

A PERVASIVE FRAMEWORK FOR IDENTIFYING

ACTIVITY PATTERNS OF MOBILE USERS AND

PREDICTING ACTIVITIES

Diyunugalge Chamika Sandun Weerasinghe

168275N

M.Sc. in Computer Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

March, 2020

A PERVASIVE FRAMEWORK FOR IDENTIFYING

ACTIVITY PATTERNS OF MOBILE USERS AND

PREDICTING ACTIVITIES

Diyunugalge Chamika Sandun Weerasinghe

168275N

This report is submitted in partial fulfillment of the requirements for the Degree of

Master of Science in Computer Science specializing in Mobile Computing

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

March, 2020

DECLARATION

I declare that this is my own work and this report does not incorporate without

acknowledgement any material previously submitted for the degree or diploma in

any other university or institute of higher learning and to the best of my knowledge

and belief it does not contain any material previously published or written by another

person except where the acknowledgement is made in the text.

Also, I hereby grant University of Moratuwa the non-exclusive right to reproduce

and distribute my dissertation, in whole or in part in print, electronic or other

medium. I retain the right to use this content in whole or part in future works (such as

articles of books).

Signature: …………………….. Date: 2020/03/15

Name: D. C. S. Weerasinghe

I certify that the declaration above by the candidate is true to the best of my

knowledge and that this report is acceptable for evaluation for the CS-5999 PG

Diploma Project.

Name of the supervisor: Dr. Indika Perera

Signature of the supervisor: ……………….. Date: ………………………

 ii

ABSTRACT

Smartphones has become one of the most used devices in day to day life. Even

though they already have so many features, they still lack the ability to identify

user’s context and the intentions. This is important for improving user experience

and make existing mobile application more user friendly. The issue is that there is no

underlying support either from operating system or software level to predict the

user’s intensions based on user context.

The main objective of this research is to come up with a framework to predict user

intentions based on user context by identifying activity patterns. The framework

must be run in-device so that it will function irrespective of the network connectivity.

We selected “clustering” as the approach because it does not involve high

computation power or complexities to run in-device. We identify activity patterns by

clustering the user’s actions and then predict based on the closest cluster for the

given time. We have evaluated K-means and Expectation-maximization (EM)

clustering algorithms for compatibility for the framework. Unlike computers, mobile

devices do not have powerful CPUs or memory. Therefore, we measured CPU time

and memory usage of these algorithms to select the best. To maintain low-end device

compatibility, we tuned in the algorithm parameters to achieve high accuracy

keeping the CPU and memory consumption in low levels.

In conclusion, we have successfully identified that EM clustering is suitable for high-

end devices and it gives high accuracy while K-means is suitable for low-end devices

with acceptable accuracy. We have implemented the framework as an Android

library and developed a proof of concept application by embedding the implemented

library to show that this research will actually enables application developers to give

better user experience to their applications.

 iii

ACKNOWLEDGMENT

I owe my deepest gratitude to my supervisor, Dr. Indika Perera, for his invaluable

support in providing relevant knowledge, advice and supervision throughout the

project. This would not have been possible without his expertise and continuous

guidance.

Finally, I would like to thank my colleagues at CodeGen Int. Pvt Ltd and Bhasha

Lanka Pvt. Ltd for covering my work and helping me to balance the workload.

Without them, this project would not have been possible.

Last but not least, I am grateful for all the people who supported me throughout this

research in various means.

 iv

Table of Contents

List of Tables... vi

List of Figures .. vii

List of Abbreviations... viii

1. INTRODUCTION ... 2

1.1 Background ... 2

1.2 Problem Statement .. 3

1.3 Objectives .. 4

 Other Objectives... 4

1.4 Overview of the Document ... 4

2. LITERATURE REVIEW... 7

2.1 Context Identification .. 7

 Data collection using mobile device sensors ... 8

 Data collection using mobile device applications 10

 Preprocessing ... 10

 Feature Extraction .. 11

2.2 Activity Recognition ... 12

 Activity recognition through learning .. 13

 Different classification techniques ... 15

2.3 Activity Prediction .. 22

 Event-Condition-Action (ECA) Model .. 22

 Clustering ... 24

 Analysis .. 25

3. METHODOLOGY ... 27

3.1 Proposed Solution .. 27

 v

3.2 Workflow ... 27

 Data Collection... 28

 Clustering Data and Activity Predicting .. 30

 Evaluation .. 33

 Implementing the Framework .. 34

4. SYSTEM ARCHITECTURE AND IMPLEMENTATION 38

4.1 Overview ... 38

4.2 Data Collecting Application .. 39

4.3 Prediction Framework ... 42

 Prediction Engine ... 43

4.4 Proof of Concept Application .. 45

5. RESULTS AND EVALUATION .. 51

5.1 Overview ... 51

5.2 Testing Process .. 51

 Parameter Tuning ... 51

 Optimization Testing .. 53

5.3 Evaluation .. 54

6. CONCLUSION .. 58

6.1 Research Contribution ... 58

6.2 Limitations ... 59

 Scalability ... 59

 Accuracy .. 59

 Privacy.. 59

6.3 Future Research Directions ... 59

7. REFERENCES ... 61

 vi

List of Tables

Table 2.1 Classification Techniques .. 16

Table 3.1 Different test scenarios and the measured metrics 34

Table 5.1 Accuracy percentages for different cluster counts 52

Table 5.2 Total clustering time in seconds for different cluster counts 52

Table 5.3 Results comparison between different clustering algorithms 53

 vii

List of Figures

Figure 1.1 Devices used to access the internet, by age group in UK 2018 2

Figure 2.1 Generic Process for identifying context continuously 7

Figure 2.2 (a) left to right HMM model (b) ergodic HMM model 16

Figure 2.3 Sample decision tree having branching factor of 2 17

Figure 2.4 Structure of a general Neural Network ... 18

Figure 2.5 Placing the new data point in K-Nearest Neighbor Clustering [3] 21

Figure 2.6 ECA architecture for activity prediction... 24

Figure 3.1 Research Workflow .. 28

Figure 4.1 Data Collecting Application System Architecture 39

Figure 4.2 Sample data of events database table.. 41

Figure 4.3 Data Collecting Application Main Screen .. 42

Figure 4.4 Prediction Framework System Architecture ... 43

Figure 4.5 Clustering Data Mapper Interface .. 44

Figure 4.6 Prediction Engine Interface .. 45

Figure 4.7 Proof of concept application settings .. 46

Figure 4.8 Application and SMS predictions screens .. 47

Figure 4.9 Cluster test screen ... 48

Figure 4.10 Cluster accuracy screen .. 49

Figure 5.1 Memory usage when regular K-means clustering and testing 54

Figure 5.2 Memory usage when K-means optimized clustering and testing 54

Figure 5.3 Different average accuracy percentages ... 55

 viii

List of Abbreviations

Abbreviation Description

IoT Internet of Things

HMM Hidden Markov Model

MSE Mean Square of classification Error

NN Neural Networks

KNN K-Nearest Neighbors

ECA Event-Condition-Action

GPS Global Positioning System

API Application Programming Interface

SDK Software Development Kit

IDE Integrated Development Environment

App Mobile Application

EM Expectation-Maximization

 1

CHAPTER 1

INTRODUCTION

 2

1. INTRODUCTION

1.1 Background

People use a number of digital devices to interact with the world around them in their

day to day activities. From turning off the alarm in the mobile phone in the morning

to turning off the bedroom light at night, these interactions follow a pattern specific

to a user with a sequence of repetitive actions. Let’s take a person who does a 9 to 5

day job for an example. They wake up at specific time, commute to work, leave work

around same time, commute home, eat dinner and sleep. People use a number of

devices to get help with these activities including mobile phones and virtual

assistance devices like Alexa and Google Home. These devices can be set up to

interact with each other as well.

The concept of “IoT (Internet of Things)” is based on the idea of machines and the

devices communicating with each other. It will be helpful for the machines to learn

the user’s behavior to make the best use of the machine to machine communication.

Currently, more people in the world have access to a mobile phone worldwide than

clean running water [16]. In some cases, people tend to use more than one mobile

phone. According to the office of national statistics in UK, in 2018, among all adults,

78% used mobile phones or smartphones to access Internet [17].

Figure 1.1 Devices used to access the internet, by age group in UK 2018

 3

Mobile phones have various models and makes with a number of different sensors

embedded. The count of the sensors bundled in high end smart phones, sometime

goes up-to more than 10. But majority of the smart phone users do not use these

sensors. The number of mobile applications which uses these sensors has always

been low. For example, GPS sensor is only used with applications dedicated to

navigation like Google Maps and the light sensor is used only for detecting

environmental light intensity based on which the brightness of the screen is

regulated.

The opportunity to use these sensors and develop something beyond their typical use

cases is always there. One good example for this is using the mobile phone camera

and flashlight to detect the heart rate of the user. When the user put the finger in both

flashlight and the camera, the finger will be light up by the flashlight in red color.

The color variation due to the blood flow in the finger can be identified by the

camera [18].

We can use these sensors to capture the data frequently and identify the user

activities or the user context. Additionally, data recorded from the mobile

applications such as call records, SMS messages can also be used for the same

functionality. Once the activities are mapped with user context it can search for

identifying patterns. These patterns can be used to predict future user activities

depending on the user context for a given timeframe.

1.2 Problem Statement

Smartphones has been improved a lot in the space of sensors and applications. But

people still have to manually do the same thing over and over again. Consider a

situation where user drives to work every day and open Maps while driving to find

the best route. With the amount of sensors mounted in the mobile devices, we can

identify this behavior pattern and open the Maps application or suggest opening the

maps application when the user gets into the car in the morning.

 4

The main research problem we are trying to address from this research is to find a

mechanism to reduce these repetitive actions by users by leveraging the data

captured from the embedded sensors and the installed applications in the mobile.

1.3 Objectives

The main objective of this research is to develop a pervasive framework to identify

the user behavior patterns and predict the activities in real-time, so the user does not

have to do repetitive actions.

 Other Objectives

 Research on how to identify the behavior patterns from the user activities and

prediction.

 Come up with a good solution that suites both high-end and low-end devices

without significantly draining battery.

 Develop a framework for a selected mobile operating system to predict the

user actions based on the behavior patterns.

 Develop a proof of concept application by using the developed framework.

1.4 Overview of the Document

This document consists of five chapters. The first chapter gives the introduction to

the research by presenting the background of mobile devices and sensors. It will

present the research problem which we are trying to solve and the objectives of the

research.

The second chapter contains the finding of the related literature. Starting from the

context identification mechanisms which includes data collection and feature

extraction. It is followed by activity recognition and activity prediction.

The third chapter describes the identified methodology to solve this problem. This

includes data collection, data training and prediction, evaluations of the selected

algorithms and the implementing the framework.

 5

Fourth chapter contains the information regarding the high-level flow of the

framework, system architecture and implementation details of the data collection and

proof of concept applications.

In the fifth chapter we have included the results of different approaches we took

when predicting and their accuracy levels.

Last chapter was dedicated to discuss the research contribution from the research

along with the limitations of the approach we took and future directions where we

can extend the framework.

 6

CHAPTER 2

LITERATURE REVIEW

 7

2. LITERATURE REVIEW

This chapter is organized in the following way.

 Context identification by collecting the sensor data and feature extraction

 Activity Recognition

 Activity Prediction

2.1 Context Identification

User context is a broad topic and it can be what a user is doing, where the user is

living, how the environmental and user condition etc. Identifying the user context is

challenging for the computing devices due to the variations of different user

behaviors. Several solutions are proposed in past research work to identify context

using sensors but accuracy need to be improved on these solutions. A generic process

to identify the context is visualized in Figure 2.1 [1].

In the Step one, raw data is gathered from the multiple sensors and stored for later

processing. Pre-processing is done in order to improve the efficiency for the later

steps. For example, data is gathered as a stream and stored as a batch of data sets.

This preprocessing step will reduce the number of disk operations which eventually

affects the energy consumption of the mobile device as well as make the raw data

more organized so that it will simplify the processing in later steps.

In step two, high level information is generated by processing the raw sensor data.

This is done by modelling, training, analyzing and inferring. A suitable method is

Step 1: Collecting & Pre-processing Data

Step 2: Modeling/ Training/ Analyzing/ Inferring

Step 3: Continuous context identification

Figure 2.1 Generic Process for identifying context continuously

 8

selected based on the sensor data and the information retrieval mechanism. For

example, if you need to identify whether the user is walking, you can use

accelerometer data, model it, train them to identify the walking pattern of the user

and analyze to generate the required information.

User’s context is continuously changing. Identifying this context is discussed in the

third step. When the context keeps changing, the process needs to adapt its results

based on the changing sensor readings. These identified high-level context will be

served for other applications in this step.

Context can be categorized into 3 types.

1. Physical Activity – User’s actions such as sleeping, sitting, walking, running.

2. Social Interaction – User’s interaction with other people.

3. Environmental Interaction - User’s interaction with the environment like

movement pattern.

 Data collection using mobile device sensors

Smartphones have several built-in sensors to accommodate services like navigation,

brightness control, automatic screen orientation detection, device health detection

etc. A list of sensors which comes with average level smartphone and their usages

are given below. [2, 3]

1. Accelerometer – Identify device orientation and change screen orientation

based on that.

2. Gyroscope – Works along with accelerometer to enhance the accuracy of

position level and orientation of the device. This uses the principle of angular

momentum which makes the sensor readings independent of the gravity.

3. Digital Compass – Uses in navigation applications to identify the direction of

the phone.

4. Global Positioning System (GPS) – Finds the GPS location of the device,

altitude and location related information

 9

5. Proximity sensor – The main application of the proximity sensor is to turn off

the screen when a user put the phone in the ear while a call is ongoing. It also

uses to identify whether the phone is the pocket or covered by a device case.

6. Light sensor – Captures the light intensity and controls the screen backlight

brightness based on the reading.

7. Temperature sensor – Uses to detect the internal temperature of the device. If

the internal temperature is high, system informs or act to switch off the

device as a safety precaution of the internal electronics.

8. Microphone – Captures the voice of the user in a call. Some devices have a

separate microphone to capture environment noise. Then environment noise

stream is used for noise cancellation for better output sound quality. Also, the

input voice will be filtered by using the environment noise.

9. Camera – Captures and generate digital image. Some devices contain dual

cameras to detect depth of the objects to correctly identify the depth of field.

10. Global System for Mobile Communications (GSM)/3G/4G module – Makes

voice calls or initiate data connection with networks.

11. Infra-Red (IR) sensor – Enables the communication using Infra-red.

Other than the above sensors some high-end devices have pressure, humidity,

fingerprint sensors. Considering the number of sensors embedded in a single device

makes the device ideal as a source of raw data for the identification of user context.

2.1.1.1 Challenges in data collection using mobile device sensors

Using all these sensors do have some challenging aspects when used frequently.

Following are some of the challenges which has significant impact.

1. Energy [4] – Although the mobile devices embed a variety of sensors, they

are powered by a battery. Because of the design constraint which is to minimize the

size of the mobile device, battery dimensions must be reduced. This limits the

capacity of the battery. When using many sensors, they need extra energy to function

which consume the mobile device battery. Therefore, enabling sensors to capture

reading continuously throughout the day is nearly impossible. If it does an average

mobile device will only last up to 4 or 5 hours.

 10

2. Heterogeneity – Different device manufactures use different electronic

modules to produce sensors. This differentiate the sensor accuracy and range. Also,

operational environment will change depending on the user [22]. Therefore,

implementing a single solution with high accuracy for multiple devices and sensors

is challenging. The behavior of the users also varies from each other. Walking

pattern of a user might be different from other due to the height, weight and other

factors of the human body. This makes the problem more complex because the same

device may have different sensor readings for different users.

 Data collection using mobile device applications

Most of the research work focus on identifying context via sensors. But there is

another aspect when it comes to mobile phones. Users tend to install many

software/applications and interact with them throughout the day. This can also be an

opportunity to learn the lifestyle of the user. Many social media applications like

Facebook, Twitter and communication applications like WhatsApp, Viber will be a

good source for data as well. Also, call logs and SMS messages are two main sources

to import data as many mobile operating systems are allowed to use these data with

the consent of the user [23].

Not all applications are data or event producers. Some applications do not even

support data exports. This is the main limitation of using mobile applications to

collect data. If the application and/or operating system supports data collection from

applications, this data can also be used similar to sensor readings. A good example

would be sending an SMS message to your partner when you reach office in the

morning every day. A pattern should be able to identify from this SMS sending

event.

 Preprocessing

The output data from the sensors, can be captured continuously and recorded in the

device itself. This raw data should be refined before it is used for context

recognition. A sensor calibration is a better way to increase accuracy of sensor

readings. Although the sensors are heterogeneous it can achieve a good sensor

 11

measurement, if the readings are calibrated for the sensors in a standard way [3].

This should be done by the users before starting to record the readings. A simple

mobile devices activity can be used to calibrate each sensor. As an example,

informing user to rotate the device horizontally can calibrate the accelerometer

readings in a single axis. When the sensor measurements are occurring, sensor

readings can be modified according to the calibrated values.

Apart from sensor calibration, sensor readings may have redundancies and noise. The

preprocessing step should be able to remove them as well. But the preprocessing

must not exceed the high computation and memory requirements. Heuristics can be

used for preprocessing of raw data. These modified, “cleaned” data can then be

transferred for further processing.

 Feature Extraction

Having raw data and process them to identify activities is impractical. Because of

that we need feature extraction. Feature extraction is the process of distilling the raw

sensor data and converting it into more computationally efficient and lower

dimensional forms called features [3].

Whether the data comes as a stream or sequence of events, it is necessary to split the

data into samples. Splitting window should be depended on the nature of the sensor

readings, resolution and sensor type. For an example having small (ex: 2 seconds)

window for accelerometer reading is acceptable since the changes of the readings are

rapid. But having small window for location readings will not be suitable because the

location changes in small intervals are negligible.

Generating accurate features out of raw data is important for context recognition.

Feature extraction in three types of context can be described as follows.

2.1.4.1 Feature extraction in physical activity

Since the mobile phone has become a ubiquitous device for sensing, physical activity

of a user throughout the day can be accurately identified. Accelerometer, gyroscope,

proximity and GPS sensors can be used to collect user’s physical changes [5,6]. This

can be helped to identify the duration of activities like sleeping, sitting, walking,

 12

running, travelling etc. [25]. Mean, standard deviation, number of maxima in locality

are some of the features which can be extracted based on the time. Google awareness

library is a good production ready Android library which has implemented

identifying activities like on foot, walking, running, on bicycle, in vehicle. Although

the internal functionality of this library is not published, we can identify that it uses

3-axis accelerometer, gyroscope, compass and GPS sensor readings to recognize user

activity.

2.1.4.2 Feature extraction in social interactions

Social interaction covers the context of human interactions. For this microphones,

proximity sensors and shared locations can be used. Basically, it need to know

whether the person is communicating or being among the others. Time based feature

extraction method would be analyzing the intensity of the sound against the time.

2.1.4.3 Feature extraction from environmental sensing

Location based readings such as GPS coordinates, places and altitude can be

captured from the mobile device sensors. These reading can be used as an input for

retrieving weather data to capture the environmental context. Apart from that sound,

light, temperature, and humidity are some of the measurements which can be

measured under environmental sensing. Time based averaging, standard deviation

are basic level feature extraction techniques for this. Also probabilistic analysis

methods can be used since are more likely to have patterns.

2.2 Activity Recognition

Context inference is the way of identifying activity of the user. Here the activity is

considered as various user context as well as the events generated by users like

sending a SMS message, making a call, updating or publishing posts in social media.

The features which are extracted from raw data is the input of context inference

algorithms. These algorithms are also known as classification algorithms.

Classification algorithms need initial data set to learn the behavior of data. This is

called the learning phase. The algorithm tries to identify the patterns in each

dimension of expected features. There are several types of algorithms which can be

 13

used for activity recognition such as threshold-based algorithms, neural networks and

hidden Markov models.

 Activity recognition through learning

Learning in activity recognition can be categorized into two models [24]

1. Supervised learning model

2. Unsupervised learning model

Unsupervised learning models does not use any kind of trained data.

2.2.1.1 Supervised learning model

Supervised learning model is the process of learning through already defined

algorithms and the data is provided along with the classes. Accuracy of the

recognition is dependent on the trained data [24].

Supervised learning is the Data mining task of inferring a function from labeled

training data. The training data consist of a set of training examples. In supervised

learning, each example is a pair consisting of an input object (typically a vector) and

a desired output value (also called the supervisory signal). A supervised learning

algorithm analyzes the training data and produces an inferred function, which can be

used for mapping new examples. An optimal scenario will allow for the algorithm to

correctly determine the class labels for unseen instances. This requires the learning

algorithm to generalize from the training data to unseen situations in a “reasonable”

way

There can be deviations between the trained data and actual data based on the

There can be deviations happening because the trained data is based on general

patterns. If the data set is significantly deviates from the trained data, generalization

error will be high. As a measurement of the error mean square of classification error

(MSE) can be presented [3].

 14

𝑀𝑆𝐸 = 𝑁𝑜𝑖𝑠𝑒2 + 𝐵𝑖𝑎𝑠(𝑓(𝑥))
2

+ 𝑉𝑎𝑟(𝑓(𝑥))

𝑥 = 𝑖𝑛𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟

𝑓(𝑥) = 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑒𝑙 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐𝑙𝑎𝑠𝑠 𝑥

Noise is the error of the system or sensors. This is caused by the system or sensor

errors. Bias is the error causes by the learning method. Var is the variance of the

error related to classification specific sensitivity.

Noise cannot be reduced. In order to minimize MSE is to minimize the other two

factors. If the training data set is large, it may cause high bias error (under-fitting). It

may cause high variance error (over-fitting) when using small training data set.

Therefore, in both type of classifiers may face increased MSE. To overcome this

issue, a data set collected from multiple users can be used. Because the actual data

from users will be less deviated from the real users. This data can be used as training

data set to minimize MSE. The problem arises when using multiple users for training

data sets is to estimate number of users for better error reduction.

The users are the best resource for evaluating classified results. There are three main

techniques to get user’s contribution for evaluation results [3].

1. Active learning

2. Community Guided learning [26]

3. Hybrid approach of above [27]

Active learning interacts with user to evaluate the classified results. Initially a test

data set is used to gather some results. Then it asks the user to evaluate the

correctness of the classified results. Based on that it will continuously changes the

classification.

In community guided learning uses crowd sourcing as a generalizing method. Unlike

single user based technique in active learning, erroneous evaluations of the users can

be omitted and generalization accuracy can be increased. But it will take

considerable amount of users to contribute for a better accuracy.

 15

Hybrid approach of active learning and community guided learning was suggested to

improve classification further. A service based recognition is used for active learning

and the learnt data is transferred to a backend server for accumulation. Community

guided learning technique is used in backend servers where multiple user

classifications are received. Then personalized information can be generated based

on user’s preferences.

 Different classification techniques

The selection of learning technique is depended on the selection of the classification

technique. Selection of classification technique should be decided considering the

time and space complexity of the algorithm. Since the target is to process within the

device, algorithms which demands high computing power is not suitable for the

application. This document focuses only the algorithms which are relatively simple

and can fit to the mobile device computation.

There are two types of classification algorithms based on the optimization approach

[28].

1. Generative algorithms

2. Discriminative algorithms

Generative algorithms are trying to optimize in the assumption of existence of

probabilistic relationship between the data and the classes. Also it specifies that there

exists a joint distribution between the features and the classes. Mean posteriori,

maximum posteriori and maximum likelihood are some examples for generative

algorithms. Generative models are based on probability computation and most of the

time they are not using because of the computational costs.

Discriminative algorithms are using different approach introducing the distance or

similarity between the any pair of patterns. Simply it need to define a distance or

similarity between samples. If it is in the same class, the similarity will be higher

(distance is lower) and vice versa.

The following table summarize the approaches of generative algorithms and

discriminative algorithms.

 16

Table 2.1 Classification Techniques

Generative Algorithms Discriminative Algorithms

Hidden Markov model Neural networks

Bayesian networks Decision trees

Discriminant Analysis Hierarchical thresholds

 Fuzzy logic

 Clustering

2.2.2.1 Generative Algorithms

2.2.2.1.1 Hidden Markov Model (HMM)

Hidden Markov model has a chain of finite states set. The states are not observable

and it is said that they are hidden. State transitions associates with a set of

probabilities and states is associated with a probability distribution. The Markov

model can be two type of patterns. Left-to-right model and the ergodic model [3].

 (a) (b)

Figure 2.2 (a) left to right HMM model (b) ergodic HMM model

In left to right HMM model the transition happen only in one direction. In contrast,

ergodic HMM can happen all possible transitions which may have cycles, multi-

directions.

Using HMM researches have come across several solutions which related to context

awareness and prediction such as characterizing activity pattern[7], identifying user

 17

mobility and prediction[8], situation identification of mobile user[9], sequential

behavior prediction[10].

2.2.2.1.2 Bayesian Classifier

From the Bayesian classifier following equation can be applied for the sensor data

classification as a component of probabilities

𝑝(𝑐𝑜𝑛𝑡𝑒𝑥𝑡|𝑠𝑒𝑛𝑠𝑜𝑟 𝑑𝑎𝑡𝑎) =
𝑝(𝑠𝑒𝑛𝑠𝑜𝑟 𝑑𝑎𝑡𝑎 |𝑐𝑜𝑛𝑡𝑒𝑥𝑡) ∗ 𝑝(𝑐𝑜𝑛𝑡𝑒𝑥𝑡)

𝑝(𝑠𝑒𝑛𝑠𝑜𝑟 𝑑𝑎𝑡𝑎)

As the equation depicts, the computation of Bayesian classifiers are easy since it only

having the productions of probabilities. Therefore it is even suitable for processing

within a low end mobile device [11]. Even context identification in mini wearable

devices are done using this [12]. Using Bayesian classifiers should be carefully

selected depending on the data set [13]. Let’s say the selection is Naïve Bayes, then it

would be more accurate to use data points which are locally independent than the

dependable.

2.2.2.2 Discriminative algorithms

2.2.2.2.1 Decision Trees

Decision trees is a mathematical tree consisting several nodes and edges. It will

generate inner nodes, branches, and leaves. The simplest decision tree would have

two branching factor where each node evaluates the attribute and output true or false

(yes or no). Following figure describes the decision tree of two branching factor.

Figure 2.3 Sample decision tree having branching factor of 2

 18

When the data set is entered to the input of the decision tree, each node evaluates the

data. Depending on the evaluation next node will be decided. Then the next node is

do the same thing and the process continuous until a leaf is found in the decision tree.

The leaf of a decision tree is a class according to that data. Then the classification

can be done. The evaluation of data via a decision tree is simple and the complexity

is depended only on the height of the tree along a path. Therefore, decision trees are

considered as computationally efficient. There are practical implementations of

decision trees to recognize user activities such as walking, running, sitting and

standing [3].

But the creating the tree structure is complex due to consideration of several aspects

such as training and learning take much time. If the target is to build the decision tree

within the device is time and processor consuming. Therefore, prebuilding the

decision tree in a generalized way is a solution. But the variance of different users,

makes this solution produce less accurate classification although the computation is

low in the mobile device.

2.2.2.2.2 Neural Networks (NN)

Artificial Neural Networks are created and used to classify data. Neural Networks are

complex, need parallel computation and have non-linear model [14]. Same as the

HMM, neural networks have two types. Feed-forward model and feedback model.

Feed-forward works in one direction and it does not allow data to go through the

same node twice. In contrast feedback model enables data to iteratively evaluate by

traversing within the network. It allows output of a node which can be processed

data, to be used as an input of another node.

The states of the neural networks are hidden. The structure of a NN is shown below.

Class 1

Input 1

Input 2

Input 3

Hidden

States
Class 2

Figure 2.4 Structure of a general Neural Network

 19

Neural Networks are computationally expensive because creating neural network and

evaluate through a neural network come across many operations. If the NN allows

feedback loops, the number of operations will be even higher. Same as the decision

trees training NN for a data sets are expensive. Therefore, building multiples of less

complex NN which focused on single task is better than using single NN which

focused on multiple tasks. Because large NN consume higher degree of both space

and computation. But if the NN is simplified by focusing on single task like

identifying walking pattern, the space and computation complexity will be less and it

will fit the low-end mobile device hardware. If the number of classification is higher,

this cannot be scaled because different NN is needed for each classification.

2.2.2.2.3 Hierarchical Models

Hierarchical models define a set of thresholds for different classifications. The

remaining process is somewhat similar to decisions trees. In decision trees the

evaluation in the node is based on the training data set. But hierarchical model use

thresholds which already defined from the start. This removes the complexity caused

in creating the decision tree. Hence hierarchical model is considered as

computationally efficient algorithm in classification. [11,12].

Defining thresholds is done by empirical experiments. As an example, separate

thresholds along an axis will be defined for both running and walking by

experiments. So that the model defined general values for the activities. There might

be situations where these values are out of the thresholds due to the variations of

users. This over-fitting issue cannot be prevented. Therefore hierarchical models

must be used in the situations where generalize thresholds are within the range of

almost all the possible users. The drawback of this method is the thresholds are

predefined and they are depend on the supervised training data set.

2.2.2.2.4 Fuzzy Logic

Fuzzy logics does not have hard wired decision taking mechanism and this is similar

to human decision making. It is able to classify even the data is inaccurate and

partial. Fuzzy logics support approximate reasoning which helps in the applications

 20

where a distinct activity cannot be identified, but the data suggest closer to some

activity pattern.

Fuzzy logic has a knowledge base having set of rules. When an input comes, it

evaluates the input against these rules. While evaluating the rules, it calculates a

score using the assigned membership value or fuzzy truth. Finally, the output having

the maximum fuzzy truth or score will be considered as the result. By comparing

fuzzy truth with the other values, reasoning can be identified.

2.2.2.2.5 Clustering

All the above classification techniques are needed a training data set to initialize the

model. Most of these supervised learning algorithms have similar complexity where

the model creation using training data set is high and the evaluation is low. But

clustering is different from those algorithms because it does not need a supervised

data set. Therefore, it is categorized as an unsupervised learning algorithm for both

classifications of patterns and calibration. After the clustering is finished, separate

clusters suggest the similarity of elements. Therefore, a single cluster can be used as

a class.

The main idea of clustering is based on the distance between the elements. There

should be a function to calculate distance between two elements. If the distance is

low, they are assigned to be in the same cluster. The area of a cluster can be defined

through the maximum distance between the farthest two elements.

2.2.2.2.5.1 K Nearest Neighbor Clustering

KNN algorithms use clustering approach to classify data. Here the distance between

the elements is considers as the nearest neighbor distance. The proximity of each

other is calculated and this distance value is used for clustering. KNN nearest

neighbor distance support multidimensional feature space. Therefore, multiple types

of features can be accounted when the proximity is calculated.

When applying KNN algorithms for classification, it initializes with a trained data set

which forms a set of clusters. These are the labeled data. Then the input data is

inserted and based on the multidimensional proximity newly inserted data is placed.

 21

New data is labeled based on the distance from the new data to the labeled data. In

most cases, cluster of closest labeled element is considers as the label of the new

data. Then it can classify and also a mathematical value can be calculated for

representing the reasoning for the classification.

Researches were done for identifying activity by using this method [14]. They used

Euclidian distance and trained data was based on mobile position specific to the user.

The targeted activities were predefined by the users. They could achieve 70%

accuracy for all the defined activities.

Figure 2.5 Placing the new data point in K-Nearest Neighbor Clustering [3]

2.2.2.2.5.2 K-Means Clustering

In K-means algorithm a multidimensional space of features is divided into K cluster.

When forming clusters, it tries to find the optimum position of the cluster centroids.

A recursive algorithm is used when finding the optimum position. This algorithm is

computationally efficient but the data need to be saved in memory. Therefore,

memory consumption is higher than other algorithms. This limits the usages of this

algorithm in low end mobile devices if the dataset is large. As a result of this instead

of directly using the algorithm, it uses to calibrate the data and then use another

algorithm for classification. Some researches like physical activity detection by

 22

decision trees [13], achieved successful results by using K-Means clustering for

smoothing the classification results.

2.2.2.2.5.3 EM Clustering

Expectation-Maximization clustering is an advanced version of K-means clustering.

In each iteration of EM clustering the probability of owning a certain data point to a

cluster is calculated. Then the cluster’s mean and variance changed with the updated

ownership. Therefore, each iteration, the clusters may change their mean and

variance hence their distance to the data points [29]. Unlike K-means clustering,

there is no distinctive assignment of a data point to a single cluster. EM clustering

will have only probabilities to each data point. Basically K-means is a subset of EM

clustering where probability is 0 or 1.

2.3 Activity Prediction

Once the user context and activities are identified, it can identify the patterns of

activities. Most of the users have repetitive behavior in daily tasks. Therefore, it is

easy to identify patterns since the overfitting problem will be reduced if the recorded

data set has a considerable time span. Predicting activity is the idea of knowing the

user’s intentions. As mentioned earlier, if the user has repetitive life style, it tends to

follow sequential list of events. These events are depended to the previous event. As

an example, once the user enters to the home, he turns on the WiFi in the mobile

device. Here turning on the WiFi is dependent on the event entering the home.

One of the successive activity prediction techniques is the ECA model.

 Event-Condition-Action (ECA) Model

ECA model has event driven architecture and define a set of event and action

relationships. This relationship has 3 attributes which are Event, Condition and

Action. After recognizing context, this set of relationships are identified by the

algorithms which are used in context classifications. The application of the algorithm

is different but the same approach can be taken for identifying patterns in the user

context. Once the patterns are recognized, relationships will be revealed. These

 23

relationships are converted into set of rules. In natural language a rule has the syntax

of following manner.

On < event > If < condition > Do < action >

Considering above example, the rule would be

𝑂𝑛 < 𝑟𝑒𝑎𝑐ℎ𝑖𝑛𝑔 ℎ𝑜𝑚𝑒 > 𝐼𝑓 < 𝑢𝑠𝑒𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 ℎ𝑜𝑚𝑒 > 𝐷𝑜 < 𝑊𝑖𝐹𝑖 𝑂𝑛 >

ECA rule managers, ECA rule engine are necessary components of evaluating rules.

ECA rule manager generates the rules based on the user activities and actions. Both

actions and activities are found within the user context. For an example, walking is

an activity. But it will be an action if the user always walks at a specific time. So the

user activities can both be events as well as action.

A proposed system architecture [2] of a related research is shown in Figure 2.6 ECA

architecture for activity prediction.

 24

Figure 2.6 ECA architecture for activity prediction

Rules which are generated by ECA Rule Manager are consumed by ECA Rule

Engine. If the context changed, the change is forwarded to Rule Engine and it will

evaluate and select one or more rules to trigger. Action of the rule is triggered

automatically or give a list of actions to be selected by the user.

 Clustering

The same clustering algorithms discussed in section 2.2.2.2.5 can be used for pattern

recognition as well. Because one the user context and the previous actions are

collected, they can be fed into a clustering algorithm to generate clusters. If the data

point dimension includes temporal data, the generated clusters will represent a

collection of similar events. Theoretically a collection of similar events is a repetitive

actions/activities. This special behavior of clustering can be applicable to this

research as well.

 25

 Analysis

The advantage of ECA model over clustering is its low complexity when predicting

activities. Given a state of the user context, ECA model can iterate through the rules

and if the conditions match it can generate the predictions. However, generating rules

for ECA model is complex compared to clustering. Hence ECA model might not be

suitable for low-end devices. The advantage of clustering is the simplicity of the

model to generate predictions. Once we find the closest cluster, we can directly

generate predictions using the data in the closest cluster. It does not involve complex

steps like rule generation in ECA. Therefore, we can see that clustering is more

suitable for low-end devices.

 26

CHAPTER 3

METHODOLOGY

 27

3. METHODOLOGY

3.1 Proposed Solution

The proposed solution is to implement a mobile framework (library) that mobile

application developers can be used to retrieve list of predictions based on the context

of the mobile user at a given time.

3.2 Workflow

The most important decision of this research is the selection of prediction method.

We have to consider whether the method is compatible to run on a low end device.

Since mobile devices has variety of hardware specifications, our framework should

be compatible at least 80% of the devices available in the market. In order to achieve

that, we need a prediction method which needs low CPU time and consumes low

memory. Out of different prediction methods discussed in the literature review, we

decided to go with clustering as it does not need high CPU time or large memory to

run within the device compared to other prediction methods. It may take considerable

CPU time when running clustering algorithm but by comparing accuracy, CPU time,

memory allocation of different clustering algorithms, we can select a suitable

clustering algorithm which fits low end devices. For this research we decided to

evaluate K-means clustering and EM clustering algorithms. Generally, EM clustering

consumes higher CPU time than K-means clustering, but it has higher accuracy and

it is worth evaluating before making the final selection. Although algorithms like

hierarchical clustering has low memory consumption and low CPU time, its accuracy

is low compared to K-means [20].

The process of this research can be broken down to following main steps

1. Data collection

2. Clustering data and activity predicting

3. Evaluation

4. Implementing the framework

 28

 Data Collection

There are two types of data sources when collecting data. First type is sensor

readings and their processed outputs such as GPS location, user environment

temperature, device battery level and light intensity. There can be processed output

of sensor readings such as walking, running identified from accelerometer data. The

other type of data source is software such as installed mobile applications and

operating system. Call logs, sent and received SMS messages, opened applications

and their statistics, interactions in social media applications, connected Wi-Fi

networks are some of the data which are included in this type.

Both types of data sources generate data continuously irrespective of the device is

being used or not. Therefore, instead of recording everything, we needed to decide

what data should be recorded. Then the selected data is generalized to be recorded in

a common way. We call these generalized data as “Events”. An event must contain

following fields.

Data
Collection

•Find publicly available data and import if
available

•Develop data collection mobile app and distribute

Clustering
and

Predicting

• Implement different clustering algorithms

•Use them for predictions

Evaluation
•Test predictions of different clustering
algorithms

•Evaluate accuracy, CPU time and memory

Implementing
Framework

Figure 3.1 Research Workflow

 29

 Action type – Whether the event is automatically triggered or caused by user

interaction

 Event type – The type of the event like SMS message, call, user activity

 Timestamp –The date and the time of the event

 Class – The main action of the event like which phone number the user called

or which mobile application opened.

 Event data – There can be several data bound with an event. These multiple

parameters are recorded with data

For this research we decided to consider only the following common types of events

1. Call records – Received and initiated calls by the user.

2. SMS records – Received and sent SMS messages.

3. Activity – What activity the user is doing at a given time. Walking, running,

staying are some of the activities.

4. App openings – Opened mobile applications by the user.

Although the user’s exact location can be captured, we decided not to collect that

because it raises higher level of privacy concerns. After deciding what type of data

we need to collect, we searched for publicly available data repositories which has

above types of events. Unfortunately, there were no publicly available data which we

can be used for this research. Therefore, we had to develop a separate mobile

application to collect data from different users.

3.2.1.1 Data collection mobile application

The data collection mobile application was developed to capture SMS, Call, mobile

application usage and activity event. We gave the application users the option to

select which data need to be captured. If the user is uncomfortable with sharing data

with us, he/she could opt-out certain event types. For an example the user can opt-out

sharing SMS events while enabling call and application usage events. The app was

developed to upload persisted events to a cloud location at a configured time of the

day. The data collection and upload tasks were designed to run in background so that

user did not need to trigger anything after enabling data capture.

 30

A main concern when collecting data is the privacy concerns. The users do not like

to share the information of calls and SMS messages. The SMS message body is not

collected by the application so that it will not be an issue. But exposing contact

number was a privacy concern. Therefore, we used a hashing method for all the

contact numbers. A given phone number had the same hashed text, which helped us

to distinctly identify the similar SMS and call events while ensuring user’s private

data.

We distributed this mobile app among ordinary mobile users and asked them to

select the event types they like to share and start the application. Also, we informed

them that we need data for at least 30 days so that we can collect considerable

amount of events for each user.

 Clustering Data and Activity Predicting

In this stage, we try to implement different clustering algorithms and feed collected

data into each clustering algorithm. Once the clusters are formed, we use them to

generate predictions. The generated predictions are then evaluated later.

3.2.2.1 Preprocessing

The outcome of the data collection contains a list of different types of events

occurred in different timestamps. The collected data cannot be directly feed into a

clustering algorithm because collected data do not have different attributes. It only

has timestamp of the event as an attribute. Therefore, this data needs to be

preprocessed and export into a model where it can be clustered by different

clustering algorithms. We decided following attributes of an event to be considered

for clustering.

 Day of the week

 Minutes of the day

 Activity

 Class value

 31

We have to normalize all the attributes so that it will not add any bias when

calculating the cluster distance because of the attribute’s scalar value. We select the

range to be 0 to 1 (including 0 and 1) for every attribute.

The day of the week makes significant contribution when applying clustering [21].

Given an event, the day of the week attribute is assigned by mapping a value to each

day such as Monday to 0, Tuesday to 1 etc. It is important to maintain the same order

as the days of the week since it emphasizes the distance between each day. Once we

map each day to a number, we normalize the value by the following expression so

that the range is always [0-1]

𝑑𝑎𝑦_𝑜𝑓_𝑤𝑒𝑒𝑘 =
𝑚𝑎𝑝𝑝𝑒𝑑_𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑑𝑎𝑦

6

Minutes of the day is the amount of minutes passed from 12:00am of the day event

occurred. Similar to other attributes we need to normalize the value to be range of [0-

1] and it was done by following expression.

𝑚𝑖𝑛𝑢𝑡𝑒𝑠_𝑜𝑓_𝑑𝑎𝑦 =
𝑚𝑖𝑛𝑢𝑡𝑒𝑠_𝑝𝑎𝑠𝑠𝑒𝑑_𝑓𝑟𝑜𝑚_𝑚𝑖𝑑𝑛𝑖𝑔ℎ𝑡

1440

Most recent activity is not associated with the event because there is no efficient way

to identify what the user is doing at the time of the event. Therefore, what we did

was, once we get notified that the user is changing the activity, we add an Activity

type event and the timestamp. Then when we need to find the activity associated with

the event, we looked back for the most recent Activity event and consider that

Activity as the activity associated with the event. We configured the look back

interval to be something like 10 minutes. If no Activity event is found within 10

minutes, we set the activity associated with the event as unknown. Similar to

day_of_week we map each activity to a numerical value to normalize between [0-1]

Class value contains the type of the event and the primary data associated with the

event such as contact name or opened application identifier. Class value is not used

as a dimension/attribute for clustering but it need to identify which event is

associated with that data instance.

 32

3.2.2.2 Clustering and Predicting

Once the data is preprocessed and exported into the above model, it can be fed into

different clustering algorithms. The output of the clustering operation is a data set of

different clusters. For this research, we have selected K-means and EM clustering

algorithms to be evaluated. Therefore these two algorithms are implemented and

used for generating predictions.

In order to predict the user actions for a given time, what we need to do is creating an

event similar to the events used in clusters. Then we can find the closest cluster for

the newly created event and retrieve the dataset of the closest cluster. To find the

closest cluster first we retrieve closest n number of events of each cluster comparing

with the created event. Then we calculate the mean distance between the created

event and the closest n number of events. The cluster which has the lowest mean

value considers as the closest cluster.

By iterating through the closest cluster dataset, we can group the dataset entries by

their class values. If we find the frequency of each class values in the closest cluster

and sort the class values by their frequency descending order, we get a list of class

values ordered by the most probable class value first. We can predict user action

using these class values list and if we need n number of predictions, we can get the

first n number of elements from this list.

3.2.2.3 Optimizations

An optional optimization can be done to improve prediction time if the cluster

dataset entries can be sorted by a single numeric value and the numeric values of

each dataset entry does not overlap between different clusters. In that case, we

introduce a function like below to calculate numeric value for each dataset entry.

𝑣𝑎𝑙𝑢𝑒 = (100 × 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦) + (6 × 𝑑𝑎𝑦_𝑜𝑓_𝑤𝑒𝑒𝑘) + (𝑚𝑖𝑛𝑢𝑡𝑒𝑠_𝑜𝑓_𝑑𝑎𝑦)

Then find the minimum and maximum boundaries of each cluster by this value. If the

boundaries of different clusters do not overlap, we can put the cluster into an ordered

map and find the closest cluster by querying the floor value of the ordered map. The

complexity of finding the value from a map is low and it will remove all the steps

 33

which we have to do when finding the closest cluster. Additionally, we can get rid of

cluster datasets and replace them with predicted user actions so that, any given time,

we can directly retrieve the list of predictions. After analyzing clusters generated by

two algorithms, we realized that clustered generated by K-means algorithm do not

overlap and can be represented by a numeric value. Therefore, we have done this

optimization only for K-means algorithm.

 Evaluation

Since we selected K-means and EM clustering algorithms for this research, we

mainly compared the accuracy between these algorithms. Apart from the accuracy,

total clustering time, total prediction time, memory usage, was considered for

evaluation. The total clustering time and the total prediction time are indications of

CPU time. Therefore, by comparing accuracy, memory usage, total clustering time,

total prediction time, we can find the best clustering algorithm which fits low end

mobile devices with an acceptable accuracy.

Instead of using all the collected data for clustering, we separated the dataset into

training and testing datasets. A randomly picked events can be used for testing data

and they will not be included in the training dataset. By doing multiple tests with

different testing datasets and calculating the average accuracy will remove the

deviation of accuracy because of the noisy data. Since our goal is to come up with

the best clustering algorithm to find predictions which are more frequent, we can add

more frequent events to the test dataset while maintaining randomness.

We can measure accuracy by limiting first n predictions and test whether the test

event is included with the n predictions or not. The accuracy percentage can be

calculated as the following expression.

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑒𝑣𝑒𝑛𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡𝑒𝑠𝑡 𝑑𝑎𝑡𝑎𝑠𝑒
 × 100%

Memory usage can be captured using the IDE tools when running the tests. CPU time

can be measured by capturing the total time it need to take for the clustering and total

time it need to test all the events in the test dataset.

 34

Under different scenarios the following metrics will be measured and considered for

evaluation.

Table 3.1 Different test scenarios and the measured metrics

Scenario Metrics

Accuracy CPU Time Memory

Run different clustering algorithms with

different number of clusters
X X

Run different clustering algorithms

considering temporal and activity as

attributes

X X

Run different clustering algorithms

considering only temporal attributes
X X

Apply possible optimizations and run

different clustering algorithms
X X X

Since we have different set of datasets from different users, we ran the tests for each

datasets and get an average value for accuracy. The results and the evaluation details

are described in Chapter 5 – Results and Evaluation.

 Implementing the Framework

The proposed framework should be self-contained and should have documented

APIs to be consumed by developers. All the steps such as collecting data,

preprocessing data, clustering and prediction must be contained within the

framework.

The mobile application which used to collect data can be embed within the

framework. The data collection background services can be reused directly. Since

users actually need to access the contact numbers, the hashing method used in this

application will not be suitable for the framework. Therefore, we have replaced the

hashing with an encryption for contact numbers in the calls and SMS events. The

encryption key was generated using a device unique identifier, so that it only be

decrypted within the device. We selected AES encryption for this with a fixed

 35

initiation vector. This makes encryption returns the output text for the same input

text at any instance. This is important as it enabled developers to find the similarity

of the events while not exposing the real contact number.

After evaluating and comparing the different results we can decide the best algorithm

and appropriate parameters to be included within the framework. We configured to

reset the clusters at the mid night of each day and form new clusters with new data.

We implemented a method to get only the recent data if number of events exceeds a

configured upper limit. This ensures that it does not exceed certain memory usage

because of large data sets and ensures that only the recent data is used.

The API of the framework should hide the internal implementation as it is irreverent

for the developer who uses this framework. The API should have methods to set

which data need to be collected and how to retrieve the predictions. To pass data

collection configurations, we created a user interface to be presented to the user and

get the consent. This will ensure that 3rd party developers cannot enable data

collection without the user consent.

When working with mobile programming it is necessary to have functions which do

not block the main thread. The rendering of the user interface components are done

by main thread and blocking the main thread will freeze the interface of the

application which leads to a bad user experience. To overcome this issue,

asynchronous functions are introduced for long running processes. In asynchronous

functions, one function is provided to feed the data. This function will accepts the

input data and does not return anything. It just sends the input data to a processor

which will execute in a different thread other than the main thread. There will be a

second function which works as a listener. Once the input data which feed to the first

function is processed and ready, the second function will be invoked with the results.

Therefore it is essential to expose asynchronous functions since predictions will take

some time to process.

Apart from that if the developer needs to get the predictions from a background

service, usual synchronous functions will be helpful. Synchronous functions will

accepts the input data and do the processing in the same thread. It is important to

 36

execute synchronous function only in a background thread so that it will not block

the main thread.

 For exposing these two types of functions, we have created a class which has

following methods.

1. processEvent() & onPredictions() Listener – Asynchronous function

processEvent which accepts a list of events and once the predictions are ready

it will notify to the onPredictions(). This is useful if the developer need to get

the predictions in the main thread.

2. processEventSynchronized() – Synchronous function which accepts a list of

events and returns the predictions. This is useful to get the predictions in a

background thread.

 37

CHAPTER 4

SYSTEM ARCHITECTURE AND IMPLEMENTATION

 38

4. SYSTEM ARCHITECTURE AND IMPLEMENTATION

4.1 Overview

This chapter describes the implementation level decisions, approach of implementing

data collecting mobile application and the proposed framework and their internal

system architecture.

Before we start the implementation, we had to take some decisions which come

across when developing a mobile application/framework.

 Selecting an operating system

 Selecting a runtime environment within the operating system

When selecting a mobile operating system to support our framework, the most

important fact is that it should reach more user base. Currently, the most popular

mobile operating systems are Android and iOS. Since Android is rapidly evolving

and different mobile phone manufacturers embed Android as their operating system,

Android has over 80% of the market share [19]. Additionally, Android exposes more

low-level APIs to access user level data which is essential for the collection of user

actions and events. Therefore, we decided to select Android as our target operating

system.

Android has different runtime environments for mobile applications. The most

common environment is Java runtime environment. This is also known as native

runtime environment. There are some other runtime environments which build on top

of Java runtime environment. Flutter, React native, IONIC are some of these

environments and they even support cross platform (operating system) support.

However, all these cross-platform supported runtime environments do not expose all

the low-level APIs that native runtime supports. It is important to gather many data

as possible for the success of this research and having an environment which exposes

more low-level APIs would be ideal when gathering more data. Therefore, we

decided to go with native runtime environment when developing this framework.

Android has feature rich SDK to develop libraries, and mobile applications for native

 39

runtime environment. Therefore, our framework can be distributed as an Android

SDK library which the developers can include with their mobile applications.

From this point onwards, the proposed framework will be called as prediction

framework. As described in the methodology chapter, apart from implementing

prediction framework, we had to implement mobile application for collecting data as

no publicly available dataset can be found for our requirement. This mobile

application is designed so that the same components can be reused within prediction

framework. Although there were some modifications needed to migrate the

components, the architecture and the functionality remains the same.

4.2 Data Collecting Application

The data collecting application has following components shown in the Figure 4.1.

Data collector component is responsible for recording events from different sources.

As mentioned in methodology chapter, we can use different types of sensors &

software-based sources to record events in generalized manner. User activity, opened

mobile applications, incoming & outgoing calls and received & send SMS messages

were selected as the events for this research.

Data Collector

SMS

Collector

Call

Collector

Activity

Collector

App usage

Collector

Data Persistence

<<Save Events>>

Figure 4.1 Data Collecting Application System Architecture

 40

The collector components collect data from a single source and generate events. The

generated events are passed to Data Persistence component to be persisted. Under

this research scope we implemented 4 types of following collectors.

1. SMS Collector – Reads data periodically from SMS content provider given

by the default message application. Then it generates events by adding

received/sent timestamp and the contact phone number.

2. Call Collector – Reads data periodically from Call log content provider given

by the default phone application. Then it generates events by adding time of

the call and the contact phone number.

3. App Usage Collector – Reads App data periodically from operating system

level usage stats manager APIs. Then it generates events by adding opening

time of the app and the app package identifier.

4. Activity Collector – Reads the changes in the user activity using 3rd party

library. Then generates events by adding the current time and the user activity

type. User activity identification can be challenging and this research does

not base on it. Therefore, an existing Google Awareness library is used [30].

This library notifies users activities like on foot, walking, running, on bicycle,

and in vehicle.

Data Persistence component exposes saveEvents() function to persist the event. It is

necessary to save events in a selected non-volatile storage. There are several data

types and a SQL database would be the idea choice since individual events can be

inserted and queried later. Android SDK inherently support SQLite databases and

this implementation uses SQLite database to save passed events. The model of the

event described in methodology chapter is recorded in a single table in the database

with following columns.

 Action type – 1: Action cause by user, 2: Event caused automatically like

incoming call, 3: Both action & event like a user activity.

 Event type – The type of the event. Values are ACT, APP, CALL, and SMS

 Timestamp –The date and the time of the event in timestamp format

 41

 Class – The main action of the event. App package for APP type, phone

number for CALL & SMS type, activity on ACT type

 Event data – Additional data.

For privacy reasons, phone numbers were hashed and encoded to base64 format

before inserting into database. The Figure 4.2 shows sample data of different event

types.

A background service was implemented to periodically upload the database file to a

Firebase Storage so that we can download the files from different users. Different

directories were programmatically created in the Firebase Storage for each device

with a random identifier. The time of the upload is appended to the database file so

that it will not any conflicts.

We have collected data from 20 mobile users throughout 1-month period. The

selected users came from different occupations, countries so that it will add more

variations to the data.

Figure 4.3 shows the main screen of the Data Collecting Application. The

checkboxes give the users to select the data which they need to share. Start button

runs the background service which triggers all the implemented collectors and the

start the database file upload service. View button shows the raw data which was

collected by the application.

Figure 4.2 Sample data of events database table

 42

4.3 Prediction Framework

Figure 4.4 shows the high-level architecture of the Prediction framework. Arrows in

the diagram shows the data flow direction between different components.

Figure 4.3 Data Collecting Application Main Screen

 43

Prediction Engine

Prediction Processor

Prediction Interface

Data Collector

Data

Persistence

processEvent()

onPredictions()

processEventSynchronous()

 Prediction Engine

Prediction Engine is responsible for retrieving data from data persistence component

in the Data Collector component and send them to prediction processor component.

Also, it exposes the framework APIs using Prediction Interface.

4.3.1.1 Prediction Processor

Prediction processor component preprocess the data first. We have created an

interface named DataMapper which maps the raw events into clustering supported

data model. There are two different implementations of DataMapper. They are

important throughout the clustering process as they have the feature to convert event

to clustering dataset instance and reverse that.

1. Time based data mapper – This creates the dataset instances with only

temporal based attributes which are day of the week and minutes of the day.

Parameter 1 – Day of week the event happened. Assigns a number from 0 to

6 and divide the value by 6 to get the range between 0 and 1

Parameter 2 – Minute of the day the event happened. Value is divided by

1440 to get the range between 0 and 1

Class – Class value of the event.

2. Time and Activity based data mapper – Apart from temporal based attributes,

this mapper adds the user activity to the dataset instances. Given an event

time, we fetched the most recent recorded activity as the user activity for the

event. Since the user activity detection is not reliable, we limited fetching the

Figure 4.4 Prediction Framework System Architecture

 44

recent activity up to 10 minutes. This value kept as a parameter named

lookbackMins in the data mapper.

Parameter 1 – Day of week the event happened. Assigns a number from 0 to

6 and divide the value by 6 to get the range between 0 and 1

Parameter 2 – Minute of the day the event happened. Value is divided by

1440 to get the range between 0 and 1

Parameter 3 – User activity when event happened. The mapped values are

chosen so that similar activities have close values. Similar to other parameters

the value are in the range of 0 to 1.

 ON_FOOT : 0.2

 WALKING : 0.3

 RUNNING : 0.6

 ON_BICYCLE : 0.8

 IN_VEHICLE : 1.0

 NO_ACTIVITY : 0.0

Class – Class value of the event.

Once the events are preprocessed using data mappers, it creates a temporary comma

separated values (.csv) file. This file is directly feeded to the clustering algorithm.

We have implemented two clustering algorithms K-means and EM which are

configurable in Prediction Engine. Each algorithm has its prediction processor

implementations. Having separate implementations for each algorithm gives the

Figure 4.5 Clustering Data Mapper Interface

 45

freedom of adding optimizations and configurations based on the clustering

algorithm.

Once the clustering is finished, prediction processor stores the clustered datasets.

When it need to make predictions, it will find the closest cluster for the given input

event. Finding closest cluster is described in 3.2.2.2 Clustering and Predictions

section. After finding the closest cluster, the data mapper is used to reverse the

conversion by transforming dataset instance into event. By collecting events and

mapping class values of the events, we the predictions. The predictions are sorted by

the frequency of the events.

4.3.1.2 Prediction Interface

Prediction interface is the public interface which exposes the functions to be called

from integrated applications. When the functions are invoked, it calls the necessary

functions in the prediction processor to return predictions. Figure 4.6 shows the

interface of the Prediction Engine interface with Prediction Listener.

4.4 Proof of Concept Application

A proof of concept mobile application named “Smart Suggestions” was developed by

using the prediction framework library to demonstrate the usability of context based

predictions. The basic settings of the application are to select which predictions the

user expects through the application.

Figure 4.6 Prediction Engine Interface

 46

A background service was registered to detect the screen ON actions. Each time the

user unlocks the screen, the application will get a call back from the background

service. Then the application invokes the prediction interface method to get

predictions by passing an event with the current time. The Prediction interface will

return a list of predictions in order. If the predictions are available, the application

shows a message bubble like icon to the user. If user taps that icon, the predictions

will be shown. These predictions are categorized by their type (App usage, Call,

SMS) and are presented in different tabs. The application limits the maximum

number of predictions up to 5 per a category.

Figure 4.7 Proof of concept application settings

 47

In Figure 4.8 left screenshot shows the application predictions. The right screenshot

shows the SMS predictions. We have implemented showing following predictions.

1. Application predictions – Mobile applications name and icon will be

presented in order of top item being the most frequent application for the

given time and user context. Tapping a list item will launch the application

2. SMS predictions – A list of top contact numbers/names will be presented in

similar order as application predictions. Tapping a list item will launch the

default messaging application with conversation open for the selected

contact.

3. Call predictions – A list of top contact numbers/names will be presented in

similar order as others. Tapping a list item will launch the default call

application with the phone number already filled to initiate the call.

Figure 4.8 Application and SMS predictions screens

 48

Additionally, to demonstrate functionality and test the framework, Cluster Test

screen and Cluster Accuracy screen was developed. In order to retrieve the data from

the library framework, we exposed additional functions other than prediction

interface functions. This was completely focused on debugging purposes and the

production ready library will not include these additional functions.

Figure 4.9 shows Cluster test screen. It has the option to select which algorithm (K-

means or EM) to use and number of clusters needed. Once “Cluster” button is

tapped, it will start the clustering process. Once done, clustering time is displayed.

After the clustering the two buttons is there to select a date and time. Upon selecting

date or time, the dataset of the closest cluster for the selection will be displayed.

Figure 4.9 Cluster test screen

 49

Figure 4.10 shows the Cluster accuracy screen. This was used for evaluating

different algorithms with different parameters. Similar to cluster test screen, this has

the option to select a clustering algorithm. In accuracy testing we divide the dataset

into two groups for training and testing. Training group was used for clustering and

testing group was used for testing. The “Test data percentage” configures the

proportion of the test dataset size out of all data. The “Look back minutes”

configures the upper limit of finding the most recent user activity event to be

consider as event’s activity. The “TopK classes” configures the number of top

predictions which need to be considers when testing. If the “TopK classes” value is

5, the topmost 5 predictions will be taken and check whether it matches with the test

entity class.

Figure 4.10 Cluster accuracy screen

 50

CHAPTER 5

RESULTS AND EVALUATION

 51

5. RESULTS AND EVALUATION

5.1 Overview

This chapter describes the nature of the tests, process of conducting them and the

results. Later in the chapter we will talk about how the results are evaluated and how

it contributed to the success of this research.

5.2 Testing Process

We have collected 20 datasets from different users and depending on their

interactions with the phone number of data points varied from 5,000 to 40,000. The

datasets which has lower than 10,000 data points were removed from testing as

having small dataset does not reveal the patterns in the data. Out of 20 datasets 15

were acceptable and used to run different sets.

The results given in the rest of the chapter are average values unless we explicitly

mentioned it. Averages are calculated by running the same test against selected

datasets and divided by number of datasets.

For all the tests except parameter tuning tests, we used a Google Pixel 2 phone which

has octa-core CPU (4x2.35 GHz Kryo & 4x1.9 GHz Kryo) and 4GB RAM. For

parameter tuning tests we used a Dell Inspiron 13-7386 laptop having octa-core

Intel® Core™ i7-8565U CPU (8x1.80 GHz) and 16 GB RAM.

 Parameter Tuning

Both K-means and EM clustering algorithms need the number of clusters which need

to break when applying the algorithm. There is no universal way of deciding the

value for this application. Therefore, we tested both algorithms with different data

mappers (time only mapper and time with activity mapper) with variations of cluster

count.

The Table 5.1shows the accuracy percentages of different scenarios against changes

in the input cluster count. Note that when cluster count is 200, the maximum

 52

accuracy achieved in every test. Therefore we decided set 200 as cluster count for

other tests.

Table 5.1 Accuracy percentages for different cluster counts

Cluster Count
K-means EM

Time only Time+Activity Time only Time+Activity

100 58.18 62.43 66.06 71.40

150 65.66 70.32 73.58 76.58

200 69.36 73.09 75.15 81.01

250 67.28 70.19 74.46 77.54

300 63.24 68.19 69.22 73.49

350 59.92 63.19 64.37 68.14

400 55.96 60.70 60.86 65.54

600 50.40 52.48 57.85 61.83

Table 5.2 contains the clustering time in seconds on different test scenarios. These

tests were done using a personal computer and the results may differ in a mobile

phone processor.

Table 5.2 Total clustering time in seconds for different cluster counts

Cluster Count
K-means EM

Time only Time+Activity Time only Time+Activity

100 9.29 8.09 58.86 46.27

150 11.61 18.05 78.55 63.57

200 18.77 30.37 94.32 70.55

250 19.51 34.27 110.58 78.42

300 33.25 53.03 126.10 87.73

350 43.74 70.85 133.94 106.53

400 53.65 116.27 139.29 125.68

600 92.39 228.45 163.53 149.37

 53

 Optimization Testing

The optimization discussed in section 3.2.2.3, is applicable only to K-means

algorithm. To compare the effect of this optimization, we have measured the average

clustering time, average testing time, memory consumption and the accuracy

between regular EM clustering, regular K-means and the optimized K-means

implementations.

Table 5.3 Results comparison between different clustering algorithms

Metric K-means
K-means

optimized
EM

Average clustering time (s) 139.38 150.35 774.45

Average testing time per entry (ms) 19.24 0.08 21.34

Accuracy (%) 74.95 72.38 79.31

Memory consumption (Mb) 17 4 16

Average testing time per entry is calculated using total time it took to evaluate the

test dataset and the size of the test dataset. The memory consumption was measured

using the difference between before and after running the clustering. At the each run,

forced garbage collection was triggered when capturing the memory usage.

Figure 5.1 shows the memory usage of when clustering and testing a small dataset

when applying the regular K-mean clustering. The red dots on top marks the starting

of the clustering and the testing respectively. Figure 5.2 shows the same when

applying optimized K-means clustering. The end of each figure marks the end of the

testing.

 54

5.3 Evaluation

Figure 5.3 is a graph plotted using the data in accuracy percentage Table 5.1. We can

clearly identify that the highest accuracy reached when clustering count is 200.

Having too many clusters makes over-fitting the data. On the other hand, having few

clusters makes under-fitting. It is essential to find an approximate optimal cluster

count for achieving high accuracy.

Also, we can identify that EM clustering is more accurate than K-means in most of

the scenarios. This is because K-means clusters tend to create approximately equal

time ranged clusters while EM clustering tend to find more patterns.

The other finding is that by adding user activity improves the overall accuracy on

both algorithms. This depicts that the more we use context data, accuracy will

increase. This behavior is expected because having more dimensions in data points,

will create more fine-grained clusters which results identifying better patterns.

Figure 5.2 Memory usage when K-means optimized clustering and testing

Figure 5.1 Memory usage when regular K-means clustering and testing

 55

Under this model, we can go up to ~80% accuracy by using EM clustering with

temporal and user activity data. Using K-means clustering will give an accuracy up

to ~74%. In this case, EM clustering is the best candidate when it comes to achieving

good accuracy.

Table 5.2 indicates that EM clustering takes considerably more CPU time when the

cluster count is low. However, it performs when the cluster count is getting higher.

But our approximate optimal cluster count is not higher enough for EM clustering to

catch the CPU time of K-means. In our case, K-means is faster, and is more suitable

for mobile devices as mobile devices do not have high end CPUs. The framework is

not designed to perform clustering frequently. The framework was designed to

cluster at the very beginning or at the midnight of each day. Therefore, having a high

CPU time for clustering is acceptable within the scope of the framework. The only

drawback in high CPU time is, it may not suit low-end devices.

By analyzing the data in Table 5.3, we can clearly identify the significant

improvement in testing time in the optimized K-means clustering. This is important

as time taken for a prediction is highly improved. However, we can see that there is a

0

10

20

30

40

50

60

70

80

90

100 150 200 250 300 350 400 600

A
cc

u
ra

cy
 p

er
ce

n
ta

ge
 %

Cluster count

Average Accuracy

K-means Time K-means Time+Activity EM Time EM Time+Activity

Figure 5.3 Different average accuracy percentages

 56

nearly 2% reduction in the accuracy of the optimized implementation. Unlike finding

the closest cluster by using the real dataset points, optimized implementation checks

only the boundaries of the clusters. Therefore, there is a chance of not picking the

optimal closest cluster in the optimization. The 2% accuracy reduction is acceptable

for an application where the framework needs to make higher amount of predictions.

There is an increase in CPU time, but it is not significant. Although the clustering

time is equal, the initiation of predictions from all clusters adds extra time.

Comparing Figure 5.1 and Figure 5.2 reveals that testing on regular K-means

implementation consumes more memory when testing. It is because of finding

closest cluster needs creating intermediate objects. Apart from that comparing

memory usage in Table 5.3 we can see that optimized implementation need less

memory to keep the results. Because the regular implementation needs to keep all

clusters for identifying the closest cluster, it needs more memory. But optimized

implementation does not need all the clusters because it only stores the predictions

which is aggregated data from all the clusters. By considering above factors,

optimized implementation is suitable for low-end devices because of low memory

usage and acceptable accuracy.

 57

CHAPTER 6

CONCLUSION

 58

6. CONCLUSION

With the evaluation of mobile phones, some people tend to use their mobile phone

even more than an hour a day. Throughout the day, people interact with the

smartphones continuously, but their software is not that smart to identify what the

user’s intentions are. For an example if the user is driving, there is a high chance of

opening a navigation/maps app. But the current software does not try to make that

easy for the user. The problem is that there is no underlying method for the mobile

application developers to identify the user context and get user’s intentions so that it

will make user experience better.

6.1 Research Contribution

This research answers the above problem by implementing a framework so that

mobile application developers can embed and get predictions on what user’s next

action is.

In literature review we have found that there are several methods to use sensor data

to identify user activity and there are production ready libraries already available to

use. We also analyzed that software-based data sources like SMS messages and call

logs have a good potential to help identifying user’s context. Considering these

factors, we have designed a generalized model to collect and persist use activities,

SMS and call logs.

Comparing properties of different pattern recognition methods, we decided that

clustering is a good fit for running within mobile devices as it does not need high

computation power which is a restriction in mobile devices. Also, it resolves the

requirement of making this work offline.

By using collected data from different users, we have evaluated K-means and EM

clustering algorithms and even we have found an efficient way to make prediction if

they come from K-means algorithm based clusters. By analyzing the research results,

we conclude that EM clustering gives high accuracy and it is suitable for high-end

devices while optimized K-means clustering is suitable for low-end devices with less

accuracy but more compatibility.

 59

The framework was developed as an Android library so that any Android mobile

application developer can import and use the library functions easily. Further, we

developed a proof of concept application which uses the above library and predict

user’s mobile application openings, calls and SMS message contacts so that user do

not have to go through the application launchers to select required application.

6.2 Limitations

 Scalability

The accuracy increases as the collected data increases, but it will make the clustering

slow and resource intensive. As a temporary solution we have limited number of

events when clustering, but we need a scalable solution where we can include all the

collected data to improve the accuracy.

 Accuracy

We have achieved 80% accuracy level by using EM clustering. But it always has the

chance to increase the accuracy more. Although our research approach covers

temporal patterns, it does not vary predictions based on the chain of actions. For an

example if the user tends to open app ‘A’ followed by app ‘B’, this research solution

does not predict opening app ‘B’ unless there is a past event at the same time.

 Privacy

Collecting user related data is always connected with privacy concerns. Even though

the framework was designed not to upload or expose data, there is a chance of

revealing user information even from the encrypted data.

6.3 Future Research Directions

From the very beginning of this research, one requirement is to make this work

irrespective of a network connection. This restricted us from using complex or high

computational approaches like neural networks which may give better accuracy

levels. As an example, having long short-term memory (LSTM) based neural

network will give better accuracy since it can maintain user context as well as

previous actions when making predictions. As the neural network frameworks

evolve, some of them support running lightweight version of neural network models

 60

within the mobile device. This may open new doors to extend this framework by

adding new neural network based prediction processors.

Since mobile device capabilities are constrained by low CPU and memory capacities,

it can use computation offloading techniques to run complex prediction models.

There are many researches done related to mobile cloud computing [31] which can

be beneficial for improving accuracy and response time of the framework.

 61

7. REFERENCES

[1] M. Lee, C. Bak, and J. W. Lee, “A prediction and auto-execution system of

smartphone application services based on user context-awareness,” J. Syst. Archit.,

vol. 60, no. 8, pp. 702–710, 2014.

[2] W. P. Lee and K. H. Lee, “Making smartphone service recommendations by

predicting users’ intentions: A context-aware approach,” Inf. Sci. (Ny)., vol. 277, pp.

21–35, 2014.

[3] S. A. Hoseini-Tabatabaei, A. Gluhak, and R. Tafazolli, “A Survey on

Smartphone-Based Systems for Opportunistic User Context Recognition,” ACM

Comput. Surv., vol. 45, no. 3, p. 27:1–27:51, 2013.

[4] A. Misra and L. Lim, “Optimizing sensor data acquisition for energy-efficient

smartphone-based continuous event processing,” Proc. - IEEE Int. Conf. Mob. Data

Manag., vol. 1, pp. 88–97, 2011.

[5] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Activity Recognition Using Cell

Phone Accelerometers,” SIGKDD Explor. Newsl., vol. 12, no. 2, pp. 74–82, 2011.

[6] G. Maggiore, C. Santos, and A. Plaat, “Smarter smartphones: Understanding and

predicting user habits from gps sensor data,” Procedia Comput. Sci., vol. 34, pp.

297–304, 2014.

[7] F. Liu, D. Janssens, J. Cui, G. Wets, and M. Cools, “Characterizing activity

sequences using profile Hidden Markov Models,” Expert Syst. Appl., vol. 42, no. 13,

pp. 5705–5722, 2015.

[8] T. M. T. Do and D. Gatica-Perez, “Contextual conditional models for

smartphone-based human mobility prediction,” Proc. 2012 ACM Conf. Ubiquitous

Comput., p. 163, 2012.

[9] J. Ye, S. Dobson, and S. McKeever, “Situation identification techniques in

pervasive computing: A review,” Pervasive Mob. Comput., vol. 8, no. 1, pp. 36–66,

2012.

 62

[10] P. Dai, S. S. Ho, and F. Rudzicz, “Sequential behavior prediction based on

hybrid similarity and cross-user activity transfer,” Knowledge-Based Syst., vol. 77,

pp. 29–39, 2015.

[11] Y. Kawahara, H. Kurasawa, and H. Morikawa, “Recognizing user context using

mobile handsets with acceleration sensors,” In Proceedings of the IEEE International

Conference on Portable Information Devices (PORTABLE’07). pp. 1–5, 2007

[12] D. Siewiorek, A. Smailagic, J. Furukawa, A. Krause, N. Moraveji, K. Reiger, J.

Shaffer, and F. L. Wong, “SenSay: A context-aware mobile phone,” IEEE

International Symposium on Wearable Computers. pp. 248–249, 2003

[13] J. Yang, “Toward physical activity diary: Motion recognition using simple

acceleration features with mobile phones,” International Workshop on Interactive

Multimedia for Consumer Electronics. pp. 1–10, 2009

[14] T. Brezmes, J. Gorricho, and J. Cotrina, “Activity recognition from

accelerometer data on a mobile phone,” International Work-Conference on Artificial

Neural Networks: Part II: Distributed Computing, Artificial Intelligence,

Bioinformatics, Soft Computing, and Ambient Assisted Living. pp. 796–799, 2009

[15] I. König, B. N. Klein, and K. David, “On the stability of context prediction,”

Proc. 2013 ACM Conf. Pervasive ubiquitous Comput. Adjun. Publ. - UbiComp ’13

Adjun., pp. 471–480, 2013.

[16] A. Bastawrous, “mHealth Possibilities in a Changing World. Distribution of

Global Cell Phone Subscriptions,” J. Mob. Technol. Med., vol. 2, no. 1, pp. 22–25,

2013, doi: 10.7309/jmtm.78.

[17] “Internet access – households and individuals, Great Britain: 2018”. [Online].

Available:

https://www.ons.gov.uk/peoplepopulationandcommunity/householdcharacteristics/ho

meinternetandsocialmediausage/bulletins/internetaccesshouseholdsandindividuals/20

18 [Accessed 20-Feb-2020].

 63

[18] P. Pelegris, K. Banitsas, T. Orbach, and K. Marias, “A novel method to detect

heart beat rate using a mobile phone,” 2010 Annu. Int. Conf. IEEE Eng. Med. Biol.

Soc. EMBC’10, no. February 2014, pp. 5488–5491, 2010.

[19] "Smartphone Market Share | OS Data Overview ". [Online]. Available:

https://www.idc.com/promo/smartphone-market-share/os [Accessed 24-Feb-2020].

[20] N. Singh and D. Singh, “Performance Evaluation of K-Means and Heirarichal

Clustering in Terms of Accuracy and Running Time,” Int. J. Comput. Sci. Inf.

Technol., vol. 3, no. 3, pp. 4119–4121, 2012.

[21] D. Kondor, S. Grauwin, Z. Kallus, I. Gódor, S. Sobolevsky, and C. Ratti,

“Prediction limits of mobile phone activity modelling,” R. Soc. Open Sci., 2017.

[22] "Android Sensor Types". [Online]. Available:

https://source.android.com/devices/sensors/sensor-types [Accessed 26-Feb-2020]

[23] V. K. Singh, L. Freeman, B. Lepri, and A. Pentland, “Predicting spending

behavior using socio-mobile features,” Proc. - Soc. 2013, no. September, pp. 174–

179, 2013.

[24] R. Sathya and A. Abraham, “THE SCIENCE AND INFORMATION

ORGANIZATION Editorial Preface,” Int. J. Adv. Res. Artif. Intell. Int. J. Adv. Res.

Artif. Intell., vol. 2, no. 2, pp. 34–38, 2013.

[25] U. Christoph, K. H. Krempels, J. Von Stülpnagel, and C. Terwelp, “Automatic

context detection of a mobile user,” WINSYS 2010 - Proc. Int. Conf. Wirel. Inf.

Networks Syst., no. August, pp. 189–194, 2010.

[26] D. Peebles, H. Lu, N. D. Lane, T. Choudhury, and A. T. Campbell,

“Community-guided learning: Exploiting mobile sensor users to model human

behavior,” in Proceedings of the National Conference on Artificial Intelligence,

2010.

 64

[27] M. Berchtold, M. Budde, D. Gordon, H. R. Schmidtke, and M. Beigl, “ActiServ:

Activity recognition service for mobile phones,” in Proceedings - International

Symposium on Wearable Computers, ISWC, 2010.

[28] A. Y. Ng and M. I. Jordan, “On discriminative vs. Generative classifiers: A

comparison of logistic regression and naive bayes,” in Advances in Neural

Information Processing Systems, 2002.

[29] “A Gentle Introduction to Expectation-Maximization (EM Algorithm)”.

[Online]. Available: https://machinelearningmastery.com/expectation-maximization-

em-algorithm/ [Accessed 01-Jan-2020]

[30] “Google Awareness API | A unified sensing platform enabling applications to be

aware of multiple aspects of a user’s context, while managing battery and memory

health”. [Online]. Available: https://developers.google.com/awareness [Accessed 01-

Mar-2020]

[31] K. Akherfi, M. Gerndt, and H. Harroud, “Mobile cloud computing for

computation offloading: Issues and challenges,” Appl. Comput. Informatics, vol. 14,

no. 1, pp. 1–16, 2018, doi: 10.1016/j.aci.2016.11.002.

	List of Tables
	List of Figures
	List of Abbreviations
	1. INTRODUCTION
	1.1 Background
	1.2 Problem Statement
	1.3 Objectives
	1.3.1 Other Objectives

	1.4 Overview of the Document

	2. LITERATURE REVIEW
	2
	2.1 Context Identification
	2.1.1 Data collection using mobile device sensors
	2.1.1.1 Challenges in data collection using mobile device sensors

	2.1.2 Data collection using mobile device applications
	2.1.3 Preprocessing
	2.1.4 Feature Extraction
	2.1.4.1 Feature extraction in physical activity
	2.1.4.2 Feature extraction in social interactions
	2.1.4.3 Feature extraction from environmental sensing

	2.2 Activity Recognition
	2.2.1 Activity recognition through learning
	2.2.1.1 Supervised learning model

	2.2.2 Different classification techniques
	2.2.2.1 Generative Algorithms
	2.2.2.1.1 Hidden Markov Model (HMM)
	2.2.2.1.2 Bayesian Classifier

	2.2.2.2 Discriminative algorithms
	2.2.2.2.1 Decision Trees
	2.2.2.2.2 Neural Networks (NN)
	2.2.2.2.3 Hierarchical Models
	2.2.2.2.4 Fuzzy Logic
	2.2.2.2.5 Clustering
	2.2.2.2.5.1 K Nearest Neighbor Clustering
	2.2.2.2.5.2 K-Means Clustering
	2.2.2.2.5.3 EM Clustering

	2.3 Activity Prediction
	2.3.1 Event-Condition-Action (ECA) Model
	2.3.2 Clustering
	2.3.3 Analysis

	3. METHODOLOGY
	3
	3.1 Proposed Solution
	3.2 Workflow
	3.2.1 Data Collection
	3.2.1.1 Data collection mobile application

	3.2.2 Clustering Data and Activity Predicting
	3.2.2.1 Preprocessing
	3.2.2.2 Clustering and Predicting
	3.2.2.3 Optimizations

	3.2.3 Evaluation
	3.2.4 Implementing the Framework

	4. SYSTEM ARCHITECTURE AND IMPLEMENTATION
	4
	4.1 Overview
	4.2 Data Collecting Application
	4.3 Prediction Framework
	4.3.1 Prediction Engine
	4.3.1.1 Prediction Processor
	4.3.1.2 Prediction Interface

	4.4 Proof of Concept Application

	5. RESULTS AND EVALUATION
	5
	5.1 Overview
	5.2 Testing Process
	5.2.1 Parameter Tuning
	5.2.2 Optimization Testing

	5.3 Evaluation

	6. CONCLUSION
	6
	6.1 Research Contribution
	6.2 Limitations
	6.2.1 Scalability
	6.2.2 Accuracy
	6.2.3 Privacy

	6.3 Future Research Directions

	7. REFERENCES

