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ABSTRACT 

 

Multi-cloud applications are becoming popular, as they can run across multiple public 

and private cloud platforms while overcoming vendor lock-in, reducing cost, and 

enhancing flexibility and reliability. Applications hosted on multiple cloud platforms 

use either libraries or service-based abstraction layers. Application orchestration 

platforms further simplify the deployment and management of multi-cloud 

applications by providing auto-scaling, service metering, health monitoring, and a rich 

set of operational tools. Containerization is particularly useful in multi-cloud 

applications, as it provides a consistent environment for an application regardless of 

where it is deployed. However, container orchestration platforms such as Docker 

Swarm lack support and operational tools to enable seamless application orchestration 

across multi-cloud resources. 

In this research, we developed a container-based platform for application orchestration 

in a multi-cloud setup as a set of microservices and required operational tools 

addressing the above limitations. Docker was chosen to demonstrate the proof of 

concept solution, as it already provides features to orchestrate microservices. 

Containerized multi-cloud applications can use the proposed application orchestration 

platform to achieve resource elasticity across multiple cloud platforms. To trigger scale 

in and out decisions, we used a rule-based approach where we compared the container 

runtime metrics provided by Docker with preconfigured threshold values. We 

evaluated the utility of the proposed platform using three web applications that were 

compute-intensive, memory-intensive, and utilized a RESTful application 

programming interface integrated with an external cloud service. The proposed 

container-based application orchestration platform improved the throughput of the 

three web applications by 180%, 73%, and 46%, respectively, compared to the same 

web applications deployed in a private cloud. Whereas the response time was reduced 

by 36%,-232%, and 7%, respectively. Even for cases where latency is increased error 

rate was reduced. 
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1 INTRODUCTION 

1.1 Background 

 

Cloud computing has emerged as the preferred paradigm for computing where a public 

or private pool of computing resources are connected to deliver a dynamically scalable 

infrastructure for applications. Cloud computing provides ubiquitous, convenient, and 

on-demand network access to a shared pool of compute, network, and storage 

resources with minimum management or service provider interaction [1]. This 

significantly reduces the cost of application hosting, computing, storage, and delivery. 

While organizations can utilize Infrastructure as a Service (IaaS) cloud services for 

traditional application deployment, the cloud also provides Platform as a Service 

(PaaS) model for Internet-based applications. PaaS is a layer on top of the existing 

IaaS where the cloud vendor also manages underlying platforms. This offloads 

maintenance and upgrades from the developers while minimizing the downtime [2], 

[3]. 

Today, PaaS is moving towards containerization and interoperability. Containerization 

provides interoperable, as well as lightweight and virtualized packaging [4]. It 

provides a virtualized lightweight process environment as close as possible to a 

standard Linux distribution. Because containers are more lightweight than Virtual 

Machines (VMs), the same host can accommodate more containers than VMs. Also, it 

reduces the start-up time of instances, as well as processing and storage overhead [5]. 

Orchestration solutions have become essential in effectively managing cloud resources 

in response to rapidly changing business needs, cost, and service-level agreements. It 

is a continuous process driven by monitored metrics and the specified Service Level 

Agreements (SLA) [5]. Solutions such as Open-shift [6] and Cloud Foundry [7] are 

based on container technologies such as Warden and Docker, which allow 

organizations to run their own PaaS on-premise datacenters. 

Among the contemporary cloud deployment strategies, the multi-cloud strategy has 

become popular, as it enables the freedom to run applications on any public or private 

cloud. The multi-cloud market is expected to grow by 30% of the compound annual 
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growth rate from 2017 to 2022 [8]. Cost-saving, capitalizing on-premise infrastructure 

Information Technology (IT) resources, flexibility, avoiding vendor lock-in, and 

increased reliability via robustness towards Denial of Service (DoS) attacks can be 

identified as significant benefits for cloud consumers who are committing to use multi-

cloud architectures [9]. 

 

1.2 Motivation 

Organizations follow a multi-cloud strategy to better utilize their infrastructures due 

to optimized cost, as well as technological and regulatory reasons. Organizations 

commit to multi-cloud architectures to provision infrastructure resources dynamically 

from multiple public IaaS vendors to cater to time-variant demand for resources. This 

can significantly reduce the cost incurred for public cloud infrastructure resources 

because they are released automatically in the absence of demand. 

Different public cloud providers showcase a wide variety of cloud offerings, and their 

product lineup is somewhat differentiated from each other to gain a competitive edge. 

However, this leads to application designs and implementations that are tightly 

coupled to a particular cloud provider. Such lack of interoperability leads to vendor 

lock-in, which is a significant concern for public cloud consumers. For example, 

switching costs to a new cloud environment is relatively high and includes the system 

re-design, redeployment, and data migration costs. To overcome interoperability issues 

with multi-cloud abstraction layers are used to hide the differences between cloud 

providers [10].  

Orchestration enables intelligent cloud resource allocation through dynamic 

provisioning, coordination, and management of services. This greatly reduces human 

intervention and cost [11]. These benefits are intensified for applications that are 

deployed in multi-cloud infrastructure due to increased flexibility of infrastructure 

resource provisioning from multiple IaaS vendors. We can harness those benefits by 

developing a multi-cloud application orchestration platform that capitalizes better 

resource utilization and scalability inherently provided by the containers. Existing 
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applications running on containers could be easily moved to a multi-cloud application 

orchestration platform. 

OpenShift Origin [6] is a supporting platform providing both developer and operation 

centric tools to develop multi-cloud applications. It extends Google’s Kubernetes 

platform to leverage container orchestration. Tsuru [12] is another similar multi-cloud 

PaaS using Docker containers. Neither of these platforms provides automated 

infrastructure resource expansion for time-varying workloads and simplicity in 

operational aspects of the platform. 

 

1.3 Problem Statement 

Contemporary multi-cloud solutions such as multi-cloud microservices architectures 

[29] and private PaaS solutions [6], [7] are used either by compromising the multi-

cloud nature of the application or orchestration features such as dynamic resource 

expansion. Moreover, management and deployment overhead of microservices and 

private PaaSes in a multi-cloud setup are considerably high. Library or service-based 

multi-cloud software solutions [24] have attempted to solve this problem using an 

abstraction approach where cloud services from different vendors are aggregated and 

exposed via a standard interface. However, the application becomes tightly coupled to 

specific libraries provided by those solutions.  

We believe that a container-based approach is more desirable to address the limitations 

mentioned above in contemporary multi-cloud solutions. This is due to the benefits 

such as easily movable, lightweight container images across multi-cloud environments 

and applications that are not required to use additional software libraries just to support 

multi-cloud (because containers provide the execution context for standard 

technologies). In such a setup, Service Oriented Architecture (SOA) can guarantee 

interoperability of application components developed using different standard 

technologies avoiding platform-specific implementations. APIs provided by different 

IaaS cloud offerings and the lightweight nature of container images make it possible 

to allocate and deallocation resources dynamically. In this context, the problem to be 

addressed by this research can be stated as follows: 
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How to develop a container-based, dynamic, and readily deployable multi-cloud 

application orchestration platform that minimizes the coupling between applications 

and the platform? 

The proposed solution should be scalable and supports a combination of private and 

public cloud IaaS offerings. Because the platform directly coordinates with the IaaS 

layers of cloud providers, it should greatly minimize the dependency on various cloud 

offerings of cloud vendors, as well as the applications hosted in this platform should 

be platform-independent. 

 

1.4 Objectives 

Following set of objectives is to be achieved to address the above research problem: 

 To conduct a comprehensive literature review on existing virtualization 

technologies, including containerization and various multi-cloud solutions. 

 Design a novel platform that could integrate multiple cloud infrastructures to 

facilitate resource elasticity and seamless application orchestration by 

providing multi-cloud integration. 

 Integrate web and Command Line Interface (CLI) based operational tools to 

support continuous delivery. 

 To conduct a comprehensive performance analysis of the proposed multi-

cloud application orchestration platform. 

 

1.5 Outline 

The rest of the dissertation is organized as follows. Chapter 2 presents a literature 

review on the theoretical aspects of cloud computing and cloud technologies such as 

virtualization based on VMs and containers. It also covers container orchestration and 

related technologies. Contemporary multi-cloud solutions and architectures are also 

covered. Chapter 3 contains the solution approach, high-level architecture of the 

proposed container-based application platform and details on how the multi-cloud 

application orchestration platform can be deployed on an infrastructure that is a 
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combination of a private and two public clouds. Also, it has provided a detailed 

description of the platform we developed along with all its subcomponents. 

Performance evaluation for the proposed platform is presented in Chapter 4. It contains 

workloads along with the test scenarios, experiment setup deployment, and the detailed 

performance evaluation. Chapter 5 contains conclusion remarks, research limitations, 

and future work.   
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2 LITERATURE REVIEW 

 

Section 2.1 presents key concepts associated with cloud computing, such as cloud 

service models and cloud deployment models. An overall insight into containerization 

using Docker and container orchestration is presented in Section 2.1.3. Introduction to 

Multi-cloud and different types of Multi-Cloud solutions, including software solutions, 

multi-cloud microservice architecture, and deployable PaaS solutions, are presented in 

Section 2.2. 

 

2.1 Cloud Computing 

Cloud computing referrers to the model of enabling ubiquitous, on-demand, and 

convenient access to a shared pool of computing resources that can be easily 

provisioned and release with minimum or zero-intervention of the cloud service 

provider. According to [1], there are five essential characteristics of cloud computing, 

namely on-demand self-provisioning, location independent ubiquitous access, 

resource pool with a higher level of abstraction, rapid elasticity, and metered service. 

Organizations can make use of a cloud computing model under three service models, 

which are IaaS, PaaS, and Software as a Service (SaaS). The cloud deployment model 

also an essential factor when deciding the organization’s cloud strategy. Depending on 

the type of applications and their scalability and availability requirements, they can 

choose among the public, community, private, or hybrid cloud deployment model 

which suits them best.  

 

2.1.1 Cloud Deployment Models 

Cloud deployment models take four forms as follows: 

 Private Cloud – The computing environment is operated exclusively for a 

single organization. Cloud services are not accessible to external consumers. 

Organizations that have excessive privacy and security concerns over their 

data follow this deployment model. The datacenter may be inside the 
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organization’s premises or outside. It may also operate by an external party 

that has required expertise in operating datacenters. This model provides 

organizations with greater control over the cloud infrastructure than other 

models.  

 Community Cloud – Organizations that have common privacy mostly adopt a 

community cloud deployment model. Two or more organizations with larger 

computing resource requirements and common privacy, security, and 

regulatory considerations (e.g., banks) can jointly operate the shared 

datacenter infrastructure or some third party. Datacenters may exist on or off 

the premises.  

 Public Cloud – The cloud infrastructure is provisioned for the use of the 

general public over the internet. It may be managed by a business organization 

or any combination of privately owned or government organizations. By 

definition, the cloud environment is always external to the cloud consumers 

[13].  

 Hybrid Cloud – A combination of the above cloud deployment model 

(Private, Community, or Public) employed to bound two or more cloud 

environments together by proprietary or standard technologies to serve cloud 

consumer’s computational needs. Data portability is an important aspect of a 

hybrid cloud deployment model among the linked cloud environments.  

Deployment models are further categorized based on the management and distribution 

of computational resources to deliver services to cloud consumers [13]. 

 

2.1.2 Virtualization Based on VMs 

Virtualization refers to the software-based representation of physical computational 

resources such as applications, servers, storage, and networks to be used to effectively 

reduce the IT-related cost and bring agility to business while increasing the efficiency 

[14]. Among the many benefits discussed under virtualization technology reducing 

capital expenditure, minimizing or eliminating downtime, simplified datacenter 

management, quick provisioning, enable business continuity, and disaster recovery can 

be highlighted.  
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Cloud computing is mainly benefited by virtualization technology that saves the 

hardware implementation cost for different operating systems. Virtualization can take 

multiple forms, such as the following:  

 Full Virtualization – The hypervisor provides all the services of a physical 

system so that guest operating systems completely disengaged from the 

underlying hardware. They are unmodified because Hypervisor completely 

emulates the devices in the physical server. Full virtualization is categorized 

into either hardware-assisted or software-assisted. As for drawbacks, full 

virtualization requires a specific type of hardware to support this or 

performance loss due to the binary translation.  

 Para Virtualization – Guest operating systems are modified and aware of 

them being virtualized, and they share resources with other VMs via API calls 

to the hypervisor. Instead of making direct hardware calls, they issue the 

command to the hypervisor from their customized device drivers.  

 OS Level Virtualization – Also known as “containerization”. This technique 

is capable of providing virtualized context for guest operating systems 

without Hypervisors. The shared kernel of the host operating system among 

the guest OSs is capable of isolating the execution context of each VM.  

 Hardware-Assisted Virtualization – It depends on explicit support in the host 

CPU, which is not available in all CPUs. By using the hardware capabilities, 

this technique achieves accelerated virtualization. This technique was added 

to x86 CPUs in 2006 [15]. This makes the full virtualization more efficient 

from hardware capabilities. Nevertheless, this approach involves many traps 

to CPU. This is mitigated by Para virtualized drivers. This combination is 

called hybrid virtualization. 

Hypervisors are low-level programs that allow single hardware to be shared by 

multiple guest VMs, providing shared system resource access. Type 1 Hypervisors and 

Type 2 Hypervisors are the main distinguishers for the way they are operating on a 

host computer. Type 1 Hypervisor runs directly on the host hardware to manage guest 

operating systems. Type 2 Hypervisor runs only on the operating system, which means 

it cannot run until the operating system is running [15].  
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2.1.3  Container-based Virtualization 

A single operating system allowing multiple user-space instances running on its kernel 

refers to the containerization or operating-system-level virtualization. This is a 

virtualization technique that is based on user-space instances, which are called 

containers. Unlike other virtualization techniques such as full virtualization or 

paravirtualization, which use hypervisors to emulate hardware, container-based 

virtualization uses container engines to provide a managed environment for deploying 

containerized applications [16]. The primary duties carried out by the container engine 

are allocating CPU, memory, space isolation, and providing security. It also provides 

scalability to the addition of new containers. Figure 2-1 shows how the virtualization 

is achieved using containers compared to a VM that dedicatedly needs a guest 

operating system to run the software as opposed to container-based virtualization 

where multiple containers can be run in the same operating system. The container 

engine runs natively on Linux and shares the kernel among containers. By contrast, 

VMs are full of guest OSs with virtual access to host resources. 

 

Figure 2-1   Virtualization via containers and VMs. 

 

Containers are becoming popular over the other virtualization technologies because of 

the isolation benefits it provides without much overhead of space and time. While 

containers are typically hosted in Linux, Windows and Solaris containers are also 

available.  

Virtualization via containers provides many benefits such as lower hardware cost, 

improved reliability and robustness, high scalability, efficient storage, and spatial 
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isolation, high throughput, portability, continuous integration and safety and security. 

However, container-based virtualization is associated with cons such as increased cost 

of container management and safety and security.  

2.1.3.1 Docker 

Docker is a container platform based on Windows and Linux kernels. Even though 

Docker has gained much popularity among the community, there are other container 

platforms such as LXD and OpenVZ [17]. Windows were only capable of hosting the 

Docker engine and carry on Linux workloads initially. Today, it is possible to run 

Windows containers on the Docker engine. However, container images can only be 

based on Windows Server Core, Nano server [18]. 

Docker engine is composed of three main components, Docker daemon, REST API 

(Application Programming Interface), and CLI (Command Line Interface) for the 

“docker” command organized in a client-server architecture. Docker daemon directly 

receives the command from the REST API to control or interact with them through 

scripting or direct CLI commands. Docker daemon is responsible for creating and 

managing images, containers, network, and volumes [19]. 

 

Figure 2-2   Docker architecture. Source: [19]. 

 

Docker architecture is presented in Figure 2-2. Docker images are based on other 

images already containing a supported operating system. We might create our images 
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and push them to the Docker Hub (i.e., a container repository). The container is a 

runnable instance of an image. REST API or Docker Client can be used to interact 

with a container. Any changes maintained in the container state does not preserve if 

those are not written to an external persisted storage. Docker Service is a collection of 

Docker daemons running on independent hosts. Services are used to scale applications 

across multiple hosts by scheduling multiple containers in multiple daemons. Services 

are load-balanced so that users see the service as a single application. 

The underlying technology of Docker is using namespaces to provide isolated 

workspace for containers. Docker engine uses various namespaces to achieve the 

above purpose. Control groups (cgroups) is another technology used by Docker to limit 

and control the usage of hardware resources of the host among multiple containers. 

The Union file system is file systems that operate based on creating layers on top of 

each other. Container format wraps namespaces, cgroups, UnionFS together to form a 

container. The default container format is “libcontainer” [19]. 

2.1.3.2 Linux containers 

Linux Containers (LXC) is an operating-system-level virtualization technique for 

running multiple Linux containers on a control host using a single Linux kernel [18]. 

It consists set of tools and components that are running on the user space of the 

operating system for controlling the Linux Kernel containment features. It uses kernel 

features such as Kernel namespaces (ipc, uts, mount, pid, network, and user), 

Apparmor and SELinux profiles, Seccomp policies, Chroots (using pivot_root), 

Kernel capabilities and CGroups (control groups) to contain processes. LXC tries to 

create an almost close environment similar to the Linux kernel for its containers. 

Components of LXC can be identified as the liblxc library, language bindings in 

Python3, Lua, Go, Ruby, Python2, Haskell for the API, standard container controlling 

tools and distribution container templates [20]. LXC Hiroku provides a containerized 

way to run technology stacks such as Ruby, Python, NodeJS, Go, and Java using LXC 

containerization technologies [18]. 



 

 
 

12 

2.1.3.3 Container Orchestration 

Automating the deployment, management, and monitoring of a large-scale container 

cluster is referred to as container orchestration. Container orchestration essential for 

managing applications that use a large set of containers. Orchestration may include 

host provisioning, container instantiating, rescheduling in a failure situation, linking 

containers through interfaces and scaling. Container orchestration provides a single 

point of access for managing container cluster and monitoring health. It also gives 

developers and operational teams a holistic view of the container cluster. Container 

orchestration tools are essential to managing large-scale container clusters effectively. 

Container orchestration helps to overcome challenges like service discovery, load 

balancing, auto-scaling, zero-downtime deployments, and configuration management 

in microservices applications that are spanning in multiple servers. Microservices can 

get the most benefit from container orchestration. Docker Swarm and Kubernetes are 

valuable orchestration tools available for Docker containers.  

 Kubernetes – Is a widely used orchestration tool that is considered to be 

feature-rich. Kubernetes is designed to operate in a wide range of modes, 

including bare metal, on-premise VMs, and public cloud environments. 

Google container engine provides the Docker engine and Kubernetes 

orchestration tool tightly integrated. Being an open-source platform, it has 

built up a large community around Kubernetes. Google cloud platform 

provides the cheapest way to run Kubernetes with free master nodes. This has 

attracted more Docker customers towards their cloud platform.  

 Docker Swarm – Docker includes container cluster management and 

orchestration tool called “Docker Swarm”. Docker CLI is used to interact 

with Swarm to manage a standalone or distributed Docker cluster. Swarm 

manages services that can be identified as application components running in 

a replicated fashion across the cluster. Cluster is composed of nodes, 

instances of Docker engine in Swarm mode participating the Swarm [21]. 

With the rapid adoption of containerized applications and Docker becoming an 

industrial standard for containerization, the need for container orchestration has 
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become apparent. Table 2-1 lists container technologies used by different PaaS 

vendors. 

Table 2-1   Container technologies used by different PaaS vendors. 

PaaS Provider Container Technology 

OpenShift Docker with LXC 

Heroku LXC 

CloudFoundry Warden Container 

Stackato Docker with Warden Container 

AppFog Warden Container 

Virtuozzo based on OpenVZ 

dotCLoud Docker with LXC 

 

2.1.3.4 Container Registry 

Container registry is a server-side application that stores and distributes container 

images that is part of the container repository, which constitutes different tags and 

versions of the same container image. Container registry governs container image 

creation, storing, and accessing process. Container registries are available as hosted 

services, as well as deployable solutions. For example, Docker Hub, Quay, and major 

IaaS providers offer their own registries such as Amazon ECR, Azure ECR and Google 

Cloud’s GCR as hosted services and Docker Distribution tool, GitLab container 

registry can be named as deployable container registries [22]. 

 

2.2 Multi-Cloud 

The multi-cloud concept can be characterized by the usage of cloud services from 

diverse cloud providers to run applications. Simultaneous usage of services of multiple 

clouds that constitutes private and public cloud covers cloud bursting and federated 

cloud scenarios. Cloud bursting discusses bursting the resource capacity by using the 

public cloud while application most of the time running in the private cloud. Federated 

cloud scenario discusses the federation of resources equally among cloud providers, 

as well as with the private cloud.  
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The above-discussed scenarios mostly work on the IaaS layer. Interoperability issues 

have been avoided by using homogeneous environments across cloud providers. 

Additionally, work-related to interoperability between PaaS services also done, such 

as semantically interconnecting heterogeneous PaaS offerings across different cloud 

providers sharing the same technology and service-oriented component-based PaaSes 

[23]. 

 

2.2.1 Multi-Cloud Software Solutions 

An important functionality of Multi-Cloud is the management of deployments across 

various clouds. According to [24], based on the approaches taken to implement multi-

cloud solutions, they can be categorized as library-based or service-based solutions. 

The most known library-based and service-based solutions are identified as follows: 

 jcloud (Library-based) – This is a Java library that enables the portability of 

Java applications which allows the unified access of resources in various 

cloud platforms such as AWS (Amazon Web Services), CloudSigma, Digital 

Ocean, ElasticHost, Go2Cloud, GoGrid and many other cloud providers [25]. 

jcloud provides abstractions for Blog storage, Compute services, and Load 

balancer services in general. 

 libcloud (Library-based) – This is a Python library that abstracts compute, 

load balancer, object storage, container, backup, and DNS services from 

many cloud providers, including leading vendors such as Amazon AWS, 

Microsoft Azure and Google [26].  

 δ-cloud (Library-based) – Is REST-based API written in Ruby to the abstract 

difference between clouds. Once the DeltaCloud server is setup, various 

clients can be used to communicate with the server directly via HTTP 

interface or C/C++, Ruby libraries. δ-cloud mainly abstracts the IaaS services 

from various cloud providers such as Amazone EC2, Eucaliptus, IBM 

SmartCloud, GoGrid, OpenNebula, Rackspace, Microsoft Azure, Amazone 

S3, Google Storage and many other cloud providers [27]. 
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 SimpleCloud (Library-based). It is another Infrastructure abstraction library 

for Multi-Cloud that is written in PHP. It provides uniform interfaces for 

infrastructure services of AWS, Azure, RackSpace, and Nirvanix [24]. 

 RightScale (Service-based). It is a hosted service that provides self-service, 

cloud management, and cost optimization facilities to Multi-Cloud. 

RightScale supports IaaS services from Amazone AWS, Microsoft Azure, 

Google Cloud Platform, IBM Cloud, Rackspace, Apache CloudStack, 

OpenStack, and VMware vSphere [28].  

 Kaavo. It is a hosted service that supports workload and runtime management 

for the multi-cloud strategy. Its support is expanded across IaaS, PaaS, and 

SaaS layers [24]. 

 

2.2.2 Multi-Cloud Microservice Architecture 

Microservices is a software architectural style where the application is composed of 

smaller processes independently running in a distributed fashion and communicating 

via language-agnostic APIs. Microservice architecture is mainly driven by micro 

Linux distributions that support containers, Containers, and Schedulers such as Swarm 

or Kubernetes [29]. 

Because microservice architecture is a technique variant of SOA architectural style, 

loosely coupled smaller services can be distributed among multiple cloud providers. 

To schedule containers in multiple cloud providers, multiple container schedulers need 

to run in each environment if nodes in each cloud provider are not in the same network. 

Otherwise, the single scheduler can be configured with a relatively high configuration 

effort to schedule containers in all nodes across multiple cloud providers.  

2.2.3 PaaS Solutions for Private Clouds 

Platform as a Service takes another form when it comes to large organizations. With 

the possibilities to run their private cloud infrastructure using technologies such as 

OpenStack, VMware Cloud Foundation, they tend to look for their own private PaaS 

environments. Applications developed internally are deployed in these private PaaS 

environments to be used across the organization. They also tend to integrate with 
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public cloud forming a hybrid cloud deployment model for externally facing high 

availability applications. Large organizations prefer an internal software portfolio to 

run behind on-premise firewalls, yet achieving the benefits of cloud computing. It is 

worth giving attention to private PaaS solutions with higher market share such as 

OpenShift Origin, Cloud Foundry, AppScale, Microsoft Azure Stack, and Apache 

Stratos. 

OpenShift Origin is considered to be a Kubernetes distribution that is optimized for 

continuous application development and multi-tenant deployments. OpenShift is 

backed by RedHat. It mainly runs on a Docker container cluster managed by 

Kubernetes. Container nodes consist of a set of master nodes and a set of nodes to 

guarantee high availability by avoiding a single point of failure [6]. 

Cloud Foundry is a multi-cloud Platform as a Service that can be deployed in private, 

public or any combination of it. This is a large-scale PaaS software that can run on any 

IaaS provider. Cloud Foundry internally developed tool BOSH supports provisioning 

and managing VMs. Kubernetes is also integrated as the container orchestration tool 

to supports its container-based architecture to operate in multi-cloud infrastructure. 

Before integrating Kubernetes, the container management system, Diego was used for 

this purpose. Cloud Foundry supports Docker images also can be integrated with the 

Docker Registry. While platform VMs running the Cloud Foundry PaaS, platform host 

VMs are used to run applications deployed in CF. CF uses two types of deployment 

models. Build packs and Docker images. Source code can be pushed directly via the 

CF command line to the CF cloud controller. Then Diego will build the application 

and deploy the artifacts in the container cluster. Names of the Docker images in the 

registry can be directly pushed into the Cloud Controller via CLI to deploy them in CF 

[7]. 

AppScale is an open-source Google App Engine PaaS platform that can be run in any 

cloud. This does not operate in multi-cloud infrastructure. This has reached the market 

in China via deploying it in Alibaba cloud-enabling Google App engine apps to run in 

China [30]. 

Azure Stack is an extension of Microsoft Azure to operate Azure cloud services within 

the organization’s datacenter integrated with the Microsoft Azure public cloud 
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allowing organizations to follow a hybrid cloud deployment model. Azure Stack 

delivers both IaaS and PaaS capabilities to an on-premise datacenter allowing 

portability of applications. It also allows serverless computing, distributed 

microservices architectures, and on-premise container management features. Azure 

Stack is offered as an integrated system of hardware and software known as the Azure 

Stack Integrated System. It ranges in size from four to 12 nodes [31].  

Apache Stratos is a PaaS framework that can be deployed in any IaaS infrastructure 

that uses VMs and has compatibility with Apache Jclouds a cloud abstraction layer 

implemented using Java. Kubernetes also can be integrated as the IaaS layer to 

leverage the use of Docker containers [32]. In the Stratos terminology, a cartridge is 

referred to as a pluggable component from which service can be created in the Stratos 

PaaS. Cartridge instance can be either a VM or a Docker container that has software 

components to interact with Stratos PaaS to act as a service. VM cartridges provide 

OS-level isolation for cloud applications, whereas container cartridges provide 

software level isolation.  

The architecture of Apache Stratos framework can be described as a component-based. 

A wide range of responsibilities is assigned to components such as Stratos Manager, 

Cartridge Agent, Artifacts Distribution Coordinator, Complex Event Processor, Cloud 

Controller, Message Broker, Load Balancer, Identity/Logging/Monitoring/Metering 

Services, Auto Scaler NS CLI/Web UI.  

 Stratos Manager – Responsible for providing various interfaces for managing 

and interacting. It uses Stratos PaaS in the form of Web UI, REST, and CLI. 

 Cartridge Agent – Handles the communication between cartridges and the 

Stratos framework. Cartridge Agent communicates with various components 

such as message broker, complex event processor, etc., while residing in the 

cartridge.  

 Artifact Distribution Coordinator – Apache Stratos typically works with 

remote Git server where users maintain their code repositories. Deployment 

Synchronization happens when a user upstream their artifact to the Git 

repository to synchronize them with the relevant to that cartridge instance. 

This component handles automated artifact updates and deployment tasks.  
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 Complex Event Processor – CEP module is responsible for real-time 

monitoring based on the statistics published by Cartridge Agents and various 

services. Summarized information is sent to Auto Scaler to make the 

orchestration decisions [33].  
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3 METHODOLOGY 

 

This chapter presents the high-level design of the proposed multi-cloud application 

orchestration platform. Section 3.1 presents the solution approach, deployment 

methods, and services to be offered. High-level architecture is presented in Section 

3.2. Section 3.3 describes all the components of the proposed AppDock platform. The 

deployment process of the AppDock platform is explained in Section 3.4, while the 

summary is presented in Section 3.5. 

 

3.1 Solution Approach 

Dynamic infrastructure resource allocation can only be achieved on multiple IaaS 

cloud platforms using their public APIs. Containers are more desirable for dynamic 

resource allocation due to lightweight and easily movable in a multi-cloud setup and 

also do not impose any platform-specific dependencies on the applications. Therefore, 

we proposed a container-based application orchestration platform, namely AppDock 

which could operate on multi-cloud infrastructure. Platform consumers could choose 

any cloud infrastructure model such as private, hybrid, or multi-cloud to suit their 

business requirements. Different IaaS vendors can be integrated with the platform. 

AppDock contains a standard provider interface that can be extended to support 

multiple private and public IaaS vendors. Docker is chosen as the container technology 

due to the wide availability of container base images on standard technologies that can 

be extended as plug-ins. Container orchestration services offered by the cloud vendors 

cannot be used to develop the proposed platform, as those containers cannot be 

orchestrated by the proposed platform’s base container orchestration system, which is 

Docker Swarm. AppDock provides tools required to manage and operate the 

application orchestration platform. They can be CLIs and web-based.  

Despite vastly different platform services provided by the cloud providers, we focused 

only on providing an application runtime. Because moving the application’s state 

across multiple nodes can introduce various complexities, in this work, we do not 
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support state-full technologies such as relational/No-SQL databases and in-memory 

data services.  

A service is a logical grouping of containers running the same logical process. As 

shown in Figure 3-1 a service spans across multiple container engines (i.e., nodes) 

running on multiple cloud infrastructures. Any application deployed in the AppDock 

platform is considered as a service of which tasks are deployed in multiple nodes 

across multiple cloud infrastructures. 

 

Figure 3-1   Conceptual view of a service that integrates containers across multiple cloud providers. 

Multiple IaaS providers could be integrated via vendor-specific APIs with the standard 

provider interface in the platform. Cloud environments communicate via network layer 

connectivity allowing dynamic resource allocation. The cloud environment in which 

the orchestration platform is initially deployed is the primary cloud environment. Other 

cloud providers connected via the standard provider interface by providing required 

configurations only provide the additional resource capacity.  

When automating dynamic infrastructure resource allocation, resource expansion and 

contraction decisions are made. To make such decisions, resource utilization metrics 

reported by the container orchestration platform are compared with preconfigured 
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resource utilization threshold values globally configured for the cluster. Following 

resource utilization thresholds are considered: 

 Minimum CPU utilization – The lower bound of the CPU utilization, which is 

compared with the CPU utilization of each node within the cluster when node 

removing decisions are made.  

 Maximum CPU Utilization – The upper bound of the CPU utilization, which 

is compared with the CPU utilization of each node within the cluster when 

deciding to spawn a new node.  

 Minimum memory utilization – The lower bound of the memory utilization to 

be compared with the actual memory utilization of each node within the cluster 

when node removing decisions are made.  

 Maximum memory Utilization – The upper bound of the memory utilization, 

which is compared with the actual memory utilization of each node within the 

cluster when deciding to spawn a new node.  

These threshold values have to be derived empirically by simulating the expected loads 

after applications are deployed within the application orchestration platform. 

Currently, these values are platform-specific.  

 

3.2 High-Level Architecture 

As shown in Figure 3-2, the Docker container cluster contains two types of containers, 

namely containers that belong to the orchestration layer and containers delivering 

capacity. The orchestration layer hosts various services that are required for the 

continuous operation of the platform. Those services include a RESTful API that is 

used by the CLI and web portal to perform cluster management and operational 

activities by developers, services that host static content for the web portal in the 

AppDock platform, Scaling Service, and LogDB. Microservices belong to the 

orchestration layer primarily run inside the cloud infrastructure on which the platform 

is installed. For example, the primary cloud infrastructure in Figure 3-2 is the private 

cloud. The orchestration layer is integrated with two other IaaS providers to increase 

the resource capacity of the platform to cater to time-varying resource demands.  
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Figure 3-2   High-level deployment diagram of the platform deployed in private-public IaaS 

infrastructure. 

Figure 3-3 shows a detailed view of the orchestration layer where the deployable core 

components of the platform, namely Cluster Admin, LogDB, and Scaling Service 

reside. The container cluster is virtually divided into two areas to denote the 

orchestration layer and the capacity. Containers that run orchestration layer related 

services are inside the primary infrastructure. Capacity containers are spanned across 

all IaaS providers, including primary cloud infrastructure. The AppDock platform is 

integrated with AWS and Microsoft Azure IaaS providers. They provide a rich set of 

APIs to manage infrastructure resources effectively. Further integrations with other 

cloud providers can be made by extending the standard provider interface.  

We selected Docker Swarm as the baseline technology to implement the solution. Core 

components that form the solution have to be deployed in a distributed fashion as 

Docker Swarm is a collection of Docker nodes, and deployable components eventually 

become Docker Services. SOA lays the foundation to communicate across all the 

components.  
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Figure 3-3   Detailed view of the orchestration layer. 

 

The Cluster Admin is responsible for building container images from the application 

code and deploying it when the developer pushes new code to the platform via CLI. It 

also hosts the web portal for managing configurations for public cloud vendors and 

plug-in management services.  It consists of a RESTful web API application and a web 

portal hosted in a lightweight web server. Cluster Admin is connected with the LogDB. 

Docker Swarm handles failover recovery. 

LogDB acts as the data storage for the AppDock platform. This stores data required 

for the continuous operation of the platform, such as application runtime metrics, 

application scalability requirements, user information, and application metadata. The 

data file of this storage is kept in the Network File System (NFS) location, which can 

be safely accessed even in a failure situation of the database engine instance. 

Scaling Service is a continuously running process that periodically analyzes runtime 

matrices of CPU and memory utilization data pushed to the database by monitoring 

agents residing in each worker node. New node deployment and removal decisions are 
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made based on the minimum and maximum thresholds set for CPU and memory 

utilization. Once the threshold is reached, the API in the Cluster Admin core 

component is used to expand or shrink the number of nodes and rescale each 

application deployed on the platform according to the current number of nodes in the 

cluster. 

Monitoring Agent is responsible for reporting health and runtime matrices to LogDB. 

The monitoring agent is a continuously running process residing in each node. 

Other components of the proposed platform are as follows: 

 Command Line Interface (CLI) – is the only non-deployable core component 

used to communicate with the Cluster Admins’ RESTful API to achieve the 

functionality requested by the users. CLI is the primary interaction point for 

the application orchestration platform. It provides commands to carry out 

tasks such as deploying applications, scaling, and generating boilerplate code 

and project templates.  

 RESTful API Service – exposes a rich set of functionalities of the platform to 

be carried out by the users via CLI. This is running on a light-weight web 

server inside the Cluster Admin core component.  

 Container Cluster (Capacity) – is a collection of worker nodes across the 

multi-cloud infrastructure that participate in delivering the required capacity. 

Deployed applications become Docker services in the underlying Docker 

Swarm cluster. The routing mechanism is built into Docker Swarm to route 

the traffic. Every node in the Swarm participates in an ingress routing mesh. 

Every node in the swarm is capable of accepting connections for any service 

via published ports [34]. 

 Node managers – can be configured to contribute to the capacity similar to 

worker nodes. Worker nodes are coordinated by the node manager and 

typically behave based on the service definition provided by the docker-

compose.yml file [21]. This component already exists in Docker Swarm. This 

representation shows that core components are deployed along with other 

services in the Docker Swarm cluster. 
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Figure 3-4 presents the service view of the proposed platform in which core 

components prefixed with AppDock are also running along with other services in the 

Docker Swarm container cluster. This representation shows that core components are 

deployed along with other services in the Docker Swarm cluster. 

Figure 3-4   Service view of the AppDock platform. 

An application deployed on the AppDock platform becomes a service, as it is deployed 

as a Docker Service. Applications are initially created using service plug-ins, as base 

Docker images from vendors are extended with required software components to be 

used as service plug-ins for the AppDock platform. It is possible to manually upload 

plug-in Docker images to the cluster administrator via the web portal. Applications are 

pushed directly to the platform via the CLI. The platform takes care of building the 

Docker images and deploying them in the container cluster.  

 

  

Docker Swarm 

Service 1(NodeJS) 

WN 

MA 

WN WN 

AppDock Cluster Admin 

WN 

MA 

AppDock LogDB 

WN 

MA 

WN 

MA 

WN 

MA 

AppDock Scaling Service 

WN – Worker Node 
MA–Monitoring Agent 

MA MA 

Service 3(NodeJS) 

WN 

MA 

WN WN 

MA MA 

Service 2(NodeJS) 

WN 

MA 

WN WN 

MA MA 



 

 
 

26 

3.3 Detailed Design 

As shown in Figure 3-5, core components LogDB, Cluster Admin, CLI, Scaling 

Service, and Monitoring agent with libraries such as repository classes, AppDock 

HTTP interface, and Docker HTTP interface collectively form the AppDock platform. 

All the components were developed as part of this research. Components deployable 

in Docker Swarm cluster such as Cluster Admin, Scaling Service, and Monitoring 

Agent are deployed as Docker services during the initial creation of the AppDock 

cluster. The replica number of each task is four, two, and global (one replica in each 

node), respectively.  

Every node, including static nodes at the primary cloud environment, participating in 

the Docker Swarm cluster exposes the Docker API. Cluster Admin, Scaling Service, 

and Monitoring Agent issue Docker commands via the Docker API to respective nodes 

to achieve various functionalities such as application orchestration and reading runtime 

stats of the nodes.  

In addition to the deployable components and the non-deployable core component 

CLI, 2 HTTP proxy libraries and a data access library are also included in the design 

as they can be re-used across the solution. AppDock HTTP Proxy interface provides 

access to the RESTful API hosted within the Cluster Admin core component to other 

core components referenced it. Docker HTTP Proxy Interface provides access to the 

Docker APIs exposed in each node in the cluster, and it is referenced by all the core 

components. Data access library, known as “Repository Classes,” is referenced by all 

the deployable core components to read/write data in the LogDB core component. All 

the core components are explained in detail below. 
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Figure 3-5   Component view of the application. 

3.3.1 AppDock Cluster Admin 

Cluster Admin component is a RESTful API application running as a Docker service 

within the Docker Swarm cluster. This component is configured to run multiple 

replicas to cater to concurrent platform management requests from other core 

components efficiently. Typically, the Docker services can be accessed via any node 

participating in the Docker Swarm cluster. Web interface provided with this can be 

used to configure public cloud providers (discussed in Section 3.3.1.2) and uploading 

service plugins. Upon deployment of the AppDock platform using the CLI, Cluster 

Admin service is initially created along with other core components within the cluster. 

Next, we explain the key sub-components of the Cluster Admin. 

3.3.1.1 Controllers 

Controllers contain the essential logic to be executed when requests are made to the 

Cluster Admin. Following are the roles of the controller in the AppDock platform:  

 CloudResourceController – Creates and removes VMs in public cloud platforms. 

Based on the given cloud adaptor, new VMs are spawned on the respective public 

cloud infrastructure. Removal of VMs are requested by providing the node address 

to this controller, and the same cloud adaptor by which node was created is used 
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to remove the spawned nodes. Upon spawning of new nodes in the public cloud 

infrastructures, cloud resources associated with the new VM are recorded in the 

LogDB. 

 ConfigurationController – Persistence and retrieval of configurations of public 

cloud providers are provided by this controller. Currently, AWS and Azure 

configurations required by respective adaptors are incorporated. 

 NodeController – Performs operations related to managing nodes such as adding 

new nodes, removal of nodes from the Swarm, building service images of all 

services in a given node, and persisting node information in the LogDB. Adding a 

new node involves joining the node to the Docker Swarm, updating node labels to 

balance tasks across all the nodes, and building images of all the service and finally 

persisting the node in LogDB as an INode record. Removal of nodes involves 

leaving Docker Swarm, removing INode record, and INodeStatAnalysisStatus 

records from LogDB. INodeStatAnalysisStatus record contains the aggregated 

CPU and memory utilization of all the IRuntimeStat records logged by the 

Monitoring Agent of a particular node in each interval. This record is retained as 

long as the node remains within the cluster. 

 PluginController – Create, Read, Update, and Delete (CRUD) operations for type 

IPluginDefinition, which contains plugin content, are carried out by this controller. 

Plugins are discussed in Section 3.3.1.4. 

 ScalingServiceController – Retrieve and persist type IScalingServieConfig for 

storing minimum/maximum CPU and memory threshold values.  

 ServiceController – Handles service-related operations such as creating new 

services based on plugins, service deployment, and updating service replicas when 

new VMs are added to the node cluster. Service creation involves downloading the 

selected plugin to the current working directory and saving it as an 

IServiceDefinition object in LogDB. The first deployment of service will create the 

service in Docker Swarm with the expected number of replicas (i.e., Replicas per 

Node × Number of Nodes). Before service creation or update, compressed 

application content is built as a Docker Image in every node. Then the 

IServiceDefinition record is updated with the latest modifications to the service 
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template done by the developer. When new nodes are added by automated resource 

expansion or CLI, the latest Docker images of all the services will be built in the 

new node. 

Controller instances are instantiated injecting required repositories described in 

Section 3.3.5.1. Request router of the Cluster Admin component has used controllers 

in requests served by the Cluster Admin component. Each controller has access to the 

NFS path configured during the platform deployment phase. File artifacts created 

during management operations are stored in the NFS path accessible by all core 

components. 

3.3.1.2 Cloud Adaptors 

Cloud adaptors are used to connecting with public cloud infrastructures. Currently, 

adaptors for AWS and Microsoft Azure public cloud infrastructures are developed. 

These cloud adaptors implement interface ICloudAdaptor, which defines methods for 

creating and removing VMs. Cloud adaptors connect with their respective cloud 

environments with APIs provided by public cloud providers. Creating VMs in the 

public cloud may involve creating multiple other cloud resources such as storage, 

public IPs, and network interfaces. These resources, including the VM information, 

are persisted in the LogDB as an ICloudResourceBatch to refer back when excess VMs 

are removed from the AppDock platform. Each cloud adaptor requires a set of 

configurations to connect and spawn VMs in respective public cloud environments. 

Figure 3-6 shows configurations required by AWS and Azure public cloud 

environments.  

AWSConfigurations = { 

   VMImageReferenceID: string; 

   Location:string; 

   AccessKeyID: string; 

   SecretAccessKey: string; 

   SecurityGroupID:string; 

   VPC:string; 

   SubnetID:string; 

   Active:boolean; 

   AvailabilityZone:string; 

   InstanceType:string; 

} 
 

AzureConfiguration = { 

   Location?:String; 

   TenantID?:String; 

   ClientID?: String; 

   ClientSecret?: String; 

   SubscriptionID?: String; 

   ResourceGroupName?: String; 

   VMImageReferenceID?: String; 

   PublicIPPrefix?:String; 

   NetworkSecurityGroupID?:String; 

   VNet?:String; 

   SubnetID?:String; 

   SSHKey?:String; 

   Active:boolean; 

} 
 

 
 

Figure 3-6   Configurations required by cloud providers. 
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3.3.1.3 Server 

The server is the execution environment for the Cluster Admin component. The web 

server hosts both the Cluster Admin web interface at the root resource location and 

API. As shown in Figure 3-7 each task of the Cluster Admin component is mounted 

with a Docker Volume mapped to /mount local path in each container as the file 

storage. Every file stored in /mount is synchronized with the NFS path configured at 

the creation of the cluster. This will guarantee the accessibility of files to all 

tasks/containers regardless of which task created the file. Also, files are persisted even 

with task failures.  

Figure 3-7   File storage built using Docker volumes and NFS. 
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Applications deployed in the AppDock platform need to be created using a plugin. 
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the service is created. It contains a sequence of commands native to Docker 

terminology. The appdockservice.config file contains the Docker service template in 

JSON format [35]. Other files in the .zip archive are specific to the service technology.  

Ideally, applications that are deployed in the AppDock platform should be stateless 

because when Docker services are scaled, Docker Swarm built-in routing mechanism 

does not guarantee related requests are routed to the same task instance. Hence, plugins 

targeting particular technology should also be stateless.  

When a new service is created, the selected plugin content is downloaded and extracted 

to the working directory. Plugin content just downloaded will have minimum required 

files to create a service in the AppDock platform. The first deployment by using the 

“appdock deploy” command will create a Docker Service in the underlying Docker 

Swarm cluster. Afterward, the developer could make incremental changes to the 

source code and push the application to the AppDock platform. 

3.3.2 Command Line Interface 

The command-line utility is provided for developers to interact with the platform for 

Continuous Deployment (CD) of the applications. It provides commands required to 

administer and develop applications with the platform. CLI is expected to be installed 

in developer workstations to push the application to the AppDock cluster as each 

developer does the incremental developments.  

Node.js library Commander is used to re-use basic CLI functions. Each command is 

defined within a command class in which the command template and the action are 

defined. Each command class is injected with the required manager class, along with 

its dependencies (refer to APPENDIX B – Commands in AppDock CLI for supported 

commands).  

3.3.2.1 Managers 

Each command is injected with manager classes that are required for carrying out 

underlying operations. Manager classes communicate with Docker API in cluster 

nodes and API endpoints of the Cluster Admin core component. The responsibilities 

of each manager class are described below: 
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 ClusterManager – Operations related to managing clusters are carried out by this 

class. Currently, operations associated with cluster creation and calling related 

APIs for managing scaling service configuration via AppDock proxy interface are 

carried out by this manager class.  

 NodeManager – Adding/removing new nodes to the AppDock cluster, including 

deploying new nodes in public cloud environments, is carried out by this class. 

 ServiceManager – This class handles new service creation and deployment of 

services. Archiver class is injected into this class additionally to extract plugin 

content upon new service creation and archive service artifacts to be sent to 

deployment. 

3.3.2.2 Archiver 

Archiver is a class integrated into the CLI core component to perform compression 

and decompression of files and folders. Service plugins are in the form of .zip archives. 

Extracting plugin content upon service creation is done via Archiver. This is used by 

service deployment command to send application artifacts to Cluster Admin to be 

deployed as a Docker service.  

3.3.2.3 Local Storage 

Local storage is a helper class that provides read and write access to the data stored in 

file “settings.json”. This file stores data required by CLI, such as Cluster Admin URL, 

NFS information, and possible data required by CLI in future enhancements. This file 

is located in the path where CLI-installed artifacts reside. Initially, settings.json file is 

created in the local node that was used to create the AppDock cluster. Upon successful 

creation of the AppDock cluster, the file content is stored in the LogDB. Subsequent 

installations of CLI application in other developers’ computers will download the 

“settings.json” file to their computers in the path where the CLI application is installed. 

Figure 3-8 shows the properties used by the CLI component. ClusterAdminURL 

contains the location Cluster Admin component can be accessed. NFSConfig.Addr and 
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NFSConfig.Device contains the address of the NFS contains and remote path of the 

shared directory, respectively.  

 

{ 
    "ClusterAdminURL": "<Cluster Admin Server URL>", 
    "NFSConfig": { 
        "Addr": "<NFS Server Address>", 
        "Device": "<NFS Path>" 
    } 

} 

 

Figure 3-8   Properties maintained by local storage. 

3.3.3 AppDock Scaling Service 

Scaling Service provides automated resource expansion capability to the application. 

This runs periodically in the manager nodes and calculates average CPU and Memory 

utilization of all containers of the selected node. For this, it relies on the Monitoring 

Agent residing in each node. Each replica selects a node to analyze and prevent other 

replicas from selecting the same node by marking INodeStatAnalysisStatus.Status (see 

Figure 3-9) property as “STARTED” in LogDB during the analysis period. Based on 

the calculated average values, resource allocation, or removal decision is made. To 

ensure system stability, we set a minimum time gap between two consecutive resource 

allocation or deallocation decisions. This time gap is decided based on the time needed 

to stabilize the services in the new nodes added to the cluster, and it is proportional to 

the number of services deployed in the cluster. 

3.3.3.1 Stat Analyzer 

Stat Analyzer summarizes the runtime statistics (see Figure 3-12) reported by the 

Monitoring Agent. It calculates the average resource utilization values to denote the 

current state of a particular node. Stat Analyzer selects a node, where resource 

utilization analysis has been not started, completed, or staled due to runtime errors 

during the analysis. Selection is made by creating or updating an 

INodeStatAnalysisStatus object in LogDB with Status value as “STARTED” and 

priority is given to the node with the oldest analysis result. A new node is selected in 
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each execution of the Scaling Service. Stat Analyzer output and store average CPU 

and Memory utilization of the node and every service of which tasks are running within 

the node in the INodeStatAnalysisStatus object in the LogDB.  

 
INodeStatAnalysisStatus = { 
   Status:number; 
   Node: INode; 
   LastAnalysisResult:{ 
      AvgCPUUtilization: number; 
      AvgMemoryUtilization: number; 
      DateTime:string, 
      Services:Array<{ 
         ServiceID:string; 
         AvgCPUUtilization: number; 
         AvgMemoryUtilization: number; 
      }> 

   } 

 
 

Figure 3-9   Properties of INodeStatAnalysisStatus object 

 

3.3.3.2 Cloud Resource 

 “CloudResource” class depends on Cluster Admin core component and Scaling 

Service configurations stored in LogDB. As shown in Figure 3-10, Scaling service 

configuration (IScalingServiceConfig) contains maximum and minimum threshold 

values for CPU and memory utilization. Upon completion of the node stat analysis by 

the Stat Analyzer mentioned above, the algorithm in Figure 3-11 is used to make new 

node deployment and removal decisions by comparing a nodes resource utilization 

with the configured CPU and memory utilization threshold.  

 
IScalingServiceConfig = { 
   MaxCPUUtilization:number; 
   MinCPUUtilization: INode;  
   MaxMemoryUtilization:number;  
   MinCPUUtilization:number;  
   NodeUpMinimumDuration:number;  
   LastScaledAt:datetime;  
   ScaleStatus:STARTED|COMPLETED|ERROR; 

   ResourceScalingTimeGap:timespan 
   } 

 

Figure 3-10 Properties of IScalingServiceConfig object 
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According to the CanScaleResources procedure, if the cluster is in a state where 

resource scaling is possible, scaling status is marked as “STARTED” in the LogDB 

before starting any scaling procedures. “AddNewNode” procedure spawns a new node 

in a randomly selected cloud environment and joins the node with the AppDock cluster 

using the node’s private IP address. “RemoveNode” procedure removes the current 

node that owns the INodeStatAnalysisStatus.LastAnalysisResult object both from the 

cloud environment and the AppDock cluster. ScaleAllServices procedure increases or 

decreases the replicas by the replicas per node number set in the service creation phase 

for all the services other than services that belong to core components. 

CanScaleResource procedure guarantees no overlapping scaling procedures are 

performed by multiple instances of the Scaling Service component by maintaining a 

global scaling status. Also, it will wait for 

IScalingServiceConfig.ResourceScalingTimeGap before attempting to balance the 

cluster after a previous addition or removal of nodes. 

Algorithm 3.1: Scale Resources 

procedure Scale; 

if LastAnalysisResult.AvgCPUUtilization 

>ScalingServiceCon_g.MaxCPUUtilization OR 

LastAnalysisResult.AvgMemoryUtilization 

>ScalingServiceCon_g.MaxMemoryUtilization then 

if CanScaleResources() then 

UpdateScalingStatus(STARTED); 

AddNewNode(); 

ScaleAllServices(); 

UpdateScalingStatus(COMPLETED); 

else if LastAnalysisResult.AvgCPUUtilization 

<ScalingServiceCon_g.MinCPUUtilization AND 

LastAnalysisResult.AvgMemoryUtilization 

<ScalingServiceCon_g.MinMemoryUtilization AND (NodeStartedTime+ 

ScalingServiceCon_g.MinNodeUpTime) <CurrentTime then 

if CanScaleResources() then 

UpdateScalingStatus(STARTED); 

RemoveNode(); 

ScallAllServices(); 

UpdateScalingStatus(COMPLETED); 

 

procedure CanScaleResources; 

return ScalingStatus != STARTED AND CurrentTime >= 

LastAnalysisTime + ResourceScalingTimeGap; 

Figure 3-11   Algorithm for adding and removing nodes. 
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When multiple public cloud environments are connected, new nodes are deployed on 

randomly selected public cloud environments. All the nodes deployed via Scaling 

Service in the public cloud environments are assigned with label “CloudNode”. Only 

nodes with label “CloudNode” are removed by the Scaling Service when they are not 

utilized up to the minimum limits to avoid removing permanent nodes, especially in 

the primary cloud infrastructure.  

The number of replicas in each service is increased by the replicas per node when a 

new node is deployed. When a node is removed, replicas per node number will be 

reduced from the total number of replicas of each service. All the services are deployed 

in a balanced strategy where each node will get an equal number of replicas of each 

service.  

Minimum and maximum CPU and memory threshold values are decided based on the 

type of application and typical workload on-peak and off-peak times. These thresholds 

are shared across the cluster and can be decided by simulating the expected load and 

monitoring the CPU and memory utilization values of the INodeStatAnalysisStatus 

(Figure 3-9) reported in the LogDB by the Stat Analyzer. Initial CPU utilization and 

memory utilization values at which the static set of primary cloud resources are fully 

utilized can be set an arbitrary value like 90% each and keep optimizing thresholds 

according to the workload and primary cloud infrastructure resources available. If 

there are plenty of primary cloud resources available or a single node should not reach 

maximum utilization of resources, lower values can be set. 

 

3.3.4 AppDock Monitoring Agent 

 This is a Docker service deployed in a “global” mode where a single task is running 

in every node. When new nodes are deployed, a task of this stared in each new node. 

It periodically retrieves runtime stats via the Docker API of the local node. The Docker 

engine does not provide a valid place holder for the IP address of the node at the service 

creation time. Therefore, before reporting runtime stats to the LogDB, the IP address 

of the local node is searched through all the nodes by the hostname of the local node. 
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This is achieved by listing to all the nodes in the cluster by sending a request to one of 

the manager nodes and matching the hostname of the local node supplied via an 

environment variable. Runtime statistics (see Figure 3-12) are retained in the LogDB 

only for a certain period that will represent the most current state of the node in terms 

of resource utilization. Older stat records are overridden by the subsequent execution 

cycles. As shown in Figure 3-12, runtime stat record contains CPU and memory 

utilization of each container running in the node identified by the “NodeAddr” field at 

a point of time represented by “DateTime” field. Reference to the service to which 

each container belongs is maintained in the “ServiceID” field in each array object.  

 

{ 
   NodeAddr:string; 
   DateTime:string; 
   Metrix: Array<{ 
      ContainerID:string; 
      ServiceID:string; 
      CPUUtilization:number; 
      MemoryUtilization:number; 
   }>; 

} 

 

Figure 3-12   Properties of IRuntimeStat object  

 

3.3.4.1 Runtime Stat Meter 

Runtime Stat Meter handles Reading and writing resource utilization runtime stats to 

LogDB, removing older stats, and calculating CPU memory utilization. To read the 

runtime stats for the node, all the tasks running in the node are retrieved via Docker 

API. Then runtime statistics for each task are retrieved by the container ID. CPU and 

memory utilization is calculated using the algorithms listed in Figure 3-13 and Figure 

3-14 respectively. These algorithms are recommended by Docker to calculate the CPU 

and memory utilization of a single Docker container. Because Docker API does not 

provide actual utilization values for the entire node, Runtime Stat Meter uses derived 

values by calculating the averages of the resource utilization for all the containers 

running in the node. This will closely resemble the actual resource utilization of the 

node returned by the operating system. 
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Algorithm 3.2: CPU Utilization at a Given Time 

procedure GetCPUUtilization(containerStats); 

if CurrentContainerCPUUsage == 0 then 

return 0; 

CPUUtilization = NumofCPUs * 100 * (CurrentContainerCPUUsage - 

PreviousContainerCPUUsage)/(CurrentSystemCPUUsage - 

PreviousSystemCPUUsage); 

return CPUUtilization; 

 
 

Figure 3-13   Calculation for CPU utilization. 

 

Algorithm 3.3: Memory Utilization at a Given Time 

procedure GetMemoryUtilization(containerStats); 

if CurrentMemoryUsage == 0 then 

return 0; 

MemoryUtilization = 100 * (CurrentMemoryUsage - 

MemoryCache)/SystemMemoryLimit; 

return MemoryUtilization; 

 

 

Figure 3-14   Calculation for memory utilization. 

 

3.3.5 AppDock LogDB 

LogDB is the main data storage for the AppDock platform. Core components such as 

Cluster Admin, Scaling Service, and Monitoring Agent directly communicate with the 

data storage. CLI core component communicates with this data storage via the 

AppDock HTTP proxy interface. All the data schema objects currently used in 

AppDock platform are AWSConfiguration, AzureConfiguration, CloudResource, 

CloudResourceBatch, Node, NodeStatAnalysisStatus, NodeStatsLog, 

PluginDefinition, RuntimeStat, ScalingServiceConfig and ServiceDefinition.  

3.3.5.1 LogDB Implementation 

This is a MongoDB service deployed like any other core component. Even though this 

has been deployed as a Docker service, the presented implementation is limited to one 

task. This is due to a limitation in MongoDB Docker images where many DB engines 

cannot share single persistent storage. Objects in non-relational schema have been 
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modeled via Mongoose Object Document Mapper (ODM). Mongoose provides a 

schema-based solution to application data for MongoDB and Node.js applications.  

Repository classes following the repository design pattern provide an abstraction layer 

over Mongoose implementation for MongoDB to the application. By following the 

repository pattern, we could avoid writing repetitive CRUD operations for each 

schema object while developing the application since the repository pattern provide 

those in RepositoryBase class from which all other repositories are inherited. Classes 

of which name prefixed as X and interfaces with IX, as shown in Figure 3-15 represent 

all the classes and interfaces required by each schema object. Further, Classes and 

Interfaces in Figure 3-15 is described below.  

 

 

Figure 3-15   Class diagram for the repository. 
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 MongooseBaseSchema – Share the common logic for all the schema objects 

that inherit from this class. Common logic includes initializing the model to 

be used in the corresponding repository for that schema object and initializing 

a trigger that populates auto-increment field ID and CreatedAt with current 

date and time.  

 CounterSchema – This class represents the schema object that maintains the 

counters for all other schema objects. The counter is incremented and used 

when adding a new object to a particular collection to populate the ID field 

of that object.  

 XSchema – The constructor of each schema class contains the model 

definition of the schema object also the name of the schema object to be 

created in MongoDB. This is inherited from MongooseBaseSchema generic 

class. 

 RepositoryBase – The generic parent class for all the repositories where 

database operations are defined. When an object of a child class, i.e., 

XRepository is instantiated, the connection to the database is made. This is a 

Mongoose specific implementation. 

 XRepository – In the repository pattern, all the schema objects in the database 

have a corresponding Repository class where all the database operations 

required are defined. This class is inherited from the generic class 

RepositoryBase of which type (XModel) has been defined in each 

XRepository implementation.  

 IXRepository – Interface that defines required methods specific to the schema 

object. 

 IRepositoryBase – Interface that defines standard methods required by 

repositories. 

 IXType – Interface for the entity that represents the required properties of the 

schema object. 

 IBaseType – Parent entity interface that defines common properties of all 

schema objects. 
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 IXModel – Entity type that aggregates properties in schema objects and 

Document class in Mongoose.  

 

3.3.6 AppDock HTTP Proxy Interface 

AppDock HTTP acts as a proxy interface for the Cluster Admin core component. This 

has been referenced by other core components that require sending requests to the 

Cluster Admin core component. Possible requests can be made to the Cluster Admin 

core component via the proxy interface, which has been listed in Table A-1. 

 

3.3.7 Docker HTTP Proxy Interface 

Docker HTTP is a proxy interface for Docker HTTP API in each node. Core 

components that use the Docker API, reference the Docker HTTP Proxy Interface as 

a local NPM package. Table A-2 lists possible requests to Docker HTTP API via the 

Docker HTTP proxy interface. 

 

3.4 Cluster Deployment 

The AppDock node cluster consists of two types of nodes Worker Nodes and Manager 

Nodes. Worker Nodes and Manager Nodes ultimately required by the underlying 

Docker Swarm cluster. It is recommended to have at least 3 manager nodes where one 

node failure can be tolerated since always there should be more than half of the 

manager nodes running to run the Docker Swarm cluster. Even with 4 manager nodes, 

only 1 manager node failure is tolerated. CreateClusterCommand (see the command 

reference at APPENDIX B – Commands in AppDock CLI) is issued along with the 

cluster configurations explained below.  

Figure 3-16 shows the minimum required configurations when creating the cluster. 

Nodes array specifies the list of permanent nodes participating AppDock cluster. 

While nodes are distinctly identified by “NodeAddr”, “AdvertiseAddr” should be 

specified too for Swam API access. Manager nodes are denoted by NodeType property 

with value “m” while worker nodes are denoted by value “w”. Docker daemon in every 

node should be configured to listen on TCP port 2375 and IP address specified in 
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“NodeAddr” to accept requests from remote hosts [36]. “ClusterAdmin” and “LogDB” 

objects contain configurations required by respective core components.  

Network File System (NFS) allows users and programs to access files stored in a 

remote system over a network [37]. Configurations required in “NFS” are used to 

mount Docker Volumes in each service with a remote NFS path. This will allow each 

service to store its files in a central location accessible by each task of that service. 

Known hosts are mentioned in the “Hosts” section of the configuration. This will help 

the core components of AppDock to reach nodes by its name. Hostnames are only for 

the private nodes as hostnames of the nodes in public cloud environments are not 

known in advance. Specified DNS servers in the “DNSServers” section are used to 

resolve hostnames of the nodes in public cloud environments.  

 

 
{ 
   Nodes: Array<{ 
      NodeAddr:string; 
      AdvertiseAddr:string; 
      NodeType:string; 
   }>; 
   CusterAdmin:{ 

      Port:number; 

   }; 
   LogDB:{ 

      Port:number; 

   }; 

   NFS: :{ 

      Addr:string; 

      Device:string; 

   }; 

   DNSServers: Array<string>; 
   Hosts: Array<string string>; 

} 
 

Figure 3-16   Configurations required when deploying an AppDock cluster 

 

3.5 Summary 

We came up with a solution that integrates multiple IaaS environments with network 

layer connectivity to address dynamic infrastructure resource allocation and remove 

dependency towards cloud vendor-specific Software Development Kit (SDK)s or any 

third-party libraries when applications are deployed in multi-cloud setup. The solution 
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is a container-based platform for application orchestration named “AppDock”. The 

application orchestration platform can be deployed in any cloud infrastructure. 

Afterward, multiple IaaS providers can be integrated to expand the cluster nodes across 

those IaaS platforms when dynamic infrastructure resource allocation is enabled. All 

the IaaS cloud environments need to be connected via network layer connectivity.  

The AppDock platform is well modularized and comprised of a collection of 

microservices deployed on a Docker Swarm cluster and a CLI tool. Those are 

identified as core components. Docker services include Node.js Docker services such 

as Cluster Admin, Scaling Service, and Monitoring Agent and LogDB a MongoDB 

service. Additionally, to the aforementioned core components, we developed three 

software libraries to be reused by those core components. Those are LogDB 

Repository, AppDock HTTP proxy interface, and Docker HTTP interface. We 

developed the AppDock application orchestration platform using Docker, Node.js, and 

MongoDB as main technologies. Typescript was selected over pure JavaScript because 

we get the type support which will be beneficial to the maintainability of the code base 

when the AppDock platform evolves. The AppDock platform can be deployed in a 

few nodes, i.e., a fixed set of infrastructure resources identified as the primary 

infrastructure using the CreateClusterCommand (see Appendix B). Multiple public 

IaaS platforms connected with the primary cloud infrastructure via network layer 

connectivity can then be integrated with the AppDock platform via the Cluster Admin 

web interface.  
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4 PERFORMANCE EVALUATION 

 

Extensive evaluation of performance was done to demonstrate the practical 

applicability of the AppDock platform to host applications categorized as CPU 

intensive, memory-intensive, and RESTful APIs integrated into external cloud 

services. Each test scenario was delivered with distinctive workloads matching the 

compute capacity of private nodes enough to keep the private resources busy. 

Section 4.1 describes the test scenarios from which the AppDock platform will be 

tested. The test environment and performance metrics are described in Section 4.2. 

Section 4.3, 4.4, and 4.5 present detailed performance evaluations for CPU intensive 

application, memory-intensive application, and Danveem RESTful API, respectively. 

The performance evaluation summary is presented in Section 4.6. 

 

4.1 Workload 

Automated resource expansion and contraction, the primary feature of the AppDock 

platform has to be evaluated under the workload only the private cloud nodes alone 

cannot handle efficiently.  We designed the following three test cases to stress all the 

private cloud resources: 

 CPU intensive workload – is a Node.js web application exposing single 

HTTP/GET endpoint, which triggers a CPU intensive logic. CPU intensive 

application consists of a single GET endpoint, which triggers a CPU intensive 

mathematical function that calculates the tangent and the arctangent in radians 

iteratively 87 times [38]. Even though this function not practically useful to 

an end-user, it is capable of keeping the CPU busy from a single request. 20 

users (threads) were simulated using JMeter for this application. Refer Table 

4-1 for the testing parameters. 
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Table 4-1   Testing parameters for the CPU-intensive workload. 

Parameter  

Maximum CPU utilization threshold  90% 

Maximum memory utilization threshold 20% 

Minimum CPU utilization threshold 15% 

Minimum memory utilization threshold 15% 

Minimum node uptime 15 minutes 

Replicas per node 2 

Number of private nodes 2 

Number of threads (users) 20 

Ramp-up time 10 minutes 

Test duration 40 minutes 

Think time 0 seconds 

Arrival rate 0.03 users per second 

 

 Memory-intensive workload – is a Node.js web application exposing single 

HTTP/GET endpoint, which triggers a memory-intensive logic. Refer to 

Table 4-2 for the test parameters. Memory intensive application is a Node.JS 

web application that exposes a single GET endpoint from which memory 

intensive function is triggered. This function does not do anything useful but 

declares a Float64Array with 220 elements. This will consume a considerable 

amount of memory in the container from a single request. However, Docker 

will stop any containers to consume memory to the detriment of the node [39]. 

Since this is possible with real applications too, 150 users were simulated with 

low compute capacity. i.e., three primary cloud nodes. This caused some 

containers to be failed by throwing this error.  

Table 4-2   Testing parameters for the memory-intensive workload. 

Parameter Value 

Maximum CPU utilization threshold  40% 

Maximum memory utilization threshold 50% 

Minimum CPU utilization threshold 5% 

Minimum memory utilization threshold 15% 

Minimum node uptime 15 minutes 

Replicas per node 2 

Number of private nodes 3 

Number of threads (users) 150 

Ramp-up time 10 minutes 

Test duration 40 minutes 

Think time 0 seconds 

Arrival rate 0.25 users per second 
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 RESTful API workload – is a Node.js web application integrated with AWS 

DynamoDB as the backend exposing 6 HTTP/GET and POST endpoints. 

Refer Table 4-3 for test parameters. “Danveem” is a RESTful web service 

developed using Node.js and integrated with Amazon DynamoDB, which is 

a key-value store and a document database. This application was designed to 

be deployed in AWS Elastic Beanstalk. However, later application was 

adopted to be containerized by making the required modifications. JMeter test 

was created simulating 1200 users to request endpoints of the Danveem API 

mentioned below. 

 Create Board (POST Request) 

 Create Notice (POST Request) 

 Create User Invitation (POST Request) 

 Get Invitations for an Email (GET Request) 

 Get Notices for a Board (GET Request) 

 Get User (GET Request) 

Table 4-3   Testing parameters for the RESTful API application. 

Parameter Value 

Maximum CPU utilization threshold  95% 

Maximum memory utilization threshold 30% 

Minimum CPU utilization threshold 5% 

Minimum memory utilization threshold 15% 

Minimum node uptime 15 minutes 

Replicas per node 2 

Number of private nodes 1 

Number of threads (users) 1200 

Ramp-up time 10 minutes 

Test duration 40 minutes 

Think time 0 seconds 

Arrival rate 2 users per second 

  

Maximum CPU and memory thresholds indicate the upper limit of the respective 

resource utilization values to which private nodes can handle the load. Once this limit 

is reached, new nodes need to be created in connected public clouds. When the 

minimum CPU and memory threshold is reached, nodes in public cloud environments 

could be released once the minimum node uptime is exceeded. The minimum node up 

time setting allows any public nodes to retain in the cluster even though resource 
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utilization values of that node are below the minimum threshold values. By holding on 

to such resources until the minimum node up time is reached, we can prevent the 

system from becoming unstable due to the rapid reconfiguration of the system. Further, 

this does not introduce additional costs as cloud resources are already paid for some 

minimum usage. Replicas per node indicate the number of tasks (containers) a service 

can run in a single node.  

Maximum and minimum threshold values were decided by observing resource 

utilization behavior during the test run in private cloud mode, where automated 

resource expansion is disabled. We kept every cloud node running a minimum of 15 

minutes regardless of reaching the minimum resource utilization threshold values 

giving enough time to spawning services within them. Duration for all the tests was 40 

minutes, including the ramp-up period of 10 minutes. Think time was set to 0 in each 

test case to measure the maximum throughput. The arrival rate is calculated by 

dividing the number of users by the ramp-up period in seconds. Replicas per node and 

the Number of private nodes were decided based on the minimum resource 

requirements for the type of workload running without any task failures.  

 

4.2 Experimental Setup 

Workloads in the test cases mentioned above were deployed in both private cloud 

mode and multi-cloud mode. Workload traces were played using Apache JMeter [32]. 

As shown in Figure 4-1, Subnet 1 in the AWS VPC acted as the private cloud. Nodes 

in the Subnet 1 were connected with Subnet 2, which acts as the public cloud via inter-

subnet connectivity in AWS VPC. The node running the JMeter workload had a client 

VPN connection to the private cloud through which Subnet 2 can also be reached. 

CPU intensive workload and memory-intensive workloads are not integrated with any 

backend. User requests are also independent. RESTful API workload is a Node.js 

application which consists of GET and POST endpoints integrated with an AWS 

DynamoDB backend. Our objective with these experiments is to demonstrate the 

effectiveness of infrastructure resource elasticity and scaling applications in the multi-

cloud setting by evaluating the performance of the three workloads deployed in private 
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cloud mode with a static set of infrastructure resources and multi-cloud mode with 

infrastructure resource elasticity.  

In the setup, three types of workloads (Memory intensive, CPU intensive and RESTful 

API) were deployed in the private cloud mode one at a time with a pre-defined number 

of private nodes as listed in Table 4-1 and Table 4-3. Then response time and 

throughput were measured. Again, we enabled the multi-cloud mode adding AWS 

public cloud where new nodes were spawned and measured the same. In the multi-

cloud mode, the application spawned new nodes in the AWS cloud, and it was steady 

until the JMeter load was completed. Then they were removed automatically when the 

load was removed.  

 

Figure 4-1   Deployment diagram for the experimental setup. 

 

All the nodes in the AppDock cluster (private nodes and public nodes) were AWS EC2 

t3a.small Ubuntu instances with AMD EPYC 7000 series processors with an all-core 

turbo clock speed of 2.5 GHz (2vCPUs), 2 GB of RAM, and 20GB of SSD persistence 

storage. JMeter was deployed on a laptop with Intel Core i7-8750H CPU @ 2.20GHz 

(12 CPUs), 16GB memory, 512 GB SSD storage. JMeter workload generator was 

Client VPN  

Private Cloud (AWS) 

Public Cloud (AWS) 

Subnet 1 

172.31.16.0/20 

JMeter Workload  

AWS Inter-Subnet 

Connectivity 

Subnet 2 
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connected through a VPN connection, upload and download bandwidth were set to 

50Mbps and 100Mbps, respectively. 

For each of the test cases, response time and throughput data were calculated for both 

private cloud and multi-cloud modes. We configured JMeter to log each request for a 

particular endpoint to a CSV file, and we recalculated JMeter metrics for every 10-

seconds.  

 

4.3 Performance Evaluation of CPU Intensive Workload 

Initially, we tested the performance under the CPU intensive workload, and the 

targeted system consisted of only in the private cloud. Next, we ran the same test in a 

multi-cloud mode connecting both private and public cloud nodes. In the multi-cloud 

mode, after completing the 40-minutes of testing, including the ramp-up period, we 

stopped the workload and let the system remain idle to release accumulated public 

cloud resources.  

4.3.1 Throughput Analysis 

Figure 4-2 shows the throughput of the CPU intensive application with time. It can be 

seen that the multi-cloud mode results in higher throughput compared to the only 

having the private cloud nodes. While private cloud nodes saturate during the 

workload ramp-up, the multi-cloud mode can increase the throughput until the steady-

state is reached. Then the multi-cloud mode retains the throughput, which is 180% 

higher than the private cloud mode. This is because the private cloud mode does not 

have sufficient resources to meet the workload demand; hence, require to acquire 

resources from the public cloud to meet the workload. This confirms that the AppDock 

platform can dynamically provision resources from the public cloud nodes to meet the 

workload demand effectively. 
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Figure 4-2   Throughput comparison – CPU intensive application. 

 

4.3.2 Response Time Analysis 

Figure 4-3 shows the average response time for CPU intensive workload when 

deployed on both the private cloud and multi-cloud modes. When the workload is 

deployed in the multi-cloud mode, a clear improvement in the response time (36%) is 

visible. It can be seen that AppDock can maintain steady response time by acquiring 

resources from the public cloud as the workload increases. Whereas in the private 

cloud mode, response time becomes stable with a higher value (1400ms) under the full 

workload after the ramp-up period. 

 

Figure 4-3   Response time comparison - CPU intensive application. 
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4.3.3 Resource Utilization Analysis 

Because the AWS EC2 t3a.small instances consist of 2 vCPUs CPU utilization could 

reach up to 200%. That can be seen in Figure 4-4, which shows CPU utilization of 

each VCPU (Virtual CPU) in the private cloud node. In Figure 4-5 we can see that that 

the CPU utilization is reduced in each node as extra public nodes deployed in the multi-

cloud mode. In this case, the node 172.31.88.28 is the manager node that does not 

contribute to the application compute capacity. Also, in Figure 4-5 deployments of 

new nodes have caused new series to begin in the middle of the time axis. The CPU 

utilization of both the nodes became stable after the ramp-up period, which is the first 

600 seconds. 

 

Figure 4-4   CPU utilization under CPU intensive workload – private cloud mode. 

 

 

Figure 4-5   CPU utilization under CPU intensive workload – multi-cloud mode. 
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By observing Figure 4-6 and Figure 4-7 it can be seen that there is no noticeable 

difference in memory utilization in the nodes for this application in two deployment 

modes because it consumes less memory compared to CPU.  

 

 

Figure 4-6   Memory utilization under CPU intensive workload – private cloud mode. 

 

 

Figure 4-7    Memory utilization under CPU intensive workload – multi-cloud mode. 

 

4.4 Performance Evaluation of Memory Intensive Workload  

The automated resource expansion feature of the AppDock platform was effective in 

this scenario as it spawned new nodes in the public cloud environment by keeping 

memory utilization bellow the maximum threshold value. However, in the initial 
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stages of the test, we experienced task failures, which have been explained under the 

memory-intensive workload in Section 4.1. The impact of this has been reflected in 

the following sections. 

 

4.4.1 Throughput Analysis 

In Figure 4-8, throughputs in private cloud mode have been affected by task failures. 

After each drop recorded in the private cloud mode, there is a slight improvement in 

the throughput since a new task is stared with enough memory. Even though the 

workload became steady after the ramp-up period (i.e., 600s), to overcome the task 

failures and cluster to become stable without further failures by spawning nodes giving 

enough memory, it has taken up to the 1400s to reach a steady throughput. When 

comparing overall performance throughput has been better in multi-cloud mode. 

Overall throughput gain is 73% when compared to the private cloud mode. 

 

Figure 4-8   Throughput comparison – memory-intensive workload. 
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4.4.2 Response Time Analysis 

We experienced staled requests due to random task failures and accumulated memory 

with tasks. Consequently, the response time for some of the requests was much longer. 

In Figure 4-9 we can observe this behavior during the first 1400s in the test. However, 

conditions have been improved after the first 1400s where we see a steady but higher 

response time. This is a result of the dynamic infrastructure expansion to the connected 

public cloud providing sufficient memory to run the workload. Afterward, there are no 

task failures recorded due to overutilization of memory. Response time has been higher 

in multi-cloud mode due to accumulated memory in tasks that are always running. In 

contrast, in the private cloud mode, new tasks due to task failures have delivered lower 

response times for a smaller number of successful requests, which can be seen in lower 

throughput in the throughput analysis. Overall response time drop is 232% compared 

to the private cloud mode with lower throughput. 

 

Figure 4-9   Response time comparison - memory intensive workload. 

 

4.4.3 Resource Utilization Analysis 

Figure 4-10 and Figure 4-11 show the memory utilization of nodes when the memory-

intensive workload is applied to private cloud mode and public cloud mode, 
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respectively. Node 172.31.87.50 and 172.31.86.222 had been the manager nodes in the 

two deployment modes. In the multi-cloud mode (Figure 4-11), rapid fluctuations of 

memory utilization values in the first half of the test duration was caused by the 

aforementioned task failures. It can be seen that with the new deployment of nodes in 

the public cloud, memory utilization value has become stable and memory utilization 

values are maintained below 50%, which is the maximum memory utilization limit.  

 

Figure 4-10   Memory utilization under memory-intensive workload – private cloud mode. 

 

 
Figure 4-11   Memory utilization under memory-intensive workload – multi-cloud mode. 

 

Figure 4-12 and Figure 4-13 show the CPU utilization of each node when this 

application is deployed in private cloud mode and multi-cloud mode, respectively. 

Exceeding maximum CPU utilization threshold (40%) in multi-cloud mode may or 
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may not had been caused new nodes to be deployed because those recordings may 

have occurred during a no-scaling period of 2 minutes after each new node deployment 

to stabilize the load distribution.  

 

Figure 4-12   CPU utilization under memory-intensive workload – private cloud mode. 

 

 

Figure 4-13   CPU utilization under memory-intensive workload – multi-cloud mode. 

 

4.5 Performance Evaluation of RESTful API Workload 

Private cloud mode deployment of this application was done using a single worker 

node. Before deciding on the test parameters of this test, we tested the same application 

with a higher number of nodes and a smaller number of users. We were able to observe 
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that there is no visible improvement in multi-cloud mode with automated resource 

expansion is enabled because private nodes alone had been able to handle the node 

without any performance loss. Therefore, we increased the threads up to 1200 with a 

single private cloud worker node to get visible improvement in the multi-cloud mode. 

Throughput and response time were calculated on the aggregated test results of the six 

requests even though we collected performance test results for the individual request.  

 

4.5.1 Throughput Analysis 

Figure 4-14 shows overall throughput comparison data of the Danveem API. Request 

data of all 6 endpoints were used to calculate the overall throughput. We could see that 

the overall throughput is improved by 46% in multi-cloud mode. Significant 

improvement in throughput can be gained by increasing the number of users (threads) 

further. Initial elevation of throughput was observed due to accumulated data 

introduced by API requests making the application delivering lower throughput for 

subsequent requests.  

 

Figure 4-14   Overall throughput comparison – REST API workload. 
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4.5.2 Response Time Analysis 

As we can see in Figure 4-15, the overall response time has been improved in multi-

cloud mode. Response time data for individual endpoints were aggregated to calculate 

the overall response time. The overall reduction in response time is 7%. 

 

Figure 4-15   Overall response time comparison - REST API workload. 

4.5.3 Resource Utilization Comparison 

The node named as 172.31.94.177 shows steady CPU utilization throughout the test in 

Figure 4-16 is the manager node. We can observe that 2 vCPUs have been almost fully 

utilized during the test. Hence, based on these stats maximum CPU threshold value 

was decided as 95%. 

 

Figure 4-16   CPU utilization under REST API workload - private cloud mode 
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As shown in Figure 4-17, 2 nodes were automatically deployed by the AppDock 

automated resource expansion functionality. Node with IP address 172.31.90.251 had 

been removed after 15 minutes as it did not contribute to the capacity to meet the 

minimum CPU or memory utilization threshold values. We can see that the two nodes 

172.31.84.209 and 172.31.82.250 have been able to maintain the CPU utilization value 

below the maximum CPU utilization threshold of 95%. The maximum memory 

utilization threshold value was decided as 30% to keep the memory utilization of all 

the nodes lower that amount by observing the statistics shown in Figure 4-18.  

 

Figure 4-17   CPU utilization under REST API workload- multi-cloud mode. 

 

 

Figure 4-18   Memory utilization under REST API workload – private cloud mode. 
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Figure 4-19 shows that any node has not exceeded the maximum memory utilization 

threshold value of 30%. This result shows that automated infrastructure resource 

expansion can keep the resource utilization of the nodes in the cluster within the 

minimum and maximum boundaries.  

 

Figure 4-19   Memory utilization under REST API workload – multi-cloud mode. 

 

4.6 Summary  

We evaluated the performance of the AppDock platform for the possible type of 

workloads that could be deployable in this platform. Those are CPU intensive 

workloads, Memory intensive workloads, and applications integrated with external 

services with balanced CPU and memory utilization. Almost all the applications that 

could be containerized can be categorized into any of these types gaining real cost 

benefits with performance. In the evaluation, we could see that the AppDock platform 

performed well, handling extreme CPU and memory workloads.  

This performance gain is further extended when the number of users is increased. This 

performance evaluation was able to prove that a multi-cloud approach with dynamic 

resource allocation can be used successfully with improved performance for any type 

of application. As we observed increased response time in the multi-cloud mode for 

the memory-intensive application, it is advisable to release the memory after the 

request has been served. We saw that restarting tasks due to out of memory failures 

lowered the response time. This phenomenon has caused releasing the memory and 

eventually led to lowering the response time in private cloud mode.  
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5 CONCLUSIONS 

 

5.1 Summary 

Contemporary multi-cloud solutions have drawbacks such as tight coupling with the 

applications, deployment complexities, or confined set of fixed infrastructure 

resources, making it challenging to serve time-variant demands. We proposed a 

container-based platform for multi-cloud application orchestration that can provision 

infrastructure resources automatically. This leads to a significantly reduced cost for 

time-variant resource demand due to resource efficiency. Combined with simplicity, 

the proposed solution best fit for multi-cloud applications over other multi-cloud 

software solutions and deployable PaaS solutions. Because the solution is based on 

containerization, applications do not have any dependency on the platform.  We based 

the proposed platform, namely “AppDock,” on Docker container orchestration 

platform so that any application deployable as a Docker service can be deployed within 

the proposed platform too. The proposed platform has been designed to simplify 

deployment and application migration in mind. AppDock platform can be deployed in 

any number of identical nodes that act as the primary cloud. The primary cloud can be 

established in any public or private cloud infrastructure. Nodes can be prepared for the 

deployment by using the initial script provided with the platform. Once deployed, 

multiple public cloud providers connected with the primary cloud via network layer 

connectivity can be integrated by providing the required configurations through the 

web interface of the Cluster Admin core component. Although the current system can 

only be integrated with AWS and Azure, other public cloud providers can also be 

integrated as future enhancements as the proposed architecture is extensible. 

Applications that are deployed in this platform are created as plugins. Even though the 

platform has only provided Node.js plugin, developing plugins for other technologies 

when those technologies are ready to be deployed in the Docker Swarm architecture is 

easily enabled by the plugin architecture of the AppDock platform. Because this is 

only a hosting platform, AppDock does not provide any SDKs for the applications. 

This will guarantee that applications will not tightly be coupled with the hosting 

platform. Hence, the AppDock platform avoids vendor lock-in syndrome. 
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All the core components of the AppDock platform are developed as Docker services. 

Apart from the Monitoring-Agent core component, all other services are runs only 

inside the manager nodes. Monitoring-Agent resides in all the nodes within the cluster 

and reports the runtime metrics to LogDB to be analyzed by the Scaling-Service core 

component. This platform is developed using Node.js. Since all the core components 

are running as Node.js containers deploying applications in other technologies is 

allowed natively by Docker. As all the core components provide their service through 

a REST API AppDock’s architecture reflects the SOA. This makes it easier to extend 

the platform. Even though only the core functionalities have been implemented within 

the scope of this research, applications with time-variant resource demand can still be 

benefited as all the minimum required utility tools are developed. CLI tool is used for 

deploying the AppDock platform within the primary cloud infrastructure and 

continuously push applications to AppDock. The Scaling-Service core component is 

mainly responsible for providing automated resource expansion features in this 

platform. In collaboration with the Monitoring-Agent core component by utilizing 

runtime metrics data, it analyzes CPU and memory utilization of each node in every 

configured interval. Resource expansion or removal decisions are made if calculated 

utilization values are not within the configured maximum and minimum threshold 

values. After each scaling decision made, 2 minutes of the no-scaling period is given 

to cluster balance the workload with newly spawned nodes or remaining nodes after 

the removal of idle nodes.  

We tested the effectiveness of AppDock by deploying it in different cloud providers 

such as AWS EC2 and UpCloud. In such cases, cloud environments were connected 

via site-to-site VPN connections. In addition to evaluating the effectiveness of 

deploying the platform in multiple deployment scenarios, we performed a 

comprehensive performance test covering three workload types, which include CPU 

intensive, memory-intensive, and web applications integrated with external services. 

Performance tests confirmed the performance improvement when the automated 

resource expansion is enabled. CPU intensive workload exhibited significant 

improvements in performance by improved throughput and response time. When it 

comes to the memory-intensive workload, even though it displayed improvement in 
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performance with throughput, average response time increased. We assumed that 

accumulated memory in multi-cloud mode had been the reason for this behavior since 

we noticed that multiple task failures had been occurred due to out of memory 

conditions in the nodes when deployed in the private cloud mode. This has led to 

improved response time for successful responses, while many requests had been failed. 

The RESTful API displayed expected performance improvement in both overall 

throughput and response time in multi-cloud mode. Throughput improvement in CPU 

intensive, memory-intensive, and REST API workloads were 180%,73%, and 46%, 

respectively. While CPU intensive and REST API workloads reported improved 

performance of response time as 36% and 7%, memory-intensive workload reported a 

performance loss in response time 232% due to task failures. 

 

5.2 Research Limitations 

Providing simple to deploy a hosted solution in a multi-cloud environment has its 

limitations while maintaining simplicity. When the solution is evolving with new 

features added, it is inevitable to introduce further configurations for deployment and 

maintenance. Since the application was intended to be considering simplicity as its top 

priorities possibilities of adding sophisticated features like in OpenShift [6] and Cloud 

Foundry [7] would be limited. 

Since the AppDock platform has heavily adopted the Docker echo system, only 

applications that can be containerized can be deployed in this platform since 

ultimately, these applications are deployed as Docker services within the cluster. Most 

of the persistence storage technology vendors such as MongoDB and MySQL have 

not designed their applications automated scaling in mind. Adopting their containers 

to be scaled in a Docker Swarm cluster is challenging. This will require significant 

deployment effort additionally to AppDock cluster management effort. Some of the 

widely adopted applications cannot be deployed on this platform. Thus, we have to 

look for alternative applications that are Docker Swarm friendly. 

Multi-Cloud approach under the IaaS model depends on the network layer 

connectivity, which is only achievable via VPN or costly direct connections like AWS 
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Direct Connect [40]. Both options have their drawbacks. The reliability of VPN 

connections cannot be guaranteed for critical applications. Even though we could 

maintain a secondary VPN connection to improve the reliability, network 

communication over VPN has a performance impact on the application. Indented cost-

effectiveness cannot be gained if multiple cloud providers are connected via direct 

network connections. Because of these reasons having to connect multiple cloud 

providers via VPN is a limitation in this approach. Placing the private cloud within the 

public cloud environment itself is a viable alternative solution for this problem as we 

have already tested successfully in this deployment mode doing our performance test. 

The threshold values used by the resource scaling logic is the same for all the services 

deployed within the platform. This means all the services deployed in the platform will 

have to be scaled as new nodes are added or removed from the node cluster. We have 

introduced replicas per node number parameter at the service level to gain granular 

control over services to be scaled by this number when new nodes are added or 

removed. Hence, maintaining common resource utilization threshold values for all the 

services has led to scaling all the services by its replicas per node parameter value 

when infrastructure resources are scaled when resource utilization of a particular node 

has mostly affected by a single service. 

We have not considered overhead when collecting resource utilization metrics from 

the nodes. Monitoring Agent running inside each node will communicate with the 

Docker engine in its machine periodically. Even though we do not think this is posing 

a major impact on the performance of containers running the applications, it is worth 

looking deeper into Docker's implementation of how these stats are reported.  

The AppDock platform is capable of hosting multiple services simultaneously. Our 

performance evaluation has not covered this. Since our categorization of workloads 

was mainly CPU intensive, memory-intensive, and REST web API integrated with a 

PaaS backend service, this does not cover a workload that is a mix of these and with 

multiple services.  

Performance results may vary based on the test parameters, especially threshold 

values, the number of primary cloud nodes, and the number of users. We decided these 
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values empirically based on the initial run in each test case in the private cloud mode. 

Currently, we do not have a systematic methodology or equation to build a relationship 

among these parameters. Further performance gains could be made with the right set 

of values for the parameters above. 

The selection of the public cloud provider when the infrastructure resource scaling 

decisions are made follows a random approach. We think it is more desirable to follow 

a priority-based approach based on the user-defined criteria. We suggest providing 

configurations to the user set the priorities by considering high availability 

requirements of individual service to run in a mix of cloud environments in case 

network connectivity drops between cloud providers. Preferred cloud environments 

could also be set based on the available regions of individual service for improved QoS 

(Quality of Service).  While integrated with multiple cloud environments, it is 

important to configure the workload distribution cost-effectively. These factors can be 

considered when calculating the priority of a cloud environment.  

 

5.3 Future Work 

Even though there may be many new features possible with this kind of platform, the 

following functional areas were identified as immediate future work: 

1. Enabling multiple instances for LogDB core component – Currently, the LogDB 

core component in this solution uses MongoDB as the persistence storage. Even 

though we initially planned running MongoDB multiple instances as a Docker 

Service for a single storage file located in the NFS folder, we were able to run a 

single container in standalone mode. This has hit the application with a single point 

of failure. We need to further work on extending MongoDB into multiple instances 

in Docker Swarm mode or changing the persistence storage technology to any 

other technology. LogDB Repository developed using a repository pattern to deal 

with this kind of LogDB technology changes. Upon selecting viable technology, a 

new implementation for the existing set of interfaces has to be added in addition to 

the Mongoose implementation for MongoDB.  
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2. Adding multiple manager nodes – With the current implementation, multiple 

manager nodes can be added when the platform deployment and when new nodes 

are added via CLI command “appdock addnode”. The current solution is not 

capable of adding new manager nodes with automated resource expansion. It is 

essential to come up with a logic to increase the number of manager nodes to 

maintain the quorum of managers [41]. 

3. Enabling user authentication for managing the AppDock cluster – Upon 

deployment of the AppDock cluster, anybody can access the cluster-admin module 

within the network on port 3000. This behavior is not desirable. We have identified 

that any user authentication mechanism should be incorporated into the user 

interaction points of the application. User interaction points are CLI that each 

developer is installing on their development environments and Cluster Admin web 

interface. CLI application is already using a local storage file to store user data.  

4. Incorporating monitoring and metering features – The current implementation of 

the AppDock platform lacks resource monitoring dashboards and usage metering 

features. Resource monitoring dashboards can be integrated with the existing 

Cluster Admin web interface. Resource utilization real-time data is already 

available in the LogDB. Usage metering will be a complicated task to accomplish 

where new core components might be needed, with proper usage listeners added 

into it.  

5. Threshold values for individual service – It will be more successful if individual 

service can have minimum/maximum resource utilization threshold values, as 

infrastructure resources can be allocated more effectively among services.  

6. Testing the AppDock with a mix of workloads – As our performance evaluation 

did not cover a mix of CPU intensive and memory-intensive workloads in a real-

world application with multiple services, it is worth evaluating the suitability of 

the AppDock platform for such real-world extreme workloads to prove the 

suitability of the platform for any workload.  

7. Dynamically threshold value estimation – Following ad hoc heuristics to determine 

threshold values does not guarantee the resource allocation meeting expected QoS 

and the SLA while efficiently using the cloud resources. A dynamic threshold 

value estimation method could be introduced by considering the above factors.   
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APPENDIX A – AVAILABLE METHODS IN PROXY 

INTERFACES 

Table A-1   Available methods in the AppDock HTTP proxy interface. 

Method Name HTTP 

Verb 

URL Description 

AddNewNodeToSwarm POST /api/swarm/node Adds a new node to the 

platform 

RemoveNodeFromSwarm DELETE /api/swarm/node Remove a node from the 

platform. 

CreateNewNode POST /api/cloud/node Creates a new node in the 

requested public cloud 

environment. 

RemoveCloudNode DELETE /api/cloud/node Remove the node from the 

public cloud environment. 

Deploy POST /api/deploy Deploys an application to 

the AppDock cluster. 

SaveNodes POST /api/nodes Persist list of nodes in the 

LogDB. 

CreateService POST /api/service Create a service definition 

and download the plugin 

content. 

UpdateAllServices POST /api/service/update Update all services to be 

scaled in newly added 

nodes. 

GetAllPlugins GET /api/plugin List all plugins. 

DownloadPluginContent GET /api/plugin/download Downloads the selected 

plugin content. 

SaveScalingServiceConfig POST /api/scalingservice/config Save scaling service 

configurations. 

GetScalingServiceConfig GET /api/scalingservice/config Get the scaling service 

configurations. 
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Table A-2   Available methods in the Docker HTTP proxy interface. 

Method Name HTTP 

Verb 

URL Description 

JoinSwarm POST /swarm/join Join the node with an existing 

swarm. 

GetTokens GET /swarm Gets join tokens of the Docker 

swarm. 

InitSwarm POST /swarm/init Initializes a new swarm. 

CreateSwarm POST /services/create Creates a new Docker service. 

GetContainerStat GET /containers/<container 

Id>/stats?stream=false 

Gets container runtime 

statistics. 

GetAllTasks GET /tasks Gets all the tasks running in the 

node. 

GetSystemInfo GET /info Gets system information of the 

node. 

LeaveSwarm POST /swarm/leave Leave a node form Docker 

swarm. 

BuildImage POST /build Build a Docker image in the 

selected node. 

InspectService GET /services/<service_name> Inspect a Docker service. 

UpdateService POST /services/<service_name>/upd

ate 

Update a Docker service with 

the given service template. 

DeleteService DELETE /services/<service_name> Remove a service. 

TagImage POST /images/<image_name>/tag Tags an existing Docker image. 

InspectAnImage GET /images/<image_name>/json Inspect an image that exists in 

the selected node. 

ListAllNodes GET /nodes List all the nodes of a Docker 

swarm. 
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APPENDIX B – COMMANDS IN APPDOCK CLI 

 CreateClusterCommand – appdock create -c ,--config <configFile> 

This command initializes the AppDock platform on the provided nodes via a 

configuration file. Cluster creation involves configuration file validation, 

initializing Docker Swarm cluster on the first manager node, initializing core 

services and persisting nodes in the LogDB.  

 AddNodeCommand – appdock addnode -c, --config <config file> | --aws -t 

<w|m> | --azure -t <w|m> | --addr <node address> [--advaddr <node 

advertise address>] -t <w|m> 

This command is used for adding nodes after the AppDock cluster has been 

initialized. A list of nodes can be added via --config option and a 

configuration file. New nodes in AWS and Azure cloud environments can be 

added via --aws and --azure options. A single node in the private cloud 

environment can be added via --addr option. In each option -t is passed to 

indicate whether the node is a worker (w) or a manager (n). 

 CreateServiceCommand – appdock crtsvc 

Initial service creation is done via this command. Series of 5 inputs will be 

taken from the user for service name, service description and plugin number 

to be used, replicas for a node and NFS folder name to be used as the file 

storage exclusively for the service. Afterward, files can be accessed on the 

path /mount/<folder name given> within the application. This will extract 

plugin content from the current working directory. Plugin content alone is 

sufficient to create an application of intended technology within the AppDock 

platform. The application is incrementally developed by the developer. 

 DeployCommand – appdock deploy 

Running this command in the directory containing application source code 

along with the extracted and modified plugin content suite to the application’s 

need will deploy the application as a service in the AppDock platform. 

Service will have the number of replicas in each node specified in the service 

creation phase.  
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 ScalingServiceConfigCommand – appdock ssconfig --maxcpu <max cpu> --

mincpu <min cpu> --maxmemory <max memory> --minmemory <min 

memory> --minuptime <minimum node up time> 

This command is used to alter threshold values used by the Scaling Service 

core component to deploy new nodes when nodes maximum limits and to 

remove nodes when they reach minimum limits. Setting --minuptime 

guarantee node is not removed even minimum resource utilization is not met 

until the specified time is passed.  

 


