

# ANALYSIS OF SURFACE FLASH OVER OF 33 kV INSULATOR DUE TO SALINE POLLUTION

A Dissertation submitted to the Department of Electrical Engineering, University of Moratuwa in partial fulfillment of the requirements for the Degree of Master of Science

> by N.H.C.JANAKA

Supervised by: Professor J.R Lucas .Eng.Rienzie Fernando

Department of Electrical Engineering University of Moratuwa, Sri Lanka

2010

94849



#### Abstract

Ceylon Electricity Board (CEB) has the responsibility of Transmission, most of the Generation and Distribution of electric power in Sri Lanka. Contamination-driven insulator failure is a problem that incessantly plagues distribution systems. It erodes power quality and diminishes system reliability. Contamination levels can continue to grow unless abated by natural cleaning or if not taken measures to wash insulators at the distribution level in a preventative maintenance mode. When contamination is combined with moisture, a pollution layer forms and provides a path for leakage current to flow. Increases in contamination severity result in heightened levels of leakage current activity.

As a result of rapid development and growth of populated areas, several high voltage power transmission systems operating at various voltages up to 132 kV have been put into service and flashover difficulties with insulators of these systems caused by pollution of different types have been experienced. Not only the transmission network but also the distribution network of 33kV, running in coastal belt, has experienced frequent insulator flashover making a burden to the maintenance Engineers.

In order to assess the pollution behavior of insulators in the distribution network, 33kV pin type insulator was selected as a sample insulator and been subjected to natural pollution at three selected localities for considerable period. The naturally polluted , insulators have been subjected for conductivity test and by which the equivalent salt deposit density (ESDD) which points out the pollution severity is calculated. Subsequently, artificially contaminated insulators of different pollution severities were tested for power frequency and impulse test in the High Voltage Laboratory of University of Moratuwa.

To better understand the progression of insulators from a healthy state to failure, the flashover voltage (FOV) of insulator must be studied. This study was focused on the following key areas.



• Experiment of 33kV Pin Insulator contamination severity based on Zone categorization (Zone-I, 2 and 3)

• Prediction of surface flashover voltage of Insulators over ESDD and tabulate the figures for reasonable ESDD values.

• Streamline the process of Insulators treatment under preventive maintenance.

• Review the levels of insulator's specific creepage distances placed at different pollution severity in Sri Lanka co-relating with IEC regulation.

Experimented results state that insulator contamination level improves over the duration in ad hoc basis and could be utilized to build up a trend curve to predict a relationship against the insulator exposure duration. It is recommended that insulators in Zone 1 have to be treated after 8 months from the date of last treatment and those in Zone 2 & 3 to be treated after 18 months under preventive maintenance to get away from flashover.

It is also recommended to review the required specific creepage distance of insulator installed in non-polluted areas due to the fact that the current practice of insulators placement in all over is with specific creepage distance of 25mm/kV which is recommended for high polluted zones as per IEC regulation.

#### DECLARATION

The work submitted in this dissertation is the result of my own investigation, except where otherwise stated.

It has not already been accepted for any degree, and is also not being concurrently submitted for any other degree.

#### **UOM Verified Signature**

N.H.C. Janaka Date: 25<sup>th</sup> January 2010

We endorse the declaration by the candidate.

#### UOM Verified Signature iversity of Moratuwa. Sri Lanka.

Prof. J.R Lucas Senior Professor University of Moratuwa

### **UOM Verified Signature**

Eng.Rienzie Fernando Managing Director Amithi Power Consultants (Pvt) Ltd



#### ACKNOWLEDGEMENT

This work has been carried out at the Department of Electrical Engineering, University of Moratuwa.

Thanks are due first to my supervisor, Prof. J.R Lucas. Senior Professor. University of Moratuwa for the continuous support extended throughout the research programme. for his valuable comments and immense knowledge. His guidance helped me in all the time of research and writing of this dissertation.

I take this opportunity to extend my earnest thanks to Eng. Rienzie Fernando, Managing Director, Amithi Power Consultants (Pvt) Ltd, who enlightened me the first glance of research and motivated me, whenever I discussed technical issues, encouraging me to try out this research successfully.

l also thank to Eng. S Bogahawatte, Project Director, Lighting Sri Lanka Hambantota Project. Ceylon Electricity Board for his encouragement throughout the research programme and it helped me a lot to carry out the project works successfully.

My sincere thanks to also go to Dr.Thilak Siyambalapitiya, Consultant, RMA Pvt Ltd. Mr. K.G.S Perera, Deputy General Manager (Asset Management) of Ceylon Electricity Borad and Mr.Chandan Banerjee, Sales Engineer/Aditya Birla Insulators, India for facilitation me with the necessary data and information.

Lastly, I should thank my loving wife Dr. G.B.S Ranganee, my son N.H Amiru Pasandul, my parents, my wife's parents, many individuals, friends and colleagues who have not been mentioned here personally in making this educational process a success. May be I could not have made it without your support.

#### CONTENTS

| Declaration         | i    |
|---------------------|------|
| Abstract            | ii   |
| Acknowledgement     | iv   |
| List of Figures     | vii  |
| List of Tables      | viii |
| Chapters            |      |
| 1. Introduction     |      |
| 1.1 Background      | 1    |
| 1.2 Motivation      | 5    |
| 1.3 Objective       | 5    |
| 1.4 Scope of work   | 6    |
| 2 Problem Statement | 7    |

| 3 | Theoretical Development                                               |    |
|---|-----------------------------------------------------------------------|----|
|   | 3.1 HV Insulators Electronic Theses & Dissertations www.lib.mrt.ac.lk | 9  |
|   | 3.1.1 Pin type Insulators                                             | 11 |
|   | 3.1.2 Cap and Pin Insulator                                           | 11 |
|   | 3.1.3 Glass Insulator                                                 | 12 |
|   | 3.2 Comparison between Porcelain and Glass Insulators                 | 12 |
|   | 3.3 Pollution severity                                                | 14 |
|   | 3.4 Measurement of Contamination Severity                             | 15 |
|   | 3.5 Flashover mechanism-General Theory                                | 15 |
|   | 3.6 HV Testing                                                        | 16 |
|   | 3.6.1 Power Frequency Test                                            | 16 |
|   | 3.6.2 Lightning Impulse Test                                          | 17 |
|   | 3.6.3 Flash-over Test                                                 | 18 |

### 4 Methodology

| 4.1 Assumptions                   | 20 |
|-----------------------------------|----|
| 4.2 Selection of Test sites       | 20 |
| 4.3 Procedures & Data acquisition | 20 |

| 4.4 Measurement of Conductivity            | 21 |
|--------------------------------------------|----|
| 4.5 Artificial contamination of Insulators | 23 |
| 4.6 Power Frequency & Impulse Test         | 24 |

## 5 Result and Analysis

| 5.1 Calculation of ESDD                       | 25 |
|-----------------------------------------------|----|
| 5.2 Power frequency test results              | 26 |
| 5.3 Impulse test results                      | 27 |
| 5.4 Prediction of FOV over ESDD               | 28 |
| 5.5 Preventive maintenance                    | 29 |
| 5.6 Rainfall and Thunder Day analysis         | 32 |
| 5.6.1 Rainfall Analysis                       | 32 |
| 5.6.2 Thunder Day analysis                    | 34 |
| 5.7 Calculation of Specific creepage distance | 35 |
|                                               |    |

### 6 Conclusion and Recommendations

| 6.1 Conclusion | University of Moratuwa, Sri Lanka.  | 36 |
|----------------|-------------------------------------|----|
|                | dations onic Theses & Dissertations | 37 |
|                | www.lib.mrt.ac.lk                   |    |
| References     |                                     | 39 |

| Annexes |                                              |    |
|---------|----------------------------------------------|----|
| Annex 1 | Insulator flashover data at Hambantotata     | 40 |
| Annex 2 | Insulator flashover data at Tissamaharama    | 41 |
| Annex 3 | Specifications of digital conductivity meter | 42 |
| Annex 4 | Rainfall Data in Hambantota                  | 43 |
| Annex 5 | Thunder days Data in Hambantota              | 44 |
|         |                                              |    |



# List of Figures

# Figure Page

| Chapter 3  |                                                |    |
|------------|------------------------------------------------|----|
| Figure 3.1 | Classification of power line sample insulators | 9  |
| Figure 3.2 | Ceramic insulator types                        | 10 |
| Figure 3.3 | Pin type Insulator                             | 11 |
| Figure 3.4 | Cap and Pin Insulator                          | 11 |
| Figure 3.5 | Glass Insulator                                | 12 |
| Figure 3.6 | Impulse Wave 1.2/50µs                          | 17 |

### Chapter 4

| Figure 4.1 | Sample insulator arrangement in three zones              | 21 |
|------------|----------------------------------------------------------|----|
| Figure 4.2 | Conductivity testing meter                               | 21 |
| Figure 4.3 | Sample Insulators before testing                         | 24 |
| Figure 4.4 | Power frequency and impulse test in Laboratory condition | 24 |
| Chapter 5  |                                                          |    |
| Figure 5.1 | ESDD under insulator exposure period                     | 25 |
| Figure 5.2 | FOV Vs ESDD (for power frequency)                        | 26 |
| Figure 5.3 | FOV Vs ESDD (for impulse test)                           | 27 |
| Figure 5.4 | ESDD Vs Exposure duration for Zone-1                     | 29 |
| Figure 5.5 | ESDD Vs Exposure duration for Zone-2                     | 30 |
| Figure 5.6 | ESDD Vs Exposure duration for Zone-3                     | 31 |
| Figure 5.7 | Monthly rainfall variations for year 2007, 2008 and 2009 | 32 |
| Figure 5.8 | Thunder Day analysis                                     | 34 |
|            |                                                          |    |

## List of Tables

| Table                  | I                                                              | Page    |
|------------------------|----------------------------------------------------------------|---------|
| Chapter 1              |                                                                | _       |
| Table 1.1              | Contaminants and their sources                                 | 2       |
| Chapter 2              |                                                                |         |
| Table 2.1              | Insulator flashover records in 2009 (April-Sep.)               | 7       |
| Chapter 3              |                                                                |         |
| Table 3.1              | Comparison between Glass and Porcelain Insulators              | 13      |
| Table 3.2              | IEC recommended SCD over pollution                             | 14      |
| Chapter 4              |                                                                |         |
| Table 4.1              | Pollution zones with distance from coastal boundary            | 20      |
| Table 4.2              | Conductivity data for Zone-1 of Moratuwa, Sri Lanka.           | 22      |
| Table 4.2              | Conductivity data for Zone-2 heses & Dissertations             | 22      |
| Table 4.4              | Conductivity data for Zone-31. ac. lk                          | 22      |
|                        | Artificial contamination over sample insulators                | 23      |
| Table 4.5<br>Table 4.6 | Conductivity of artificially polluted insulators               | 23      |
|                        |                                                                |         |
| Chapter 5              |                                                                | 25      |
| Table 5.1              | ESDD values over insulator exposure period                     |         |
| Table 5.2              | FOV under different pollutant levels (Power frequency test)    | 26      |
| Table 5.3              | FOV under different pollutant levels (Impulse test)            | 27      |
| Table 5.4              | FOV prediction under different ESDD values                     | 28      |
| Table 5.5              | Recommended preventive maintenance                             | 31      |
| Table 5.6              | Rainfall data analysis                                         | 32      |
| Table 5.7              | Rainfall categorization                                        | 33      |
| Table 5.8              | Thunder Day analysis for year 2007, 2008 and 2009              | 34      |
| Table 5.9              | Relationship between pollution levels and artificial pollution | test 35 |