

A CONTAINER-BASED PLATFORM FOR MULTI-

CLOUD APPLICATION ORCHESTRATION

A.M.A.S. Adikari

(179301K)

Degree of MSc in Computer Science specialising in Cloud Computing

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

May 2020

A CONTAINER-BASED PLATFORM FOR MULTI-

CLOUD APPLICATION ORCHESTRATION

Adikari Mudiyanselage Akila Srinath Adikari

(179301K)

Thesis submitted in partial fulfillment of the requirements for the

degree Master of Science in Computer Science specialising in Cloud Computing

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

May 2020

i

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without

acknowledgment any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief, it does not contain any material previously published or written by another

person except where the acknowledgment is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce

and distribute my dissertation, in whole or in part in print, electronic or other medium.

I retain the right to use this content in whole or part in future works (such as articles

or books).

Signature: Date: 21/04/2020

(A. M. A. S. Adikari)

The above candidate has carried out research for the Master's dissertation under my

supervision.

Name of the supervisor: Dr. H. M. N. Dilum Bandara

Signature of the Supervisor:

Date: 17/03/2020

ii

ABSTRACT

Multi-cloud applications are becoming popular, as they can run across multiple public

and private cloud platforms while overcoming vendor lock-in, reducing cost, and

enhancing flexibility and reliability. Applications hosted on multiple cloud platforms

use either libraries or service-based abstraction layers. Application orchestration

platforms further simplify the deployment and management of multi-cloud

applications by providing auto-scaling, service metering, health monitoring, and a rich

set of operational tools. Containerization is particularly useful in multi-cloud

applications, as it provides a consistent environment for an application regardless of

where it is deployed. However, container orchestration platforms such as Docker

Swarm lack support and operational tools to enable seamless application orchestration

across multi-cloud resources.

In this research, we developed a container-based platform for application orchestration

in a multi-cloud setup as a set of microservices and required operational tools

addressing the above limitations. Docker was chosen to demonstrate the proof of

concept solution, as it already provides features to orchestrate microservices.

Containerized multi-cloud applications can use the proposed application orchestration

platform to achieve resource elasticity across multiple cloud platforms. To trigger scale

in and out decisions, we used a rule-based approach where we compared the container

runtime metrics provided by Docker with preconfigured threshold values. We

evaluated the utility of the proposed platform using three web applications that were

compute-intensive, memory-intensive, and utilized a RESTful application

programming interface integrated with an external cloud service. The proposed

container-based application orchestration platform improved the throughput of the

three web applications by 180%, 73%, and 46%, respectively, compared to the same

web applications deployed in a private cloud. Whereas the response time was reduced

by 36%,-232%, and 7%, respectively. Even for cases where latency is increased error

rate was reduced.

iii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my research supervisor Dr. Dilum

Bandara for providing supervision and resources to enhance my research idea. His

expertise in the related field was an immense support for me to initiate this research

work in this passion and identify possible technologies to complete this research.

I would also like to thank Dr. Malaka Walpola, Dr. Indika Perera and Dr. Charith

Chtraranjan for helping and encouraging us to initiate and continuing this research

until the end. Further, I would like to thank all my colleagues for joining together to

share knowledge, research material, technology guidance, and experience to make this

research success. Specially appreciate their encouragement till the end.

This would not have been a reality without the support and love from my parents

throughout my life. I am deeply grateful for them for being ever strong support in every

step of my life and heartful of blessings. Special thank goes to my beloved wife,

including my family for being with me and sharing time to encourage to complete this

research.

I would like to greatly thank Dr. Sankalpa Gamwarige, General Manager, Zone24x7

supporting me by providing necessary guidance to select this degree program and all

my colleagues at Zone24x7 for their continuous support to manage my work and MSc

research work.

iv

TABLE OF CONTENTS

DECLARATION .. i

ABSTRACT ... ii

ACKNOWLEDGMENTS .. iii

TABLE OF CONTENTS .. iv

LIST OF FIGURES .. vi

LIST OF TABLES .. viii

LIST OF ABBREVIATIONS ... ix

1 INTRODUCTION .. 1

1.1 Background .. 1

1.2 Motivation .. 2

1.3 Problem Statement ... 3

1.4 Objectives ... 4

1.5 Outline .. 4

2 LITERATURE REVIEW ... 6

2.1 Cloud Computing ... 6

2.1.1 Cloud Deployment Models .. 6

2.1.2 Virtualization Based on VMs ... 7

2.1.3 Container-based Virtualization .. 9

2.2 Multi-Cloud .. 13

2.2.1 Multi-Cloud Software Solutions .. 14

2.2.2 Multi-Cloud Microservice Architecture ... 15

2.2.3 PaaS Solutions for Private Clouds ... 15

3 METHODOLOGY ... 19

3.1 Solution Approach ... 19

3.2 High-Level Architecture .. 21

3.3 Detailed Design .. 26

3.3.1 AppDock Cluster Admin ... 27

3.3.2 Command Line Interface.. 31

3.3.3 AppDock Scaling Service .. 33

3.3.4 AppDock Monitoring Agent .. 36

v

3.3.5 AppDock LogDB ... 38

3.3.6 AppDock HTTP Proxy Interface ... 41

3.3.7 Docker HTTP Proxy Interface ... 41

3.4 Cluster Deployment ... 41

3.5 Summary .. 42

4 PERFORMANCE EVALUATION .. 44

4.1 Workload .. 44

4.2 Experimental Setup .. 47

4.3 Performance Evaluation of CPU Intensive Workload 49

4.3.1 Throughput Analysis .. 49

4.3.2 Response Time Analysis .. 50

4.3.3 Resource Utilization Analysis .. 51

4.4 Performance Evaluation of Memory Intensive Workload 52

4.4.1 Throughput Analysis .. 53

4.4.2 Response Time Analysis .. 54

4.4.3 Resource Utilization Analysis .. 54

4.5 Performance Evaluation of RESTful API Workload 56

4.5.1 Throughput Analysis .. 57

4.5.2 Response Time Analysis .. 58

4.5.3 Resource Utilization Comparison .. 58

4.6 Summary .. 60

5 CONCLUSIONS ... 61

5.1 Summary .. 61

5.2 Research Limitations .. 63

5.3 Future Work ... 65

References .. 67

APPENDIX A – Available Methods in Proxy Interfaces .. 71

APPENDIX B – Commands in AppDock CLI .. 73

vi

LIST OF FIGURES

Figure 2-1 Virtualization via containers and VMs. .. 9

Figure 2-2 Docker architecture. Source:. ... 10

Figure 3-1 Conceptual view of a service that integrates containers across multiple

cloud providers. .. 20

Figure 3-2 High-level deployment diagram of the platform deployed in private-

public IaaS infrastructure. .. 22

Figure 3-3 Detailed view of the orchestration layer... 23

Figure 3-4 Service view of the AppDock platform. ... 25

Figure 3-5 Component view of the application.. 27

Figure 3-6 Configurations required by cloud providers. .. 29

Figure 3-7 File storage built using Docker volumes and NFS. 30

Figure 3-8 Properties maintained by local storage. .. 33

Figure 3-9 Properties of INodeStatAnalysisStatus object .. 34

Figure 3-10 Properties of IScalingServiceConfig object ... 34

Figure 3-11 Algorithm for adding and removing nodes. ... 35

Figure 3-12 Properties of IRuntimeStat object .. 37

Figure 3-13 Calculation for CPU utilization. ... 38

Figure 3-14 Calculation for memory utilization. ... 38

Figure 3-15 Class diagram for the repository. ... 39

Figure 3-16 Configurations required when deploying an AppDock cluster 42

Figure 4-1 Deployment diagram for the experimental setup. 48

Figure 4-2 Throughput comparison – CPU intensive application. 50

Figure 4-3 Response time comparison - CPU intensive application........................ 50

Figure 4-4 CPU utilization under CPU intensive workload – private cloud mode. . 51

Figure 4-5 CPU utilization under CPU intensive workload – multi-cloud mode. ... 51

Figure 4-6 Memory utilization under CPU intensive workload – private cloud

mode. .. 52

Figure 4-7 Memory utilization under CPU intensive workload – multi-cloud mode.

 .. 52

Figure 4-8 Throughput comparison – memory-intensive workload. 53

Figure 4-9 Response time comparison - memory intensive workload. 54

Figure 4-10 Memory utilization under memory-intensive workload – private cloud

mode. .. 55

Figure 4-11 Memory utilization under memory-intensive workload – multi-cloud

mode. .. 55

Figure 4-12 CPU utilization under memory-intensive workload – private cloud

mode. .. 56

Figure 4-13 CPU utilization under memory-intensive workload – multi-cloud mode.

 .. 56

Figure 4-14 Overall throughput comparison – REST API workload. 57

vii

Figure 4-15 Overall response time comparison - REST API workload................... 58

Figure 4-16 CPU utilization under REST API workload - private cloud mode 58

Figure 4-17 CPU utilization under REST API workload- multi-cloud mode. 59

Figure 4-18 Memory utilization under REST API workload – private cloud mode.

 .. 59

Figure 4-19 Memory utilization under REST API workload – multi-cloud mode. . 60

viii

LIST OF TABLES

Table 2-1 Container technologies used by different PaaS vendors.......................... 13

Table 4-1 Testing parameters for the CPU-intensive workload............................... 45

Table 4-2 Testing parameters for the memory-intensive workload 45

Table 4-3 Testing parameters for the RESTful API application 46

Table A-1 Available methods in the AppDock HTTP proxy interface 71

Table A-2 Available methods in the Docker HTTP proxy interface 72

ix

LIST OF ABBREVIATIONS

API Application Programming Interface

ARaaS Application Runtime as a Service

AWS Amazon Web Services

CD Continuous Deployment

CLI Command Line Interface

CN Container

CPU Central Processing Unit

CRUD Create, Read, Update and Delete

DB Database

DoS Denial of Service

EC2 Elastic Compute Cloud

HW Hardware

IaaS Infrastructure as a Service

IT Information Technology

LXC Linux Containers

NFS Network File System

ODM Object Document Mapper

OS Operating System

PaaS Platform as a Service

QoS Quality of Service

REST Representational State Transfer

SaaS Software as a Service

SDK Software Development Kit

SLA Service Level Agreements

SOA Service-Oriented Architecture

SW Software

vCPU Virtual Central Processing Unit

VM Virtual Machine

1

1 INTRODUCTION

1.1 Background

Cloud computing has emerged as the preferred paradigm for computing where a public

or private pool of computing resources are connected to deliver a dynamically scalable

infrastructure for applications. Cloud computing provides ubiquitous, convenient, and

on-demand network access to a shared pool of compute, network, and storage

resources with minimum management or service provider interaction [1]. This

significantly reduces the cost of application hosting, computing, storage, and delivery.

While organizations can utilize Infrastructure as a Service (IaaS) cloud services for

traditional application deployment, the cloud also provides Platform as a Service

(PaaS) model for Internet-based applications. PaaS is a layer on top of the existing

IaaS where the cloud vendor also manages underlying platforms. This offloads

maintenance and upgrades from the developers while minimizing the downtime [2],

[3].

Today, PaaS is moving towards containerization and interoperability. Containerization

provides interoperable, as well as lightweight and virtualized packaging [4]. It

provides a virtualized lightweight process environment as close as possible to a

standard Linux distribution. Because containers are more lightweight than Virtual

Machines (VMs), the same host can accommodate more containers than VMs. Also, it

reduces the start-up time of instances, as well as processing and storage overhead [5].

Orchestration solutions have become essential in effectively managing cloud resources

in response to rapidly changing business needs, cost, and service-level agreements. It

is a continuous process driven by monitored metrics and the specified Service Level

Agreements (SLA) [5]. Solutions such as Open-shift [6] and Cloud Foundry [7] are

based on container technologies such as Warden and Docker, which allow

organizations to run their own PaaS on-premise datacenters.

Among the contemporary cloud deployment strategies, the multi-cloud strategy has

become popular, as it enables the freedom to run applications on any public or private

cloud. The multi-cloud market is expected to grow by 30% of the compound annual

2

growth rate from 2017 to 2022 [8]. Cost-saving, capitalizing on-premise infrastructure

Information Technology (IT) resources, flexibility, avoiding vendor lock-in, and

increased reliability via robustness towards Denial of Service (DoS) attacks can be

identified as significant benefits for cloud consumers who are committing to use multi-

cloud architectures [9].

1.2 Motivation

Organizations follow a multi-cloud strategy to better utilize their infrastructures due

to optimized cost, as well as technological and regulatory reasons. Organizations

commit to multi-cloud architectures to provision infrastructure resources dynamically

from multiple public IaaS vendors to cater to time-variant demand for resources. This

can significantly reduce the cost incurred for public cloud infrastructure resources

because they are released automatically in the absence of demand.

Different public cloud providers showcase a wide variety of cloud offerings, and their

product lineup is somewhat differentiated from each other to gain a competitive edge.

However, this leads to application designs and implementations that are tightly

coupled to a particular cloud provider. Such lack of interoperability leads to vendor

lock-in, which is a significant concern for public cloud consumers. For example,

switching costs to a new cloud environment is relatively high and includes the system

re-design, redeployment, and data migration costs. To overcome interoperability issues

with multi-cloud abstraction layers are used to hide the differences between cloud

providers [10].

Orchestration enables intelligent cloud resource allocation through dynamic

provisioning, coordination, and management of services. This greatly reduces human

intervention and cost [11]. These benefits are intensified for applications that are

deployed in multi-cloud infrastructure due to increased flexibility of infrastructure

resource provisioning from multiple IaaS vendors. We can harness those benefits by

developing a multi-cloud application orchestration platform that capitalizes better

resource utilization and scalability inherently provided by the containers. Existing

3

applications running on containers could be easily moved to a multi-cloud application

orchestration platform.

OpenShift Origin [6] is a supporting platform providing both developer and operation

centric tools to develop multi-cloud applications. It extends Google’s Kubernetes

platform to leverage container orchestration. Tsuru [12] is another similar multi-cloud

PaaS using Docker containers. Neither of these platforms provides automated

infrastructure resource expansion for time-varying workloads and simplicity in

operational aspects of the platform.

1.3 Problem Statement

Contemporary multi-cloud solutions such as multi-cloud microservices architectures

[29] and private PaaS solutions [6], [7] are used either by compromising the multi-

cloud nature of the application or orchestration features such as dynamic resource

expansion. Moreover, management and deployment overhead of microservices and

private PaaSes in a multi-cloud setup are considerably high. Library or service-based

multi-cloud software solutions [24] have attempted to solve this problem using an

abstraction approach where cloud services from different vendors are aggregated and

exposed via a standard interface. However, the application becomes tightly coupled to

specific libraries provided by those solutions.

We believe that a container-based approach is more desirable to address the limitations

mentioned above in contemporary multi-cloud solutions. This is due to the benefits

such as easily movable, lightweight container images across multi-cloud environments

and applications that are not required to use additional software libraries just to support

multi-cloud (because containers provide the execution context for standard

technologies). In such a setup, Service Oriented Architecture (SOA) can guarantee

interoperability of application components developed using different standard

technologies avoiding platform-specific implementations. APIs provided by different

IaaS cloud offerings and the lightweight nature of container images make it possible

to allocate and deallocation resources dynamically. In this context, the problem to be

addressed by this research can be stated as follows:

4

How to develop a container-based, dynamic, and readily deployable multi-cloud

application orchestration platform that minimizes the coupling between applications

and the platform?

The proposed solution should be scalable and supports a combination of private and

public cloud IaaS offerings. Because the platform directly coordinates with the IaaS

layers of cloud providers, it should greatly minimize the dependency on various cloud

offerings of cloud vendors, as well as the applications hosted in this platform should

be platform-independent.

1.4 Objectives

Following set of objectives is to be achieved to address the above research problem:

 To conduct a comprehensive literature review on existing virtualization

technologies, including containerization and various multi-cloud solutions.

 Design a novel platform that could integrate multiple cloud infrastructures to

facilitate resource elasticity and seamless application orchestration by

providing multi-cloud integration.

 Integrate web and Command Line Interface (CLI) based operational tools to

support continuous delivery.

 To conduct a comprehensive performance analysis of the proposed multi-

cloud application orchestration platform.

1.5 Outline

The rest of the dissertation is organized as follows. Chapter 2 presents a literature

review on the theoretical aspects of cloud computing and cloud technologies such as

virtualization based on VMs and containers. It also covers container orchestration and

related technologies. Contemporary multi-cloud solutions and architectures are also

covered. Chapter 3 contains the solution approach, high-level architecture of the

proposed container-based application platform and details on how the multi-cloud

application orchestration platform can be deployed on an infrastructure that is a

5

combination of a private and two public clouds. Also, it has provided a detailed

description of the platform we developed along with all its subcomponents.

Performance evaluation for the proposed platform is presented in Chapter 4. It contains

workloads along with the test scenarios, experiment setup deployment, and the detailed

performance evaluation. Chapter 5 contains conclusion remarks, research limitations,

and future work.

6

2 LITERATURE REVIEW

Section 2.1 presents key concepts associated with cloud computing, such as cloud

service models and cloud deployment models. An overall insight into containerization

using Docker and container orchestration is presented in Section 2.1.3. Introduction to

Multi-cloud and different types of Multi-Cloud solutions, including software solutions,

multi-cloud microservice architecture, and deployable PaaS solutions, are presented in

Section 2.2.

2.1 Cloud Computing

Cloud computing referrers to the model of enabling ubiquitous, on-demand, and

convenient access to a shared pool of computing resources that can be easily

provisioned and release with minimum or zero-intervention of the cloud service

provider. According to [1], there are five essential characteristics of cloud computing,

namely on-demand self-provisioning, location independent ubiquitous access,

resource pool with a higher level of abstraction, rapid elasticity, and metered service.

Organizations can make use of a cloud computing model under three service models,

which are IaaS, PaaS, and Software as a Service (SaaS). The cloud deployment model

also an essential factor when deciding the organization’s cloud strategy. Depending on

the type of applications and their scalability and availability requirements, they can

choose among the public, community, private, or hybrid cloud deployment model

which suits them best.

2.1.1 Cloud Deployment Models

Cloud deployment models take four forms as follows:

 Private Cloud – The computing environment is operated exclusively for a

single organization. Cloud services are not accessible to external consumers.

Organizations that have excessive privacy and security concerns over their

data follow this deployment model. The datacenter may be inside the

7

organization’s premises or outside. It may also operate by an external party

that has required expertise in operating datacenters. This model provides

organizations with greater control over the cloud infrastructure than other

models.

 Community Cloud – Organizations that have common privacy mostly adopt a

community cloud deployment model. Two or more organizations with larger

computing resource requirements and common privacy, security, and

regulatory considerations (e.g., banks) can jointly operate the shared

datacenter infrastructure or some third party. Datacenters may exist on or off

the premises.

 Public Cloud – The cloud infrastructure is provisioned for the use of the

general public over the internet. It may be managed by a business organization

or any combination of privately owned or government organizations. By

definition, the cloud environment is always external to the cloud consumers

[13].

 Hybrid Cloud – A combination of the above cloud deployment model

(Private, Community, or Public) employed to bound two or more cloud

environments together by proprietary or standard technologies to serve cloud

consumer’s computational needs. Data portability is an important aspect of a

hybrid cloud deployment model among the linked cloud environments.

Deployment models are further categorized based on the management and distribution

of computational resources to deliver services to cloud consumers [13].

2.1.2 Virtualization Based on VMs

Virtualization refers to the software-based representation of physical computational

resources such as applications, servers, storage, and networks to be used to effectively

reduce the IT-related cost and bring agility to business while increasing the efficiency

[14]. Among the many benefits discussed under virtualization technology reducing

capital expenditure, minimizing or eliminating downtime, simplified datacenter

management, quick provisioning, enable business continuity, and disaster recovery can

be highlighted.

8

Cloud computing is mainly benefited by virtualization technology that saves the

hardware implementation cost for different operating systems. Virtualization can take

multiple forms, such as the following:

 Full Virtualization – The hypervisor provides all the services of a physical

system so that guest operating systems completely disengaged from the

underlying hardware. They are unmodified because Hypervisor completely

emulates the devices in the physical server. Full virtualization is categorized

into either hardware-assisted or software-assisted. As for drawbacks, full

virtualization requires a specific type of hardware to support this or

performance loss due to the binary translation.

 Para Virtualization – Guest operating systems are modified and aware of

them being virtualized, and they share resources with other VMs via API calls

to the hypervisor. Instead of making direct hardware calls, they issue the

command to the hypervisor from their customized device drivers.

 OS Level Virtualization – Also known as “containerization”. This technique

is capable of providing virtualized context for guest operating systems

without Hypervisors. The shared kernel of the host operating system among

the guest OSs is capable of isolating the execution context of each VM.

 Hardware-Assisted Virtualization – It depends on explicit support in the host

CPU, which is not available in all CPUs. By using the hardware capabilities,

this technique achieves accelerated virtualization. This technique was added

to x86 CPUs in 2006 [15]. This makes the full virtualization more efficient

from hardware capabilities. Nevertheless, this approach involves many traps

to CPU. This is mitigated by Para virtualized drivers. This combination is

called hybrid virtualization.

Hypervisors are low-level programs that allow single hardware to be shared by

multiple guest VMs, providing shared system resource access. Type 1 Hypervisors and

Type 2 Hypervisors are the main distinguishers for the way they are operating on a

host computer. Type 1 Hypervisor runs directly on the host hardware to manage guest

operating systems. Type 2 Hypervisor runs only on the operating system, which means

it cannot run until the operating system is running [15].

9

2.1.3 Container-based Virtualization

A single operating system allowing multiple user-space instances running on its kernel

refers to the containerization or operating-system-level virtualization. This is a

virtualization technique that is based on user-space instances, which are called

containers. Unlike other virtualization techniques such as full virtualization or

paravirtualization, which use hypervisors to emulate hardware, container-based

virtualization uses container engines to provide a managed environment for deploying

containerized applications [16]. The primary duties carried out by the container engine

are allocating CPU, memory, space isolation, and providing security. It also provides

scalability to the addition of new containers. Figure 2-1 shows how the virtualization

is achieved using containers compared to a VM that dedicatedly needs a guest

operating system to run the software as opposed to container-based virtualization

where multiple containers can be run in the same operating system. The container

engine runs natively on Linux and shares the kernel among containers. By contrast,

VMs are full of guest OSs with virtual access to host resources.

Figure 2-1 Virtualization via containers and VMs.

Containers are becoming popular over the other virtualization technologies because of

the isolation benefits it provides without much overhead of space and time. While

containers are typically hosted in Linux, Windows and Solaris containers are also

available.

Virtualization via containers provides many benefits such as lower hardware cost,

improved reliability and robustness, high scalability, efficient storage, and spatial

10

isolation, high throughput, portability, continuous integration and safety and security.

However, container-based virtualization is associated with cons such as increased cost

of container management and safety and security.

2.1.3.1 Docker

Docker is a container platform based on Windows and Linux kernels. Even though

Docker has gained much popularity among the community, there are other container

platforms such as LXD and OpenVZ [17]. Windows were only capable of hosting the

Docker engine and carry on Linux workloads initially. Today, it is possible to run

Windows containers on the Docker engine. However, container images can only be

based on Windows Server Core, Nano server [18].

Docker engine is composed of three main components, Docker daemon, REST API

(Application Programming Interface), and CLI (Command Line Interface) for the

“docker” command organized in a client-server architecture. Docker daemon directly

receives the command from the REST API to control or interact with them through

scripting or direct CLI commands. Docker daemon is responsible for creating and

managing images, containers, network, and volumes [19].

Figure 2-2 Docker architecture. Source: [19].

Docker architecture is presented in Figure 2-2. Docker images are based on other

images already containing a supported operating system. We might create our images

11

and push them to the Docker Hub (i.e., a container repository). The container is a

runnable instance of an image. REST API or Docker Client can be used to interact

with a container. Any changes maintained in the container state does not preserve if

those are not written to an external persisted storage. Docker Service is a collection of

Docker daemons running on independent hosts. Services are used to scale applications

across multiple hosts by scheduling multiple containers in multiple daemons. Services

are load-balanced so that users see the service as a single application.

The underlying technology of Docker is using namespaces to provide isolated

workspace for containers. Docker engine uses various namespaces to achieve the

above purpose. Control groups (cgroups) is another technology used by Docker to limit

and control the usage of hardware resources of the host among multiple containers.

The Union file system is file systems that operate based on creating layers on top of

each other. Container format wraps namespaces, cgroups, UnionFS together to form a

container. The default container format is “libcontainer” [19].

2.1.3.2 Linux containers

Linux Containers (LXC) is an operating-system-level virtualization technique for

running multiple Linux containers on a control host using a single Linux kernel [18].

It consists set of tools and components that are running on the user space of the

operating system for controlling the Linux Kernel containment features. It uses kernel

features such as Kernel namespaces (ipc, uts, mount, pid, network, and user),

Apparmor and SELinux profiles, Seccomp policies, Chroots (using pivot_root),

Kernel capabilities and CGroups (control groups) to contain processes. LXC tries to

create an almost close environment similar to the Linux kernel for its containers.

Components of LXC can be identified as the liblxc library, language bindings in

Python3, Lua, Go, Ruby, Python2, Haskell for the API, standard container controlling

tools and distribution container templates [20]. LXC Hiroku provides a containerized

way to run technology stacks such as Ruby, Python, NodeJS, Go, and Java using LXC

containerization technologies [18].

12

2.1.3.3 Container Orchestration

Automating the deployment, management, and monitoring of a large-scale container

cluster is referred to as container orchestration. Container orchestration essential for

managing applications that use a large set of containers. Orchestration may include

host provisioning, container instantiating, rescheduling in a failure situation, linking

containers through interfaces and scaling. Container orchestration provides a single

point of access for managing container cluster and monitoring health. It also gives

developers and operational teams a holistic view of the container cluster. Container

orchestration tools are essential to managing large-scale container clusters effectively.

Container orchestration helps to overcome challenges like service discovery, load

balancing, auto-scaling, zero-downtime deployments, and configuration management

in microservices applications that are spanning in multiple servers. Microservices can

get the most benefit from container orchestration. Docker Swarm and Kubernetes are

valuable orchestration tools available for Docker containers.

 Kubernetes – Is a widely used orchestration tool that is considered to be

feature-rich. Kubernetes is designed to operate in a wide range of modes,

including bare metal, on-premise VMs, and public cloud environments.

Google container engine provides the Docker engine and Kubernetes

orchestration tool tightly integrated. Being an open-source platform, it has

built up a large community around Kubernetes. Google cloud platform

provides the cheapest way to run Kubernetes with free master nodes. This has

attracted more Docker customers towards their cloud platform.

 Docker Swarm – Docker includes container cluster management and

orchestration tool called “Docker Swarm”. Docker CLI is used to interact

with Swarm to manage a standalone or distributed Docker cluster. Swarm

manages services that can be identified as application components running in

a replicated fashion across the cluster. Cluster is composed of nodes,

instances of Docker engine in Swarm mode participating the Swarm [21].

With the rapid adoption of containerized applications and Docker becoming an

industrial standard for containerization, the need for container orchestration has

13

become apparent. Table 2-1 lists container technologies used by different PaaS

vendors.

Table 2-1 Container technologies used by different PaaS vendors.

PaaS Provider Container Technology

OpenShift Docker with LXC

Heroku LXC

CloudFoundry Warden Container

Stackato Docker with Warden Container

AppFog Warden Container

Virtuozzo based on OpenVZ

dotCLoud Docker with LXC

2.1.3.4 Container Registry

Container registry is a server-side application that stores and distributes container

images that is part of the container repository, which constitutes different tags and

versions of the same container image. Container registry governs container image

creation, storing, and accessing process. Container registries are available as hosted

services, as well as deployable solutions. For example, Docker Hub, Quay, and major

IaaS providers offer their own registries such as Amazon ECR, Azure ECR and Google

Cloud’s GCR as hosted services and Docker Distribution tool, GitLab container

registry can be named as deployable container registries [22].

2.2 Multi-Cloud

The multi-cloud concept can be characterized by the usage of cloud services from

diverse cloud providers to run applications. Simultaneous usage of services of multiple

clouds that constitutes private and public cloud covers cloud bursting and federated

cloud scenarios. Cloud bursting discusses bursting the resource capacity by using the

public cloud while application most of the time running in the private cloud. Federated

cloud scenario discusses the federation of resources equally among cloud providers,

as well as with the private cloud.

14

The above-discussed scenarios mostly work on the IaaS layer. Interoperability issues

have been avoided by using homogeneous environments across cloud providers.

Additionally, work-related to interoperability between PaaS services also done, such

as semantically interconnecting heterogeneous PaaS offerings across different cloud

providers sharing the same technology and service-oriented component-based PaaSes

[23].

2.2.1 Multi-Cloud Software Solutions

An important functionality of Multi-Cloud is the management of deployments across

various clouds. According to [24], based on the approaches taken to implement multi-

cloud solutions, they can be categorized as library-based or service-based solutions.

The most known library-based and service-based solutions are identified as follows:

 jcloud (Library-based) – This is a Java library that enables the portability of

Java applications which allows the unified access of resources in various

cloud platforms such as AWS (Amazon Web Services), CloudSigma, Digital

Ocean, ElasticHost, Go2Cloud, GoGrid and many other cloud providers [25].

jcloud provides abstractions for Blog storage, Compute services, and Load

balancer services in general.

 libcloud (Library-based) – This is a Python library that abstracts compute,

load balancer, object storage, container, backup, and DNS services from

many cloud providers, including leading vendors such as Amazon AWS,

Microsoft Azure and Google [26].

 δ-cloud (Library-based) – Is REST-based API written in Ruby to the abstract

difference between clouds. Once the DeltaCloud server is setup, various

clients can be used to communicate with the server directly via HTTP

interface or C/C++, Ruby libraries. δ-cloud mainly abstracts the IaaS services

from various cloud providers such as Amazone EC2, Eucaliptus, IBM

SmartCloud, GoGrid, OpenNebula, Rackspace, Microsoft Azure, Amazone

S3, Google Storage and many other cloud providers [27].

15

 SimpleCloud (Library-based). It is another Infrastructure abstraction library

for Multi-Cloud that is written in PHP. It provides uniform interfaces for

infrastructure services of AWS, Azure, RackSpace, and Nirvanix [24].

 RightScale (Service-based). It is a hosted service that provides self-service,

cloud management, and cost optimization facilities to Multi-Cloud.

RightScale supports IaaS services from Amazone AWS, Microsoft Azure,

Google Cloud Platform, IBM Cloud, Rackspace, Apache CloudStack,

OpenStack, and VMware vSphere [28].

 Kaavo. It is a hosted service that supports workload and runtime management

for the multi-cloud strategy. Its support is expanded across IaaS, PaaS, and

SaaS layers [24].

2.2.2 Multi-Cloud Microservice Architecture

Microservices is a software architectural style where the application is composed of

smaller processes independently running in a distributed fashion and communicating

via language-agnostic APIs. Microservice architecture is mainly driven by micro

Linux distributions that support containers, Containers, and Schedulers such as Swarm

or Kubernetes [29].

Because microservice architecture is a technique variant of SOA architectural style,

loosely coupled smaller services can be distributed among multiple cloud providers.

To schedule containers in multiple cloud providers, multiple container schedulers need

to run in each environment if nodes in each cloud provider are not in the same network.

Otherwise, the single scheduler can be configured with a relatively high configuration

effort to schedule containers in all nodes across multiple cloud providers.

2.2.3 PaaS Solutions for Private Clouds

Platform as a Service takes another form when it comes to large organizations. With

the possibilities to run their private cloud infrastructure using technologies such as

OpenStack, VMware Cloud Foundation, they tend to look for their own private PaaS

environments. Applications developed internally are deployed in these private PaaS

environments to be used across the organization. They also tend to integrate with

16

public cloud forming a hybrid cloud deployment model for externally facing high

availability applications. Large organizations prefer an internal software portfolio to

run behind on-premise firewalls, yet achieving the benefits of cloud computing. It is

worth giving attention to private PaaS solutions with higher market share such as

OpenShift Origin, Cloud Foundry, AppScale, Microsoft Azure Stack, and Apache

Stratos.

OpenShift Origin is considered to be a Kubernetes distribution that is optimized for

continuous application development and multi-tenant deployments. OpenShift is

backed by RedHat. It mainly runs on a Docker container cluster managed by

Kubernetes. Container nodes consist of a set of master nodes and a set of nodes to

guarantee high availability by avoiding a single point of failure [6].

Cloud Foundry is a multi-cloud Platform as a Service that can be deployed in private,

public or any combination of it. This is a large-scale PaaS software that can run on any

IaaS provider. Cloud Foundry internally developed tool BOSH supports provisioning

and managing VMs. Kubernetes is also integrated as the container orchestration tool

to supports its container-based architecture to operate in multi-cloud infrastructure.

Before integrating Kubernetes, the container management system, Diego was used for

this purpose. Cloud Foundry supports Docker images also can be integrated with the

Docker Registry. While platform VMs running the Cloud Foundry PaaS, platform host

VMs are used to run applications deployed in CF. CF uses two types of deployment

models. Build packs and Docker images. Source code can be pushed directly via the

CF command line to the CF cloud controller. Then Diego will build the application

and deploy the artifacts in the container cluster. Names of the Docker images in the

registry can be directly pushed into the Cloud Controller via CLI to deploy them in CF

[7].

AppScale is an open-source Google App Engine PaaS platform that can be run in any

cloud. This does not operate in multi-cloud infrastructure. This has reached the market

in China via deploying it in Alibaba cloud-enabling Google App engine apps to run in

China [30].

Azure Stack is an extension of Microsoft Azure to operate Azure cloud services within

the organization’s datacenter integrated with the Microsoft Azure public cloud

17

allowing organizations to follow a hybrid cloud deployment model. Azure Stack

delivers both IaaS and PaaS capabilities to an on-premise datacenter allowing

portability of applications. It also allows serverless computing, distributed

microservices architectures, and on-premise container management features. Azure

Stack is offered as an integrated system of hardware and software known as the Azure

Stack Integrated System. It ranges in size from four to 12 nodes [31].

Apache Stratos is a PaaS framework that can be deployed in any IaaS infrastructure

that uses VMs and has compatibility with Apache Jclouds a cloud abstraction layer

implemented using Java. Kubernetes also can be integrated as the IaaS layer to

leverage the use of Docker containers [32]. In the Stratos terminology, a cartridge is

referred to as a pluggable component from which service can be created in the Stratos

PaaS. Cartridge instance can be either a VM or a Docker container that has software

components to interact with Stratos PaaS to act as a service. VM cartridges provide

OS-level isolation for cloud applications, whereas container cartridges provide

software level isolation.

The architecture of Apache Stratos framework can be described as a component-based.

A wide range of responsibilities is assigned to components such as Stratos Manager,

Cartridge Agent, Artifacts Distribution Coordinator, Complex Event Processor, Cloud

Controller, Message Broker, Load Balancer, Identity/Logging/Monitoring/Metering

Services, Auto Scaler NS CLI/Web UI.

 Stratos Manager – Responsible for providing various interfaces for managing

and interacting. It uses Stratos PaaS in the form of Web UI, REST, and CLI.

 Cartridge Agent – Handles the communication between cartridges and the

Stratos framework. Cartridge Agent communicates with various components

such as message broker, complex event processor, etc., while residing in the

cartridge.

 Artifact Distribution Coordinator – Apache Stratos typically works with

remote Git server where users maintain their code repositories. Deployment

Synchronization happens when a user upstream their artifact to the Git

repository to synchronize them with the relevant to that cartridge instance.

This component handles automated artifact updates and deployment tasks.

18

 Complex Event Processor – CEP module is responsible for real-time

monitoring based on the statistics published by Cartridge Agents and various

services. Summarized information is sent to Auto Scaler to make the

orchestration decisions [33].

19

3 METHODOLOGY

This chapter presents the high-level design of the proposed multi-cloud application

orchestration platform. Section 3.1 presents the solution approach, deployment

methods, and services to be offered. High-level architecture is presented in Section

3.2. Section 3.3 describes all the components of the proposed AppDock platform. The

deployment process of the AppDock platform is explained in Section 3.4, while the

summary is presented in Section 3.5.

3.1 Solution Approach

Dynamic infrastructure resource allocation can only be achieved on multiple IaaS

cloud platforms using their public APIs. Containers are more desirable for dynamic

resource allocation due to lightweight and easily movable in a multi-cloud setup and

also do not impose any platform-specific dependencies on the applications. Therefore,

we proposed a container-based application orchestration platform, namely AppDock

which could operate on multi-cloud infrastructure. Platform consumers could choose

any cloud infrastructure model such as private, hybrid, or multi-cloud to suit their

business requirements. Different IaaS vendors can be integrated with the platform.

AppDock contains a standard provider interface that can be extended to support

multiple private and public IaaS vendors. Docker is chosen as the container technology

due to the wide availability of container base images on standard technologies that can

be extended as plug-ins. Container orchestration services offered by the cloud vendors

cannot be used to develop the proposed platform, as those containers cannot be

orchestrated by the proposed platform’s base container orchestration system, which is

Docker Swarm. AppDock provides tools required to manage and operate the

application orchestration platform. They can be CLIs and web-based.

Despite vastly different platform services provided by the cloud providers, we focused

only on providing an application runtime. Because moving the application’s state

across multiple nodes can introduce various complexities, in this work, we do not

20

support state-full technologies such as relational/No-SQL databases and in-memory

data services.

A service is a logical grouping of containers running the same logical process. As

shown in Figure 3-1 a service spans across multiple container engines (i.e., nodes)

running on multiple cloud infrastructures. Any application deployed in the AppDock

platform is considered as a service of which tasks are deployed in multiple nodes

across multiple cloud infrastructures.

Figure 3-1 Conceptual view of a service that integrates containers across multiple cloud providers.

Multiple IaaS providers could be integrated via vendor-specific APIs with the standard

provider interface in the platform. Cloud environments communicate via network layer

connectivity allowing dynamic resource allocation. The cloud environment in which

the orchestration platform is initially deployed is the primary cloud environment. Other

cloud providers connected via the standard provider interface by providing required

configurations only provide the additional resource capacity.

When automating dynamic infrastructure resource allocation, resource expansion and

contraction decisions are made. To make such decisions, resource utilization metrics

reported by the container orchestration platform are compared with preconfigured

Cn1

Cn2

Cn1

Cn2

On-premise Datacenter Cloud Provider 1

Node

Cn1

Cn2

Cn1

Cn2

Cn1

Cn2

Cn1

Cn2

Cn1

Cn2

Cn1

Cn2

Service

Cn1

Cn2

Cn1

Cn2

Cn1

Cn2

Cloud Provider 1

Cn1

Cn2

Cn1

Cn2

Cn1

Cn2

Cn - Container

21

resource utilization threshold values globally configured for the cluster. Following

resource utilization thresholds are considered:

 Minimum CPU utilization – The lower bound of the CPU utilization, which is

compared with the CPU utilization of each node within the cluster when node

removing decisions are made.

 Maximum CPU Utilization – The upper bound of the CPU utilization, which

is compared with the CPU utilization of each node within the cluster when

deciding to spawn a new node.

 Minimum memory utilization – The lower bound of the memory utilization to

be compared with the actual memory utilization of each node within the cluster

when node removing decisions are made.

 Maximum memory Utilization – The upper bound of the memory utilization,

which is compared with the actual memory utilization of each node within the

cluster when deciding to spawn a new node.

These threshold values have to be derived empirically by simulating the expected loads

after applications are deployed within the application orchestration platform.

Currently, these values are platform-specific.

3.2 High-Level Architecture

As shown in Figure 3-2, the Docker container cluster contains two types of containers,

namely containers that belong to the orchestration layer and containers delivering

capacity. The orchestration layer hosts various services that are required for the

continuous operation of the platform. Those services include a RESTful API that is

used by the CLI and web portal to perform cluster management and operational

activities by developers, services that host static content for the web portal in the

AppDock platform, Scaling Service, and LogDB. Microservices belong to the

orchestration layer primarily run inside the cloud infrastructure on which the platform

is installed. For example, the primary cloud infrastructure in Figure 3-2 is the private

cloud. The orchestration layer is integrated with two other IaaS providers to increase

the resource capacity of the platform to cater to time-varying resource demands.

22

Figure 3-2 High-level deployment diagram of the platform deployed in private-public IaaS

infrastructure.

Figure 3-3 shows a detailed view of the orchestration layer where the deployable core

components of the platform, namely Cluster Admin, LogDB, and Scaling Service

reside. The container cluster is virtually divided into two areas to denote the

orchestration layer and the capacity. Containers that run orchestration layer related

services are inside the primary infrastructure. Capacity containers are spanned across

all IaaS providers, including primary cloud infrastructure. The AppDock platform is

integrated with AWS and Microsoft Azure IaaS providers. They provide a rich set of

APIs to manage infrastructure resources effectively. Further integrations with other

cloud providers can be made by extending the standard provider interface.

We selected Docker Swarm as the baseline technology to implement the solution. Core

components that form the solution have to be deployed in a distributed fashion as

Docker Swarm is a collection of Docker nodes, and deployable components eventually

become Docker Services. SOA lays the foundation to communicate across all the

components.

Capacity

(Cloud

Provider 1)

Capacity

(Private Cloud)

Capacity

(Cloud

Provider 2)

Orchestration Layer

CLI Web Portal

Docker Swarm Cluster

AppDock Platform

Container Registry

(Docker Hub)

23

Figure 3-3 Detailed view of the orchestration layer.

The Cluster Admin is responsible for building container images from the application

code and deploying it when the developer pushes new code to the platform via CLI. It

also hosts the web portal for managing configurations for public cloud vendors and

plug-in management services. It consists of a RESTful web API application and a web

portal hosted in a lightweight web server. Cluster Admin is connected with the LogDB.

Docker Swarm handles failover recovery.

LogDB acts as the data storage for the AppDock platform. This stores data required

for the continuous operation of the platform, such as application runtime metrics,

application scalability requirements, user information, and application metadata. The

data file of this storage is kept in the Network File System (NFS) location, which can

be safely accessed even in a failure situation of the database engine instance.

Scaling Service is a continuously running process that periodically analyzes runtime

matrices of CPU and memory utilization data pushed to the database by monitoring

agents residing in each worker node. New node deployment and removal decisions are

RESTful API Service

Cluster Admin

Orchestration Layer (Private Cloud)

WN – Worker Node
MN – Manager Node
MA – Monitoring Agent

Capacity (Private + Public Cloud)

MA

WN

Docker Swarm Cluster

LogDB

Scaling Service

Web Portal

WN

MA MA

WN

MA

WN WN

MA MA

WN

MA

WN WN

MA MA

WN

MA

WN WN

MA MA

WN

MN

MA

MN

MA

24

made based on the minimum and maximum thresholds set for CPU and memory

utilization. Once the threshold is reached, the API in the Cluster Admin core

component is used to expand or shrink the number of nodes and rescale each

application deployed on the platform according to the current number of nodes in the

cluster.

Monitoring Agent is responsible for reporting health and runtime matrices to LogDB.

The monitoring agent is a continuously running process residing in each node.

Other components of the proposed platform are as follows:

 Command Line Interface (CLI) – is the only non-deployable core component

used to communicate with the Cluster Admins’ RESTful API to achieve the

functionality requested by the users. CLI is the primary interaction point for

the application orchestration platform. It provides commands to carry out

tasks such as deploying applications, scaling, and generating boilerplate code

and project templates.

 RESTful API Service – exposes a rich set of functionalities of the platform to

be carried out by the users via CLI. This is running on a light-weight web

server inside the Cluster Admin core component.

 Container Cluster (Capacity) – is a collection of worker nodes across the

multi-cloud infrastructure that participate in delivering the required capacity.

Deployed applications become Docker services in the underlying Docker

Swarm cluster. The routing mechanism is built into Docker Swarm to route

the traffic. Every node in the Swarm participates in an ingress routing mesh.

Every node in the swarm is capable of accepting connections for any service

via published ports [34].

 Node managers – can be configured to contribute to the capacity similar to

worker nodes. Worker nodes are coordinated by the node manager and

typically behave based on the service definition provided by the docker-

compose.yml file [21]. This component already exists in Docker Swarm. This

representation shows that core components are deployed along with other

services in the Docker Swarm cluster.

25

Figure 3-4 presents the service view of the proposed platform in which core

components prefixed with AppDock are also running along with other services in the

Docker Swarm container cluster. This representation shows that core components are

deployed along with other services in the Docker Swarm cluster.

Figure 3-4 Service view of the AppDock platform.

An application deployed on the AppDock platform becomes a service, as it is deployed

as a Docker Service. Applications are initially created using service plug-ins, as base

Docker images from vendors are extended with required software components to be

used as service plug-ins for the AppDock platform. It is possible to manually upload

plug-in Docker images to the cluster administrator via the web portal. Applications are

pushed directly to the platform via the CLI. The platform takes care of building the

Docker images and deploying them in the container cluster.

Docker Swarm

Service 1(NodeJS)

WN

MA

WN WN

AppDock Cluster Admin

WN

MA

AppDock LogDB

WN

MA

WN

MA

WN

MA

AppDock Scaling Service

WN – Worker Node
MA–Monitoring Agent

MA MA

Service 3(NodeJS)

WN

MA

WN WN

MA MA

Service 2(NodeJS)

WN

MA

WN WN

MA MA

26

3.3 Detailed Design

As shown in Figure 3-5, core components LogDB, Cluster Admin, CLI, Scaling

Service, and Monitoring agent with libraries such as repository classes, AppDock

HTTP interface, and Docker HTTP interface collectively form the AppDock platform.

All the components were developed as part of this research. Components deployable

in Docker Swarm cluster such as Cluster Admin, Scaling Service, and Monitoring

Agent are deployed as Docker services during the initial creation of the AppDock

cluster. The replica number of each task is four, two, and global (one replica in each

node), respectively.

Every node, including static nodes at the primary cloud environment, participating in

the Docker Swarm cluster exposes the Docker API. Cluster Admin, Scaling Service,

and Monitoring Agent issue Docker commands via the Docker API to respective nodes

to achieve various functionalities such as application orchestration and reading runtime

stats of the nodes.

In addition to the deployable components and the non-deployable core component

CLI, 2 HTTP proxy libraries and a data access library are also included in the design

as they can be re-used across the solution. AppDock HTTP Proxy interface provides

access to the RESTful API hosted within the Cluster Admin core component to other

core components referenced it. Docker HTTP Proxy Interface provides access to the

Docker APIs exposed in each node in the cluster, and it is referenced by all the core

components. Data access library, known as “Repository Classes,” is referenced by all

the deployable core components to read/write data in the LogDB core component. All

the core components are explained in detail below.

27

Figure 3-5 Component view of the application.

3.3.1 AppDock Cluster Admin

Cluster Admin component is a RESTful API application running as a Docker service

within the Docker Swarm cluster. This component is configured to run multiple

replicas to cater to concurrent platform management requests from other core

components efficiently. Typically, the Docker services can be accessed via any node

participating in the Docker Swarm cluster. Web interface provided with this can be

used to configure public cloud providers (discussed in Section 3.3.1.2) and uploading

service plugins. Upon deployment of the AppDock platform using the CLI, Cluster

Admin service is initially created along with other core components within the cluster.

Next, we explain the key sub-components of the Cluster Admin.

3.3.1.1 Controllers

Controllers contain the essential logic to be executed when requests are made to the

Cluster Admin. Following are the roles of the controller in the AppDock platform:

 CloudResourceController – Creates and removes VMs in public cloud platforms.

Based on the given cloud adaptor, new VMs are spawned on the respective public

cloud infrastructure. Removal of VMs are requested by providing the node address

to this controller, and the same cloud adaptor by which node was created is used

LogDB

Repository Classes AppDock HTTP Proxy

Interface
Docker HTTP Proxy

Interface

Cluster-Admin

Monitoring-Agent

Scaling-Service

CLI

Controllers

Cloud

Adaptors

Express.js

Server

MongoDB

Container

Cloud

Resource

Stat Analyzer

Timer
Runtime Stat

Meter

Timer

Commands

Managers

Archiver

Local Storage

Plugins

28

to remove the spawned nodes. Upon spawning of new nodes in the public cloud

infrastructures, cloud resources associated with the new VM are recorded in the

LogDB.

 ConfigurationController – Persistence and retrieval of configurations of public

cloud providers are provided by this controller. Currently, AWS and Azure

configurations required by respective adaptors are incorporated.

 NodeController – Performs operations related to managing nodes such as adding

new nodes, removal of nodes from the Swarm, building service images of all

services in a given node, and persisting node information in the LogDB. Adding a

new node involves joining the node to the Docker Swarm, updating node labels to

balance tasks across all the nodes, and building images of all the service and finally

persisting the node in LogDB as an INode record. Removal of nodes involves

leaving Docker Swarm, removing INode record, and INodeStatAnalysisStatus

records from LogDB. INodeStatAnalysisStatus record contains the aggregated

CPU and memory utilization of all the IRuntimeStat records logged by the

Monitoring Agent of a particular node in each interval. This record is retained as

long as the node remains within the cluster.

 PluginController – Create, Read, Update, and Delete (CRUD) operations for type

IPluginDefinition, which contains plugin content, are carried out by this controller.

Plugins are discussed in Section 3.3.1.4.

 ScalingServiceController – Retrieve and persist type IScalingServieConfig for

storing minimum/maximum CPU and memory threshold values.

 ServiceController – Handles service-related operations such as creating new

services based on plugins, service deployment, and updating service replicas when

new VMs are added to the node cluster. Service creation involves downloading the

selected plugin to the current working directory and saving it as an

IServiceDefinition object in LogDB. The first deployment of service will create the

service in Docker Swarm with the expected number of replicas (i.e., Replicas per

Node × Number of Nodes). Before service creation or update, compressed

application content is built as a Docker Image in every node. Then the

IServiceDefinition record is updated with the latest modifications to the service

29

template done by the developer. When new nodes are added by automated resource

expansion or CLI, the latest Docker images of all the services will be built in the

new node.

Controller instances are instantiated injecting required repositories described in

Section 3.3.5.1. Request router of the Cluster Admin component has used controllers

in requests served by the Cluster Admin component. Each controller has access to the

NFS path configured during the platform deployment phase. File artifacts created

during management operations are stored in the NFS path accessible by all core

components.

3.3.1.2 Cloud Adaptors

Cloud adaptors are used to connecting with public cloud infrastructures. Currently,

adaptors for AWS and Microsoft Azure public cloud infrastructures are developed.

These cloud adaptors implement interface ICloudAdaptor, which defines methods for

creating and removing VMs. Cloud adaptors connect with their respective cloud

environments with APIs provided by public cloud providers. Creating VMs in the

public cloud may involve creating multiple other cloud resources such as storage,

public IPs, and network interfaces. These resources, including the VM information,

are persisted in the LogDB as an ICloudResourceBatch to refer back when excess VMs

are removed from the AppDock platform. Each cloud adaptor requires a set of

configurations to connect and spawn VMs in respective public cloud environments.

Figure 3-6 shows configurations required by AWS and Azure public cloud

environments.

AWSConfigurations = {

 VMImageReferenceID: string;

 Location:string;

 AccessKeyID: string;

 SecretAccessKey: string;

 SecurityGroupID:string;

 VPC:string;

 SubnetID:string;

 Active:boolean;

 AvailabilityZone:string;

 InstanceType:string;

}

AzureConfiguration = {

 Location?:String;

 TenantID?:String;

 ClientID?: String;

 ClientSecret?: String;

 SubscriptionID?: String;

 ResourceGroupName?: String;

 VMImageReferenceID?: String;

 PublicIPPrefix?:String;

 NetworkSecurityGroupID?:String;

 VNet?:String;

 SubnetID?:String;

 SSHKey?:String;

 Active:boolean;

}

Figure 3-6 Configurations required by cloud providers.

30

3.3.1.3 Server

The server is the execution environment for the Cluster Admin component. The web

server hosts both the Cluster Admin web interface at the root resource location and

API. As shown in Figure 3-7 each task of the Cluster Admin component is mounted

with a Docker Volume mapped to /mount local path in each container as the file

storage. Every file stored in /mount is synchronized with the NFS path configured at

the creation of the cluster. This will guarantee the accessibility of files to all

tasks/containers regardless of which task created the file. Also, files are persisted even

with task failures.

Figure 3-7 File storage built using Docker volumes and NFS.

3.3.1.4 Plugins

Applications deployed in the AppDock platform need to be created using a plugin.

This happens at the service creation step. The plugin provides minimum required files

to deploy an application in selected technology within the AppDock platform. A plugin

is a .zip archive containing required files for service in selected technology to be

deployed in the AppDock platform. Plugins can be uploaded to the web portal of the

Cluster Admin module. All plugins need to have Dockerfile and appdockservice.config

files. Dockerfile is required to build the Docker image from the artifacts from which

/mount /mount /mount /mount

Docker Volumes

Tasks (Containers)

Network File System

/home/.appdock/nfs

31

the service is created. It contains a sequence of commands native to Docker

terminology. The appdockservice.config file contains the Docker service template in

JSON format [35]. Other files in the .zip archive are specific to the service technology.

Ideally, applications that are deployed in the AppDock platform should be stateless

because when Docker services are scaled, Docker Swarm built-in routing mechanism

does not guarantee related requests are routed to the same task instance. Hence, plugins

targeting particular technology should also be stateless.

When a new service is created, the selected plugin content is downloaded and extracted

to the working directory. Plugin content just downloaded will have minimum required

files to create a service in the AppDock platform. The first deployment by using the

“appdock deploy” command will create a Docker Service in the underlying Docker

Swarm cluster. Afterward, the developer could make incremental changes to the

source code and push the application to the AppDock platform.

3.3.2 Command Line Interface

The command-line utility is provided for developers to interact with the platform for

Continuous Deployment (CD) of the applications. It provides commands required to

administer and develop applications with the platform. CLI is expected to be installed

in developer workstations to push the application to the AppDock cluster as each

developer does the incremental developments.

Node.js library Commander is used to re-use basic CLI functions. Each command is

defined within a command class in which the command template and the action are

defined. Each command class is injected with the required manager class, along with

its dependencies (refer to APPENDIX B – Commands in AppDock CLI for supported

commands).

3.3.2.1 Managers

Each command is injected with manager classes that are required for carrying out

underlying operations. Manager classes communicate with Docker API in cluster

nodes and API endpoints of the Cluster Admin core component. The responsibilities

of each manager class are described below:

32

 ClusterManager – Operations related to managing clusters are carried out by this

class. Currently, operations associated with cluster creation and calling related

APIs for managing scaling service configuration via AppDock proxy interface are

carried out by this manager class.

 NodeManager – Adding/removing new nodes to the AppDock cluster, including

deploying new nodes in public cloud environments, is carried out by this class.

 ServiceManager – This class handles new service creation and deployment of

services. Archiver class is injected into this class additionally to extract plugin

content upon new service creation and archive service artifacts to be sent to

deployment.

3.3.2.2 Archiver

Archiver is a class integrated into the CLI core component to perform compression

and decompression of files and folders. Service plugins are in the form of .zip archives.

Extracting plugin content upon service creation is done via Archiver. This is used by

service deployment command to send application artifacts to Cluster Admin to be

deployed as a Docker service.

3.3.2.3 Local Storage

Local storage is a helper class that provides read and write access to the data stored in

file “settings.json”. This file stores data required by CLI, such as Cluster Admin URL,

NFS information, and possible data required by CLI in future enhancements. This file

is located in the path where CLI-installed artifacts reside. Initially, settings.json file is

created in the local node that was used to create the AppDock cluster. Upon successful

creation of the AppDock cluster, the file content is stored in the LogDB. Subsequent

installations of CLI application in other developers’ computers will download the

“settings.json” file to their computers in the path where the CLI application is installed.

Figure 3-8 shows the properties used by the CLI component. ClusterAdminURL

contains the location Cluster Admin component can be accessed. NFSConfig.Addr and

33

NFSConfig.Device contains the address of the NFS contains and remote path of the

shared directory, respectively.

{
 "ClusterAdminURL": "<Cluster Admin Server URL>",
 "NFSConfig": {
 "Addr": "<NFS Server Address>",
 "Device": "<NFS Path>"
 }

}

Figure 3-8 Properties maintained by local storage.

3.3.3 AppDock Scaling Service

Scaling Service provides automated resource expansion capability to the application.

This runs periodically in the manager nodes and calculates average CPU and Memory

utilization of all containers of the selected node. For this, it relies on the Monitoring

Agent residing in each node. Each replica selects a node to analyze and prevent other

replicas from selecting the same node by marking INodeStatAnalysisStatus.Status (see

Figure 3-9) property as “STARTED” in LogDB during the analysis period. Based on

the calculated average values, resource allocation, or removal decision is made. To

ensure system stability, we set a minimum time gap between two consecutive resource

allocation or deallocation decisions. This time gap is decided based on the time needed

to stabilize the services in the new nodes added to the cluster, and it is proportional to

the number of services deployed in the cluster.

3.3.3.1 Stat Analyzer

Stat Analyzer summarizes the runtime statistics (see Figure 3-12) reported by the

Monitoring Agent. It calculates the average resource utilization values to denote the

current state of a particular node. Stat Analyzer selects a node, where resource

utilization analysis has been not started, completed, or staled due to runtime errors

during the analysis. Selection is made by creating or updating an

INodeStatAnalysisStatus object in LogDB with Status value as “STARTED” and

priority is given to the node with the oldest analysis result. A new node is selected in

34

each execution of the Scaling Service. Stat Analyzer output and store average CPU

and Memory utilization of the node and every service of which tasks are running within

the node in the INodeStatAnalysisStatus object in the LogDB.

INodeStatAnalysisStatus = {
 Status:number;
 Node: INode;
 LastAnalysisResult:{
 AvgCPUUtilization: number;
 AvgMemoryUtilization: number;
 DateTime:string,
 Services:Array<{
 ServiceID:string;
 AvgCPUUtilization: number;
 AvgMemoryUtilization: number;
 }>

 }

Figure 3-9 Properties of INodeStatAnalysisStatus object

3.3.3.2 Cloud Resource

 “CloudResource” class depends on Cluster Admin core component and Scaling

Service configurations stored in LogDB. As shown in Figure 3-10, Scaling service

configuration (IScalingServiceConfig) contains maximum and minimum threshold

values for CPU and memory utilization. Upon completion of the node stat analysis by

the Stat Analyzer mentioned above, the algorithm in Figure 3-11 is used to make new

node deployment and removal decisions by comparing a nodes resource utilization

with the configured CPU and memory utilization threshold.

IScalingServiceConfig = {
 MaxCPUUtilization:number;
 MinCPUUtilization: INode;
 MaxMemoryUtilization:number;
 MinCPUUtilization:number;
 NodeUpMinimumDuration:number;
 LastScaledAt:datetime;
 ScaleStatus:STARTED|COMPLETED|ERROR;

 ResourceScalingTimeGap:timespan
 }

Figure 3-10 Properties of IScalingServiceConfig object

35

According to the CanScaleResources procedure, if the cluster is in a state where

resource scaling is possible, scaling status is marked as “STARTED” in the LogDB

before starting any scaling procedures. “AddNewNode” procedure spawns a new node

in a randomly selected cloud environment and joins the node with the AppDock cluster

using the node’s private IP address. “RemoveNode” procedure removes the current

node that owns the INodeStatAnalysisStatus.LastAnalysisResult object both from the

cloud environment and the AppDock cluster. ScaleAllServices procedure increases or

decreases the replicas by the replicas per node number set in the service creation phase

for all the services other than services that belong to core components.

CanScaleResource procedure guarantees no overlapping scaling procedures are

performed by multiple instances of the Scaling Service component by maintaining a

global scaling status. Also, it will wait for

IScalingServiceConfig.ResourceScalingTimeGap before attempting to balance the

cluster after a previous addition or removal of nodes.

Algorithm 3.1: Scale Resources

procedure Scale;

if LastAnalysisResult.AvgCPUUtilization

>ScalingServiceCon_g.MaxCPUUtilization OR

LastAnalysisResult.AvgMemoryUtilization

>ScalingServiceCon_g.MaxMemoryUtilization then

if CanScaleResources() then

UpdateScalingStatus(STARTED);

AddNewNode();

ScaleAllServices();

UpdateScalingStatus(COMPLETED);

else if LastAnalysisResult.AvgCPUUtilization

<ScalingServiceCon_g.MinCPUUtilization AND

LastAnalysisResult.AvgMemoryUtilization

<ScalingServiceCon_g.MinMemoryUtilization AND (NodeStartedTime+

ScalingServiceCon_g.MinNodeUpTime) <CurrentTime then

if CanScaleResources() then

UpdateScalingStatus(STARTED);

RemoveNode();

ScallAllServices();

UpdateScalingStatus(COMPLETED);

procedure CanScaleResources;

return ScalingStatus != STARTED AND CurrentTime >=

LastAnalysisTime + ResourceScalingTimeGap;

Figure 3-11 Algorithm for adding and removing nodes.

36

When multiple public cloud environments are connected, new nodes are deployed on

randomly selected public cloud environments. All the nodes deployed via Scaling

Service in the public cloud environments are assigned with label “CloudNode”. Only

nodes with label “CloudNode” are removed by the Scaling Service when they are not

utilized up to the minimum limits to avoid removing permanent nodes, especially in

the primary cloud infrastructure.

The number of replicas in each service is increased by the replicas per node when a

new node is deployed. When a node is removed, replicas per node number will be

reduced from the total number of replicas of each service. All the services are deployed

in a balanced strategy where each node will get an equal number of replicas of each

service.

Minimum and maximum CPU and memory threshold values are decided based on the

type of application and typical workload on-peak and off-peak times. These thresholds

are shared across the cluster and can be decided by simulating the expected load and

monitoring the CPU and memory utilization values of the INodeStatAnalysisStatus

(Figure 3-9) reported in the LogDB by the Stat Analyzer. Initial CPU utilization and

memory utilization values at which the static set of primary cloud resources are fully

utilized can be set an arbitrary value like 90% each and keep optimizing thresholds

according to the workload and primary cloud infrastructure resources available. If

there are plenty of primary cloud resources available or a single node should not reach

maximum utilization of resources, lower values can be set.

3.3.4 AppDock Monitoring Agent

 This is a Docker service deployed in a “global” mode where a single task is running

in every node. When new nodes are deployed, a task of this stared in each new node.

It periodically retrieves runtime stats via the Docker API of the local node. The Docker

engine does not provide a valid place holder for the IP address of the node at the service

creation time. Therefore, before reporting runtime stats to the LogDB, the IP address

of the local node is searched through all the nodes by the hostname of the local node.

37

This is achieved by listing to all the nodes in the cluster by sending a request to one of

the manager nodes and matching the hostname of the local node supplied via an

environment variable. Runtime statistics (see Figure 3-12) are retained in the LogDB

only for a certain period that will represent the most current state of the node in terms

of resource utilization. Older stat records are overridden by the subsequent execution

cycles. As shown in Figure 3-12, runtime stat record contains CPU and memory

utilization of each container running in the node identified by the “NodeAddr” field at

a point of time represented by “DateTime” field. Reference to the service to which

each container belongs is maintained in the “ServiceID” field in each array object.

{
 NodeAddr:string;
 DateTime:string;
 Metrix: Array<{
 ContainerID:string;
 ServiceID:string;
 CPUUtilization:number;
 MemoryUtilization:number;
 }>;

}

Figure 3-12 Properties of IRuntimeStat object

3.3.4.1 Runtime Stat Meter

Runtime Stat Meter handles Reading and writing resource utilization runtime stats to

LogDB, removing older stats, and calculating CPU memory utilization. To read the

runtime stats for the node, all the tasks running in the node are retrieved via Docker

API. Then runtime statistics for each task are retrieved by the container ID. CPU and

memory utilization is calculated using the algorithms listed in Figure 3-13 and Figure

3-14 respectively. These algorithms are recommended by Docker to calculate the CPU

and memory utilization of a single Docker container. Because Docker API does not

provide actual utilization values for the entire node, Runtime Stat Meter uses derived

values by calculating the averages of the resource utilization for all the containers

running in the node. This will closely resemble the actual resource utilization of the

node returned by the operating system.

38

Algorithm 3.2: CPU Utilization at a Given Time

procedure GetCPUUtilization(containerStats);

if CurrentContainerCPUUsage == 0 then

return 0;

CPUUtilization = NumofCPUs * 100 * (CurrentContainerCPUUsage -

PreviousContainerCPUUsage)/(CurrentSystemCPUUsage -

PreviousSystemCPUUsage);

return CPUUtilization;

Figure 3-13 Calculation for CPU utilization.

Algorithm 3.3: Memory Utilization at a Given Time

procedure GetMemoryUtilization(containerStats);

if CurrentMemoryUsage == 0 then

return 0;

MemoryUtilization = 100 * (CurrentMemoryUsage -

MemoryCache)/SystemMemoryLimit;

return MemoryUtilization;

Figure 3-14 Calculation for memory utilization.

3.3.5 AppDock LogDB

LogDB is the main data storage for the AppDock platform. Core components such as

Cluster Admin, Scaling Service, and Monitoring Agent directly communicate with the

data storage. CLI core component communicates with this data storage via the

AppDock HTTP proxy interface. All the data schema objects currently used in

AppDock platform are AWSConfiguration, AzureConfiguration, CloudResource,

CloudResourceBatch, Node, NodeStatAnalysisStatus, NodeStatsLog,

PluginDefinition, RuntimeStat, ScalingServiceConfig and ServiceDefinition.

3.3.5.1 LogDB Implementation

This is a MongoDB service deployed like any other core component. Even though this

has been deployed as a Docker service, the presented implementation is limited to one

task. This is due to a limitation in MongoDB Docker images where many DB engines

cannot share single persistent storage. Objects in non-relational schema have been

39

modeled via Mongoose Object Document Mapper (ODM). Mongoose provides a

schema-based solution to application data for MongoDB and Node.js applications.

Repository classes following the repository design pattern provide an abstraction layer

over Mongoose implementation for MongoDB to the application. By following the

repository pattern, we could avoid writing repetitive CRUD operations for each

schema object while developing the application since the repository pattern provide

those in RepositoryBase class from which all other repositories are inherited. Classes

of which name prefixed as X and interfaces with IX, as shown in Figure 3-15 represent

all the classes and interfaces required by each schema object. Further, Classes and

Interfaces in Figure 3-15 is described below.

Figure 3-15 Class diagram for the repository.

40

 MongooseBaseSchema – Share the common logic for all the schema objects

that inherit from this class. Common logic includes initializing the model to

be used in the corresponding repository for that schema object and initializing

a trigger that populates auto-increment field ID and CreatedAt with current

date and time.

 CounterSchema – This class represents the schema object that maintains the

counters for all other schema objects. The counter is incremented and used

when adding a new object to a particular collection to populate the ID field

of that object.

 XSchema – The constructor of each schema class contains the model

definition of the schema object also the name of the schema object to be

created in MongoDB. This is inherited from MongooseBaseSchema generic

class.

 RepositoryBase – The generic parent class for all the repositories where

database operations are defined. When an object of a child class, i.e.,

XRepository is instantiated, the connection to the database is made. This is a

Mongoose specific implementation.

 XRepository – In the repository pattern, all the schema objects in the database

have a corresponding Repository class where all the database operations

required are defined. This class is inherited from the generic class

RepositoryBase of which type (XModel) has been defined in each

XRepository implementation.

 IXRepository – Interface that defines required methods specific to the schema

object.

 IRepositoryBase – Interface that defines standard methods required by

repositories.

 IXType – Interface for the entity that represents the required properties of the

schema object.

 IBaseType – Parent entity interface that defines common properties of all

schema objects.

41

 IXModel – Entity type that aggregates properties in schema objects and

Document class in Mongoose.

3.3.6 AppDock HTTP Proxy Interface

AppDock HTTP acts as a proxy interface for the Cluster Admin core component. This

has been referenced by other core components that require sending requests to the

Cluster Admin core component. Possible requests can be made to the Cluster Admin

core component via the proxy interface, which has been listed in Table A-1.

3.3.7 Docker HTTP Proxy Interface

Docker HTTP is a proxy interface for Docker HTTP API in each node. Core

components that use the Docker API, reference the Docker HTTP Proxy Interface as

a local NPM package. Table A-2 lists possible requests to Docker HTTP API via the

Docker HTTP proxy interface.

3.4 Cluster Deployment

The AppDock node cluster consists of two types of nodes Worker Nodes and Manager

Nodes. Worker Nodes and Manager Nodes ultimately required by the underlying

Docker Swarm cluster. It is recommended to have at least 3 manager nodes where one

node failure can be tolerated since always there should be more than half of the

manager nodes running to run the Docker Swarm cluster. Even with 4 manager nodes,

only 1 manager node failure is tolerated. CreateClusterCommand (see the command

reference at APPENDIX B – Commands in AppDock CLI) is issued along with the

cluster configurations explained below.

Figure 3-16 shows the minimum required configurations when creating the cluster.

Nodes array specifies the list of permanent nodes participating AppDock cluster.

While nodes are distinctly identified by “NodeAddr”, “AdvertiseAddr” should be

specified too for Swam API access. Manager nodes are denoted by NodeType property

with value “m” while worker nodes are denoted by value “w”. Docker daemon in every

node should be configured to listen on TCP port 2375 and IP address specified in

42

“NodeAddr” to accept requests from remote hosts [36]. “ClusterAdmin” and “LogDB”

objects contain configurations required by respective core components.

Network File System (NFS) allows users and programs to access files stored in a

remote system over a network [37]. Configurations required in “NFS” are used to

mount Docker Volumes in each service with a remote NFS path. This will allow each

service to store its files in a central location accessible by each task of that service.

Known hosts are mentioned in the “Hosts” section of the configuration. This will help

the core components of AppDock to reach nodes by its name. Hostnames are only for

the private nodes as hostnames of the nodes in public cloud environments are not

known in advance. Specified DNS servers in the “DNSServers” section are used to

resolve hostnames of the nodes in public cloud environments.

{
 Nodes: Array<{
 NodeAddr:string;
 AdvertiseAddr:string;
 NodeType:string;
 }>;
 CusterAdmin:{

 Port:number;

 };
 LogDB:{

 Port:number;

 };

 NFS: :{

 Addr:string;

 Device:string;

 };

 DNSServers: Array<string>;
 Hosts: Array<string string>;

}

Figure 3-16 Configurations required when deploying an AppDock cluster

3.5 Summary

We came up with a solution that integrates multiple IaaS environments with network

layer connectivity to address dynamic infrastructure resource allocation and remove

dependency towards cloud vendor-specific Software Development Kit (SDK)s or any

third-party libraries when applications are deployed in multi-cloud setup. The solution

43

is a container-based platform for application orchestration named “AppDock”. The

application orchestration platform can be deployed in any cloud infrastructure.

Afterward, multiple IaaS providers can be integrated to expand the cluster nodes across

those IaaS platforms when dynamic infrastructure resource allocation is enabled. All

the IaaS cloud environments need to be connected via network layer connectivity.

The AppDock platform is well modularized and comprised of a collection of

microservices deployed on a Docker Swarm cluster and a CLI tool. Those are

identified as core components. Docker services include Node.js Docker services such

as Cluster Admin, Scaling Service, and Monitoring Agent and LogDB a MongoDB

service. Additionally, to the aforementioned core components, we developed three

software libraries to be reused by those core components. Those are LogDB

Repository, AppDock HTTP proxy interface, and Docker HTTP interface. We

developed the AppDock application orchestration platform using Docker, Node.js, and

MongoDB as main technologies. Typescript was selected over pure JavaScript because

we get the type support which will be beneficial to the maintainability of the code base

when the AppDock platform evolves. The AppDock platform can be deployed in a

few nodes, i.e., a fixed set of infrastructure resources identified as the primary

infrastructure using the CreateClusterCommand (see Appendix B). Multiple public

IaaS platforms connected with the primary cloud infrastructure via network layer

connectivity can then be integrated with the AppDock platform via the Cluster Admin

web interface.

44

4 PERFORMANCE EVALUATION

Extensive evaluation of performance was done to demonstrate the practical

applicability of the AppDock platform to host applications categorized as CPU

intensive, memory-intensive, and RESTful APIs integrated into external cloud

services. Each test scenario was delivered with distinctive workloads matching the

compute capacity of private nodes enough to keep the private resources busy.

Section 4.1 describes the test scenarios from which the AppDock platform will be

tested. The test environment and performance metrics are described in Section 4.2.

Section 4.3, 4.4, and 4.5 present detailed performance evaluations for CPU intensive

application, memory-intensive application, and Danveem RESTful API, respectively.

The performance evaluation summary is presented in Section 4.6.

4.1 Workload

Automated resource expansion and contraction, the primary feature of the AppDock

platform has to be evaluated under the workload only the private cloud nodes alone

cannot handle efficiently. We designed the following three test cases to stress all the

private cloud resources:

 CPU intensive workload – is a Node.js web application exposing single

HTTP/GET endpoint, which triggers a CPU intensive logic. CPU intensive

application consists of a single GET endpoint, which triggers a CPU intensive

mathematical function that calculates the tangent and the arctangent in radians

iteratively 87 times [38]. Even though this function not practically useful to

an end-user, it is capable of keeping the CPU busy from a single request. 20

users (threads) were simulated using JMeter for this application. Refer Table

4-1 for the testing parameters.

45

Table 4-1 Testing parameters for the CPU-intensive workload.

Parameter

Maximum CPU utilization threshold 90%

Maximum memory utilization threshold 20%

Minimum CPU utilization threshold 15%

Minimum memory utilization threshold 15%

Minimum node uptime 15 minutes

Replicas per node 2

Number of private nodes 2

Number of threads (users) 20

Ramp-up time 10 minutes

Test duration 40 minutes

Think time 0 seconds

Arrival rate 0.03 users per second

 Memory-intensive workload – is a Node.js web application exposing single

HTTP/GET endpoint, which triggers a memory-intensive logic. Refer to

Table 4-2 for the test parameters. Memory intensive application is a Node.JS

web application that exposes a single GET endpoint from which memory

intensive function is triggered. This function does not do anything useful but

declares a Float64Array with 220 elements. This will consume a considerable

amount of memory in the container from a single request. However, Docker

will stop any containers to consume memory to the detriment of the node [39].

Since this is possible with real applications too, 150 users were simulated with

low compute capacity. i.e., three primary cloud nodes. This caused some

containers to be failed by throwing this error.

Table 4-2 Testing parameters for the memory-intensive workload.

Parameter Value

Maximum CPU utilization threshold 40%

Maximum memory utilization threshold 50%

Minimum CPU utilization threshold 5%

Minimum memory utilization threshold 15%

Minimum node uptime 15 minutes

Replicas per node 2

Number of private nodes 3

Number of threads (users) 150

Ramp-up time 10 minutes

Test duration 40 minutes

Think time 0 seconds

Arrival rate 0.25 users per second

46

 RESTful API workload – is a Node.js web application integrated with AWS

DynamoDB as the backend exposing 6 HTTP/GET and POST endpoints.

Refer Table 4-3 for test parameters. “Danveem” is a RESTful web service

developed using Node.js and integrated with Amazon DynamoDB, which is

a key-value store and a document database. This application was designed to

be deployed in AWS Elastic Beanstalk. However, later application was

adopted to be containerized by making the required modifications. JMeter test

was created simulating 1200 users to request endpoints of the Danveem API

mentioned below.

 Create Board (POST Request)

 Create Notice (POST Request)

 Create User Invitation (POST Request)

 Get Invitations for an Email (GET Request)

 Get Notices for a Board (GET Request)

 Get User (GET Request)

Table 4-3 Testing parameters for the RESTful API application.

Parameter Value

Maximum CPU utilization threshold 95%

Maximum memory utilization threshold 30%

Minimum CPU utilization threshold 5%

Minimum memory utilization threshold 15%

Minimum node uptime 15 minutes

Replicas per node 2

Number of private nodes 1

Number of threads (users) 1200

Ramp-up time 10 minutes

Test duration 40 minutes

Think time 0 seconds

Arrival rate 2 users per second

Maximum CPU and memory thresholds indicate the upper limit of the respective

resource utilization values to which private nodes can handle the load. Once this limit

is reached, new nodes need to be created in connected public clouds. When the

minimum CPU and memory threshold is reached, nodes in public cloud environments

could be released once the minimum node uptime is exceeded. The minimum node up

time setting allows any public nodes to retain in the cluster even though resource

47

utilization values of that node are below the minimum threshold values. By holding on

to such resources until the minimum node up time is reached, we can prevent the

system from becoming unstable due to the rapid reconfiguration of the system. Further,

this does not introduce additional costs as cloud resources are already paid for some

minimum usage. Replicas per node indicate the number of tasks (containers) a service

can run in a single node.

Maximum and minimum threshold values were decided by observing resource

utilization behavior during the test run in private cloud mode, where automated

resource expansion is disabled. We kept every cloud node running a minimum of 15

minutes regardless of reaching the minimum resource utilization threshold values

giving enough time to spawning services within them. Duration for all the tests was 40

minutes, including the ramp-up period of 10 minutes. Think time was set to 0 in each

test case to measure the maximum throughput. The arrival rate is calculated by

dividing the number of users by the ramp-up period in seconds. Replicas per node and

the Number of private nodes were decided based on the minimum resource

requirements for the type of workload running without any task failures.

4.2 Experimental Setup

Workloads in the test cases mentioned above were deployed in both private cloud

mode and multi-cloud mode. Workload traces were played using Apache JMeter [32].

As shown in Figure 4-1, Subnet 1 in the AWS VPC acted as the private cloud. Nodes

in the Subnet 1 were connected with Subnet 2, which acts as the public cloud via inter-

subnet connectivity in AWS VPC. The node running the JMeter workload had a client

VPN connection to the private cloud through which Subnet 2 can also be reached.

CPU intensive workload and memory-intensive workloads are not integrated with any

backend. User requests are also independent. RESTful API workload is a Node.js

application which consists of GET and POST endpoints integrated with an AWS

DynamoDB backend. Our objective with these experiments is to demonstrate the

effectiveness of infrastructure resource elasticity and scaling applications in the multi-

cloud setting by evaluating the performance of the three workloads deployed in private

48

cloud mode with a static set of infrastructure resources and multi-cloud mode with

infrastructure resource elasticity.

In the setup, three types of workloads (Memory intensive, CPU intensive and RESTful

API) were deployed in the private cloud mode one at a time with a pre-defined number

of private nodes as listed in Table 4-1 and Table 4-3. Then response time and

throughput were measured. Again, we enabled the multi-cloud mode adding AWS

public cloud where new nodes were spawned and measured the same. In the multi-

cloud mode, the application spawned new nodes in the AWS cloud, and it was steady

until the JMeter load was completed. Then they were removed automatically when the

load was removed.

Figure 4-1 Deployment diagram for the experimental setup.

All the nodes in the AppDock cluster (private nodes and public nodes) were AWS EC2

t3a.small Ubuntu instances with AMD EPYC 7000 series processors with an all-core

turbo clock speed of 2.5 GHz (2vCPUs), 2 GB of RAM, and 20GB of SSD persistence

storage. JMeter was deployed on a laptop with Intel Core i7-8750H CPU @ 2.20GHz

(12 CPUs), 16GB memory, 512 GB SSD storage. JMeter workload generator was

Client VPN

Private Cloud (AWS)

Public Cloud (AWS)

Subnet 1

172.31.16.0/20

JMeter Workload

AWS Inter-Subnet

Connectivity

Subnet 2

172.31.80.0/20

49

connected through a VPN connection, upload and download bandwidth were set to

50Mbps and 100Mbps, respectively.

For each of the test cases, response time and throughput data were calculated for both

private cloud and multi-cloud modes. We configured JMeter to log each request for a

particular endpoint to a CSV file, and we recalculated JMeter metrics for every 10-

seconds.

4.3 Performance Evaluation of CPU Intensive Workload

Initially, we tested the performance under the CPU intensive workload, and the

targeted system consisted of only in the private cloud. Next, we ran the same test in a

multi-cloud mode connecting both private and public cloud nodes. In the multi-cloud

mode, after completing the 40-minutes of testing, including the ramp-up period, we

stopped the workload and let the system remain idle to release accumulated public

cloud resources.

4.3.1 Throughput Analysis

Figure 4-2 shows the throughput of the CPU intensive application with time. It can be

seen that the multi-cloud mode results in higher throughput compared to the only

having the private cloud nodes. While private cloud nodes saturate during the

workload ramp-up, the multi-cloud mode can increase the throughput until the steady-

state is reached. Then the multi-cloud mode retains the throughput, which is 180%

higher than the private cloud mode. This is because the private cloud mode does not

have sufficient resources to meet the workload demand; hence, require to acquire

resources from the public cloud to meet the workload. This confirms that the AppDock

platform can dynamically provision resources from the public cloud nodes to meet the

workload demand effectively.

50

Figure 4-2 Throughput comparison – CPU intensive application.

4.3.2 Response Time Analysis

Figure 4-3 shows the average response time for CPU intensive workload when

deployed on both the private cloud and multi-cloud modes. When the workload is

deployed in the multi-cloud mode, a clear improvement in the response time (36%) is

visible. It can be seen that AppDock can maintain steady response time by acquiring

resources from the public cloud as the workload increases. Whereas in the private

cloud mode, response time becomes stable with a higher value (1400ms) under the full

workload after the ramp-up period.

Figure 4-3 Response time comparison - CPU intensive application.

0

200

400

600

800

1000

1200

1400

1600

1
0

1
0

0
1

9
0

2
8

0
3

7
0

4
6

0
5

5
0

6
4

0
7

3
0

8
2

0
9

1
0

1
0

0
0

1
0

9
0

1
1

8
0

1
2

7
0

1
3

6
0

1
4

5
0

1
5

4
0

1
6

3
0

1
7

2
0

1
8

1
0

1
9

0
0

1
9

9
0

2
0

8
0

2
1

7
0

R
e

sp
o

n
se

 T
im

e
 (

m
s)

Time (s)

Private Cloud Multi-Cloud

0

50

100

150

200

250

300

350

400

450

1
0

1
0

0
1

9
0

2
8

0
3

7
0

4
6

0
5

5
0

6
4

0
7

3
0

8
2

0
9

1
0

1
0

0
0

1
0

9
0

1
1

8
0

1
2

7
0

1
3

6
0

1
4

5
0

1
5

4
0

1
6

3
0

1
7

2
0

1
8

1
0

1
9

0
0

1
9

9
0

2
0

8
0

2
1

7
0

Th
ro

u
gh

p
u

t
(T

P
S)

Time (s)

Private Cloud Multi-Cloud

51

4.3.3 Resource Utilization Analysis

Because the AWS EC2 t3a.small instances consist of 2 vCPUs CPU utilization could

reach up to 200%. That can be seen in Figure 4-4, which shows CPU utilization of

each VCPU (Virtual CPU) in the private cloud node. In Figure 4-5 we can see that that

the CPU utilization is reduced in each node as extra public nodes deployed in the multi-

cloud mode. In this case, the node 172.31.88.28 is the manager node that does not

contribute to the application compute capacity. Also, in Figure 4-5 deployments of

new nodes have caused new series to begin in the middle of the time axis. The CPU

utilization of both the nodes became stable after the ramp-up period, which is the first

600 seconds.

Figure 4-4 CPU utilization under CPU intensive workload – private cloud mode.

Figure 4-5 CPU utilization under CPU intensive workload – multi-cloud mode.

52

By observing Figure 4-6 and Figure 4-7 it can be seen that there is no noticeable

difference in memory utilization in the nodes for this application in two deployment

modes because it consumes less memory compared to CPU.

Figure 4-6 Memory utilization under CPU intensive workload – private cloud mode.

Figure 4-7 Memory utilization under CPU intensive workload – multi-cloud mode.

4.4 Performance Evaluation of Memory Intensive Workload

The automated resource expansion feature of the AppDock platform was effective in

this scenario as it spawned new nodes in the public cloud environment by keeping

memory utilization bellow the maximum threshold value. However, in the initial

53

stages of the test, we experienced task failures, which have been explained under the

memory-intensive workload in Section 4.1. The impact of this has been reflected in

the following sections.

4.4.1 Throughput Analysis

In Figure 4-8, throughputs in private cloud mode have been affected by task failures.

After each drop recorded in the private cloud mode, there is a slight improvement in

the throughput since a new task is stared with enough memory. Even though the

workload became steady after the ramp-up period (i.e., 600s), to overcome the task

failures and cluster to become stable without further failures by spawning nodes giving

enough memory, it has taken up to the 1400s to reach a steady throughput. When

comparing overall performance throughput has been better in multi-cloud mode.

Overall throughput gain is 73% when compared to the private cloud mode.

Figure 4-8 Throughput comparison – memory-intensive workload.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1
0

1
0

0
1

9
0

2
8

0
3

7
0

4
6

0
5

8
0

7
1

0
8

1
0

9
0

0
9

9
0

1
0

9
0

1
2

5
0

1
3

4
0

1
4

3
0

1
5

2
0

1
6

3
0

1
7

3
0

1
8

2
0

1
9

1
0

2
0

2
0

2
1

1
0

2
2

0
0

2
2

9
0

2
3

8
0

Th
ro

u
gh

p
u

t
(T

P
S)

Time (s)

Private Cloud Multi-Cloud

54

4.4.2 Response Time Analysis

We experienced staled requests due to random task failures and accumulated memory

with tasks. Consequently, the response time for some of the requests was much longer.

In Figure 4-9 we can observe this behavior during the first 1400s in the test. However,

conditions have been improved after the first 1400s where we see a steady but higher

response time. This is a result of the dynamic infrastructure expansion to the connected

public cloud providing sufficient memory to run the workload. Afterward, there are no

task failures recorded due to overutilization of memory. Response time has been higher

in multi-cloud mode due to accumulated memory in tasks that are always running. In

contrast, in the private cloud mode, new tasks due to task failures have delivered lower

response times for a smaller number of successful requests, which can be seen in lower

throughput in the throughput analysis. Overall response time drop is 232% compared

to the private cloud mode with lower throughput.

Figure 4-9 Response time comparison - memory intensive workload.

4.4.3 Resource Utilization Analysis

Figure 4-10 and Figure 4-11 show the memory utilization of nodes when the memory-

intensive workload is applied to private cloud mode and public cloud mode,

0

500

1000

1500

2000

2500

3000

1
0

1
0

0

1
9

0

2
8

0

3
7

0

4
6

0

5
8

0

7
1

0

8
1

0

9
0

0

9
9

0

1
0

9
0

1
2

5
0

1
3

4
0

1
4

3
0

1
5

2
0

1
6

3
0

1
7

3
0

1
8

2
0

1
9

1
0

2
0

2
0

2
1

1
0

2
2

0
0

2
2

9
0

2
3

8
0

R
e

sp
o

n
se

 T
im

e
 (

m
s)

Time (s)

Private Cloud

55

respectively. Node 172.31.87.50 and 172.31.86.222 had been the manager nodes in the

two deployment modes. In the multi-cloud mode (Figure 4-11), rapid fluctuations of

memory utilization values in the first half of the test duration was caused by the

aforementioned task failures. It can be seen that with the new deployment of nodes in

the public cloud, memory utilization value has become stable and memory utilization

values are maintained below 50%, which is the maximum memory utilization limit.

Figure 4-10 Memory utilization under memory-intensive workload – private cloud mode.

Figure 4-11 Memory utilization under memory-intensive workload – multi-cloud mode.

Figure 4-12 and Figure 4-13 show the CPU utilization of each node when this

application is deployed in private cloud mode and multi-cloud mode, respectively.

Exceeding maximum CPU utilization threshold (40%) in multi-cloud mode may or

56

may not had been caused new nodes to be deployed because those recordings may

have occurred during a no-scaling period of 2 minutes after each new node deployment

to stabilize the load distribution.

Figure 4-12 CPU utilization under memory-intensive workload – private cloud mode.

Figure 4-13 CPU utilization under memory-intensive workload – multi-cloud mode.

4.5 Performance Evaluation of RESTful API Workload

Private cloud mode deployment of this application was done using a single worker

node. Before deciding on the test parameters of this test, we tested the same application

with a higher number of nodes and a smaller number of users. We were able to observe

57

that there is no visible improvement in multi-cloud mode with automated resource

expansion is enabled because private nodes alone had been able to handle the node

without any performance loss. Therefore, we increased the threads up to 1200 with a

single private cloud worker node to get visible improvement in the multi-cloud mode.

Throughput and response time were calculated on the aggregated test results of the six

requests even though we collected performance test results for the individual request.

4.5.1 Throughput Analysis

Figure 4-14 shows overall throughput comparison data of the Danveem API. Request

data of all 6 endpoints were used to calculate the overall throughput. We could see that

the overall throughput is improved by 46% in multi-cloud mode. Significant

improvement in throughput can be gained by increasing the number of users (threads)

further. Initial elevation of throughput was observed due to accumulated data

introduced by API requests making the application delivering lower throughput for

subsequent requests.

Figure 4-14 Overall throughput comparison – REST API workload.

0

20

40

60

80

100

120

1
0

1
1

0

2
1

0

3
1

0

4
1

0

5
1

0

6
1

0

7
1

0

8
1

0

9
1

0

1
0

1
0

1
1

1
0

1
2

1
0

1
3

1
0

1
4

1
0

1
5

1
0

1
6

1
0

1
7

1
0

1
8

1
0

1
9

1
0

2
0

1
0

2
1

1
0

2
2

1
0

2
3

1
0

Th
ro

u
gh

p
u

t
(T

P
S)

Time (s)

Private Cloud Multi-Cloud

58

4.5.2 Response Time Analysis

As we can see in Figure 4-15, the overall response time has been improved in multi-

cloud mode. Response time data for individual endpoints were aggregated to calculate

the overall response time. The overall reduction in response time is 7%.

Figure 4-15 Overall response time comparison - REST API workload.

4.5.3 Resource Utilization Comparison

The node named as 172.31.94.177 shows steady CPU utilization throughout the test in

Figure 4-16 is the manager node. We can observe that 2 vCPUs have been almost fully

utilized during the test. Hence, based on these stats maximum CPU threshold value

was decided as 95%.

Figure 4-16 CPU utilization under REST API workload - private cloud mode

0

10000

20000

30000

40000

50000

60000

70000

1
0

1
0

0
1

9
0

2
8

0
3

7
0

4
6

0
5

5
0

6
4

0
7

3
0

8
2

0
9

1
0

1
0

0
0

1
0

9
0

1
1

8
0

1
2

7
0

1
3

6
0

1
4

5
0

1
5

4
0

1
6

3
0

1
7

2
0

1
8

1
0

1
9

0
0

1
9

9
0

2
0

8
0

2
1

7
0

2
2

6
0

2
3

5
0

R
e

sp
o

n
se

 T
im

e
 (

m
s)

Time (s)

Private Cloud

59

As shown in Figure 4-17, 2 nodes were automatically deployed by the AppDock

automated resource expansion functionality. Node with IP address 172.31.90.251 had

been removed after 15 minutes as it did not contribute to the capacity to meet the

minimum CPU or memory utilization threshold values. We can see that the two nodes

172.31.84.209 and 172.31.82.250 have been able to maintain the CPU utilization value

below the maximum CPU utilization threshold of 95%. The maximum memory

utilization threshold value was decided as 30% to keep the memory utilization of all

the nodes lower that amount by observing the statistics shown in Figure 4-18.

Figure 4-17 CPU utilization under REST API workload- multi-cloud mode.

Figure 4-18 Memory utilization under REST API workload – private cloud mode.

60

Figure 4-19 shows that any node has not exceeded the maximum memory utilization

threshold value of 30%. This result shows that automated infrastructure resource

expansion can keep the resource utilization of the nodes in the cluster within the

minimum and maximum boundaries.

Figure 4-19 Memory utilization under REST API workload – multi-cloud mode.

4.6 Summary

We evaluated the performance of the AppDock platform for the possible type of

workloads that could be deployable in this platform. Those are CPU intensive

workloads, Memory intensive workloads, and applications integrated with external

services with balanced CPU and memory utilization. Almost all the applications that

could be containerized can be categorized into any of these types gaining real cost

benefits with performance. In the evaluation, we could see that the AppDock platform

performed well, handling extreme CPU and memory workloads.

This performance gain is further extended when the number of users is increased. This

performance evaluation was able to prove that a multi-cloud approach with dynamic

resource allocation can be used successfully with improved performance for any type

of application. As we observed increased response time in the multi-cloud mode for

the memory-intensive application, it is advisable to release the memory after the

request has been served. We saw that restarting tasks due to out of memory failures

lowered the response time. This phenomenon has caused releasing the memory and

eventually led to lowering the response time in private cloud mode.

61

5 CONCLUSIONS

5.1 Summary

Contemporary multi-cloud solutions have drawbacks such as tight coupling with the

applications, deployment complexities, or confined set of fixed infrastructure

resources, making it challenging to serve time-variant demands. We proposed a

container-based platform for multi-cloud application orchestration that can provision

infrastructure resources automatically. This leads to a significantly reduced cost for

time-variant resource demand due to resource efficiency. Combined with simplicity,

the proposed solution best fit for multi-cloud applications over other multi-cloud

software solutions and deployable PaaS solutions. Because the solution is based on

containerization, applications do not have any dependency on the platform. We based

the proposed platform, namely “AppDock,” on Docker container orchestration

platform so that any application deployable as a Docker service can be deployed within

the proposed platform too. The proposed platform has been designed to simplify

deployment and application migration in mind. AppDock platform can be deployed in

any number of identical nodes that act as the primary cloud. The primary cloud can be

established in any public or private cloud infrastructure. Nodes can be prepared for the

deployment by using the initial script provided with the platform. Once deployed,

multiple public cloud providers connected with the primary cloud via network layer

connectivity can be integrated by providing the required configurations through the

web interface of the Cluster Admin core component. Although the current system can

only be integrated with AWS and Azure, other public cloud providers can also be

integrated as future enhancements as the proposed architecture is extensible.

Applications that are deployed in this platform are created as plugins. Even though the

platform has only provided Node.js plugin, developing plugins for other technologies

when those technologies are ready to be deployed in the Docker Swarm architecture is

easily enabled by the plugin architecture of the AppDock platform. Because this is

only a hosting platform, AppDock does not provide any SDKs for the applications.

This will guarantee that applications will not tightly be coupled with the hosting

platform. Hence, the AppDock platform avoids vendor lock-in syndrome.

62

All the core components of the AppDock platform are developed as Docker services.

Apart from the Monitoring-Agent core component, all other services are runs only

inside the manager nodes. Monitoring-Agent resides in all the nodes within the cluster

and reports the runtime metrics to LogDB to be analyzed by the Scaling-Service core

component. This platform is developed using Node.js. Since all the core components

are running as Node.js containers deploying applications in other technologies is

allowed natively by Docker. As all the core components provide their service through

a REST API AppDock’s architecture reflects the SOA. This makes it easier to extend

the platform. Even though only the core functionalities have been implemented within

the scope of this research, applications with time-variant resource demand can still be

benefited as all the minimum required utility tools are developed. CLI tool is used for

deploying the AppDock platform within the primary cloud infrastructure and

continuously push applications to AppDock. The Scaling-Service core component is

mainly responsible for providing automated resource expansion features in this

platform. In collaboration with the Monitoring-Agent core component by utilizing

runtime metrics data, it analyzes CPU and memory utilization of each node in every

configured interval. Resource expansion or removal decisions are made if calculated

utilization values are not within the configured maximum and minimum threshold

values. After each scaling decision made, 2 minutes of the no-scaling period is given

to cluster balance the workload with newly spawned nodes or remaining nodes after

the removal of idle nodes.

We tested the effectiveness of AppDock by deploying it in different cloud providers

such as AWS EC2 and UpCloud. In such cases, cloud environments were connected

via site-to-site VPN connections. In addition to evaluating the effectiveness of

deploying the platform in multiple deployment scenarios, we performed a

comprehensive performance test covering three workload types, which include CPU

intensive, memory-intensive, and web applications integrated with external services.

Performance tests confirmed the performance improvement when the automated

resource expansion is enabled. CPU intensive workload exhibited significant

improvements in performance by improved throughput and response time. When it

comes to the memory-intensive workload, even though it displayed improvement in

63

performance with throughput, average response time increased. We assumed that

accumulated memory in multi-cloud mode had been the reason for this behavior since

we noticed that multiple task failures had been occurred due to out of memory

conditions in the nodes when deployed in the private cloud mode. This has led to

improved response time for successful responses, while many requests had been failed.

The RESTful API displayed expected performance improvement in both overall

throughput and response time in multi-cloud mode. Throughput improvement in CPU

intensive, memory-intensive, and REST API workloads were 180%,73%, and 46%,

respectively. While CPU intensive and REST API workloads reported improved

performance of response time as 36% and 7%, memory-intensive workload reported a

performance loss in response time 232% due to task failures.

5.2 Research Limitations

Providing simple to deploy a hosted solution in a multi-cloud environment has its

limitations while maintaining simplicity. When the solution is evolving with new

features added, it is inevitable to introduce further configurations for deployment and

maintenance. Since the application was intended to be considering simplicity as its top

priorities possibilities of adding sophisticated features like in OpenShift [6] and Cloud

Foundry [7] would be limited.

Since the AppDock platform has heavily adopted the Docker echo system, only

applications that can be containerized can be deployed in this platform since

ultimately, these applications are deployed as Docker services within the cluster. Most

of the persistence storage technology vendors such as MongoDB and MySQL have

not designed their applications automated scaling in mind. Adopting their containers

to be scaled in a Docker Swarm cluster is challenging. This will require significant

deployment effort additionally to AppDock cluster management effort. Some of the

widely adopted applications cannot be deployed on this platform. Thus, we have to

look for alternative applications that are Docker Swarm friendly.

Multi-Cloud approach under the IaaS model depends on the network layer

connectivity, which is only achievable via VPN or costly direct connections like AWS

64

Direct Connect [40]. Both options have their drawbacks. The reliability of VPN

connections cannot be guaranteed for critical applications. Even though we could

maintain a secondary VPN connection to improve the reliability, network

communication over VPN has a performance impact on the application. Indented cost-

effectiveness cannot be gained if multiple cloud providers are connected via direct

network connections. Because of these reasons having to connect multiple cloud

providers via VPN is a limitation in this approach. Placing the private cloud within the

public cloud environment itself is a viable alternative solution for this problem as we

have already tested successfully in this deployment mode doing our performance test.

The threshold values used by the resource scaling logic is the same for all the services

deployed within the platform. This means all the services deployed in the platform will

have to be scaled as new nodes are added or removed from the node cluster. We have

introduced replicas per node number parameter at the service level to gain granular

control over services to be scaled by this number when new nodes are added or

removed. Hence, maintaining common resource utilization threshold values for all the

services has led to scaling all the services by its replicas per node parameter value

when infrastructure resources are scaled when resource utilization of a particular node

has mostly affected by a single service.

We have not considered overhead when collecting resource utilization metrics from

the nodes. Monitoring Agent running inside each node will communicate with the

Docker engine in its machine periodically. Even though we do not think this is posing

a major impact on the performance of containers running the applications, it is worth

looking deeper into Docker's implementation of how these stats are reported.

The AppDock platform is capable of hosting multiple services simultaneously. Our

performance evaluation has not covered this. Since our categorization of workloads

was mainly CPU intensive, memory-intensive, and REST web API integrated with a

PaaS backend service, this does not cover a workload that is a mix of these and with

multiple services.

Performance results may vary based on the test parameters, especially threshold

values, the number of primary cloud nodes, and the number of users. We decided these

65

values empirically based on the initial run in each test case in the private cloud mode.

Currently, we do not have a systematic methodology or equation to build a relationship

among these parameters. Further performance gains could be made with the right set

of values for the parameters above.

The selection of the public cloud provider when the infrastructure resource scaling

decisions are made follows a random approach. We think it is more desirable to follow

a priority-based approach based on the user-defined criteria. We suggest providing

configurations to the user set the priorities by considering high availability

requirements of individual service to run in a mix of cloud environments in case

network connectivity drops between cloud providers. Preferred cloud environments

could also be set based on the available regions of individual service for improved QoS

(Quality of Service). While integrated with multiple cloud environments, it is

important to configure the workload distribution cost-effectively. These factors can be

considered when calculating the priority of a cloud environment.

5.3 Future Work

Even though there may be many new features possible with this kind of platform, the

following functional areas were identified as immediate future work:

1. Enabling multiple instances for LogDB core component – Currently, the LogDB

core component in this solution uses MongoDB as the persistence storage. Even

though we initially planned running MongoDB multiple instances as a Docker

Service for a single storage file located in the NFS folder, we were able to run a

single container in standalone mode. This has hit the application with a single point

of failure. We need to further work on extending MongoDB into multiple instances

in Docker Swarm mode or changing the persistence storage technology to any

other technology. LogDB Repository developed using a repository pattern to deal

with this kind of LogDB technology changes. Upon selecting viable technology, a

new implementation for the existing set of interfaces has to be added in addition to

the Mongoose implementation for MongoDB.

66

2. Adding multiple manager nodes – With the current implementation, multiple

manager nodes can be added when the platform deployment and when new nodes

are added via CLI command “appdock addnode”. The current solution is not

capable of adding new manager nodes with automated resource expansion. It is

essential to come up with a logic to increase the number of manager nodes to

maintain the quorum of managers [41].

3. Enabling user authentication for managing the AppDock cluster – Upon

deployment of the AppDock cluster, anybody can access the cluster-admin module

within the network on port 3000. This behavior is not desirable. We have identified

that any user authentication mechanism should be incorporated into the user

interaction points of the application. User interaction points are CLI that each

developer is installing on their development environments and Cluster Admin web

interface. CLI application is already using a local storage file to store user data.

4. Incorporating monitoring and metering features – The current implementation of

the AppDock platform lacks resource monitoring dashboards and usage metering

features. Resource monitoring dashboards can be integrated with the existing

Cluster Admin web interface. Resource utilization real-time data is already

available in the LogDB. Usage metering will be a complicated task to accomplish

where new core components might be needed, with proper usage listeners added

into it.

5. Threshold values for individual service – It will be more successful if individual

service can have minimum/maximum resource utilization threshold values, as

infrastructure resources can be allocated more effectively among services.

6. Testing the AppDock with a mix of workloads – As our performance evaluation

did not cover a mix of CPU intensive and memory-intensive workloads in a real-

world application with multiple services, it is worth evaluating the suitability of

the AppDock platform for such real-world extreme workloads to prove the

suitability of the platform for any workload.

7. Dynamically threshold value estimation – Following ad hoc heuristics to determine

threshold values does not guarantee the resource allocation meeting expected QoS

and the SLA while efficiently using the cloud resources. A dynamic threshold

value estimation method could be introduced by considering the above factors.

67

REFERENCES

[1] P. Mell and T. Grance, “The NIST definition of cloud computing,” National

Institute of Standards and Technology, September 2011. [Online]. Available:

http://faculty.winthrop.edu/domanm/csci411/Handouts/NIST.pdf. Accessed:

Dec. 31, 2019.

[2] Amazon Web Services, “Deploying applications to AWS Elastic Beanstalk

environments,” [Online]. Available: https://docs.aws.amazon.com

/elasticbeanstalk/latest/dg/using-features.deploy-existing-version.html.

(accessed Sep. 7, 2019).

[3] Red Hat, Inc., “OpenShift deployments,” [Online]. Available:

https://docs.openshift.com/enterprise/3.2/dev_guide/deployments.html.

(accessed Sep. 07, 2019].

[4] C. Pahl, “Containerization and the PaaS cloud,” IEEE Cloud Computing, vol.

2, pp. 24-31, May-June 2015.

[5] A. Tosatto, P. Ruiu and A. Attanasio, “Container-based orchestration in

cloud:state of the art and challenges,” in 2015 9th Int. Conf. on Complex,

Intelligent, and Software Intensive Systems, Blumenau, 2015.

[6] Openshift Origin, “Openshift Origin documentation,” RedHat, [Online].

Available: https://docs.openshift.org/latest/minishift/getting-

started/index.html. (accessed Jun. 1, 2019).

[7] Cloud Foundry Foundation, “Cloud Foundry overview,” Cloud Foundry

Foundation, [Online]. Available: http://docs.cloudfoundry.org/concepts/

overview.html. (accessed Jul. 1, 2019).

[8] MarketsandMarkets Research Private Ltd, “Multi-cloud management market,”

2020. [Online]. Available: https://www.marketsandmarkets.com/Market-

Reports/multi-cloud-management-market-18600020.html. (accessed Feb. 18,

2020).

[9] P. Fretty , “Understanding the benefits of a multi-cloud strategy,” BMC

Software, Inc., 15 05 2018. [Online]. Available:

https://www.cio.com/article/3273108/cloud-computing/understanding-the-

benefits-of-a-multi-cloud-strategy.html. (accessed Jul. 30, 2018].

[10] M. Toivonen, “Cloud provider interoperability and customer lock-in,” in Univ.

of Helsinki,Cloud-Based Software Eng., Helsinki, 2013.

68

[11] Intel Corp., “The case for orchestration of cloud infrastructure,” May 1, 2015.

[Online]. Available: https://www.intel.com/content/www/us/en/cloud-

computing/cloud-orchestration-for-business-agility-paper.html. (accessed

Aug. 8, 2019).

[12] tsuru authors, “Tsuru documentation,” Tsuru, [Online]. Available:

https://tsuru.io. (accessed Sep. 07, 2019).

[13] W. Jansen and T. Grance, “Guidelines on security and privacy in public cloud

computing,” NIST Special Publication 800-144, December 2011.

[14] vmware, “Virtualization,” VMware, Inc, 2018. [Online]. Available:

https://www.vmware.com/solutions/virtualization.html. (accessed 01 01

2019).

[15] M. Saleem, S. and B. G. Shah, “Cloud computing virtualization,” Int. Journal

of Computer Applications Technology and Research, vol. 6, no. 7, pp. 290-

292, 2017.

[16] D. Firesmith, “Virtualization via containers,” Software Engineering Institute,

Carnegie Mellon Univ., 25 Sep. 2017. [Online]. Available:

https://insights.sei.cmu.edu/sei_blog/2017/09/virtualization-via-

containers.html. Accessed: Mar. 1, 2019.

[17] R. Wadsworth, “Beyond Docker: Other types of containers,” Contino, 11

2016. [Online]. Available: https://www.contino.io/insights/beyond-docker-

other-types-of-containers. (accessed Apr. 1, 2019).

[18] A. Hawkins, “Container technologies: more than just Docker,”

Cloudacademy, 25 08 2016. [Online]. Available:

https://cloudacademy.com/blog/container-technologies-more-than-dockers/.

(accessed May 1, 2019).

[19] “Docker overview,” Docker Inc, 2017. [Online]. Available:

https://docs.docker.com/engine/docker-overview/.

[20] linuxcontainers.org, “LXC introduction,” Canonical Ltd , [Online]. Available:

https://linuxcontainers.org/lxc/introduction/. (accessed Oct. 7, 2019].

[21] Docker Inc., “Swarm mode overview,” Docker Inc., 2018. [Online].

Available: https://docs.docker.com/engine/swarm/. (accessed Aug. 1, 2019).

[22] T. Taylor, “The ultimate guide to container registries,” Oracle, 21 04 2017.

[Online]. Available: http://blog.wercker.com/ultimate-guide-to-container-

registries. (accessed Aug. 19, 2019).

69

[23] A. J. Ferrer, D. G. Pérez and R. S. González, “Multi-cloud platform-as-a-

service model, Functionalities and,” in Procedia Computer Science, Madrid,

2016.

[24] D. Petcu, “Multi-cloud: Expectations and current approaches,” in Proc. 2013

Int. workshop on Multi-cloud applications and federated clouds, Prague, 2013.

[25] The Apache Software Foundation, “Apache jclouds,” The Apache Software

Foundation, [Online]. Available: http://jclouds.apache.org/. (accessed Mar. 2,

2020).

[26] The Apache Software Foundation, “Apache LibCloud,” The Apache Software

Foundation, [Online]. Available: http://libcloud.apache.org/.(accessed Mar. 2,

2020).

[27] The Apache Software Foundation, “&.Cloud,” The Apache Software

Foundation, [Online]. Available: https://deltacloud.apache.org/. (accessed

Mar. 2, 2020).

[28] RightScale, Inc., “Welcome to RightScale Docs,” [Online]. Available:

https://docs.rightscale.com/. (accessed Mar. 2, 2020).

[29] R. Mitchell, “The 8 best open-source tools for building microservice apps,”

TechBeacon, [Online]. Available: https://techbeacon.com/8-best-open-source-

tools-building-microservice-apps. (accessed Jul. 31, 2019).

[30] AppScale Systems, Inc, “AppScale,” AppScale Systems, Inc, 2018. [Online].

Available: https://www.appscale.com/. (accessed Jul. 1, 2019].

[31] Microsoft Azure, “Azure stack,” Microsoft Corporation, [Online]. Available:

https://azure.microsoft.com/en-us/overview/azure-stack/. (accessed Jul 1,

2019).

[32] Apache Stratos, “4.1.x about Apache Stratos,” Apache, 18 08 2015. [Online].

Available:

https://cwiki.apache.org/confluence/display/STRATOS/4.1.x+About+Apache

+Stratos. (accessed Jun. 27, 2019).

[33] Apache Stratos, “Apache Stratos 4.1.x architecture,” Apache, 15 08 2018.

[Online]. Available:

https://cwiki.apache.org/confluence/display/STRATOS/4.1.x+Architecture.

(accessed Jun. 27, 2019).

[34] Docker, Inc., “Use swarm mode routing mesh,” [Online]. Available:

https://docs.docker.com/engine/swarm/ingress/. (accessed Jul. 15, 2019].

70

[35] Docker Inc., “Docker engine API (v1.40),” [Online]. Available:

https://docs.docker.com/engine/api/v1.40/#operation/ServiceCreate. (accessed

Oct. 23, 2019].

[36] Docker Inc., “Post-installation steps for Linux,” [Online]. Available:

https://docs.docker.com/v17.12/install/linux/linux-postinstall/. (accessed Oct.

25, 2019).

[37] Canonical Ltd. , “SettingUpNFSHowTo,” [Online]. Available:

https://help.ubuntu.com/community/SettingUpNFSHowTo. (accessed Oct. 10,

2019).

[38] S. Louv-Jansen, A CPU intensive operation, Copenhagen, 2019.

[39] J. Carroll, “Container exits with non-zero exit code 137,” Docker Inc.,

[Online]. Available: https://success.docker.com/article/what-causes-a-

container-to-exit-with-code-137. (accessed Dec. 15 2019).

[40] Amazon Web Services, Inc., “AWS Direct Connect,” [Online]. Available:

https://aws.amazon.com/directconnect/. (accessed Dec. 16, 2019).

[41] Docker Inc., “Administer and maintain a swarm of Docker engines,” [Online].

Available: https://docs.docker.com/engine/swarm/admin_guide/. (accessed

Dec. 16, 2019).

71

APPENDIX A – AVAILABLE METHODS IN PROXY

INTERFACES

Table A-1 Available methods in the AppDock HTTP proxy interface.

Method Name HTTP

Verb

URL Description

AddNewNodeToSwarm POST /api/swarm/node Adds a new node to the

platform

RemoveNodeFromSwarm DELETE /api/swarm/node Remove a node from the

platform.

CreateNewNode POST /api/cloud/node Creates a new node in the

requested public cloud

environment.

RemoveCloudNode DELETE /api/cloud/node Remove the node from the

public cloud environment.

Deploy POST /api/deploy Deploys an application to

the AppDock cluster.

SaveNodes POST /api/nodes Persist list of nodes in the

LogDB.

CreateService POST /api/service Create a service definition

and download the plugin

content.

UpdateAllServices POST /api/service/update Update all services to be

scaled in newly added

nodes.

GetAllPlugins GET /api/plugin List all plugins.

DownloadPluginContent GET /api/plugin/download Downloads the selected

plugin content.

SaveScalingServiceConfig POST /api/scalingservice/config Save scaling service

configurations.

GetScalingServiceConfig GET /api/scalingservice/config Get the scaling service

configurations.

72

Table A-2 Available methods in the Docker HTTP proxy interface.

Method Name HTTP

Verb

URL Description

JoinSwarm POST /swarm/join Join the node with an existing

swarm.

GetTokens GET /swarm Gets join tokens of the Docker

swarm.

InitSwarm POST /swarm/init Initializes a new swarm.

CreateSwarm POST /services/create Creates a new Docker service.

GetContainerStat GET /containers/<container

Id>/stats?stream=false

Gets container runtime

statistics.

GetAllTasks GET /tasks Gets all the tasks running in the

node.

GetSystemInfo GET /info Gets system information of the

node.

LeaveSwarm POST /swarm/leave Leave a node form Docker

swarm.

BuildImage POST /build Build a Docker image in the

selected node.

InspectService GET /services/<service_name> Inspect a Docker service.

UpdateService POST /services/<service_name>/upd

ate

Update a Docker service with

the given service template.

DeleteService DELETE /services/<service_name> Remove a service.

TagImage POST /images/<image_name>/tag Tags an existing Docker image.

InspectAnImage GET /images/<image_name>/json Inspect an image that exists in

the selected node.

ListAllNodes GET /nodes List all the nodes of a Docker

swarm.

73

APPENDIX B – COMMANDS IN APPDOCK CLI

 CreateClusterCommand – appdock create -c ,--config <configFile>

This command initializes the AppDock platform on the provided nodes via a

configuration file. Cluster creation involves configuration file validation,

initializing Docker Swarm cluster on the first manager node, initializing core

services and persisting nodes in the LogDB.

 AddNodeCommand – appdock addnode -c, --config <config file> | --aws -t

<w|m> | --azure -t <w|m> | --addr <node address> [--advaddr <node

advertise address>] -t <w|m>

This command is used for adding nodes after the AppDock cluster has been

initialized. A list of nodes can be added via --config option and a

configuration file. New nodes in AWS and Azure cloud environments can be

added via --aws and --azure options. A single node in the private cloud

environment can be added via --addr option. In each option -t is passed to

indicate whether the node is a worker (w) or a manager (n).

 CreateServiceCommand – appdock crtsvc

Initial service creation is done via this command. Series of 5 inputs will be

taken from the user for service name, service description and plugin number

to be used, replicas for a node and NFS folder name to be used as the file

storage exclusively for the service. Afterward, files can be accessed on the

path /mount/<folder name given> within the application. This will extract

plugin content from the current working directory. Plugin content alone is

sufficient to create an application of intended technology within the AppDock

platform. The application is incrementally developed by the developer.

 DeployCommand – appdock deploy

Running this command in the directory containing application source code

along with the extracted and modified plugin content suite to the application’s

need will deploy the application as a service in the AppDock platform.

Service will have the number of replicas in each node specified in the service

creation phase.

74

 ScalingServiceConfigCommand – appdock ssconfig --maxcpu <max cpu> --

mincpu <min cpu> --maxmemory <max memory> --minmemory <min

memory> --minuptime <minimum node up time>

This command is used to alter threshold values used by the Scaling Service

core component to deploy new nodes when nodes maximum limits and to

remove nodes when they reach minimum limits. Setting --minuptime

guarantee node is not removed even minimum resource utilization is not met

until the specified time is passed.

