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ABSTRACT 

Smartphones has become one of the most used devices in day to day life. Even 

though they already have so many features, they still lack the ability to identify 

user’s context and the intentions. This is important for improving user experience 

and make existing mobile application more user friendly. The issue is that there is no 

underlying support either from operating system or software level to predict the 

user’s intensions based on user context. 

The main objective of this research is to come up with a framework to predict user 

intentions based on user context by identifying activity patterns. The framework 

must be run in-device so that it will function irrespective of the network connectivity. 

We selected “clustering” as the approach because it does not involve high 

computation power or complexities to run in-device. We identify activity patterns by 

clustering the user’s actions and then predict based on the closest cluster for the 

given time. We have evaluated K-means and Expectation-maximization (EM) 

clustering algorithms for compatibility for the framework. Unlike computers, mobile 

devices do not have powerful CPUs or memory. Therefore, we measured CPU time 

and memory usage of these algorithms to select the best. To maintain low-end device 

compatibility, we tuned in the algorithm parameters to achieve high accuracy 

keeping the CPU and memory consumption in low levels. 

In conclusion, we have successfully identified that EM clustering is suitable for high-

end devices and it gives high accuracy while K-means is suitable for low-end devices 

with acceptable accuracy. We have implemented the framework as an Android 

library and developed a proof of concept application by embedding the implemented 

library to show that this research will actually enables application developers to give 

better user experience to their applications. 
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INTRODUCTION 
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1. INTRODUCTION 

1.1 Background 

People use a number of digital devices to interact with the world around them in their 

day to day activities. From turning off the alarm in the mobile phone in the morning 

to turning off the bedroom light at night, these interactions follow a pattern specific 

to a user with a sequence of repetitive actions. Let’s take a person who does a 9 to 5 

day job for an example. They wake up at specific time, commute to work, leave work 

around same time, commute home, eat dinner and sleep. People use a number of 

devices to get help with these activities including mobile phones and virtual 

assistance devices like Alexa and Google Home. These devices can be set up to 

interact with each other as well. 

The concept of “IoT (Internet of Things)” is based on the idea of machines and the 

devices communicating with each other. It will be helpful for the machines to learn 

the user’s behavior to make the best use of the machine to machine communication. 

Currently, more people in the world have access to a mobile phone worldwide than 

clean running water [16]. In some cases, people tend to use more than one mobile 

phone. According to the office of national statistics in UK, in 2018, among all adults, 

78% used mobile phones or smartphones to access Internet [17].  

 

 

Figure 1.1 Devices used to access the internet, by age group in UK 2018 
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Mobile phones have various models and makes with a number of different sensors 

embedded. The count of the sensors bundled in high end smart phones, sometime 

goes up-to more than 10. But majority of the smart phone users do not use these 

sensors. The number of mobile applications which uses these sensors has always 

been low. For example, GPS sensor is only used with applications dedicated to 

navigation like Google Maps and the light sensor is used only for detecting 

environmental light intensity based on which the brightness of the screen is 

regulated. 

The opportunity to use these sensors and develop something beyond their typical use 

cases is always there. One good example for this is using the mobile phone camera 

and flashlight to detect the heart rate of the user. When the user put the finger in both 

flashlight and the camera, the finger will be light up by the flashlight in red color. 

The color variation due to the blood flow in the finger can be identified by the 

camera [18]. 

We can use these sensors to capture the data frequently and identify the user 

activities or the user context. Additionally, data recorded from the mobile 

applications such as call records, SMS messages can also be used for the same 

functionality. Once the activities are mapped with user context it can search for 

identifying patterns. These patterns can be used to predict future user activities 

depending on the user context for a given timeframe.  

1.2 Problem Statement 

Smartphones has been improved a lot in the space of sensors and applications. But 

people still have to manually do the same thing over and over again. Consider a 

situation where user drives to work every day and open Maps while driving to find 

the best route. With the amount of sensors mounted in the mobile devices, we can 

identify this behavior pattern and open the Maps application or suggest opening the 

maps application when the user gets into the car in the morning.  



 4 

The main research problem we are trying to address from this research is to find a 

mechanism to reduce these repetitive actions by users by leveraging the data 

captured from the embedded sensors and the installed applications in the mobile. 

1.3 Objectives  

The main objective of this research is to develop a pervasive framework to identify 

the user behavior patterns and predict the activities in real-time, so the user does not 

have to do repetitive actions. 

 Other Objectives 

 Research on how to identify the behavior patterns from the user activities and 

prediction. 

 Come up with a good solution that suites both high-end and low-end devices 

without significantly draining battery. 

 Develop a framework for a selected mobile operating system to predict the 

user actions based on the behavior patterns. 

 Develop a proof of concept application by using the developed framework. 

1.4 Overview of the Document 

This document consists of five chapters. The first chapter gives the introduction to 

the research by presenting the background of mobile devices and sensors. It will 

present the research problem which we are trying to solve and the objectives of the 

research. 

The second chapter contains the finding of the related literature. Starting from the 

context identification mechanisms which includes data collection and feature 

extraction. It is followed by activity recognition and activity prediction. 

The third chapter describes the identified methodology to solve this problem. This 

includes data collection, data training and prediction, evaluations of the selected 

algorithms and the implementing the framework. 



 5 

Fourth chapter contains the information regarding the high-level flow of the 

framework, system architecture and implementation details of the data collection and 

proof of concept applications. 

In the fifth chapter we have included the results of different approaches we took 

when predicting and their accuracy levels. 

Last chapter was dedicated to discuss the research contribution from the research 

along with the limitations of the approach we took and future directions where we 

can extend the framework. 
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CHAPTER 2 

LITERATURE REVIEW  
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2. LITERATURE REVIEW 

This chapter is organized in the following way. 

 Context identification by collecting the sensor data and feature extraction 

 Activity Recognition 

 Activity Prediction 

 

2.1 Context Identification 

User context is a broad topic and it can be what a user is doing, where the user is 

living, how the environmental and user condition etc. Identifying the user context is 

challenging for the computing devices due to the variations of different user 

behaviors. Several solutions are proposed in past research work to identify context 

using sensors but accuracy need to be improved on these solutions. A generic process 

to identify the context is visualized in Figure 2.1 [1]. 

 

In the Step one, raw data is gathered from the multiple sensors and stored for later 

processing. Pre-processing is done in order to improve the efficiency for the later 

steps. For example, data is gathered as a stream and stored as a batch of data sets. 

This preprocessing step will reduce the number of disk operations which eventually 

affects the energy consumption of the mobile device as well as make the raw data 

more organized so that it will simplify the processing in later steps. 

In step two, high level information is generated by processing the raw sensor data. 

This is done by modelling, training, analyzing and inferring. A suitable method is 

Step 1: Collecting & Pre-processing Data 

Step 2: Modeling/ Training/ Analyzing/ Inferring 

Step 3: Continuous context identification 

Figure 2.1 Generic Process for identifying context continuously 
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selected based on the sensor data and the information retrieval mechanism. For 

example, if you need to identify whether the user is walking, you can use 

accelerometer data, model it, train them to identify the walking pattern of the user 

and analyze to generate the required information. 

User’s context is continuously changing. Identifying this context is discussed in the 

third step. When the context keeps changing, the process needs to adapt its results 

based on the changing sensor readings. These identified high-level context will be 

served for other applications in this step. 

Context can be categorized into 3 types.  

1. Physical Activity – User’s actions such as sleeping, sitting, walking, running. 

2. Social Interaction – User’s interaction with other people. 

3. Environmental Interaction - User’s interaction with the environment like 

movement pattern. 

 Data collection using mobile device sensors 

Smartphones have several built-in sensors to accommodate services like navigation, 

brightness control, automatic screen orientation detection, device health detection 

etc. A list of sensors which comes with average level smartphone and their usages 

are given below. [2, 3] 

1. Accelerometer – Identify device orientation and change screen orientation 

based on that. 

2. Gyroscope – Works along with accelerometer to enhance the accuracy of 

position level and orientation of the device. This uses the principle of angular 

momentum which makes the sensor readings independent of the gravity. 

3. Digital Compass – Uses in navigation applications to identify the direction of 

the phone. 

4. Global Positioning System (GPS) – Finds the GPS location of the device, 

altitude and location related information 
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5. Proximity sensor – The main application of the proximity sensor is to turn off 

the screen when a user put the phone in the ear while a call is ongoing. It also 

uses to identify whether the phone is the pocket or covered by a device case. 

6. Light sensor – Captures the light intensity and controls the screen backlight 

brightness based on the reading. 

7. Temperature sensor – Uses to detect the internal temperature of the device. If 

the internal temperature is high, system informs or act to switch off the 

device as a safety precaution of the internal electronics.  

8. Microphone – Captures the voice of the user in a call. Some devices have a 

separate microphone to capture environment noise. Then environment noise 

stream is used for noise cancellation for better output sound quality. Also, the 

input voice will be filtered by using the environment noise. 

9. Camera – Captures and generate digital image. Some devices contain dual 

cameras to detect depth of the objects to correctly identify the depth of field. 

10. Global System for Mobile Communications (GSM)/3G/4G module – Makes 

voice calls or initiate data connection with networks. 

11. Infra-Red (IR) sensor – Enables the communication using Infra-red. 

Other than the above sensors some high-end devices have pressure, humidity, 

fingerprint sensors. Considering the number of sensors embedded in a single device 

makes the device ideal as a source of raw data for the identification of user context. 

2.1.1.1 Challenges in data collection using mobile device sensors 

Using all these sensors do have some challenging aspects when used frequently. 

Following are some of the challenges which has significant impact.  

1. Energy [4] – Although the mobile devices embed a variety of sensors, they 

are powered by a battery. Because of the design constraint which is to minimize the 

size of the mobile device, battery dimensions must be reduced. This limits the 

capacity of the battery. When using many sensors, they need extra energy to function 

which consume the mobile device battery. Therefore, enabling sensors to capture 

reading continuously throughout the day is nearly impossible. If it does an average 

mobile device will only last up to 4 or 5 hours.  
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2. Heterogeneity – Different device manufactures use different electronic 

modules to produce sensors. This differentiate the sensor accuracy and range. Also, 

operational environment will change depending on the user [22]. Therefore, 

implementing a single solution with high accuracy for multiple devices and sensors 

is challenging. The behavior of the users also varies from each other. Walking 

pattern of a user might be different from other due to the height, weight and other 

factors of the human body. This makes the problem more complex because the same 

device may have different sensor readings for different users. 

 Data collection using mobile device applications 

Most of the research work focus on identifying context via sensors. But there is 

another aspect when it comes to mobile phones. Users tend to install many 

software/applications and interact with them throughout the day. This can also be an 

opportunity to learn the lifestyle of the user. Many social media applications like 

Facebook, Twitter and communication applications like WhatsApp, Viber will be a 

good source for data as well. Also, call logs and SMS messages are two main sources 

to import data as many mobile operating systems are allowed to use these data with 

the consent of the user [23]. 

Not all applications are data or event producers. Some applications do not even 

support data exports. This is the main limitation of using mobile applications to 

collect data. If the application and/or operating system supports data collection from 

applications, this data can also be used similar to sensor readings. A good example 

would be sending an SMS message to your partner when you reach office in the 

morning every day. A pattern should be able to identify from this SMS sending 

event.  

 Preprocessing 

The output data from the sensors, can be captured continuously and recorded in the 

device itself. This raw data should be refined before it is used for context 

recognition. A sensor calibration is a better way to increase accuracy of sensor 

readings. Although the sensors are heterogeneous it can achieve a good sensor 
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measurement, if the readings are calibrated for the sensors in a standard way [3]. 

This should be done by the users before starting to record the readings. A simple 

mobile devices activity can be used to calibrate each sensor. As an example, 

informing user to rotate the device horizontally can calibrate the accelerometer 

readings in a single axis. When the sensor measurements are occurring, sensor 

readings can be modified according to the calibrated values.   

Apart from sensor calibration, sensor readings may have redundancies and noise. The 

preprocessing step should be able to remove them as well. But the preprocessing 

must not exceed the high computation and memory requirements. Heuristics can be 

used for preprocessing of raw data. These modified, “cleaned” data can then be 

transferred for further processing.  

 Feature Extraction 

Having raw data and process them to identify activities is impractical. Because of 

that we need feature extraction. Feature extraction is the process of distilling the raw 

sensor data and converting it into more computationally efficient and lower 

dimensional forms called features [3]. 

Whether the data comes as a stream or sequence of events, it is necessary to split the 

data into samples. Splitting window should be depended on the nature of the sensor 

readings, resolution and sensor type. For an example having small (ex: 2 seconds) 

window for accelerometer reading is acceptable since the changes of the readings are 

rapid. But having small window for location readings will not be suitable because the 

location changes in small intervals are negligible.  

Generating accurate features out of raw data is important for context recognition. 

Feature extraction in three types of context can be described as follows. 

2.1.4.1 Feature extraction in physical activity 

Since the mobile phone has become a ubiquitous device for sensing, physical activity 

of a user throughout the day can be accurately identified. Accelerometer, gyroscope, 

proximity and GPS sensors can be used to collect user’s physical changes [5,6]. This 

can be helped to identify the duration of activities like sleeping, sitting, walking, 
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running, travelling etc. [25]. Mean, standard deviation, number of maxima in locality 

are some of the features which can be extracted based on the time. Google awareness 

library is a good production ready Android library which has implemented 

identifying activities like on foot, walking, running, on bicycle, in vehicle. Although 

the internal functionality of this library is not published, we can identify that it uses 

3-axis accelerometer, gyroscope, compass and GPS sensor readings to recognize user 

activity. 

2.1.4.2 Feature extraction in social interactions 

Social interaction covers the context of human interactions. For this microphones, 

proximity sensors and shared locations can be used. Basically, it need to know 

whether the person is communicating or being among the others. Time based feature 

extraction method would be analyzing the intensity of the sound against the time. 

2.1.4.3 Feature extraction from environmental sensing 

Location based readings such as GPS coordinates, places and altitude can be 

captured from the mobile device sensors. These reading can be used as an input for 

retrieving weather data to capture the environmental context. Apart from that sound, 

light, temperature, and humidity are some of the measurements which can be 

measured under environmental sensing. Time based averaging, standard deviation 

are basic level feature extraction techniques for this. Also probabilistic analysis 

methods can be used since are more likely to have patterns.  

2.2 Activity Recognition 

Context inference is the way of identifying activity of the user. Here the activity is 

considered as various user context as well as the events generated by users like 

sending a SMS message, making a call, updating or publishing posts in social media. 

The features which are extracted from raw data is the input of context inference 

algorithms. These algorithms are also known as classification algorithms.  

Classification algorithms need initial data set to learn the behavior of data. This is 

called the learning phase. The algorithm tries to identify the patterns in each 

dimension of expected features. There are several types of algorithms which can be 
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used for activity recognition such as threshold-based algorithms, neural networks and 

hidden Markov models. 

 Activity recognition through learning 

Learning in activity recognition can be categorized into two models [24] 

1. Supervised learning model 

2. Unsupervised learning model 

Unsupervised learning models does not use any kind of trained data.  

2.2.1.1 Supervised learning model 

Supervised learning model is the process of learning through already defined 

algorithms and the data is provided along with the classes. Accuracy of the 

recognition is dependent on the trained data [24].  

Supervised learning is the Data mining task of inferring a function from labeled 

training data. The training data consist of a set of training examples. In supervised 

learning, each example is a pair consisting of an input object (typically a vector) and 

a desired output value (also called the supervisory signal). A supervised learning 

algorithm analyzes the training data and produces an inferred function, which can be 

used for mapping new examples. An optimal scenario will allow for the algorithm to 

correctly determine the class labels for unseen instances. This requires the learning 

algorithm to generalize from the training data to unseen situations in a “reasonable” 

way 

There can be deviations between the trained data and actual data based on the  

There can be deviations happening because the trained data is based on general 

patterns. If the data set is significantly deviates from the trained data, generalization 

error will be high. As a measurement of the error mean square of classification error 

(MSE) can be presented [3].  
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𝑀𝑆𝐸 = 𝑁𝑜𝑖𝑠𝑒2 + 𝐵𝑖𝑎𝑠(𝑓(𝑥))
2

+ 𝑉𝑎𝑟(𝑓(𝑥)) 

𝑥        = 𝑖𝑛𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 

𝑓(𝑥) = 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑒𝑙 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐𝑙𝑎𝑠𝑠 𝑥 

Noise is the error of the system or sensors. This is caused by the system or sensor 

errors. Bias is the error causes by the learning method. Var is the variance of the 

error related to classification specific sensitivity. 

Noise cannot be reduced. In order to minimize MSE is to minimize the other two 

factors. If the training data set is large, it may cause high bias error (under-fitting). It 

may cause high variance error (over-fitting) when using small training data set. 

Therefore, in both type of classifiers may face increased MSE. To overcome this 

issue, a data set collected from multiple users can be used. Because the actual data 

from users will be less deviated from the real users. This data can be used as training 

data set to minimize MSE. The problem arises when using multiple users for training 

data sets is to estimate number of users for better error reduction.  

The users are the best resource for evaluating classified results. There are three main 

techniques to get user’s contribution for evaluation results [3]. 

1. Active learning 

2. Community Guided learning [26] 

3. Hybrid approach of above [27] 

Active learning interacts with user to evaluate the classified results. Initially a test 

data set is used to gather some results. Then it asks the user to evaluate the 

correctness of the classified results. Based on that it will continuously changes the 

classification. 

In community guided learning uses crowd sourcing as a generalizing method. Unlike 

single user based technique in active learning, erroneous evaluations of the users can 

be omitted and generalization accuracy can be increased. But it will take 

considerable amount of users to contribute for a better accuracy.  
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Hybrid approach of active learning and community guided learning was suggested to 

improve classification further. A service based recognition is used for active learning 

and the learnt data is transferred to a backend server for accumulation. Community 

guided learning technique is used in backend servers where multiple user 

classifications are received. Then personalized information can be generated based 

on user’s preferences.  

 Different classification techniques 

The selection of learning technique is depended on the selection of the classification 

technique. Selection of classification technique should be decided considering the 

time and space complexity of the algorithm. Since the target is to process within the 

device, algorithms which demands high computing power is not suitable for the 

application. This document focuses only the algorithms which are relatively simple 

and can fit to the mobile device computation.  

There are two types of classification algorithms based on the optimization approach 

[28].  

1. Generative algorithms 

2. Discriminative algorithms 

Generative algorithms are trying to optimize in the assumption of existence of 

probabilistic relationship between the data and the classes. Also it specifies that there 

exists a joint distribution between the features and the classes. Mean posteriori, 

maximum posteriori and maximum likelihood are some examples for generative 

algorithms. Generative models are based on probability computation and most of the 

time they are not using because of the computational costs. 

Discriminative algorithms are using different approach introducing the distance or 

similarity between the any pair of patterns. Simply it need to define a distance or 

similarity between samples. If it is in the same class, the similarity will be higher 

(distance is lower) and vice versa.  

The following table summarize the approaches of generative algorithms and 

discriminative algorithms.  
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Table 2.1 Classification Techniques 

Generative Algorithms Discriminative Algorithms 

Hidden Markov model Neural networks 

Bayesian networks Decision trees 

Discriminant Analysis Hierarchical thresholds 

 Fuzzy logic 

 Clustering 

 

2.2.2.1 Generative Algorithms 

2.2.2.1.1 Hidden Markov Model (HMM) 

Hidden Markov model has a chain of finite states set. The states are not observable 

and it is said that they are hidden. State transitions associates with a set of 

probabilities and states is associated with a probability distribution. The Markov 

model can be two type of patterns. Left-to-right model and the ergodic model [3].  

 

  (a) (b) 

Figure 2.2 (a) left to right HMM model (b) ergodic HMM model 

In left to right HMM model the transition happen only in one direction. In contrast, 

ergodic HMM can happen all possible transitions which may have cycles, multi-

directions.  

Using HMM researches have come across several solutions which related to context 

awareness and prediction such as characterizing activity pattern[7], identifying user 
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mobility and prediction[8], situation identification of mobile user[9], sequential 

behavior prediction[10].  

2.2.2.1.2 Bayesian Classifier 

From the Bayesian classifier following equation can be applied for the sensor data 

classification as a component of probabilities 

𝑝(𝑐𝑜𝑛𝑡𝑒𝑥𝑡|𝑠𝑒𝑛𝑠𝑜𝑟 𝑑𝑎𝑡𝑎) =  
𝑝(𝑠𝑒𝑛𝑠𝑜𝑟 𝑑𝑎𝑡𝑎 |𝑐𝑜𝑛𝑡𝑒𝑥𝑡) ∗ 𝑝(𝑐𝑜𝑛𝑡𝑒𝑥𝑡)

𝑝(𝑠𝑒𝑛𝑠𝑜𝑟 𝑑𝑎𝑡𝑎)
  

As the equation depicts, the computation of Bayesian classifiers are easy since it only 

having the productions of probabilities. Therefore it is even suitable for processing 

within a low end mobile device [11]. Even context identification in mini wearable 

devices are done using this [12]. Using Bayesian classifiers should be carefully 

selected depending on the data set [13]. Let’s say the selection is Naïve Bayes, then it 

would be more accurate to use data points which are locally independent than the 

dependable. 

2.2.2.2 Discriminative algorithms 

2.2.2.2.1 Decision Trees 

Decision trees is a mathematical tree consisting several nodes and edges. It will 

generate inner nodes, branches, and leaves.  The simplest decision tree would have 

two branching factor where each node evaluates the attribute and output true or false 

(yes or no). Following figure describes the decision tree of two branching factor.  

 

Figure 2.3 Sample decision tree having branching factor of 2 
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When the data set is entered to the input of the decision tree, each node evaluates the 

data. Depending on the evaluation next node will be decided. Then the next node is 

do the same thing and the process continuous until a leaf is found in the decision tree. 

The leaf of a decision tree is a class according to that data. Then the classification 

can be done. The evaluation of data via a decision tree is simple and the complexity 

is depended only on the height of the tree along a path. Therefore, decision trees are 

considered as computationally efficient. There are practical implementations of 

decision trees to recognize user activities such as walking, running, sitting and 

standing [3].  

But the creating the tree structure is complex due to consideration of several aspects 

such as training and learning take much time. If the target is to build the decision tree 

within the device is time and processor consuming. Therefore, prebuilding the 

decision tree in a generalized way is a solution. But the variance of different users, 

makes this solution produce less accurate classification although the computation is 

low in the mobile device. 

2.2.2.2.2 Neural Networks (NN) 

Artificial Neural Networks are created and used to classify data. Neural Networks are 

complex, need parallel computation and have non-linear model [14]. Same as the 

HMM, neural networks have two types. Feed-forward model and feedback model. 

Feed-forward works in one direction and it does not allow data to go through the 

same node twice. In contrast feedback model enables data to iteratively evaluate by 

traversing within the network. It allows output of a node which can be processed 

data, to be used as an input of another node.  

The states of the neural networks are hidden. The structure of a NN is shown below. 

  

 

  

 

Class 1 

Input 1 

Input 2 

Input 3 

Hidden 

States 
Class 2 

Figure 2.4 Structure of a general Neural Network 
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Neural Networks are computationally expensive because creating neural network and 

evaluate through a neural network come across many operations. If the NN allows 

feedback loops, the number of operations will be even higher. Same as the decision 

trees training NN for a data sets are expensive. Therefore, building multiples of less 

complex NN which focused on single task is better than using single NN which 

focused on multiple tasks. Because large NN consume higher degree of both space 

and computation. But if the NN is simplified by focusing on single task like 

identifying walking pattern, the space and computation complexity will be less and it 

will fit the low-end mobile device hardware. If the number of classification is higher, 

this cannot be scaled because different NN is needed for each classification.  

2.2.2.2.3 Hierarchical Models 

Hierarchical models define a set of thresholds for different classifications. The 

remaining process is somewhat similar to decisions trees. In decision trees the 

evaluation in the node is based on the training data set. But hierarchical model use 

thresholds which already defined from the start. This removes the complexity caused 

in creating the decision tree. Hence hierarchical model is considered as 

computationally efficient algorithm in classification. [11,12].  

Defining thresholds is done by empirical experiments. As an example, separate 

thresholds along an axis will be defined for both running and walking by 

experiments. So that the model defined general values for the activities. There might 

be situations where these values are out of the thresholds due to the variations of 

users. This over-fitting issue cannot be prevented. Therefore hierarchical models 

must be used in the situations where generalize thresholds are within the range of 

almost all the possible users. The drawback of this method is the thresholds are 

predefined and they are depend on the supervised training data set.  

2.2.2.2.4 Fuzzy Logic 

Fuzzy logics does not have hard wired decision taking mechanism and this is similar 

to human decision making. It is able to classify even the data is inaccurate and 

partial. Fuzzy logics support approximate reasoning which helps in the applications 
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where a distinct activity cannot be identified, but the data suggest closer to some 

activity pattern.  

Fuzzy logic has a knowledge base having set of rules. When an input comes, it 

evaluates the input against these rules. While evaluating the rules, it calculates a 

score using the assigned membership value or fuzzy truth. Finally, the output having 

the maximum fuzzy truth or score will be considered as the result. By comparing 

fuzzy truth with the other values, reasoning can be identified. 

2.2.2.2.5 Clustering 

All the above classification techniques are needed a training data set to initialize the 

model. Most of these supervised learning algorithms have similar complexity where 

the model creation using training data set is high and the evaluation is low. But 

clustering is different from those algorithms because it does not need a supervised 

data set. Therefore, it is categorized as an unsupervised learning algorithm for both 

classifications of patterns and calibration. After the clustering is finished, separate 

clusters suggest the similarity of elements. Therefore, a single cluster can be used as 

a class. 

The main idea of clustering is based on the distance between the elements. There 

should be a function to calculate distance between two elements. If the distance is 

low, they are assigned to be in the same cluster. The area of a cluster can be defined 

through the maximum distance between the farthest two elements. 

2.2.2.2.5.1 K Nearest Neighbor Clustering 

KNN algorithms use clustering approach to classify data. Here the distance between 

the elements is considers as the nearest neighbor distance. The proximity of each 

other is calculated and this distance value is used for clustering. KNN nearest 

neighbor distance support multidimensional feature space. Therefore, multiple types 

of features can be accounted when the proximity is calculated.  

When applying KNN algorithms for classification, it initializes with a trained data set 

which forms a set of clusters. These are the labeled data. Then the input data is 

inserted and based on the multidimensional proximity newly inserted data is placed. 
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New data is labeled based on the distance from the new data to the labeled data. In 

most cases, cluster of closest labeled element is considers as the label of the new 

data. Then it can classify and also a mathematical value can be calculated for 

representing the reasoning for the classification. 

Researches were done for identifying activity by using this method [14]. They used 

Euclidian distance and trained data was based on mobile position specific to the user. 

The targeted activities were predefined by the users. They could achieve 70% 

accuracy for all the defined activities. 

 

Figure 2.5 Placing the new data point in K-Nearest Neighbor Clustering [3] 

 

2.2.2.2.5.2 K-Means Clustering 

In K-means algorithm a multidimensional space of features is divided into K cluster. 

When forming clusters, it tries to find the optimum position of the cluster centroids. 

A recursive algorithm is used when finding the optimum position. This algorithm is 

computationally efficient but the data need to be saved in memory. Therefore, 

memory consumption is higher than other algorithms. This limits the usages of this 

algorithm in low end mobile devices if the dataset is large. As a result of this instead 

of directly using the algorithm, it uses to calibrate the data and then use another 

algorithm for classification. Some researches like physical activity detection by 
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decision trees [13], achieved successful results by using K-Means clustering for 

smoothing the classification results. 

2.2.2.2.5.3 EM Clustering 

Expectation-Maximization clustering is an advanced version of K-means clustering. 

In each iteration of EM clustering the probability of owning a certain data point to a 

cluster is calculated. Then the cluster’s mean and variance changed with the updated 

ownership. Therefore, each iteration, the clusters may change their mean and 

variance hence their distance to the data points [29]. Unlike K-means clustering, 

there is no distinctive assignment of a data point to a single cluster. EM clustering 

will have only probabilities to each data point. Basically K-means is a subset of EM 

clustering where probability is 0 or 1. 

2.3 Activity Prediction  

Once the user context and activities are identified, it can identify the patterns of 

activities. Most of the users have repetitive behavior in daily tasks. Therefore, it is 

easy to identify patterns since the overfitting problem will be reduced if the recorded 

data set has a considerable time span. Predicting activity is the idea of knowing the 

user’s intentions. As mentioned earlier, if the user has repetitive life style, it tends to 

follow sequential list of events. These events are depended to the previous event. As 

an example, once the user enters to the home, he turns on the WiFi in the mobile 

device. Here turning on the WiFi is dependent on the event entering the home. 

One of the successive activity prediction techniques is the ECA model. 

 Event-Condition-Action (ECA) Model 

ECA model has event driven architecture and define a set of event and action 

relationships. This relationship has 3 attributes which are Event, Condition and 

Action. After recognizing context, this set of relationships are identified by the 

algorithms which are used in context classifications. The application of the algorithm 

is different but the same approach can be taken for identifying patterns in the user 

context. Once the patterns are recognized, relationships will be revealed. These 
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relationships are converted into set of rules. In natural language a rule has the syntax 

of following manner. 

On < event >  If < condition >  Do < action > 

Considering above example, the rule would be 

𝑂𝑛 < 𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔 ℎ𝑜𝑚𝑒 > 𝐼𝑓 < 𝑢𝑠𝑒𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 ℎ𝑜𝑚𝑒 > 𝐷𝑜 < 𝑊𝑖𝐹𝑖 𝑂𝑛 > 

ECA rule managers, ECA rule engine are necessary components of evaluating rules. 

ECA rule manager generates the rules based on the user activities and actions. Both 

actions and activities are found within the user context. For an example, walking is 

an activity. But it will be an action if the user always walks at a specific time. So the 

user activities can both be events as well as action. 

A proposed system architecture [2] of a related research is shown in Figure 2.6 ECA 

architecture for activity prediction. 
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Figure 2.6 ECA architecture for activity prediction 

 

Rules which are generated by ECA Rule Manager are consumed by ECA Rule 

Engine. If the context changed, the change is forwarded to Rule Engine and it will 

evaluate and select one or more rules to trigger. Action of the rule is triggered 

automatically or give a list of actions to be selected by the user. 

 Clustering 

The same clustering algorithms discussed in section 2.2.2.2.5 can be used for pattern 

recognition as well. Because one the user context and the previous actions are 

collected, they can be fed into a clustering algorithm to generate clusters. If the data 

point dimension includes temporal data, the generated clusters will represent a 

collection of similar events. Theoretically a collection of similar events is a repetitive 

actions/activities. This special behavior of clustering can be applicable to this 

research as well. 
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 Analysis 

The advantage of ECA model over clustering is its low complexity when predicting 

activities. Given a state of the user context, ECA model can iterate through the rules 

and if the conditions match it can generate the predictions. However, generating rules 

for ECA model is complex compared to clustering. Hence ECA model might not be 

suitable for low-end devices. The advantage of clustering is the simplicity of the 

model to generate predictions. Once we find the closest cluster, we can directly 

generate predictions using the data in the closest cluster. It does not involve complex 

steps like rule generation in ECA. Therefore, we can see that clustering is more 

suitable for low-end devices. 
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CHAPTER 3 

METHODOLOGY 
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3. METHODOLOGY 

3.1 Proposed Solution 

The proposed solution is to implement a mobile framework (library) that mobile 

application developers can be used to retrieve list of predictions based on the context 

of the mobile user at a given time. 

3.2 Workflow 

The most important decision of this research is the selection of prediction method. 

We have to consider whether the method is compatible to run on a low end device. 

Since mobile devices has variety of hardware specifications, our framework should 

be compatible at least 80% of the devices available in the market. In order to achieve 

that, we need a prediction method which needs low CPU time and consumes low 

memory. Out of different prediction methods discussed in the literature review, we 

decided to go with clustering as it does not need high CPU time or large memory to 

run within the device compared to other prediction methods. It may take considerable 

CPU time when running clustering algorithm but by comparing accuracy, CPU time, 

memory allocation of different clustering algorithms, we can select a suitable 

clustering algorithm which fits low end devices. For this research we decided to 

evaluate K-means clustering and EM clustering algorithms. Generally, EM clustering 

consumes higher CPU time than K-means clustering, but it has higher accuracy and 

it is worth evaluating before making the final selection. Although algorithms like 

hierarchical clustering has low memory consumption and low CPU time, its accuracy 

is low compared to K-means [20].  

The process of this research can be broken down to following main steps 

1. Data collection 

2. Clustering data and activity predicting 

3. Evaluation 

4. Implementing the framework  
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 Data Collection 

There are two types of data sources when collecting data. First type is sensor 

readings and their processed outputs such as GPS location, user environment 

temperature, device battery level and light intensity. There can be processed output 

of sensor readings such as walking, running identified from accelerometer data. The 

other type of data source is software such as installed mobile applications and 

operating system. Call logs, sent and received SMS messages, opened applications 

and their statistics, interactions in social media applications, connected Wi-Fi 

networks are some of the data which are included in this type.  

Both types of data sources generate data continuously irrespective of the device is 

being used or not. Therefore, instead of recording everything, we needed to decide 

what data should be recorded. Then the selected data is generalized to be recorded in 

a common way. We call these generalized data as “Events”. An event must contain 

following fields. 

Data 
Collection

•Find publicly available data and import if 
available

•Develop data collection mobile app and distribute

Clustering 
and 

Predicting

• Implement different clustering algorithms

•Use them for predictions

Evaluation
•Test predictions of different clustering 
algorithms

•Evaluate accuracy, CPU time and memory

Implementing 
Framework

Figure 3.1 Research Workflow 
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 Action type – Whether the event is automatically triggered or caused by user 

interaction 

 Event type – The type of the event like SMS message, call, user activity 

 Timestamp –The date and the time of the event 

 Class – The main action of the event like which phone number the user called 

or which mobile application opened. 

 Event data – There can be several data bound with an event. These multiple 

parameters are recorded with data 

For this research we decided to consider only the following common types of events 

1. Call records – Received and initiated calls by the user. 

2. SMS records – Received and sent SMS messages.  

3. Activity – What activity the user is doing at a given time. Walking, running, 

staying are some of the activities. 

4. App openings – Opened mobile applications by the user. 

Although the user’s exact location can be captured, we decided not to collect that 

because it raises higher level of privacy concerns. After deciding what type of data 

we need to collect, we searched for publicly available data repositories which has 

above types of events. Unfortunately, there were no publicly available data which we 

can be used for this research. Therefore, we had to develop a separate mobile 

application to collect data from different users. 

3.2.1.1 Data collection mobile application 

The data collection mobile application was developed to capture SMS, Call, mobile 

application usage and activity event. We gave the application users the option to 

select which data need to be captured. If the user is uncomfortable with sharing data 

with us, he/she could opt-out certain event types. For an example the user can opt-out 

sharing SMS events while enabling call and application usage events. The app was 

developed to upload persisted events to a cloud location at a configured time of the 

day. The data collection and upload tasks were designed to run in background so that 

user did not need to trigger anything after enabling data capture. 
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A main concern when collecting data is the privacy concerns. The users do not like 

to share the information of calls and SMS messages. The SMS message body is not 

collected by the application so that it will not be an issue. But exposing contact 

number was a privacy concern. Therefore, we used a hashing method for all the 

contact numbers. A given phone number had the same hashed text, which helped us 

to distinctly identify the similar SMS and call events while ensuring user’s private 

data. 

We distributed this mobile app among ordinary mobile users and asked them to 

select the event types they like to share and start the application. Also, we informed 

them that we need data for at least 30 days so that we can collect considerable 

amount of events for each user. 

 Clustering Data and Activity Predicting 

In this stage, we try to implement different clustering algorithms and feed collected 

data into each clustering algorithm. Once the clusters are formed, we use them to 

generate predictions. The generated predictions are then evaluated later. 

3.2.2.1 Preprocessing 

The outcome of the data collection contains a list of different types of events 

occurred in different timestamps. The collected data cannot be directly feed into a 

clustering algorithm because collected data do not have different attributes. It only 

has timestamp of the event as an attribute. Therefore, this data needs to be 

preprocessed and export into a model where it can be clustered by different 

clustering algorithms. We decided following attributes of an event to be considered 

for clustering. 

 Day of the week 

 Minutes of the day 

 Activity  

 Class value 
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We have to normalize all the attributes so that it will not add any bias when 

calculating the cluster distance because of the attribute’s scalar value. We select the 

range to be 0 to 1 (including 0 and 1) for every attribute. 

The day of the week makes significant contribution when applying clustering [21]. 

Given an event, the day of the week attribute is assigned by mapping a value to each 

day such as Monday to 0, Tuesday to 1 etc. It is important to maintain the same order 

as the days of the week since it emphasizes the distance between each day. Once we 

map each day to a number, we normalize the value by the following expression so 

that the range is always [0-1] 

𝑑𝑎𝑦_𝑜𝑓_𝑤𝑒𝑒𝑘  =  
𝑚𝑎𝑝𝑝𝑒𝑑_𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑑𝑎𝑦

6
 

Minutes of the day is the amount of minutes passed from 12:00am of the day event 

occurred. Similar to other attributes we need to normalize the value to be range of [0-

1] and it was done by following expression. 

𝑚𝑖𝑛𝑢𝑡𝑒𝑠_𝑜𝑓_𝑑𝑎𝑦 =  
𝑚𝑖𝑛𝑢𝑡𝑒𝑠_𝑝𝑎𝑠𝑠𝑒𝑑_𝑓𝑟𝑜𝑚_𝑚𝑖𝑑𝑛𝑖𝑔ℎ𝑡

1440
 

Most recent activity is not associated with the event because there is no efficient way 

to identify what the user is doing at the time of the event. Therefore, what we did 

was, once we get notified that the user is changing the activity, we add an Activity 

type event and the timestamp. Then when we need to find the activity associated with 

the event, we looked back for the most recent Activity event and consider that 

Activity as the activity associated with the event. We configured the look back 

interval to be something like 10 minutes. If no Activity event is found within 10 

minutes, we set the activity associated with the event as unknown. Similar to 

day_of_week we map each activity to a numerical value to normalize between [0-1] 

Class value contains the type of the event and the primary data associated with the 

event such as contact name or opened application identifier. Class value is not used 

as a dimension/attribute for clustering but it need to identify which event is 

associated with that data instance. 
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3.2.2.2 Clustering and Predicting 

Once the data is preprocessed and exported into the above model, it can be fed into 

different clustering algorithms. The output of the clustering operation is a data set of 

different clusters. For this research, we have selected K-means and EM clustering 

algorithms to be evaluated. Therefore these two algorithms are implemented and 

used for generating predictions. 

In order to predict the user actions for a given time, what we need to do is creating an 

event similar to the events used in clusters. Then we can find the closest cluster for 

the newly created event and retrieve the dataset of the closest cluster. To find the 

closest cluster first we retrieve closest n number of events of each cluster comparing 

with the created event. Then we calculate the mean distance between the created 

event and the closest n number of events. The cluster which has the lowest mean 

value considers as the closest cluster. 

By iterating through the closest cluster dataset, we can group the dataset entries by 

their class values. If we find the frequency of each class values in the closest cluster 

and sort the class values by their frequency descending order, we get a list of class 

values ordered by the most probable class value first. We can predict user action 

using these class values list and if we need n number of predictions, we can get the 

first n number of elements from this list. 

3.2.2.3 Optimizations 

An optional optimization can be done to improve prediction time if the cluster 

dataset entries can be sorted by a single numeric value and the numeric values of 

each dataset entry does not overlap between different clusters. In that case, we 

introduce a function like below to calculate numeric value for each dataset entry. 

𝑣𝑎𝑙𝑢𝑒 = (100 ×  𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦) + (6 ×  𝑑𝑎𝑦_𝑜𝑓_𝑤𝑒𝑒𝑘 )  + (𝑚𝑖𝑛𝑢𝑡𝑒𝑠_𝑜𝑓_𝑑𝑎𝑦) 

Then find the minimum and maximum boundaries of each cluster by this value. If the 

boundaries of different clusters do not overlap, we can put the cluster into an ordered 

map and find the closest cluster by querying the floor value of the ordered map. The 

complexity of finding the value from a map is low and it will remove all the steps 
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which we have to do when finding the closest cluster. Additionally, we can get rid of 

cluster datasets and replace them with predicted user actions so that, any given time, 

we can directly retrieve the list of predictions. After analyzing clusters generated by 

two algorithms, we realized that clustered generated by K-means algorithm do not 

overlap and can be represented by a numeric value. Therefore, we have done this 

optimization only for K-means algorithm. 

 Evaluation 

Since we selected K-means and EM clustering algorithms for this research, we 

mainly compared the accuracy between these algorithms. Apart from the accuracy, 

total clustering time, total prediction time, memory usage, was considered for 

evaluation. The total clustering time and the total prediction time are indications of 

CPU time. Therefore, by comparing accuracy, memory usage, total clustering time, 

total prediction time, we can find the best clustering algorithm which fits low end 

mobile devices with an acceptable accuracy. 

Instead of using all the collected data for clustering, we separated the dataset into 

training and testing datasets. A randomly picked events can be used for testing data 

and they will not be included in the training dataset. By doing multiple tests with 

different testing datasets and calculating the average accuracy will remove the 

deviation of accuracy because of the noisy data. Since our goal is to come up with 

the best clustering algorithm to find predictions which are more frequent, we can add 

more frequent events to the test dataset while maintaining randomness. 

We can measure accuracy by limiting first n predictions and test whether the test 

event is included with the n predictions or not. The accuracy percentage can be 

calculated as the following expression. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑒𝑣𝑒𝑛𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡𝑒𝑠𝑡 𝑑𝑎𝑡𝑎𝑠𝑒
 × 100% 

Memory usage can be captured using the IDE tools when running the tests. CPU time 

can be measured by capturing the total time it need to take for the clustering and total 

time it need to test all the events in the test dataset. 
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Under different scenarios the following metrics will be measured and considered for 

evaluation.  

Table 3.1 Different test scenarios and the measured metrics 

Scenario Metrics 

Accuracy CPU Time Memory 

Run different clustering algorithms with 

different number of clusters 
X X  

Run different clustering algorithms 

considering temporal and activity as 

attributes 

X X  

Run different clustering algorithms 

considering only temporal attributes 
X X  

Apply possible optimizations and run 

different clustering algorithms 
X X X 

 

Since we have different set of datasets from different users, we ran the tests for each 

datasets and get an average value for accuracy. The results and the evaluation details 

are described in Chapter 5 – Results and Evaluation. 

 Implementing the Framework 

The proposed framework should be self-contained and should have documented 

APIs to be consumed by developers. All the steps such as collecting data, 

preprocessing data, clustering and prediction must be contained within the 

framework. 

The mobile application which used to collect data can be embed within the 

framework. The data collection background services can be reused directly. Since 

users actually need to access the contact numbers, the hashing method used in this 

application will not be suitable for the framework. Therefore, we have replaced the 

hashing with an encryption for contact numbers in the calls and SMS events. The 

encryption key was generated using a device unique identifier, so that it only be 

decrypted within the device. We selected AES encryption for this with a fixed 
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initiation vector. This makes encryption returns the output text for the same input 

text at any instance. This is important as it enabled developers to find the similarity 

of the events while not exposing the real contact number. 

After evaluating and comparing the different results we can decide the best algorithm 

and appropriate parameters to be included within the framework. We configured to 

reset the clusters at the mid night of each day and form new clusters with new data. 

We implemented a method to get only the recent data if number of events exceeds a 

configured upper limit. This ensures that it does not exceed certain memory usage 

because of large data sets and ensures that only the recent data is used.  

The API of the framework should hide the internal implementation as it is irreverent 

for the developer who uses this framework. The API should have methods to set 

which data need to be collected and how to retrieve the predictions. To pass data 

collection configurations, we created a user interface to be presented to the user and 

get the consent. This will ensure that 3rd party developers cannot enable data 

collection without the user consent.  

When working with mobile programming it is necessary to have functions which do 

not block the main thread. The rendering of the user interface components are done 

by main thread and blocking the main thread will freeze the interface of the 

application which leads to a bad user experience. To overcome this issue, 

asynchronous functions are introduced for long running processes. In asynchronous 

functions, one function is provided to feed the data. This function will accepts the 

input data and does not return anything. It just sends the input data to a processor 

which will execute in a different thread other than the main thread. There will be a 

second function which works as a listener. Once the input data which feed to the first 

function is processed and ready, the second function will be invoked with the results. 

Therefore it is essential to expose asynchronous functions since predictions will take 

some time to process. 

Apart from that if the developer needs to get the predictions from a background 

service, usual synchronous functions will be helpful. Synchronous functions will 

accepts the input data and do the processing in the same thread. It is important to 
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execute synchronous function only in a background thread so that it will not block 

the main thread. 

 For exposing these two types of functions, we have created a class which has 

following methods. 

1. processEvent() & onPredictions() Listener – Asynchronous function 

processEvent which accepts a list of events and once the predictions are ready 

it will notify to the onPredictions(). This is useful if the developer need to get 

the predictions in the main thread. 

2. processEventSynchronized() – Synchronous function which accepts a list of 

events and returns the predictions. This is useful to get the predictions in a 

background thread. 
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CHAPTER 4 

SYSTEM ARCHITECTURE AND IMPLEMENTATION 
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4. SYSTEM ARCHITECTURE AND IMPLEMENTATION 

4.1 Overview 

This chapter describes the implementation level decisions, approach of implementing 

data collecting mobile application and the proposed framework and their internal 

system architecture. 

Before we start the implementation, we had to take some decisions which come 

across when developing a mobile application/framework. 

 Selecting an operating system 

 Selecting a runtime environment within the operating system 

When selecting a mobile operating system to support our framework, the most 

important fact is that it should reach more user base. Currently, the most popular 

mobile operating systems are Android and iOS. Since Android is rapidly evolving 

and different mobile phone manufacturers embed Android as their operating system, 

Android has over 80% of the market share [19]. Additionally, Android exposes more 

low-level APIs to access user level data which is essential for the collection of user 

actions and events. Therefore, we decided to select Android as our target operating 

system. 

Android has different runtime environments for mobile applications. The most 

common environment is Java runtime environment. This is also known as native 

runtime environment. There are some other runtime environments which build on top 

of Java runtime environment. Flutter, React native, IONIC are some of these 

environments and they even support cross platform (operating system) support. 

However, all these cross-platform supported runtime environments do not expose all 

the low-level APIs that native runtime supports. It is important to gather many data 

as possible for the success of this research and having an environment which exposes 

more low-level APIs would be ideal when gathering more data. Therefore, we 

decided to go with native runtime environment when developing this framework. 

Android has feature rich SDK to develop libraries, and mobile applications for native 
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runtime environment. Therefore, our framework can be distributed as an Android 

SDK library which the developers can include with their mobile applications.  

From this point onwards, the proposed framework will be called as prediction 

framework. As described in the methodology chapter, apart from implementing 

prediction framework, we had to implement mobile application for collecting data as 

no publicly available dataset can be found for our requirement. This mobile 

application is designed so that the same components can be reused within prediction 

framework. Although there were some modifications needed to migrate the 

components, the architecture and the functionality remains the same. 

4.2 Data Collecting Application 

The data collecting application has following components shown in the Figure 4.1. 

Data collector component is responsible for recording events from different sources. 

As mentioned in methodology chapter, we can use different types of sensors & 

software-based sources to record events in generalized manner. User activity, opened 

mobile applications, incoming & outgoing calls and received & send SMS messages 

were selected as the events for this research.  

 

 

Data Collector 

SMS 

Collector 

Call 

Collector 

Activity 

Collector 

App usage 

Collector 

Data Persistence 

<<Save Events>> 

Figure 4.1 Data Collecting Application System Architecture 
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The collector components collect data from a single source and generate events. The 

generated events are passed to Data Persistence component to be persisted. Under 

this research scope we implemented 4 types of following collectors. 

1. SMS Collector – Reads data periodically from SMS content provider given 

by the default message application. Then it generates events by adding 

received/sent timestamp and the contact phone number. 

2. Call Collector – Reads data periodically from Call log content provider given 

by the default phone application. Then it generates events by adding time of 

the call and the contact phone number. 

3. App Usage Collector – Reads App data periodically from operating system 

level usage stats manager APIs. Then it generates events by adding opening 

time of the app and the app package identifier. 

4. Activity Collector – Reads the changes in the user activity using 3rd party 

library. Then generates events by adding the current time and the user activity 

type. User activity identification can be challenging and this research does 

not base on it. Therefore, an existing Google Awareness library is used [30]. 

This library notifies users activities like on foot, walking, running, on bicycle, 

and in vehicle.  

Data Persistence component exposes saveEvents() function to persist the event. It is 

necessary to save events in a selected non-volatile storage. There are several data 

types and a SQL database would be the idea choice since individual events can be 

inserted and queried later. Android SDK inherently support SQLite databases and 

this implementation uses SQLite database to save passed events. The model of the 

event described in methodology chapter is recorded in a single table in the database 

with following columns. 

 Action type – 1: Action cause by user, 2: Event caused automatically like 

incoming call, 3: Both action & event like a user activity. 

 Event type – The type of the event. Values are ACT, APP, CALL, and SMS 

 Timestamp –The date and the time of the event in timestamp format 
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 Class – The main action of the event. App package for APP type, phone 

number for CALL & SMS type, activity on ACT type 

 Event data – Additional data. 

For privacy reasons, phone numbers were hashed and encoded to base64 format 

before inserting into database. The Figure 4.2 shows sample data of different event 

types. 

A background service was implemented to periodically upload the database file to a 

Firebase Storage so that we can download the files from different users. Different 

directories were programmatically created in the Firebase Storage for each device 

with a random identifier. The time of the upload is appended to the database file so 

that it will not any conflicts. 

We have collected data from 20 mobile users throughout 1-month period. The 

selected users came from different occupations, countries so that it will add more 

variations to the data. 

Figure 4.3 shows the main screen of the Data Collecting Application. The 

checkboxes give the users to select the data which they need to share. Start button 

runs the background service which triggers all the implemented collectors and the 

start the database file upload service. View button shows the raw data which was 

collected by the application. 

Figure 4.2 Sample data of events database table 
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4.3 Prediction Framework 

Figure 4.4 shows the high-level architecture of the Prediction framework. Arrows in 

the diagram shows the data flow direction between different components.  

Figure 4.3 Data Collecting Application Main Screen 
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Prediction Engine 

Prediction Processor 

Prediction Interface 

 

Data Collector 

Data 

Persistence 

processEvent() 

onPredictions() 

processEventSynchronous() 

 Prediction Engine 

Prediction Engine is responsible for retrieving data from data persistence component 

in the Data Collector component and send them to prediction processor component. 

Also, it exposes the framework APIs using Prediction Interface.  

4.3.1.1 Prediction Processor 

Prediction processor component preprocess the data first. We have created an 

interface named DataMapper which maps the raw events into clustering supported 

data model. There are two different implementations of DataMapper. They are 

important throughout the clustering process as they have the feature to convert event 

to clustering dataset instance and reverse that. 

1. Time based data mapper – This creates the dataset instances with only 

temporal based attributes which are day of the week and minutes of the day. 

Parameter 1 – Day of week the event happened. Assigns a number from 0 to 

6 and divide the value by 6 to get the range between 0 and 1 

Parameter 2 – Minute of the day the event happened. Value is divided by 

1440 to get the range between 0 and 1 

Class – Class value of the event. 

2. Time and Activity based data mapper – Apart from temporal based attributes, 

this mapper adds the user activity to the dataset instances. Given an event 

time, we fetched the most recent recorded activity as the user activity for the 

event. Since the user activity detection is not reliable, we limited fetching the 

Figure 4.4 Prediction Framework System Architecture 
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recent activity up to 10 minutes. This value kept as a parameter named 

lookbackMins in the data mapper. 

Parameter 1 – Day of week the event happened. Assigns a number from 0 to 

6 and divide the value by 6 to get the range between 0 and 1 

Parameter 2 – Minute of the day the event happened. Value is divided by 

1440 to get the range between 0 and 1 

Parameter 3 – User activity when event happened. The mapped values are 

chosen so that similar activities have close values. Similar to other parameters 

the value are in the range of 0 to 1. 

 ON_FOOT : 0.2 

 WALKING : 0.3 

 RUNNING : 0.6 

 ON_BICYCLE : 0.8 

 IN_VEHICLE : 1.0 

 NO_ACTIVITY : 0.0 

Class – Class value of the event. 

 

 

Once the events are preprocessed using data mappers, it creates a temporary comma 

separated values (.csv) file. This file is directly feeded to the clustering algorithm. 

We have implemented two clustering algorithms K-means and EM which are 

configurable in Prediction Engine. Each algorithm has its prediction processor 

implementations. Having separate implementations for each algorithm gives the 

Figure 4.5 Clustering Data Mapper Interface 
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freedom of adding optimizations and configurations based on the clustering 

algorithm. 

Once the clustering is finished, prediction processor stores the clustered datasets. 

When it need to make predictions, it will find the closest cluster for the given input 

event. Finding closest cluster is described in 3.2.2.2 Clustering and Predictions 

section. After finding the closest cluster, the data mapper is used to reverse the 

conversion by transforming dataset instance into event. By collecting events and 

mapping class values of the events, we the predictions. The predictions are sorted by 

the frequency of the events. 

4.3.1.2 Prediction Interface 

Prediction interface is the public interface which exposes the functions to be called 

from integrated applications. When the functions are invoked, it calls the necessary 

functions in the prediction processor to return predictions. Figure 4.6 shows the 

interface of the Prediction Engine interface with Prediction Listener. 

  

4.4 Proof of Concept Application 

A proof of concept mobile application named “Smart Suggestions” was developed by 

using the prediction framework library to demonstrate the usability of context based 

predictions. The basic settings of the application are to select which predictions the 

user expects through the application.  

Figure 4.6 Prediction Engine Interface 
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A background service was registered to detect the screen ON actions. Each time the 

user unlocks the screen, the application will get a call back from the background 

service. Then the application invokes the prediction interface method to get 

predictions by passing an event with the current time. The Prediction interface will 

return a list of predictions in order. If the predictions are available, the application 

shows a message bubble like icon to the user. If user taps that icon, the predictions 

will be shown. These predictions are categorized by their type (App usage, Call, 

SMS) and are presented in different tabs. The application limits the maximum 

number of predictions up to 5 per a category. 

Figure 4.7 Proof of concept application settings 
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In Figure 4.8 left screenshot shows the application predictions. The right screenshot 

shows the SMS predictions. We have implemented showing following predictions. 

1. Application predictions – Mobile applications name and icon will be 

presented in order of top item being the most frequent application for the 

given time and user context. Tapping a list item will launch the application 

2. SMS predictions – A list of top contact numbers/names will be presented in 

similar order as application predictions. Tapping a list item will launch the 

default messaging application with conversation open for the selected 

contact. 

3. Call predictions – A list of top contact numbers/names will be presented in 

similar order as others. Tapping a list item will launch the default call 

application with the phone number already filled to initiate the call. 

  

Figure 4.8 Application and SMS predictions screens 
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Additionally, to demonstrate functionality and test the framework, Cluster Test 

screen and Cluster Accuracy screen was developed. In order to retrieve the data from 

the library framework, we exposed additional functions other than prediction 

interface functions. This was completely focused on debugging purposes and the 

production ready library will not include these additional functions. 

 

Figure 4.9 shows Cluster test screen. It has the option to select which algorithm (K-

means or EM) to use and number of clusters needed. Once “Cluster” button is 

tapped, it will start the clustering process. Once done, clustering time is displayed. 

After the clustering the two buttons is there to select a date and time. Upon selecting 

date or time, the dataset of the closest cluster for the selection will be displayed.  

 

 

Figure 4.9 Cluster test screen 
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Figure 4.10 shows the Cluster accuracy screen. This was used for evaluating 

different algorithms with different parameters. Similar to cluster test screen, this has 

the option to select a clustering algorithm. In accuracy testing we divide the dataset 

into two groups for training and testing. Training group was used for clustering and 

testing group was used for testing. The “Test data percentage” configures the 

proportion of the test dataset size out of all data. The “Look back minutes” 

configures the upper limit of finding the most recent user activity event to be 

consider as event’s activity. The “TopK classes” configures the number of top 

predictions which need to be considers when testing. If the “TopK classes” value is 

5, the topmost 5 predictions will be taken and check whether it matches with the test 

entity class. 

 

  

Figure 4.10 Cluster accuracy screen 
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CHAPTER 5 

RESULTS AND EVALUATION 
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5. RESULTS AND EVALUATION 

5.1 Overview 

This chapter describes the nature of the tests, process of conducting them and the 

results. Later in the chapter we will talk about how the results are evaluated and how 

it contributed to the success of this research. 

5.2 Testing Process 

We have collected 20 datasets from different users and depending on their 

interactions with the phone number of data points varied from 5,000 to 40,000. The 

datasets which has lower than 10,000 data points were removed from testing as 

having small dataset does not reveal the patterns in the data. Out of 20 datasets 15 

were acceptable and used to run different sets. 

The results given in the rest of the chapter are average values unless we explicitly 

mentioned it. Averages are calculated by running the same test against selected 

datasets and divided by number of datasets. 

For all the tests except parameter tuning tests, we used a Google Pixel 2 phone which 

has octa-core CPU (4x2.35 GHz Kryo & 4x1.9 GHz Kryo) and 4GB RAM. For 

parameter tuning tests we used a Dell Inspiron 13-7386 laptop having octa-core 

Intel® Core™ i7-8565U CPU (8x1.80 GHz) and 16 GB RAM. 

 Parameter Tuning 

Both K-means and EM clustering algorithms need the number of clusters which need 

to break when applying the algorithm. There is no universal way of deciding the 

value for this application. Therefore, we tested both algorithms with different data 

mappers (time only mapper and time with activity mapper) with variations of cluster 

count. 

The Table 5.1shows the accuracy percentages of different scenarios against changes 

in the input cluster count. Note that when cluster count is 200, the maximum 
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accuracy achieved in every test. Therefore we decided set 200 as cluster count for 

other tests.  

Table 5.1 Accuracy percentages for different cluster counts 

Cluster Count 
K-means EM 

Time only Time+Activity Time only Time+Activity 

100 58.18 62.43 66.06 71.40 

150 65.66 70.32 73.58 76.58 

200 69.36 73.09 75.15 81.01 

250 67.28 70.19 74.46 77.54 

300 63.24 68.19 69.22 73.49 

350 59.92 63.19 64.37 68.14 

400 55.96 60.70 60.86 65.54 

600 50.40 52.48 57.85 61.83 

 

Table 5.2 contains the clustering time in seconds on different test scenarios. These 

tests were done using a personal computer and the results may differ in a mobile 

phone processor. 

Table 5.2 Total clustering time in seconds for different cluster counts 

Cluster Count 
K-means EM 

Time only Time+Activity Time only Time+Activity 

100 9.29 8.09 58.86 46.27 

150 11.61 18.05 78.55 63.57 

200 18.77 30.37 94.32 70.55 

250 19.51 34.27 110.58 78.42 

300 33.25 53.03 126.10 87.73 

350 43.74 70.85 133.94 106.53 

400 53.65 116.27 139.29 125.68 

600 92.39 228.45 163.53 149.37 
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 Optimization Testing 

The optimization discussed in section 3.2.2.3, is applicable only to K-means 

algorithm. To compare the effect of this optimization, we have measured the average 

clustering time, average testing time, memory consumption and the accuracy 

between regular EM clustering, regular K-means and the optimized K-means 

implementations.  

Table 5.3 Results comparison between different clustering algorithms 

Metric K-means 
K-means 

optimized 
EM 

Average clustering time (s) 139.38 150.35 774.45 

Average testing time per entry (ms) 19.24 0.08 21.34 

Accuracy (%) 74.95 72.38 79.31 

Memory consumption (Mb) 17 4 16 

 

Average testing time per entry is calculated using total time it took to evaluate the 

test dataset and the size of the test dataset. The memory consumption was measured 

using the difference between before and after running the clustering. At the each run, 

forced garbage collection was triggered when capturing the memory usage. 

Figure 5.1 shows the memory usage of when clustering and testing a small dataset 

when applying the regular K-mean clustering. The red dots on top marks the starting 

of the clustering and the testing respectively. Figure 5.2 shows the same when 

applying optimized K-means clustering. The end of each figure marks the end of the 

testing. 
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5.3 Evaluation 

Figure 5.3 is a graph plotted using the data in accuracy percentage Table 5.1. We can 

clearly identify that the highest accuracy reached when clustering count is 200. 

Having too many clusters makes over-fitting the data. On the other hand, having few 

clusters makes under-fitting. It is essential to find an approximate optimal cluster 

count for achieving high accuracy.  

Also, we can identify that EM clustering is more accurate than K-means in most of 

the scenarios. This is because K-means clusters tend to create approximately equal 

time ranged clusters while EM clustering tend to find more patterns. 

The other finding is that by adding user activity improves the overall accuracy on 

both algorithms. This depicts that the more we use context data, accuracy will 

increase. This behavior is expected because having more dimensions in data points, 

will create more fine-grained clusters which results identifying better patterns. 

Figure 5.2 Memory usage when K-means optimized clustering and testing 

Figure 5.1 Memory usage when regular K-means clustering and testing 
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Under this model, we can go up to ~80% accuracy by using EM clustering with 

temporal and user activity data. Using K-means clustering will give an accuracy up 

to ~74%. In this case, EM clustering is the best candidate when it comes to achieving 

good accuracy. 

 

Table 5.2 indicates that EM clustering takes considerably more CPU time when the 

cluster count is low. However, it performs when the cluster count is getting higher. 

But our approximate optimal cluster count is not higher enough for EM clustering to 

catch the CPU time of K-means. In our case, K-means is faster, and is more suitable 

for mobile devices as mobile devices do not have high end CPUs. The framework is 

not designed to perform clustering frequently. The framework was designed to 

cluster at the very beginning or at the midnight of each day. Therefore, having a high 

CPU time for clustering is acceptable within the scope of the framework. The only 

drawback in high CPU time is, it may not suit low-end devices. 

By analyzing the data in Table 5.3, we can clearly identify the significant 

improvement in testing time in the optimized K-means clustering. This is important 

as time taken for a prediction is highly improved. However, we can see that there is a 
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nearly 2% reduction in the accuracy of the optimized implementation. Unlike finding 

the closest cluster by using the real dataset points, optimized implementation checks 

only the boundaries of the clusters. Therefore, there is a chance of not picking the 

optimal closest cluster in the optimization. The 2% accuracy reduction is acceptable 

for an application where the framework needs to make higher amount of predictions. 

There is an increase in CPU time, but it is not significant. Although the clustering 

time is equal, the initiation of predictions from all clusters adds extra time. 

Comparing Figure 5.1 and Figure 5.2 reveals that testing on regular K-means 

implementation consumes more memory when testing. It is because of finding 

closest cluster needs creating intermediate objects. Apart from that comparing 

memory usage in Table 5.3 we can see that optimized implementation need less 

memory to keep the results. Because the regular implementation needs to keep all 

clusters for identifying the closest cluster, it needs more memory. But optimized 

implementation does not need all the clusters because it only stores the predictions 

which is aggregated data from all the clusters. By considering above factors, 

optimized implementation is suitable for low-end devices because of low memory 

usage and acceptable accuracy. 
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CONCLUSION 
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6. CONCLUSION 

With the evaluation of mobile phones, some people tend to use their mobile phone 

even more than an hour a day. Throughout the day, people interact with the 

smartphones continuously, but their software is not that smart to identify what the 

user’s intentions are. For an example if the user is driving, there is a high chance of 

opening a navigation/maps app. But the current software does not try to make that 

easy for the user. The problem is that there is no underlying method for the mobile 

application developers to identify the user context and get user’s intentions so that it 

will make user experience better. 

6.1 Research Contribution 

This research answers the above problem by implementing a framework so that 

mobile application developers can embed and get predictions on what user’s next 

action is.  

In literature review we have found that there are several methods to use sensor data 

to identify user activity and there are production ready libraries already available to 

use. We also analyzed that software-based data sources like SMS messages and call 

logs have a good potential to help identifying user’s context. Considering these 

factors, we have designed a generalized model to collect and persist use activities, 

SMS and call logs. 

Comparing properties of different pattern recognition methods, we decided that 

clustering is a good fit for running within mobile devices as it does not need high 

computation power which is a restriction in mobile devices. Also, it resolves the 

requirement of making this work offline.  

By using collected data from different users, we have evaluated K-means and EM 

clustering algorithms and even we have found an efficient way to make prediction if 

they come from K-means algorithm based clusters. By analyzing the research results, 

we conclude that EM clustering gives high accuracy and it is suitable for high-end 

devices while optimized K-means clustering is suitable for low-end devices with less 

accuracy but more compatibility. 
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The framework was developed as an Android library so that any Android mobile 

application developer can import and use the library functions easily. Further, we 

developed a proof of concept application which uses the above library and predict 

user’s mobile application openings, calls and SMS message contacts so that user do 

not have to go through the application launchers to select required application. 

6.2 Limitations 

 Scalability 

The accuracy increases as the collected data increases, but it will make the clustering 

slow and resource intensive. As a temporary solution we have limited number of 

events when clustering, but we need a scalable solution where we can include all the 

collected data to improve the accuracy. 

 Accuracy 

We have achieved 80% accuracy level by using EM clustering. But it always has the 

chance to increase the accuracy more. Although our research approach covers 

temporal patterns, it does not vary predictions based on the chain of actions. For an 

example if the user tends to open app ‘A’ followed by app ‘B’, this research solution 

does not predict opening app ‘B’ unless there is a past event at the same time. 

 Privacy 

Collecting user related data is always connected with privacy concerns. Even though 

the framework was designed not to upload or expose data, there is a chance of 

revealing user information even from the encrypted data.  

6.3 Future Research Directions 

From the very beginning of this research, one requirement is to make this work 

irrespective of a network connection. This restricted us from using complex or high 

computational approaches like neural networks which may give better accuracy 

levels. As an example, having long short-term memory (LSTM) based neural 

network will give better accuracy since it can maintain user context as well as 

previous actions when making predictions. As the neural network frameworks 

evolve, some of them support running lightweight version of neural network models 
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within the mobile device. This may open new doors to extend this framework by 

adding new neural network based prediction processors.  

Since mobile device capabilities are constrained by low CPU and memory capacities, 

it can use computation offloading techniques to run complex prediction models. 

There are many researches done related to mobile cloud computing [31] which can 

be beneficial for improving accuracy and response time of the framework. 
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