EVALUATION OF CLIMATE ELASTICITY OF RUNOFF BASED ON OBSERVED RAINFALL/ STREAMFLOW DATA AND SIMULATED FUTURE STREAMFLOW USING SWAT MODEL IN KELANI GANGA BASIN

Kariyawasam Katukolihe Gamage Irnika Laksri Siriwardena

(189249P)

Degree of Master of Science in Water Resources Engineering and Management

Department of Civil Engineering

University of Moratuwa Sri Lanka

July 2020

EVALUATION OF CLIMATE ELASTICITY OF RUNOFF BASED ON OBSERVED RAINFALL/ STREAMFLOW DATA AND SIMULATED FUTURE STREAMFLOW USING SWAT MODEL IN KELANI GANGA BASIN

Kariyawasam Katukolihe Gamage Irnika Laksri Siriwardena

(189249P)

Thesis submitted in partial fulfillment of the requirements for the degree Master of Science in Water Resources Engineering and Management

> Supervised by Dr. R. L. H. L. Rajapakse

UNESCO Madanjeeth Singh Centre for South Asia Water Management (UMCSAWM)

> University of Moratuwa Sri Lanka

> > July 2020

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or Institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgment is made in text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (Such as articles or books).

.....

Date

Kariyawasam Katukolihe Gamage Irnika Laksri Siriwardena

The above candidate has carried out research for the Masters thesis under my supervision.

.....

.....

Dr. R. L. H. L. Rajapakse

Date

Evaluation of Climate Elasticity of Runoff based on Observed Rainfall/ Streamflow Data and Simulated Future Streamflow using SWAT Model in Kelani Ganga Basin Abstract

Kelani Ganga basin is the 7th largest watershed in Sri Lanka, spanning over 2,292 km², with a length of 145 km, and annually discharging 4,225 MCM flow to the sea. The annual average rainfall varies from 2000 mm to 5700 mm while annual average temperature (T_{avg}) varies from 28 °C to 30 °C in the basin. The basin currently hosts over 19 % of the country's population and is the primary source of drinking water to over 4 million people living in Greater Colombo. Hence, it is vital to investigate the potential effects of climate change on streamflow in the basin. The present study was undertaken to evaluate Climate Elasticity of runoff based on observed rainfall/ streamflow data and simulated future streamflow using SWAT Model in Kelani Ganga basin, targeting sustainable management of basin water resources in future.

Hydro-meteorological data were collected for 41 rainfall, 10 temperature, and 3 streamflow gauging stations in and around the basin. The initial data checking was carried out and gap filling was performed based on regression analysis for streamflow and Inverse Distance Weighting (IDW) for rainfall and temperature. Root-mean-squared errors (RMSE) were calculated for each month and each percentile to determine the most suitable combination of Alpha of both rainfall and temperature. The $\alpha = 1$ for rainfall and $\alpha = 5$ for temperature were obtained as optimum parameters for the IDW. Additional statistical tests were carried out to identify trends on Climate change using Innovative Trend Analysis (ITA), Mann-Kendall and Sen's Slope tests for rainfall, temperature and streamflow. Decadal averages and deviation from Mean were plotted for all rainfall stations in and around the basin. SWAT model was built to simulate streamflow for the selected duration of 1960 to 2016 and the model was calibrated and validated for the key hydrometric station at Glencourse. The runoff elasticity (ϵ) is assessed by two methods based on the impact assessment of climate change only and impacts of land surface and climate change, respectively for current and Future Pessimistic Climate Change Scenario for 2040 after incorporating the projected landuse for 2040.

Annual average flow is reduced by 14% from the period of 1960-2016 to the period of 1980-2016 at Glencourse. The runoff to rainfall ratio at Glencourse and Hanwella for the period of 1980 to 2016 are 53% and 55%, respectively. Among 41 rainfall stations, 20 exhibit positive trends, 17 show the negative trends for annual rainfall totals for the all three tests of ITA, Sen's Slope and Mann-Kendall tests. The all selected three hydrometric gauging stations exhibit significant downward trends for the period of 1980 to 2016. An 80% of the rain gauges in the middle and Upper basin, show significant decreasing trends for high to low rainfall totals for Yala season as ITA analysis for the period of 1980 to 2016. The model calibration and validation were completed at Glencourse for the period 1970 to 1980 and 1982 to 1992, respectively. Mass balance performance Error (Er), Nash–Sutcliffe efficiency (NSE) and coefficient of determination (\mathbb{R}^2) are used as multi-objective functions and 8.90%, 0.65, 0.72 and 9.10%, 0.69, 0.69 are obtained, respectively for the calibration and validation periods.

1 °C of temperature increase causes 6.9 % and 7.4 % runoff decrease for current scenario and 0.4 % increase and 1.5 % decrease of runoff for Future Pessimistic Climate Change Scenario as evaluated by two methods, respectively. 1% of rainfall increase causes runoff increase of 0.002 % and 0.370 % for current scenario and runoff increase of 0.005 % and 0.360 % for 2040 as evaluated by two methods, respectively. The flow didn't show significant increase for 2040 with projected landuse at Glencourse gauging station. As the water extraction quantity is significantly high for the districts, namely Colombo and Gampaha, with the highest residential densities with a majority (78%) are living in Kelani Ganga basin, it is recommended to further analyse the water allocation model for better results with practical implementations by considering identified trend after 1995 in future researches for planning and management of water resources in future.

Keywords: Inverse Distance Weighting, Mann-Kendal test, Sen's Slope, Innovative Trend Analysis, Precipitation elasticity, Future Pessimistic Scenario

DEDICATION

Every challenging work needs self-effort as well as the guidance of elders especially those who are very close to our heart.

My humble efforts are dedicated to my loving

<u>father</u>

who is in heaven, was always watching over me and guiding hand of me forever

mother & husband

whose affection, love and encouragement of everyday allowed me to accomplish this success and honour.

Along with the above, this work is also dedicated to my committed and respected

teachers

ACKNOWLEDGEMENT

I would like to convey my sincere and heartfelt gratitude to my research supervisor, Dr. R. L. H. Lalith Rajapakse, Senior Lecturer, Course Coordinator, UNESCO Madanjeet Singh Center for South Asia Water Management (UMCSAWM), University of Moratuwa for giving me an opportunity to continue my research under his invaluable guidance and the continuous support of my study with his patience, motivation and immense knowledge. His energy, vision, sincerity and motivation have deeply inspired me. It was a great privilege and honour to work and study under his guidance. Without his dedicated supervision and continued guidance, this thesis would not be successfully completed within the time frame. During my period, he consistently allowed this research to be my own work, but steered me in the right direction whenever he thought I needed it.

Further, I would like to extend my gratitude for Professor N.T.S. Wijesekera, Senior Professor of UMCSAWM, for his guidance and the encouragement for completing my master and the methodology is being taught to carry out the research and to present the research works as clear as possible on Water Resources Engineering. He was always kind enough to provide the necessary direction and support even with his tight schedules. His sincere and consistent encouragement is greatly appreciated. Then I would like to thank, all the lectures, who conducted postgraduate lectures.

Next, I would also like to thank all staff at UMCSAWM, who encouraged, inspired, supported, assisted, and sacrificed their time and efforts to help my studies of a Master's degree. I am grateful to thanks my colleagues with whom I worked together and always they supported me notwithstanding their own work. Not only that, but also I would like to extend my honest thank to Eng. D. C. S. Elakanda, Project Director, Climate Resilience Improvement Project and Eng. (Mrs). P. A. A. P. K. Pannala, Deputy Project Director (CRIP) for providing me with their support to complete the Master's degree. Moreover, it is my responsibility to thank all the organizations, who provided the data to carry out this study including Mahaweli Authority of Sri Lanka, Irrigation Department, Meteorological Department and survey Department.

Finally, I would like to thank my family, and friends for giving me the strength to finish this thesis in a fruitful manner.

TABLE OF CONTENTS

DECL	ARATION i
Abstra	ct ii
DEDIO	CATIONiii
ACKN	OWLEDGEMENT iv
TABL	E OF CONTENTSv
LIST (DF FIGURESx
LIST (DF TABLESxx
LIST (DF ABBREVIATIONSxxiv
1. In	troduction1
1.1	Overview of the Study1
1.	1.1 Hydrological modelling1
1.4 I	Problem Statement2
1.5	Objectives2
1.	5.1 Overall objective2
1.	5.2 Specific objectives
1.6	Study Area3
2 Li	terature Review
2.1	Overview6
2.2	Climate Change6
2.	3 Climate Trend in Sri Lanka7
2.	2.1 Temperature trend9
2.	2.2 Rainfall trend9
2.	2.3 Evaporation and evapotranspiration trends10
2.	2.4 Other facts on Climate Change10
2.3	Data Checking11
2.	3.1. Test for absence of trend11

2.3.2 A	Anderson-Darling test for normality	11
2.3.3 T	Test for stability of variance and mean	12
2.3.4 T	Test for absence of persistence	13
2.4	Statistical tests for climate change impacts	13
2.4.1 N	Mann-Kendall test and Sen's Slope estimator	13
2.4.2 I	nnovative Trend Analysis (ITA)	13
2.5 The C	Climate Elasticity of Runoff	14
2.6	Hydrological Modelling	14
2.6.1 E	Empirical models	15
2.6.2 C	Conceptual models	15
2.6.3. 1	Physically based models	15
2.7	Model Selection Criteria	17
2.7.1	SWAT modelling	
2.7.1.2	2 Calculating potential evapotranspiration	
3 Materials	and Methods	22
3.1	Methodology	22
3.2 Data	a and Data Checking	25
3.2.1	Data sources and data resolution	25
3.2.2	Rainfall gauging stations selection	27
3.2.3 T	Cemperature gauging stations selection	
3.3.4	Hydrometric stations selection	45
3.3.5 E	Evaporation stations selection	50
3.3.6 R	Reservoirs in the basin	
3.3	Method of Analysis of Climate Change Impacts	53
3.3.1 I	nnovative Trend Analysis (ITA)	53
3.3.2 N	Mann-Kendall (MK) test	54
3.3.3 S	Sen's Slope test	55

3.4 Analysis the current Potential Effects of Climate Change on Streamflow base	ed on
Runoff Elasticity	55
3.5.2. Hydro-meteorological inputs and reservoir inputs	56
3.5 SWAT Modelling	56
3.5.1 Key components and State variables	56
3.5.2. Modelling process, inputs and Outputs	58
3.5.3 Calibration and validation	69
3.6 Analysis of the Future Potential Effects of Climate Change on Streamflow I on Runoff Elasticity	5ased
3.6.1 Objective function of Runoff elasticity based on two-parameter client	imate 73
4 Results and Analysis	75
4.1 Decadal Averages for Annual Rainfall Totals	75
4.2 Deviation from Mean	77
4.3 Innovative Trends Analysis (ITA)	79
4.3.1 Rainfall stations	79
4.3.2 Temperature stations	83
4.3.3 Streamflow stations	84
4.4 Mann-Kendall Test results	87
4.4.1 Rainfall stations	87
4.4.2 Temperature stations	89
4.4.3 Streamflow	90
4.5 Sen's Slope test	91
4.5.1 Rainfall stations	91
4.5.2 Temperature stations	93
4.5.3 Streamflow	94
4.6 SWAT Modelling	95

4.6.1 Sensitivity analysis for calibration and verification at Glencourse hydrometric
station
4.6.2 Calibration and validation of SWAT model at Glencourse gauging station.95
4.6.3 Calibration and validation Results for Hanwella Catchment
4.6.4 Calibration and validation Results for Kitulgala Catchment111
4.7 Future Climate Scenarios111
4.7.1 LTA variation for both rainfall over runoff111
4.7.2 LTA variation for Temperature111
5 Discussion114
5.1 Data and data Period114
5.1.1 Rainfall stations114
5.1.2 Temperature stations115
5.1.3 Streamflow stations116
5.2 Statistical test results analysis117
5.2.1 Overview
5.2.2 Rainfall stations118
5.2.3 Temperature stations
5.2.4 Streamflow stations
5.3 Other Tests
5.3.1 Decadal averages and Deviation from mean
5.3.2 Innovative Trend Analysis (ITA), Mann-Kendall (MK) test and Sen's Slope
estimator121
5.4 SWAT Modelling136
5.4.1 Overview
5.4.2 Calculation of Potential Evapotranspiration (PET)136
5.4.3 Selection of model parameters and objective function
5.4.4 Model performance and Reliability of model results
5.5 Runoff Elasticity141

5.5.1 Overview
5.5.2 Current scenario14
5.5.3 Future climatic scenarios14
6 Conclusions and recommEndations
6.1 Main Conclusions14
6.2 Other Conclusions and Derivations
6.3 Recommendations
REFERENCES
APPENDIX A - STATISTICAL TEST RESULTS FOR RAINFALL GAUGING
APPENDIX B - STATISTICAL TEST RESULTS FOR TEMPERATURE GAUGIN STATIONS
APPENDIX C - DECADAL AVERAGES for ANNUAL RAINFALL TOTALS20
APPENDIX D - INNOVATIVE TREND ANALYSIS FOR ANNUAL RAINFAL TOTALS FOR THE DURATION OF 1980 TO 201621
APPENDIX E - SWAT MODELLING

LIST OF FIGURES

Figure 1-1: District Boundaries in Kelani Ganga basin
Figure 2-1: The climatic zones shifting would be expected due to climate change8
Figure 2-2: Rules for parameter regionalization. indicates parameter should increase,
indicates parameter should decrease
Figure 3-1: Methodology Flow Chart of the study
Figure 3-1: Spatial distribution of rainfall gauging stations, which shows the highest
rainfall within and nearby to the Kelani Ganga basin
Figure 3-2: Annual rainfall totals for Nawalapitiya and Maliboda rainfall stations with
outliers
Figure 3-3: Selected Rainfall stations for the analysis in Kelani Ganga basin32
Figure 3-4: Normal Distribution (top left), Double mass analysis (top right) and variation
annual rainfall totals (bottom left) and variation of normalized annual rainfall totals
(bottom right) for Avissawella Estate rainfall station
Figure 3-5: Normal Distribution (top left), Double mass analysis (top right) and variation
of annual rainfall totals (bottom left) and variation of normalized annual rainfall totals
(bottom right) for Angoda mental hospital rainfall station
Figure 3-6: Agroecological Zones in Kelani Ganga basin
Figure 3-7: Selected Temperature gauging stations in the Kelani Ganga basin40
Figure 3-8: Normal Distribution (top left), Double mass analysis (top right) and variation
of annual averages (bottom left) and variation of normalized annual averages (bottom
right) of Maximum temperature of Colombo temperature gauging station44
Figure 3-9: Normal Distribution (top left), Double mass analysis (top right) and variation
of annual averages (bottom left) and variation of normalized annual averages (bottom
right) of Minimum temperature for Colombo temperature gauging station45
Figure 3-10: Spatial distribution of each hydrometric stations and Reservoirs in the basin
Figure 3-11: Single mass curves (top) and double mass curves (bottom) for annual
average flows for selected Glencourse, Hanwella and Kitulgala hydrometric stations.49

Figure 3-13: Comparison of estimated PET by Hargreaves method and observed
Evaporation data for Seetha Eliya station51
Figure 3-14: Key components of the SWAT model
Figure 3-15: SWAT Model Schematisation for Kelani Ganga basin61
Figure 3-16: Land Use Types in Kelani Ganga basin65
Figure 3-17: Land Use for 2040 (top) and Land Use difference from current to 2040
(bottom)
Figure 3-18: Soil Types in Kelani Ganga basin67
Figure 3-19: Dominant HRUs in Kelani Ganga Basin Scale68
Figure 3-20: SWAT outputs, which can be displayed in sub-basin wise68
Figure 3-21: Pseudo rainfall and temperature values were created at each sub basin
centroid using IDW spatial averaging method71
Figure 4-1: The decadal average plots for Kenilworth_Strathellie (top left), Angoda
mental hospital (top right), Avissawella Estate (bottom left) and Weweltalawa Estate
(bottom right) key rainfall stations for annual rainfall totals75
Figure 4-2: The decadal average plots for Angoda mental hospital (top left), Colombo
(top right), Weweltalawa Estate (bottom left) and Maliboda (bottom right) key rainfall
stations for annual rainfall totals for Maha Season76
Figure 4-3: The decadal average plots for Angoda mental hospital (top left), Colombo
(top right), Holomwood Estate (bottom left) and Avissawella Estate (bottom right) key
rainfall stations for annual rainfall totals for Yala Season77
Figure 4-4: Deviation from mean plots for annual totals for Avissawella Estate (left) and
Maliboda (right) for the duration of 1960 to 201678
Figure 4-5: Deviation from mean plots for rainfall totals for Maha season for
Wewelthalawa Estate (left) and Maussakele (right) for the duration of 1960 to 201678
Figure 4-6: Deviation from mean plots for rainfall totals for Maha season for
Wewelthalawa Estate (left) and Maussakele (right) for the duration of 1960 to 201678
Figure 4-7: Innovative Trends Analysis (ITA) plots for annual totals for Angoda mental
hospital (top left), Digalla Estate (top right), Weweltalawa Estate (bottom left) and
Chesterford (bottom right)stations
Figure 4-8: Innovative Trends Analysis (ITA) plots for annual totals for Angoda mental
hospital (top left), Katunayaka (top right), Colombo (bottom left) and Campion Estate
(bottom right) stations for Maha Season

Figure 4-9: Innovative Trends Analysis (ITA) plots for annual totals for Avissawella
Estate (top left), Laxapana (top right), Canyon (bottom left) and Digalla Estate (bottom
right) stations for Yala Season81
Figure 4-10: ITA plots for annual average flows for Glencourse (top left), Hanwella (top
right) and Kitulgala (bottom left) hydrometric stations85
Figure 4-11: ITA plots for average flows for Maha season for Glencourse (top left),
Hanwella (top right) and Kitulgala (bottom left) hydrometric stations
Figure 4-12: ITA plots for average flows for Yala season for Glencourse (top left),
Hanwella (top right) and Kitulgala (bottom left) hydrometric stations
Figure 4-13: Flow Duration Curve (FDC) for the unsorted simulated flow vs sorted
observed flow for the calibration period of 1970 to 1980 (top) and for validation period
of 1982 to 1992 (bottom) for Glencourse Gauging station
Figure 4-14: Sorted simulated flow vs sorted observed flow are plotted in Flow Duration
Curve (FDC) for the calibration period (top) and validation period (bottom)100
Figure 4-15: R^2 plots for Calibration (top) and validation (bottom) durations for
Glencourse gauging station101
Figure 4-16: Comparison of the annual average observed and modelled flows for the
water years for the period of 1960 to 2016 in normal scale for the Glencourse
hydrometric station
Figure 4-17: Comparison of the annual average observed and modelled flows for the
water years for the period of 1960 to 2016 in log scale for the Glencourse hydrometric
station
Figure 4-18: Comparison of the daily observed flow and modelled flows for the duration
of calibration period in actual scale (top) in log scale (bottom) for the Glencourse
hydrometric station
Figure 4-19: Comparison of the daily observed flow and modelled flows for the duration
of validation period in actual scale (top) in log scale (bottom) for the Glencourse
hydrometric station107
Figure 4-20: Flow Duration Curve (FDC) for the unsorted simulated flow vs sorted
observed flow for the calibration period of 1980 to 1986 (top) and for validation period
of 1973 to 1980 (bottom) for Hanwella Gauging station110
Figure 4-21: LTA variation of streamflow over Rainfall for both Baseline and
Pessimistic Future Climatic Scenarios without Landuse change

Figure 4-22: LTA variation of Temperature for both Baseline and Pessimistic Future Figure 5-1: Annual average rainfall over runoff variation for the selected gauging Figure 5-2: Double Mass Analysis carried out for Ambewela(top left), Avissawella etate (top right), Castlereigh (bottom left) and Hanwella Group (bottom right)......119 Figure 5-3: ITA analysis was completed by dividing the total region into three as High, Medium and Low......123 Figure 5-4: The annual average Potential evapotranspiration (PET) variation for Figure 5-5: Cumulative annual average Runoff over Cumulative annual Rainfall totals Figure A-1: Normal Distribution (top left), Double mass analysis (top right) and variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals Figure A-2: Normal Distribution (top left), Double mass analysis (top right) and variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals (bottom right) for Ambewela......155 Figure A-3: Normal Distribution (top left), Double mass analysis (top right) and variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals (bottom right) for Angoda mental hospital......156 Figure A-4: Normal Distribution (top left), Double mass analysis (top right) and variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals Figure A-5: Normal Distribution (top left), Double mass analysis (top right) and variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals Figure A-6: Normal Distribution (top left), Double mass analysis (top right) and variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals (bottom right) for Bopaththalawa159 Figure A-7: Normal Distribution (top left), Double mass analysis (top right) and variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals

Figure A-8: Normal Distribution (top left), Double mass analysis (top right) and
variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals
(bottom right) for Canyon161
Figure A-9: Normal Distribution (top left), Double mass analysis (top right) and
variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals
(bottom right) for Castlereigh
Figure A-10: Normal Distribution (top left), Double mass analysis (top right) and
variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals
(bottom right) for Chesterford
Figure A-11: Normal Distribution (top left), Double mass analysis (top right) and
variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals
(bottom right) for Colombo164
Figure A-12: Normal Distribution (top left), Double mass analysis (top right) and
variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals
(bottom right) for Digalla Estate
Figure A-13: Normal Distribution (top left), Double mass analysis (top right) and
variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals
(bottom right) for Dunedin Estate
Figure A-14: Normal Distribution (top left), Double mass analysis (top right) and
variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals
(bottom right) for Hanwella Group167
Figure A-15: Normal Distribution (top left), Double mass analysis (top right) and
variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals
(bottom right) for Hapugasthenna Estate
Figure A-16: Normal Distribution (top left), Double mass analysis (top right) and
variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals
(bottom right) for Holmwood Estate
Figure A-17: Normal Distribution (top left), Double mass analysis (top right) and
variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals
(bottom right) for Kalatuwawa170
Figure A-18: Normal Distribution (top left), Double mass analysis (top right) and
variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals
(bottom right) for Katunayaka

Figure A-19: Normal Distribution (top left), Double mass analysis (top right) and
variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals
(bottom right) for Kenilworth
Figure A-20: Normal Distribution (top left), Double mass analysis (top right) and
variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals
(bottom right) for Labugama Tank
Figure A-21: Normal Distribution (top left), Double mass analysis (top right) and
variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals
(bottom right) for Laxapana174
Figure A-22: Normal Distribution (top left), Double mass analysis (top right) and
variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals
(bottom right) for Maliboda175
Figure A-23: Normal Distribution (top left), Double mass analysis (top right) and
variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals
(bottom right) for Maussakele
Figure A-24: Normal Distribution (top left), Double mass analysis (top right) and
variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals
(bottom right) for Pasyala177
Figure A-25: Normal Distribution (top left), Double mass analysis (top right) and
variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals
(bottom right) for Rathmalana
Figure A-26: Normal Distribution (top left), Double mass analysis (top right) and
variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals
(bottom right) for Rathnapura
Figure A-27: Normal Distribution (top left), Double mass analysis (top right) and
variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals
(bottom right) for Undugoda
Figure A-28: Normal Distribution (top left), Double mass analysis (top right) and
variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals
(bottom right) for Wagolla
Figure A-29: Normal Distribution (top left), Double mass analysis (top right) and
variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals
(bottom right) for Wewelthalawa Estate

Figure B-1: Normal Distribution (top left), Double mass analysis (top right) and variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals (bottom right) for Maximum Temperature at Badulla gauging station......184 Figure B-2: Normal Distribution (top left), Double mass analysis (top right) and variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals (bottom Figure B-3: Normal Distribution (top left), Double mass analysis (top right) and variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals (bottom Figure B-4: Normal Distribution (top left), Double mass analysis (top right) and variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals (bottom Figure B-5: Normal Distribution (top left), Double mass analysis (top right) and variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals (bottom Figure B-6: Normal Distribution (top left), Double mass analysis (top right) and variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals (bottom Figure B-7: Normal Distribution (top left), Double mass analysis (top right) and variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals (bottom right) for Maximum Temperature at Nuwara Eliya gauging station190 Figure B-8: Normal Distribution (top left), Double mass analysis (top right) and variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals (bottom Figure B-9: Normal Distribution (top left), Double mass analysis (top right) and variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals (bottom Figure B-10: Normal Distribution (top left), Double mass analysis (top right) and variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals Figure B-11: Normal Distribution (top left), Double mass analysis (top right) and variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals Figure B-12: Normal Distribution (top left), Double mass analysis (top right) and variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals (bottom right) for Miniimum Temperature at Bandarawela gauging station195 Figure B-13: Normal Distribution (top left), Double mass analysis (top right) and variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals (bottom right) for Miniimum Temperature at Colombo gauging station......196 Figure B-14: Normal Distribution (top left), Double mass analysis (top right) and variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals (bottom right) for Miniimum Temperature at Katugasthota gauging station......197 Figure B-15: Normal Distribution (top left), Double mass analysis (top right) and variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals (bottom right) for Miniimum Temperature at Katunayaka gauging station......198 Figure B-16: Normal Distribution (top left), Double mass analysis (top right) and variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals (bottom right) for Miniimum Temperature at Kurunegala gauging station199 Figure B-17: Normal Distribution (top left), Double mass analysis (top right) and variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals (bottom right) for Miniimum Temperature at Nuwara Eliya gauging station......200 Figure B-18: Normal Distribution (top left), Double mass analysis (top right) and variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals (bottom right) for Miniimum Temperature at Rathmalana gauging station......201 Figure B-19: Normal Distribution (top left), Double mass analysis (top right) and variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals Figure B-20: Normal Distribution (top left), Double mass analysis (top right) and variation annual rainfall totals (bottom left) and variation of scaled annual rainfall totals (bottom right) for Miniimum Temperature at Seetha Eliya gauging station......203 Figure C-1: Decadal averages plot for annual totals for Allupola Group, Ambewela, Figure C-2: Decadal averages plot for annual totals for Avissawella Group, Bandarawela, Balangoda Post Office estate and Bopaththalawa206 Figure C-3: Decadal averages plot for annual totals for Campion Estate, Chesterford,

Figure C-4: Decadal averages plot for annual rainfall totals for Digalla Estate, Colombo,
Dyrabba Estate and Dunedin Estate
Figure C-5: Decadal averages plot for annual rainfall totals for Hakgala Boyanical Gdns,
Hanwella Group, Hapugastenna Estate and Galatura Estate
Figure C-6: Decadal averages plot for annual rainfall totals for Kalatuwawa,
Katunayaka, Holomwood Estate and Kenilworth Strathellie
Figure C-7: Decadal averages plot for annual rainfall totals for Maliboda, Laxapana,
Labukele and Labugama Tank211
Figure C-8: Decadal averages plot for annual rainfall totals for Nuwara Eliya, Negombo,
Maussakelle and Pasyala212
Figure C-9: Decadal averages plot for annual rainfall totals for Sandringham Estate,
Rathnapura, Rathmalana and Undugoda213
Figure C-10: Decadal averages plot for annual rainfall totals for Wewelthalawa Estate,
Wagolla, Walpita and Welimada Group214
Figure D-1: Innovative trend analysis for Annual rainfall totals for Allupola Group,
Ambewela, Angoda mental hospital and Avissawella Estate
Figure D-2: Innovative trend analysis for Annual rainfall totals for Balangoda Post
Office, Bopaththalawa, Bandarawela and Avissawella Hospital
Figure D-3: Innovative trend analysis for Annual rainfall totals for Castlereigh,
Chesterford, Canyon and Campion Estate
Figure D-4: Innovative trend analysis for Annual rainfall totals for Colombo, Dyrabba
Estate, Dunedin Estate and Digalla Estate
Figure D-5: Innovative trend analysis for Annual rainfall totals for Hanwella Group,
Hakgala Botanical Grdns, Hapugastenna Estate and Galatura Estate
Figure D-6: Innovative trend analysis for Annual rainfall totals for Katunayaka,
Kenilworth Strathelle, Kalatuwawa and Holmwood Estate
Figure D-7: Innovative trend analysis for Annual rainfall totals for Maliboda, Labugama
Tank, Laxapana and Labukelle
Figure D-8: Innovative trend analysis for Annual rainfall totals for Nuwara Eliya,
Negombo, Maussakelle and Pasyala
Figure D-9: Innovative trend analysis for Annual rainfall totals for Rathmalana,
Undugoda, Rathnapura and Sandringham Estate
Figure D-10: Innovative trend analysis for Annual rainfall totals for Wagolla, Walpita,
Welimada Group and Wewelthalawa Estat

Figure E-1: Comparison of the daily observed flow and modelled flows for the first 5 years of the calibration period for the Glencourse hydrometric station in actual scale Figure E-2: Comparison of the daily observed flow and modelled flows for the first 5 years of the calibration period for the Glencourse hydrometric station in logrithmic scale Figure E-3: Comparison of the daily observed flow and modelled flows for the last 5 years of the calibration period for the Glencourse hydrometric station in actual scale Figure E-4: Comparison of the daily observed flow and modelled flows for the last 5 years of the calibration period for the Glencourse hydrometric station in logrithmic scale Figure E-5: Comparison of the daily observed flow and modelled flows for the first 5 years of the validation period for the Glencourse hydrometric station in actual scale 236 Figure E-6: Comparison of the daily observed flow and modelled flows for the first 5 years of the validation period for the Glencourse hydrometric station in logrithmic scale Figure E-7: Comparison of the daily observed flow and modelled flows for the last 5 years of the validation period for the Glencourse hydrometric station in actual scale 238 Figure E-8: Comparison of the daily observed flow and modelled flows for the last 5 years of the validation period for the Glencourse hydrometric station in logrithmic scale

LIST OF TABLES

Table 1-1: District area and percentages in Kelani Ganga basin4
Table 2-1: The Literature on Temperature variations due to Climate Change
Table 2-2: The literature on the effects of rainfall due to Climate Change
Table 2-3: The literature on the effects of evaporation and evapotranspiration due to
Climate Change
Table 2-4: The assessment of Strength and weaknesses of these three rainfall-Runoff
models16
Table 2-5: Model selection rational criteria 17
Table 2-6: Ranking for model selection 17
Table 2-7: The rules for parameter regionalization (Abbaspour, 2015) for parameter
optimisation20
Table 3-1: Data Requirement and Availability for the analysis
Table 3-2: Selected of Rainfall gauging stations for gap-filling in and around Kelani
Ganga basin27
Table 3-3: The highest rainfall long term averages (LTA) within the basin among the
four stations and three other stations in and nearby to the basin
Table 3-4: Summary of annual averages (LTA) and Standard Deviation (SD) variation
for annual, Maha season and Yala season in selected rainfall stations
Table 3-5: Summary of statistical results for 41 gap-filled rainfall stations
Table 3-6: Temperature stations were selected for the gap-filling process
Table 3-7: Summary of annual averages (LTA) and Standard Deviation (SD) variation
for annual, Maha season and Yala season in selected temperature gauging stations42
Table 3-8: Summary of statistical results for 10 gap-filled temperature gauging stations
Table 3-9: Catchment Area of each selected gauging station 45
Table 3-10: Summary of annual averages (LTA) and Standard Deviation (SD) variation
of streamflow for selected hydrometric stations47
Table 3-11: Summary of averages (LTA) and Standard Deviation (SD) variation for
Maha season and Yala season for the selected hydrometric stations
Table 3-12: Data availability of the two stations of Evaporation

Table 3-13: Summary of annual averages (LTA) and Standard Deviation (SD) variation			
of calculated ET_0 for annual for selected Evaporation gauging stations			
Table 3-14: Reservoir/ Pond parameters			
Table 3-15: The key state variables of SWAT model			
Table 3-16: Summary Statistics of Pre-processed Land use Types			
Table 3-17: Future land use changes in the Kelani Ganga basin			
Table 3-18: Maussakelle and Castlereigh Reservoir Characteristics			
Table 4-1: ITA trend indicator D values for annual rainfall totals, Maha and Yala seasons			
Table 4-2: The trend indicator (D) values for annual average Tmax, Average values for			
Maha and Yala seasons			
Table 4-3: The trend indicator (D) values for annual average T_{min} , Average values for			
Maha and Yala seasons			
Table 4-4: The trend indicator (D) values for annual average flows, Average values for			
Maha and Yala seasons			
Table 4-5: The colours used to show the significance of trends			
Table 4-6: Summary results of Z values for annual rainfall totals, four rainfall seasons			
and totals for Maha and Yala seasons for the selected 41 rainfall gauging stations88			
Table 4-7: Summary results of Z values for T_{max} values for the selected 10 temperature			
gauging stations for annual averages, averages for four rainfall seasons and averages for			
Maha and Yala seasons			
Table 4-8: Summary results of Z values for Tmin values for the selected 10 temperature			
gauging stations for annual averages, averages for four rainfall seasons and averages for			
Maha and Yala seasons90			
Table 4-9: Summary results of Z values for flow values for the selected 3 hydrometric			
stations for annual averages, averages for four rainfall seasons and averages for Maha			
and Yala seasons			
Table 4-10: Summary results of Q_{med} values, which are obtained from Sen's Slope test			
for annual rainfall totals, four rainfall seasons and totals for Maha and Yala seasons for			
the selected 41 rainfall gauging stations91			
Table 4-11: Summary results of Q_{med} values, which are obtained from Sen's Slope test			
for annual average maximum Temperature (T_{max}) , four rainfall seasons and annual			
averages for Maha and Yala seasons for the selected 10 temperature gauging stations93			

Table 4-12: Summary results of Q_{med} values, which are obtained from Sen's Slope test
for annual average minimum Temperature (T_{min}), four rainfall seasons and annual
averages for Maha and Yala seasons for the selected 10 temperature gauging stations94
Table 4-13: Summary results of Q_{med} values, which are obtained from Sen's Slope test
for annual average flow, four rainfall seasons and annual averages for Maha and Yala
seasons for the selected 3 hydrometric stations94
Table 4-14: Four parameters are mainly used to optimization at Glencourse hydrometric
station95
Table 4-15: The optimised values for objectives functions during calibration and
validation for Glencourse gauging station102
Table 4-16: The optimised values for objectives functions during the calibration and the
validation for Hanwella gauging station108
Table 4-17: The optimised values for objectives functions during calibration and
validation for Kitulgala gauging station111
Table 4-18: LTA variation of streamflow and Rainfall for both Baseline and Pessimistic
Future Climatic scenarios112
Table 4-19: LTA variation of Temperature for both Baseline and Pessimistic Future
Climatic scenarios for Glencourse hydrometric station
Table 5-1: Average annual rainfall variation in the basin
Table 5-2: Average annual temperature variation in the basin
Table 5-3: Comparison of flow reduction between two durations (from the period of
1960 - 2016 to the period of 1980 - 2016)
Table 5-4: The trend analysis of rainfall stations in and around Kelani ganga basin based
on ITA, MK and Sen's Slope estimates on annual, Maha season and Yala seasons125
Table 5-5: Identified significant trends for annual, Maha and Yala seasons during ITA
test above and below the ± 10 % error, by identifying the regions as High, Medium and
Low
Table 5-6: The trend analysis of Temperature stations in and around Kelani ganga basin
on T_{max} averages for annual, Maha season and Yala seasons based on ITA, MK and Sen's
Slope estimates
Table 5-7: The trend analysis of Temperature stations in and around Kelani ganga basin
on T_{min} averages for annual, Maha season and Yala seasons based on ITA, MK and Sen's
Slope estimates

Table 5-8: The trend analysis of flow at hydrometric stations in and around Kelani Ganga
basin on averages for annual, Maha season and Yala seasons based on ITA, MK and
Sen's Slope estimates
Table 5-9: The trend analysis of rainfall stations in and around Kelani ganga basin based
on ITA, MK and Sen's Slope estimates on four rainfall seasons133
Table 5-10: The trend analysis of selected hydrometric stations in Kelani ganga basin
based on ITA, MK and Sen's Slope estimates on four rainfall seasons135
Table 5-11: The performance of objective functions for Calibration and validation period
for each flow region i
n FDC140
Table 5-12: The Climate Elasticity in the Kelani Ganga basin for the period of 1980 to
2016143
Table 5-13: Climate elasticity was estimated for Glencourse hydrometric station for the
Baseline and Future Pessimistic Scenario144
Table E-1: Summary Statistics of Processed Land Use Types

 Table E-2: Summary Statistics of Processed Soil Classes
 228

Table E-3: Land Use Class Coverage - Pre- and Post- HRU Definition......230

Table E-4: Soil Class Coverage - Pre- and Post- HRU Definition231

LIST OF ABBREVIATIONS

Abbreviation	Description
CC	Climate Change
CEB	Ceylon Electricity Board
DEM	Digital Elevation Model
DSWRPP	Dam Safety, Water Resources Planning Project
ETo	Evapotranspiration
FDC	Flow Duration Curve
FIM	First Inter Monsoon
FSL	Full Supply Level
FPM	FAO-56 Penman-Monteith equation
GCM	Globle Climatic Models
GIS	Geographic Information System
HG	Hargreaves equation
HRUs	Hydrological Response Units
ID	Irrigation Department
IDW	Inverse Distance Weighting
IPCC	Intergovernmental Panel on Climate Change
ITA	Innovative Trend Analysis
LHGu	Modified linear regression calibrated HG equations
LIDAR	Light Detecting And Ranging
LTA	Long term Average
LUPPD	Landuse Policy Planning Department

m AMSL	m Above Mean Sea Level
MOL	Minimum Operating Level
МСМ	Million Cubic Meters
МК	Mann-Kendall test
NEM	North East Monsoon
NWSDB	National Water Supply and Drainage Board
PET	Potential Evapotranspiration
SD	Standard Deviation
SIM	Second Inter Monsoon
SSSSL	Soil Science Society of Sri Lanka
SSSSL	Soil Science Society of Sri Lanka
SWAT	Soil Water Assessment Tool
SWM	South West Monsoon
Tavg	Average Temperature
T _{max}	Maximum Temperature
T _{min}	Minimum Temperature
RCM	Regional Climatic Models
RCP	Regional Concentration Pathways
RMSE	Root-mean-squared errors
UNCED	UN conference on development and Environment
WMO	World Meteorological Organisation