EVALUATION OF TANK MODEL PARAMETERS FOR SPATIAL TRANSFERABILITY WITHIN KALU RIVER BASIN OF SRI LANKA

Syed Mustafa Hedait

(189239K)

Degree of Master of Science

Department of Civil Engineering

University of Moratuwa Sri Lanka

September 2019

EVALUATION OF TANK MODEL PARAMETERS FOR SPATIAL TRANSFERABILITY WITHIN KALU RIVER BASIN OF SRI LANKA

Syed Mustafa Hedait

(189239K)

Supervised by Professor N.T.S Wijesekera

Thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Water Resources Engineering and Management

> UNESCO Madanjeet Singh Centre for South Asia Water Management (UMCSAWM)

> > Department of Civil Engineering

University of Moratuwa Sri Lanka

September 2019

DECLARATION

I hereby declare that, this is my own work and this thesis does not incorporate without acknowledgement of any material previously submitted for a Degree or Diploma in any other University or Institute of higher learning to the best of my knowledge and belief. It does not contain any material previously published or written by another person except where the acknowledgment is made in text. Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, as whole or a part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or

books).

UOM Verified Signature

Syed Mustafa Hedait

2019.09.17 Date

The above candidate has carried out research for the Master's thesis under my supervision.

1

UOM Verified Signature

Professor N.T.S. Wijesekera

2019.09.25 Date

EVALUATION OF TANK MODEL PARAMETERS FOR SPATIAL TRANSFERABILITY WITHIN KALU RIVER BASIN OF SRI LANKA

ABSTRACT

Increasing population, varying climatic condition, and water crisis necessitate water resource planning and development. Incorporating the subwatershed management approach leads to viable options when making decisions on water resources planning and development. Meanwhile, the approach needs streamflow management by incorporating spatial variability of characteristics which requires a hydrologic model and estimation of parameters with gauged data. However, due to non-availability of gauged streamflow at the subwatershed level hinders the estimation of model parameters for each subwatershed. Therefore, it's necessary to identify a suitable lumped model and evaluate the transferability of model parameters for streamflow estimation, which could provide important insights to support the planning and development of watershed management in a distributed manner.

In this study, first, an extensive review was conducted on lumped conceptual hydrologic models to support and facilitate the information for choosing a suitable lumped model for the study. Secondly, the model calibrated and validated using eight years of daily input data from 2009/2010 to 2016/2017, using a semi-automatic calibration method for Ellagawa main and Ratnapura subwatershed of Ellagawa. Hereafter, the calibrated and validated parameters for both watersheds were compared to find out the variation and similarities of parameters. Then, the calibrated parameters for Ellagawa main watershed transferred to Ratnapura and from Ratnapura to Ellagawa watershed, and the applicability of the parameters transfer evaluated in the main and subwatershed for streamflow estimation.

Attribute ranks, of the assessment, revealed that the Tank model with having 4.2 scores got high ranks in the shortlisted 4 models. The model successfully calibrated with the MRAE values of 0.450 for Ellagawa and 0.415 for Ratnapura watershed. The calibrated parameters verified with the MRAE values of 0.452 and 0.361 for Ellagawa and Ratnapura watershed respectively. When the calibrated parameters for Ellagawa transferred to Ratnapura and from Ratnapura to Ellagawa for the data period from 2009/2010 to 2016/2017 which was same for both watersheds, the transferred parameters to Ratnapura simulated the overall streamflow of the watershed with significant MRAE value of 0.445, while transferred parameters of Ratnapura to Ellagawa, showed a decline in the model performance with the MRAE value of 0.551.

Findings of the study revealed that the Tank model is the right lumped conceptual model for the transferability of parameters across the scale in a watershed. In the first case of parameter transfer of the model from main to subwatershed the transferred parameters estimated the subwatershed response with a high level of accuracy. Similarly, the calibrated parameters of the subwatershed estimated the behavior of the main watershed satisfactorily, while, compared to the first case the model showed a significant decline in the performance. This indicates the applicability of a calibrated lumped model of the main or subwatershed to other ungauged sub or main watershed for streamflow estimation to achieve the objective of subwatershed management and accurately make the decisions on water resources planning and management.

Keywords: Subwatershed Management, Parameter Transferability, Lumped Modeling

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my research supervisor, Professor N.T.S Wijesekera for the continuous support of my study, for his patience, motivation, and immense knowledge. Without his dedicated supervision and continued guidance, this thesis would not be in success. I am grateful to him for spending his valuable time in materializing this research work in time. He consistently allowed this research to be my own work but steered me in the right direction whenever he thought I needed it.

I will never hesitate to convey my thanks to the course coordinator Dr. R.L.H Rajapakse by extending all necessary help. He was kind enough to provide help and support with his busy schedule. His sincere and consistent encouragement is greatly appreciated.

I am grateful to Mr. Wajira Kumarasinghe whole looked after day to day needs during the research period, would thank him for his help and support all the way during this research work.

My thanking list also includes the late Shri Madanjeet Singh and the University of Moratuwa for furnishing this outstanding opportunity to study towards a Master's Degree of Water Resource Engineering and Management, at UNESCO Madanjeet Singh Centre for South Asia Water Management, Department of Civil Engineering, University of Moratuwa, Sri Lanka.

CONTENTS

DE	CLA	RAT	ION	i
AE	STR	ACT		ii
AC	ACKNOWLEDGEMENTiii			
LIS	LIST OF FIGURESviii			
LIS	ST OF	F TA	BLES	xi
1 INTRODUCTION				
1	.1	Ove	rview	1
1	1.2 Problem Statement			6
1	.3	Obj	ective of the Study	6
	1.3.	1	Overall objective	6
	1.3.	2	Specific objective	6
2	LIT	ERA	TURE REVIEW	7
2	2.1	Gen	eral	7
2	2.2	Wat	ershed Management	8
2	2.3	Wat	ershed Models	9
2	2.4	Stat	us of Lumped Models for Watershed Management	11
2	2.5		nsferability of Model Parameters	
2	2.6	Sele	ction of Model	14
	2.6.	1	Description of shortlisted models	15
	2.6.	2	Lumped hydrologic models	15
	2.6.	3	IHACRES model	16
	2.6.	4	Snow Melt-Runoff Model	16
	2.6.	5	WATBAL model	17
	2.6.	б	Tank model	
	2.6.	7	Comparison of selected models	19
	2.6.	8	Evaluation of the Criteria for Model Selection	
2	2.7	Obj	ective Functions	
	2.7.	1	The Nash-Sutcliff Efficiency	
2.7.2 2.7.3		2	The Mean Ratio of Absolute Error (MRAE)	
		3	The Mean Absolute Percentage Error (MAPE)	
	2.7.	4	The Root Mean Square Error (RMSE)	

	2.7.	5	Identification of criteria for the selection of objective function	. 32
	2.7.	6	Evaluation of criteria for objective functions	. 33
	2.8	Cali	ibration and Verification of Hydrologic Models	. 33
	2.9	Wa	rm-up Period	. 34
	2.10	Sele	ection of Tank Model Structure and Parameters	. 35
	2.11	Opt	imization of the Tank Model Parameters	. 37
	2.12	Sele	ection of Suitable Method for Estimation of Areal Average Rainfall	. 38
	2.13	Ider	ntification of Low, Medium, and High Flow Regions	. 40
	2.14	Filli	ing in the Missing Data	.41
3	ME	THC	DOLOGY	. 43
4	DA	TA A	AND DATA SCREENING	. 46
	4.1	Dat	a Checking Methods	. 46
	4.1.	1	Exploratory data analysis	. 46
	4.1.	2	Statistical methods for data screening	. 46
	4.2	Stu	dy Area	. 47
	4.3	Dat	a Summary	. 49
	4.4	Vis	ual Data Checking	. 49
	4.4.	1	Rainfall data	. 50
	4.4.	2	Streamflow data	. 51
	4.4.	3	Evaporation data	. 51
	4.4.	4	Daily data screening	. 51
	4.4.	5	Monthly and annual data screening	. 56
	4.5	Anr	ual Water Balance	. 58
	4.5.	1	Comparison of the runoff coefficient and evaporation at Ellagawa	. 59
	4.5.	2	Comparison of the annual rainfall and streamflow of Ellagawa	. 60
	4.5.	3	Comparison of the runoff coefficient and evaporation at Ratnapura	. 61
	4.5.	4	Comparison of the annual rainfall and streamflow of Ratnapura	. 61
	4.6	Sea	sonal streamflow response to rainfall	. 62
	4.7	Tes	t of data for the absence of the trend	. 64
	4.8	Tes	t of Data for Consistency and Homogeneity	. 65
5	AN	ALY	'SIS	. 66
	5.1	Esti	mation of Areal Average Rainfall	. 66

5.2	Cla	ssification of Streamflow	66
5.3	Co	mparison of Watersheds Properties	69
5	.3.1	Comparison of elevation	69
5	.3.2	Comparison of slope	70
5	.3.3	Comparison of soil types	71
5	.3.4	Comparison of land use	72
5.4	Mo	del Structure and Parameters	74
5.5	Op	timization of Tank Model Parameters	76
5	.5.1	Warm-up period of the model for Ellagawa watershed	76
5	.5.2	Calibration of the model for Ellagawa watershed	77
5	.5.3	Verification of the model for Ellagawa watershed	80
5	.5.4	Warm-Up Period of Model for Ratnapura Watershed	83
5	.5.5	Calibration of the model for Ratnapura watershed	84
5	.5.6	Verification of the model for Ratnapura watershed	87
5.6	Tra	nsfer of Model Parameters	90
5	.6.1	Transfer of model Parameters from Ellagawa to Ratnaupura	90
5	.6.2	Transfer of model parameters from Ratnapura to Ellagawa	94
6 R	RESUL	TS AND DISCUSSION	99
6.1	Mo	del Modification	99
6.2	Ide	ntification and Comparison of the Initial Condition of the Model	99
6.3	Ide	ntification and Comparison of the Streamflow Thresholds1	00
6.4	Par	ameters Optimization and Evaluation Criteria of the Tank Model 1	01
6.5	Ide	ntification of Suitable Option for Parameter Transferability1	02
6.6	Co	mparison of the Parameters for Ellagawa and Ratnapura Watersheds . 1	05
6	.6.1	Comparison of the parameters controlling surface and subsurface flows 1	05
6	.6.2	Comparison of the Parameters Controlling Intermediate Flow 1	07
6	.6.3	Comparison of the parameters controlling sub-base and base Flow. 1	07
6	.6.4	Comparison of the Parameters Controlling Infiltration1	08
6.7	Co	mparison of the Water Balance Errors for Parameters Transfer	08
6	.7.1	Transfer of optimized parameters from Ellagawa to Ratnapura 1	08
6	.7.2	Transfer of optimized parameters from Ratnapura to Ellagawa 1	10
6.8	Co	mparison of the Runoff Coefficient for Parameters Transfer	12

6.8.1	Transfer of Optimized Parameters from Ellagawa to Ratnapura 112	
6.8.2	Transfer of optimized parameters from Ratnapura to Ellagawa 113	
6.9 Co	mparison of the Model Performance Considering the flow thresholds 114	
6.9.1	Transfer of Optimized Parameters from Ellgawa to Ratnapura114	
6.9.2	Transfer of optimized parameters from Ratnapura to Ellagawa 115	
7 CONC	LUSIONS	
8 RECON	MMENDATIONS117	
REFERENCES		
ANNEX A – Data		
ANNEX B – Data Checking		
ANNEX C – Methodology		
ANNEX D – Analysis		

LIST OF FIGURES

Figure 1-1 Map of Kalu Ganga river basin with Ellagawa watershed
Figure 1-2 Map of Kalu Ganga river basin with Ratnapura watershed
Figure 3-1 Methodology flow chart
Figure 4-1 Map of Kalu Ganga river basin with Ellagawa and Ratnpura watershed 48
Figure 4-2 Ellagawa streamflow response to Thiessen rainfall (Calibration period)52
Figure 4-3 Ellagawa streamflow response to Thiessen rainfall (Verification period) 53
Figure 4-4 Ratnapura streamflow response to Thiessen rainfall (Calibration period). 54
Figure 4-5 Ratnapura streamflow response to Thiessen rainfall (Verification period) 55
Figure 4-6 Variation of the monthly average rainfall of stations
Figure 4-7 Annual rainfall variation at Ellagawa and Ratnapura watershed
Figure 4-8 Annual water Balance of Ellagawa watershed
Figure 4-9 Annual water balance of Ratnapura watershed
Figure 4-10 Comparison of annual evaporation and runoff coefficient at Ellagawa. 60
Figure 4-11 Comparison of the annual rainfall and streamflow at Ellagawa60
Figure 4-12 Comparison of annual evaporation and runoff coefficient at Ratnapura 61
Figure 4-13 Comparison of the annual rainfall and streamflow at Ratnapura
Figure 4-14 Maha season streamflow response to rainfall at Ellagawa63
Figure 4-15 Yala season streamflow response to rainfall at Ellagawa
Figure 4-16 Maha streamflow response to rainfall at Ratnapura
Figure 4-17 Yala streamflow response to rainfall at Ratnapura
Figure 5-1 Identification of streamflow thresholds of Ellagawa watershed67
Figure 5-2 Identification of streamflow thresholds of Ratnapura watershed
Figure 5-3 Elevation maps of Ellagawa and Ratnaura watersheds
Figure 5-4 Slope maps of Ellagawa and Ratnapura watersheds71
Figure 5-5 Soil maps of Ellagawa and Ratnapura watersheds
Figure 5-6 Land maps of Ellagawa and Ratnapura watersheds73
Figure 5-7 Schematic diagram of standard Tank model74
Figure 5-8 The behavior of soil moisture content at Ellagawa watershed76
Figure 5-9 Model performance during calibration for Ellagawa watershed77
Figure 5-10 Annual water balance of Ellgawa watershed for the calibration period. 78

Figure 5-11 Hydrograph match for the calibration period of Ellagaw watershed79 Figure 5-12 Flow duration curve match for the calibration period of Ellagawa....... 80 Figure 5-13 Annual water balance of Ellgawa watershed for the verification period 81 Figure 5-14 Hydrograph match for the verification period of Ellagaw watershed 82 Figure 5-15 Flow duration curve match for the verification period of Ellagawa 83 Figure 5-17 Model performance for the calibration period of Ratnapura watershed 84 Figure 5-18 Annual water balance of Ratnapura watershed for the calibration period 85 Figure 5-19 Hydrograph match for the calibration period of Ratnapura watershed...86 Figure 5-20 Flow duration curve match for the calibration period of Ratnapura 87 Figure 5-21 Annual water balance of Ratnapura watershed for the verification period88 Figure 5-22 Hydrograph match for the verification period of Ratnapura watershed. 89 Figure 5-23 Flow duration curve match for the verification period of Ratnapura.....90 Figure 5-25 Hydrographs match for parameter transfer from Ellagawa to Ratnapura . 92 Figure 5-26 Hydrographs match for parameter transfer from Ellagawa to Ratnapura. 93 Figure 5-27 Flow duration curve matching for parameter transfer to Ratnapura 94 Figure 5-28 Annual water balance when parameter transfer to Ellagawa watershed 95 Figure 5-29 Hydrographs match for parameter transfer from Ratnapura to Ellagawa. 96 Figure 5-30 Hydrographs match for parameter transfer from Ratnapura to Ellagawa . 97 Figure 6-1 Comparison of water balance errors for parameter transfer to Ratnapura 110 Figure 6-2 Comparison of water balance errors for parameter transfer Ellagawa...111 Figure 6-3 Comparison of runoff coefficients for parameter transfer to Ratnapura 113 Figure 6-4 Comparison of runoff coefficient for parameter transfer to Ellagawa ... 114 Figure B-1 Semi-log plot of Ellagawa streamflow response to Halutra rainfall.....132 Figure B- 2 Semi-log plot of Ellagawa streamflow response to Halutra rainfall..... 133 Figure B-3 Semi-log plot of Ellagawa streamflow response to Ratnapura rainfall. 134 Figure B-4 Semi-log plot of Ellagawa Streamflow response to Ratnapura rainfall 135 Figure B-5 Semi-log plot of Ellagawa Streamflow response to Alupola rainfall 136 Figure B-6 Semi-log plot of Ellagawa streamflow response to Alupola rainfall..... 137 Figure B-7 Semi-log plot of Ellagawa streamflow response to Landsdown rainfall 138

Figure B-8 Semi-log plot of Ellagawa streamflow response to Landsdown rainfall139 Figure B-9 Semi-log plot of Ellagawa streamflow response to Wellandura rainfall140 Figure B-10 Semi-log plot of Ellagawa streamflow response to Wellandura rainfall 141 Figure B-11 Semi-log plot of Ratnapura streamflow response to Ratnapura rainfall142 Figure B-12 Semi-log plot of Ratnapura streamflow response to Ratnapura rainfall 143 Figure B-13 Semi-log plot of Ratnapura streamflow response to Alupola rainfall. 144 Figure B-14 Semi-log plot of Ratnapura streamflow response to Landsdown rainfall. 145 Figure B-15 Semi-log plot of Ratnapura streamflow response to Landsdown rainfall 146 Figure B-16 Semi-log plot of Ratnapura streamflow response to Wellandura rainfall 147 Figure B-17 Semi-log plot of Ratnapura streamflow response to Wellandura rainfall 148 Figure B-18 Ellagawa monthly streamflow response to Thiessen rainfall 149 Figure B-19 Ellagaw monthly streamflow response to Thiessen rainfall 150 Figure B-20 Double mass curve for rainfall data – Ellagawa watershed...... 151 Figure D-1 Soil moisture behaviour of Tank model in calibration period- Ellagawa.. 155 Figure D-2 Soil moisture behaviour of Tank model in calibration period- Ratnapura 156 Figure D-3 Runoff components from Tank model in calibration period- Ellagawa 157 Figure D-4 Runoff components from Tank model in calibration period-Ratnapura 158 Figure D-5 Monthly hydrograph matching for calibration period of Ellagawa...... 159 Figure D-6 Monthly hydrograph matching for verification period of Ellagawa 159 Figure D-7 Monthly hydrograph matching for calibration period of Ratnapura 159 Figure D-8 Monthly hydrograph matching for verification period of Ratnapura....159 Figure D-9 Monthly hydrograph matching for parameter transfer to Ratnapura..... 160 Figure D-10 Monthly hydrograph matching for parameter transfer to Ellagawa 160

LIST OF TABLES

Table 2-1 Qualitative Scale of Criteria for Evaluation	24
Table 2-2 Comparison of selected lumped models	26
Table 2-3 Changing the qualitative weightage to quantitative	27
Table 2-4 Attribute ranks of objective functions	33
Table 4-1 Distribution of gauging stations of Ellagawa watershed	47
Table 4-2 Distribution of gauging stations of Ratnapura watershed	47
Table 4-3 Data summary of Ellagawa and Ratnapura watershed	49
Table 4-4 Rainfall station details of Ellagawa and Ratnapura watersheds	50
Table 4-5 Missing days in rainfall data of Ellagawa and Ratnapura	50
Table 4-6 Streamflow Gauging Stations Details	51
Table 4-7 Evaporation station details	51
Table 4-8 Comparison of the monthly average rainfall of stations	56
Table 4-9 Comparison of the annual average rainfall of stations	57
Table 4-10 Annual water balance of Ellagawa watershed	58
Table 4-11 Annual water balance of Ratnapura watershed	59
Table 4-12 Seasonal streamflow response to rainfall at Ellagawa	62
Table 4-13 Seasonal streamflow response to rainfall at Ratnapura	63
Table 5-1 Thiessen areas and weightage of rainfall stations at Ellagawa	66
Table 5-2 Thiessen areas and weightage of rainfall stations at Ratnapura	66
Table 5-3 Identification of streamflow thresholds of Ellagawa watershed	67
Table 5-4 Identification of streamflow thresholds of Ratnapura watershed	68
Table 5-5 Comparison of Ellagawa and Ratnapura watersheds properties	69
Table 5-6 Soil Comparison of Ellagawa and Ratnapura watershed	72
Table 5-7 Model performance indicators	77
Table 5-8 Annual water balance of Ellgawa watershed for the calibration period	78
Table 5-9 Model performance during verification for Ellagawa watershed	80
Table 5-10 Annual water balance of Ellgawa watershed for the verification period	81
Table 5-11 Model performance indicators	84
Table 5-12 Annual water balance of Ratnapura watershed for the calibration period	85
Table 5-13 Model performance during verification for Ratnapura watershed	87

Table 5-14 Annual water balance of Ratnapura watershed for the verification period...88 Table 5-15 Model performance for parameters transfer from Ellagawa to Ratnapura.. 90 Table 5-17 Model performance for parameters transfer from Ellagawa to Ratnapura...94 Table 6-1 Comparison of Initial soil moisture of Ellagawa and Ratnapura watersheds 100 Table 6-2 Identification and comparison of streamflow thresholds101 Table 6-3 Strength and limitations of the options for parameter transferability..... 104 Table 6-4 Comparison of parameters controlling surface and subsurface flow...... 106 Table 6-5 Comparison of parameters controlling the intermediate flow 107 Table 6-6 Comparison of parameters controlling the sub base and base flow...... 107
 Table 6-7 Comparison of parameters controlling the process of infiltration
 108
 Table 6-8 Comparison of water balance errors for parameter transfer to Ratnapura... 109
 Table 6-10 Comparison of runoff coefficients for parameter transfer to Ratnapura 112
 Table 6-11 Comparison of runoff coefficient for parameter transfer to Ellagawa .. 113 Table A-1 Thiessen average rainfall data – Ellagawa watershed 128

 Table A-2 Streamflow data – Ellagawa watershed
 128

 Table A-3 Thiessen average rainfall Data – Ratnapura watershed
 129

 Table A-4 Streamflow data – Ratnapura watershed
 129

 Table A-5 Pan evaporation data – Ratnapura watershed
 130

Table D-1 Monthly output of the model for the calibration period of Ellagawa.....161 Table D-2 Monthly output of the model for the verification period of Ellagawa....162 Table D-3 Monthly output of the model for the calibration period of Ratnapura... 163 Table D-4 Monthly output of the model for the verification period of Ratnapura . 165 Table D-5 Monthly model output for parameter transfer to Ratnapura watershed. 166 Table D-6 Monthly model output for parameter transfer to Ellagawa watershed .. 169