST OF FIGURES	v
LIST OF TABLES	VI
LIST OF ANNEXES	
Снартег - 1	1
INTRODUCTION AND SCOPE	1
CHAPTER - 2	
PROBLEM IDENTIFICATION	
Снартег - 3	7
METHODOLOGY	7
Снартег - 4	41
CONCLUSION	41
REFERENCE University of Mo	rahuwa Sri Lanka
Electronic These www.lib.mrt.ac.l	s & Dissertations

Abstract

3

×

With the increasing demand for electricity supply and the country development,

Searching of Transmission Line corridor across populated areas is a major difficulty faced by the utility company. Further, most of the funding agents are very much concerned about the environmental impacts due to the constructions.

The width of Transmission Line corridor is proposed for two different Transmission Voltages and the sharing of single corridor for more lines and the required widths are proposed. Possibility of building construction and planting of trees within the Transmission Line corridor is decided and the maximum heights for constructions are also proposed.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Acknowledgement

First I offer my sincerest gratitude to my supervisors, Professor Rohan Lucas, and Eng. W.D.A.S. Wijayapala who supported me by encouraging throughout my thesis with their patience and knowledge. Also my thanks should go to Dr. J. P. Karunadasa, Head of the Department of Electrical Engineering, and the other members of the academic staff of the Department of Electrical Engineering, for their valuable suggestions and comments.

Further, I would like to thank the officers in Post Graduate Office of the Faculty of Engineering of University of Moratuwa for helping in various ways to clarify the things related to my academic works in time with excellent cooperation and guidance. Sincere gratitude is also extended to the people who serve in the Department of Electrical Engineering office.

Also, I thank my colleagues in the Transmission Design branch of Ceylon Electricity Board very much for providing assistance in numerous ways to carry out the studies of the project.

I express my thanks and appreciation to my family for their understanding, motivation and patience. Lastly, but in no sense the least, I am thankful to all colleagues and friends for giving their fullest co-operation throughout the time of research and writing of this thesis. d.

List of Figures

Figure 2-1: minimum horizontal clearance for buildings	4
Figure 3-1: Conductor Horizontal Displacement	7
Figure 3-2: Conductor Swing Angle	8
Figure 3-3: Equivalent Span	
Figure 3-4: Catenary Curve	15
Figure 3-5: Design of Insulator Swing Angle of Tower	23
Figure 3-6: Top View of Right-of-Way	34
Figure 3-7: shared Corridor	35

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

*

А

*

List of Tables

Table 3-1: Defined Equivalent Span in CEB9
Table 3-2: Conductor Properties11
Table 3-3: Conductor Horizontal Displacement Vs Equivalent Span for 132kV 18
Table 3-4: Conductor Horizontal Displacement Vs Equivalent Span for 220kV18
Table 3-5: Classification of Wind Speed in www.windfinder.com 21
Table 3-6: Classification of Wind Speed in Wind Energy Resource Atlas of Sri Lanka
Table 3-7: National Electrical Safety Code Basic Clearance 26
Table 3-8: National Electrical Safety Code Basic Clearance 26
Table 3-9: National Electrical Safety Code Basic Clearance 27
Table 3-10: National Electrical Safety Code Basic Clearance 27
Table 3-11: Minimum Horizontal Gleanance to objects 132 KVanka
Table 3-12: Minimum Florizontal Clearance to Rail Cars- 132 KV Dissertations 29
Table 3-13: Minimum Horizontal Clearance to objects-220 KV 30
Table 3-14: Minimum Horizontal Clearance to Rail Cars-220 KV
Table 3-15: Minimum Horizontal Separation between 132kV conductor attachment point and the other objects 32
Table 3-16: Minimum Horizontal Separation between 220kV conductor attachment point and the other objects
Table 3-17: field exposure limits 39

List of Annexes

- Annex 3-1: Catenary Curve Coordinates for 132kV ZEBRA Conductor at 75°C and No wind condition
- Annex 3-2: Catenary Curve Coordinates for 132kV ZEBRA Conductor at 15°C and
- Maximum wind condition
- Annex 3-3: Catenary Curve Coordinates for 220kV ZEBRA Conductor at 75°C and
 - No wind condition

À.

- Annex 3-4: Catenary Curve Coordinates for 220kV ZEBRA Conductor at 15°C and
- Maximum wind condition
- Annex 3-5: Wind Data from www.windfinder.com/windreports/
- Annex 3-6: Drawings for Single Line Corridor
- Annex 3-7: Drawings for Shared Corridorf Moratuwa, Sri Lanka.
- Annex 3-8: Maximum Height of Buildings within Right-Of-Way
 - Annex 3-9: Mature Height of Tree within Right-Of-Way
- Annex 3-10: Typical Right-Of-Way width specified in some references
- Annex 3-11: Sample List of Actual Spans

