

AUTOMATED CONTROL APPROACH FOR INDUSTRIAL W'ELDING TRANSFORMER TO MINIMIZE THE IDLING POWER LOSS

A dissertation submitted to the Department of Electrical Engineering, University of Moratuwa in partial fulfillment of the requirement for the degree of Master of Science

> by ALAHAKOONGE, DON MIKE JEETH

Supervised by Dr. Nalin Wickramarachchi

Department of Electrical Engineering University of Moratuwa Sri Lanka

2009

93952

Abstract

Main objective is to design and implement automated control circuit to switch ON & OFF main power feeding contactor of industrial welding transformer, depend on the work pattern. Voltage sensing at the out put terminals of secondary winding of welding transformer is used as a one and only input signal for the control circuit. Reduced voltage 24 VAC is supplied to primary during idling and during operation it converts in to 400 VAC, and this conversion takes place automatically. By that, able to reduce idling power loss on primary winding due to open circuit core loss & iron loss.

During designing of new system special attention was made, not to change existing conventional welding procedure and not to introduce additional external sensors and cables other than conventional welding electrode and welding cable.

New system was practically implemented in yard and tested for long period of time in different work conditions in Colombo Dockyard PLC. System was tested with existing conventional welders but no behavioral changes were observed during welding operation after implementing new system. Successful trails were carried out and proved it uninterrupt operation.

Under guidance and instructions of my project supervisor I worked and finally able to came up with practically feasible solution. This report describes problem identification, how the design concept developed, power saving and cost benefits .to yard after implementation of new system.

The report starts with an introduction as a 1st chapter where describe the current welding practice at Colombo Dockyard PLC, how to reduce idling power loss by implementing new method and final goal of my project. 2nd chapter describes the statement of the problem and problem identification, new solution and how it affects to save energy.

The 3rd chapter consists with gathered technical data and its analysis during execution of design approach.

Next 4th chapter describe about proposed and implemented solutions for the identified problem and evolution of design concept.

Fifth chapter describes the energy saving calculations and cost benefit analysis. Finally, in the conclusion, I have explained practically and economically viability of new product as a industrial product.

DECLARATION

The work submitted in this dissertation is the result of my own investigation, except where otherwise stated.

It has not already been accepted for any degree, and is also not being concurrently submitted for any other degree.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

UOM Verified Signature

A.D.M.Jeeth Date: April 30, 2009

-We·/ I endorse the declaration by the candidate

UOM Verified Signature

Project supervisor: Dr. Nalin Wickramarachchi

CONTENTS

Declaration	i
Abstract	V
Acknowledgement	vii
Table of content,	ii
List of Figures	viii
List of Tables	ix
1. Introduction	1
1.1 Background about Colombo Dockyard PLC	1
1.2 Basic Introduction for current work practice at Colombo Dockyard PLC	1
1.2.1 Current welding procedure which is practicing at yard	1
 1.2.2 Energy wastage during idle period due to open circuit core loss & iron loss 	2
1.2.3 Specification & general configuration of Welding Transformer at Colombo Dockyard PLC	3
1.2.4 Utilization of arc welding transformers in Colombo Dockyard PLC	4
1.3 Goals and Scope of present work	5
2. Statement of the Problem	6
2.1 Preliminaries	6
2.2 Problem identification & Thesis statement	7

3. Gathered technical data and its Analysis during execution of design approach	8
3.1 CT out put current and voltage measurements which Relevant to each of CT under current sensing design approach	8
3.2 Measured parameters during voltage sensing design	10
3.3 Following are the measured values of primary and secondary parameters when secondary under load	11
3.4 Behavioral study of welding transformer by connecting various types of step down transformers parallel to primary winding of welding transformer	12
3.5 Measuring of total idling time and study of operator's behavioral pattern which relevant to each work location	14
3.5.1 Why idling can not eliminate during steel fabrication process	14
3.5.2 Instrument used to measure the idling time and to study operator's work pattern	15
3.5.3 Sample screen shots during study of operator's work pattern from above SCOPE meter	16
3.5.4 Data collected which relevant to each work location to measure total idling time for 10 hours of total time period	17
3.5.5 Study of operator's work pattern during general welding operation in order to decide the best timer setting which relevant to voltage sensing approach	21
4. Proposed and implemented solutions	26
4.1 Design approach and evolution of design concept	26
4.2 Design concept – 1	27
4.3 Design concept – 2 (Current sensing approach)	27
4.3.1 Why current sensing approach was not feasible	28

4.4	Desigr	n concept -3 (Voltage sensing approach No -1)	29
	4.4.1	Operating procedure	. 29
4.5	Desig	n concept – 4 {Final}, Voltage sensing approach No – 2	. 32
	4.5.1	Difference between Design concept – 3 & Design concept – 4	. 32
	4.5.2	Calculation of resister value for Variable resister which has used in control circuit	34
4.6	Opera	ation procedure according to the final design	. 35
4.7	Func	tional block diagram according to the final design	. 37
5. Ene	ergy sa	ving calculations and cost benefit analysis	38
5.1	Materi	al used for control circuit and their cost	38
5.2	Measu weldin	uring of actual active power consumption of autons ng T/F when idling with out implementing new system	39
5.3	Energy	y saving calculation	39
5.4	Calcul	ation of simple pay back period	40
5.5	Compa I/F wh	rison between active power consumption of welding en idling with & with out implementing new system	40
6. Con	clusior	1	42
Refere	nces		43
APPEN ope	NDIX – rator's	- A Sample screen shots during study of work pattern from FLUKE SCOPE meter	44
APPEN equ	NDIX – ipment	- B Literature about instrument and s which were used	49

Acknowledgement

I express my sincere thanks to all the following individuals, those who contributed towards the completion of my final project successfully under my M.Sc/PG Diploma in Industrial Automation 2006/07 course.

At the very beginning my gratitude goes to the project supervisor Dr. Nalin Wickramarachchi, senior lecturer, department of electrical engineering, University of Maratuwa. I am indebted to my project supervisor for his immense guidance and excellent technical advices for success of my project. I would like to extend my sincere thanks to Prof. J. Rohan Lucas, Prof. H.Y. Ranjit <u>Perera</u>, Head department of electrical engineering Prof. J.P. <u>Karunadasa</u>,

Prof.Lanka Udawatta and Dr. Sisil Kumarawadu who gave their valuable advices for success of my project. I would like to take this opportunity to deliver my sincere thank to MD/CEO Mr. Mangala P.B. Yapa and Mr. D.A.P Senasinghe, Assistant Production Manager (Electrical and Automation) for their guidance and opportunity given to me to initiate and execute my project within the yard premises. Again thankful to Mr. D.A.P Senasinghe for his technical advices and immense guidance for the success of my project.

My sincere thanks should also go to the young engineers specially Mr. E. M. M. B Yatiyana and Mr. P. H. K. H Puhulwella in the Electrical and Automation Department. They positively contributed me for the success of my project. Also tanks should also go to electrical workshop engineer Mr. H.R.K.K. Ariyaratne too.

My thanks also go to the instrument technicians from automation workshop who worked under me. Appreciate their work during gathering field data and during execution of project in real situation. I am again thankful to the all of above and success of my project mainly depends upon the help and support given by them.

A.D.M.Jeeth.

April 30, 2009

List of Figures

Figure

Page No

Figure 1.1 - General configuration of welding transformer 4
Figure 3.1 - General arrangement of welding transformer
Figure 3.2 – Transformer with external devices during behavioral study 12
Figure 3.3 – Sample screen shots during study of operator's work pattern 16
Figure 3.4 – Graphical representation of measured average idling periods which relevant to each work location
Figure 3.5 – Study of operator's work pattern during each continuous welding run
Figure 3.6 – Graphical representation of summarized measured average
idling periods during each continuous welding run for each work location
Figure 4.1 - Circuit diagram which relevant to Design concept 2
Figure 4.2 - Circuit diagram which relevant to Design concept 3
Figure 4.2 - Circuit diagram which relevant to Design concept 4 33
Figure 4.4 – Resistor arrangement to maintain required voltage across relay (R ₁)
Figure 4.5 - Functional block diagram according to the final design

List of Tables

Table	Page	No
Table 1.1 -	- Measured power consumption during idling when 400 VAC gets connects with primary	3
Table 1.2 –	- Utilization of arc welding transformers in Colombo Dockyard PLC	4
Table 3.1 -	CT out put current and voltage measurements with CT Ration: $100 / 5 \text{ A } \& \text{V}_1 = 24 \text{ VAC}$	8
Table 3.2 -	CT out put current and voltage measurements with CT Ration: $100 / 5 \text{ A } \& \text{ V}_1 = 400 \text{ VAC}$	9
Table 3.3 -	CT out put current and voltage measurements with CT Ration: $400 / 5$ A & V ₁ = 24 VAC	. 9
Table 3.4 -	CT out put current and voltage measurements with CT Ration: $400 / 5 \text{ A } \& \text{ V}_1 = 400 \text{ VAC}$	10
Table 3.5 -	Measured values of $I_1 \& V_2$ by varying transformer current setting	10
Table 3.6 -	Measured values of primary and secondary parameters when secondary under load and $V_1 = 400$ VAC	11
Table 3.7 -	Measured values of primary and secondary parameters when secondary under load and $V_1 = 24$ VAC	11
Table 3.8 -	Measured values of primary and secondary parameters when secondary under load and $V_1 = 48$ VAC	11
Table 3.9 –	- Readings during behavioral study @ $V_1 = 24$ V AC with 110 VAC / 24 VAC step down transformer	13
Table 3.10	- Readings during behavioral study $@V_1 = 48 \text{ V AC}$ with 110 VAC / 24 VAC step down transformer	13
Table 3.11	- Readings during behavioral study $@V_1 = 220 \text{ V AC}$ with 110 VAC / 24 VAC step down transformer	13
Table 3.12	- Readings during behavioral study @ V ₁ = 400 V AC with 110 VAC / 24 VAC step down transformer	14

Table 3.13 –	Readings during behavioral study (a) $V_1 = 400$ V AC with 80 VAC / 12 VAC step down transformer	14
Table 3.14 –	Measured idling periods at Yard welding pool	17
Table 3.15 –	Measured idling periods at Metal Workshop (MEW)	17
Table 3.16 –	Measured idling periods at Pipe Fabrication workshop (PFS)	17
Table 3.17 –	Measured idling periods at Deck fitting workshop (FIS DEC)	18
Table 3.18 –	Measured idling periods at Steel workshop	18
Table 3.19 –	Measured idling periods at Component workshop (COM)	18
Table 3.20 –	- Measured idling periods at Machinery outfitting workshop (MOF)	19
Table 3.21 -	- Summary of measured average idling periods which relevant to each work location	19
Table 3.22 -	- Measured idling period during each continuous welding run, Location: Yard welding pool	22
Table 3.23 -	- Measured idling period during each continuous welding run, Location: Metal Workshop (MEW)	22
Table 3.24 -	- Measured idling period during each continuous welding run, Location: Pipe Fabrication workshop (PFS)	22
Table 3.25 -	- Measured idling period during each continuous welding run, Location: Deck fitting workshop (FIS DEC)	23
Table 3.26 -	- Measured idling period during each continuous welding run, Location: Steel workshop	23
Table 3.27 -	 Measured idling period during each continuous welding run, Location: Component workshop (COM) 	23
Table 3.28 -	 Measured idling period during each continuous welding run, Location: Machinery outfitting workshop (MOF) 	24
Table 3.29	 Summary of measured average idling period during each continuous welding run, For each work location 	24

Table 4.1 - Measured data by varying V1 when secondary in open circuit (no load)	26
Table 5.1 – Material list for one unit with their prices 3	38
Table 5.2 - Measured data about active power consumption of welding T/F when idling with out implementing new system	39
Table 5.3 – Reading observed from energy meter	40
Table 5.4 – Actual energy consumption after deducting initial meter reading	41

Jniversity of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk