

A Bitcoin Based Secure Electronic Voting System

by DMGK Wimalarathne (168278C)

A thesis submitted to University of Moratuwa in partial fulfilment of the requirements for the Master of Computer Science, Specialized in Security Engineering

Department of Computer Science & Engineering University of Moratuwa, Sri Lanka

 $February\ 2020$

A Bitcoin Based Secure Electronic Voting System

by $DMGK\ Wimalarathne\ (168278C)$

A thesis submitted to University of Moratuwa in partial fulfilment of the requirements for the Master of Computer Science, Specialized in $Security\ Engineering$

Department of Computer Science & Engineering University of Moratuwa, Sri Lanka

 $February\ 2020$

Declaration

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text. Also, I hereby grant to University of Moratuwa the nonexclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

DMGK Wimalarathne:	Date
Approved by:	
Approved by.	
Lt Col Dr Chandana D. Gamage	

Department of Computer Science and Engineering

University of Moratuwa

Copyright Statement

I hereby grant the University of Moratuwa the right to archive and to make available my thesis or dissertation in whole or part in the University Libraries in all forms of media, subject to the provisions of the current copyright act of Sri Lanka. I retrain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

DMGK Wimalarathne:	Date
I have supervised and accepted this thesis/dissertation	for the award of the degree.
Lt Col Dr Chandana D. Gamage	Date
Department of Computer Science and Engineering	
University of Moratuwa	

Abstract

Over the last few decades, several electronic systems have been proposed and implemented to as attempt to replace the traditional paper-based voting systems. Even though the e-voting system are more efficient and convenient than the traditional voting systems, it was identified that they should meet the specific security goals, such as authentication, anonymity, availability, and integrity up to the same level that is provided by manual systems.

If the voting system is centralized and controlled by one party, they may have the opportunity to manipulate the votes thereby compromise the integrity. In this paper we propose a Bitcoin based online transaction system to provide a solution to the identified integrity related threats in an electronic voting system.

We have taken an existing, well-proven, robust, scalable e-cash system as the basis for implementing the e-voting system. A comprehensive list of properties and features expected of an e-cash system and e-voting system have been analysed in the paper to show how different properties/features of an e-voting system map to an e-cash system. We have shown how various functionalities of a bitcoin-like system directly provide the required features/properties of an e-voting system. Also, we have shown how various functionalities of a bitcoin-like system can be modified and/or adapted to provide some of the other required features/properties of an e-voting system.

Based on the outcomes of the methodology, we discuss how the complete e-voting system is going to be built on blockchain technology. Further, we discuss how strongly various security and performance requirements are being met in the research work related to the proposed e-voting system.

Acknowledgements

I would like to express profound gratitude to my supervisor, Dr. Chandana Gamage, for his invaluable support by providing relevant knowledge, materials, advice, supervision, and useful suggestions throughout this research work. His expertise and continuous guidance enabled me to complete my work successfully.

I am grateful for the support and advice given by the CSE Lecturer panel and the MSc course coordinators, by encouraging continuing this research till the end. Further I would like to thank all my colleagues for their help on finding relevant research material, sharing knowledge and experience and for their encouragement.

I am as ever, especially indebted to my parents and sister for their love and support throughout my life.

Abbreviations

ATM - Automated Teller Machine

BIP - Bitcoin Improvement Proposal

CPU - Central Processing Unit

DRE - Direct Recording Electronic

DVBM - Digital Vote-by-Mail

E2E - End-to-end

ECC - Elliptic Curve Cryptography

ECDSA - Elliptic Curve Digital Signature Algorithm

NFC - Near-field communication

P2PKH - Pay-To-Public-Key-Hash

PIN - Personal Identification Number

PKI - Public Key Infrastructure

PRNG - Pseudo Random Number Generator

QR code - Quick Response code

SHA - Secure Hash Algorithm

TLS - Transport Layer Security

URI - Uniform Resource Identifier

VVPAT - Voter Verified Paper Audit Trail

Table of Contents

	Declarati	on	\mathbf{v}
	Copyrigh	at Statement	vi
	Abstract		vii
	Acknowle	edgements	viii
	Abbrevia	tions	ix
	Table of	Contents	x
	List of T	ables	xiii
	List of F	igures	xiv
1.	Introduc	tion	1
	1.1.	Background	1
	1.2.	Research Problem	2
	1.3.	Objective	3
	1.4.	Organization of the Thesis	3
2.	Literatur	e Review on e-Voting and e-Cash Systems	5
	2.1.	Existing Voting Systems	5
	2.1.	1 Paper Ballots	5
	2.1.	2 Electronic Voting Systems	6
	2.1.	3 Internet Voting	6
	2.2.	Related Work	7
	2.2.	1. Voting: What Has Changed, What Hasn't, & What Needs Improvement	7
	2.2.	2. Security considerations for remote electronic voting	8
	2.2.	3. On the notion of 'software independence' in voting systems	9
	2.2.	4. Voting Systems Audit Log Study	9
	2.2.	5. An Introduction to Electronic Voting	9
	2.2.	6. Security Analysis of the Estonian Internet Voting System	10

	2.2.7.	Attacking the Washington, D.C. Internet Voting System	13
	2.2.8.	End-to-end voting systems	15
	2.2.9.	Blockchain based e-voting systems	15
	2.2.10.	Summary	16
3.	Methodology	for Designing Bitcoin Based Electronic Voting System	em 18
	3.1. Intr	oduction	18
	3.2. List	of Properties and Features Expected of an e-cash System	19
	3.3. Pro	perties and features of Bitcoin	20
	3.3.1.	Transferability	20
	3.3.2.	Anonymity	23
	3.3.3.	Authenticity and Tamper-Resistance	23
	3.3.4.	Unforgeability	24
	3.3.5.	Double spending avoidance/detection	24
	3.3.6.	Date/Time attachability	25
	3.3.7.	Divisibility	25
	3.3.8.	Portability	26
	3.4. List	of Properties and Features Expected of an e-voting System.	27
		oping the properties/features of an e-voting system to a seem	
	3.6. Add	opting Functionalities of a Bitcoin-like System	29
4.	System Desig	gn and Implementation	33
	4.1. Intr	oduction	33
	4.2. Ger	neral Assumptions	33
	4.3. Pre	-election setup	34
	4.4. Elec	ction	38
	4.5. Tab	oulation	39
	4.6. Sys	tem Architecture	40
		of of Work Implementation	
	4.8. Sun	nmary	43
5.	System Evalu	uation and Performance Review	44
	5.1. Intr	oduction	44
	5.2. Eva	duation of Security Requirements of an e-Voting System	44
	5.2.1.	Authorization.	44
	5.2.2.	Anonymity	44
	5.2.3.	Tamper-resistance	45
	5.2.4.	Restriction of attempts	
	5.2.5.	Prevention of impersonation	46
	5.2.6.	Individual Verifiability	46
	5.2.6. 5.2.7.	Individual Verifiability Universal Verifiability	

	5.3.	1. Random Number Generation	46
	5.3.	2 Elliptic Curve Digital Signature Algorithm and secp256k1 (Curve47
	5.3.	Private Key Management	47
	5.4.	Evaluation of the Performance	48
	5.5.	Summary	48
6.	Conclusio	ons	50
References		51	

List of Tables

2.1 Attacks on the Diebold AccuVote-TS 4.3.1 system	16
3.1 Similar Features in e-cash and e-voting systems	
5.1 Performance Data of the e-Voting System	48

List of Figures

2.1	AccuVote TS and TSX touch screen DRE voting machines	6
2.2	I-voting client used by Estonians to cast votes online [8]	7
2.3	The ovevirew of the i-voting system	
2.4	(a, b, c) i-Voting system protocols	12
2.5	Network architecture of the Washington, D.C. Internet Voting System	13
2.6	Screenshots of the Washington, D.C. Internet Voting System	14
2.7	Zcash based e-voting system	16
3.1	Creating a P2PKH Public Key Hash to Receive Payment [21]	20
3.2	Example Base 58 Encoding Algorithm [24]	22
3.3	QR Codes Containing a Bitcoin URI	22
3.4	Only the Bitcoin Address is Required to Make a Payment	23
3.5	Transaction Data is Signed with Bob's Private Key	24
3.6	Bitcoin Transactions	25
3.7	Each Transaction Spends Previously Received Satoshis	26
3.8	Bitcoin Payment Protocol Proposed in BIP 70	31
4.1	Pre-election Setup	34
4.2	Conversion from ECDSA Public key to Address. Source: bitcoin.it	36
4.3	Pre-election Transactions	37
4.4	The e-Voting Blockchain	37
4.5	The Election	38
4.6	The Voting Transactions	39
4.7	Sample Vote Balance Recorded to a Candidate's Address	39
4.8	Bitcoin Based e-Voting System Architecture	40
4.9	App syncs with the network(left) The initial vote balance is 0 (right)	41
4.10	Voter can request votes from the Election Committee	42
4.11	The spendable vote balance is reflected in the voter's wallet	42
4.12	2 Confirmed vote total recorded to candidate's address	43
5.1	Anonymity Verification	45