
ANALYZING AND MODELLING WEB SERVER BASED

SYSTEMS

Pasindu Nivanthaka Tennage

188012C

Degree of Master of Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

July 2020

ANALYZING AND MODELLING WEB SERVER BASED

SYSTEMS

Pasindu Nivanthaka Tennage

188012C

Thesis submitted in partial Fulfillment of the Requirements for the Degree Master of

Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

July 2020

2

Declaration

“I declare that this is my own work and this thesis does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another

person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce

and distribute my thesis, in whole or in part in print, electronic or other medium. I

retain the right to use this content in whole or part in future works (such as articles or

books)”.

Signature: Date: 2020-06-15

The above candidate has carried out research for the Masters thesis under my

supervision.

Signature (Sanath Jayasena): Date: 2020-06-15

Signature (Malith Jayasinghe): Date: 2020-06-15

3

 i

Abstract

Server based systems are widely used in modern computer systems. Understanding the
performance of web server based systems, under different conditions is important. This
requires a step by step approach that includes modelling, designing, implementing,
performance testing and analyzing of results. In this research, we aim at characterizing the
web server systems under different configurations. We present a summary of prevalent server
architectures, provide a systematic approach for performance testing, and present a novel
open source Python library for latency analysis. We experiment on existing server
architectures, and propose eight new server architectures. Our analysis shows that under
different conditions the new architectures outperform the existing architectures. Moreover
we do an extensive tail latency analysis of Java microservices.

Key words : Server architectures, tail index, performance, latency, throughput, web

4

ii

Acknowledgements

I would like to acknowledge with greatest gratitude the help and guidance I received

to conduct this research, from these respected persons. I would like to show my

deepest gratitude to project supervisors Professor Sanath Jayasena and Dr Malith

Jayasinghe for the thorough guidance and the consistent assistance I received

throughout this research. My gratitude goes to Dr Srinath Perera for guiding me in

the research through numerous consultations.

5

iii

Table of Contents

Declaration i

Abstract ii

Acknowledgements iii

Table of Contents iv

List of Figures vii

List of Tables viii

List of Abbreviations ix

1. INTRODUCTION 1

1.1. Research Problem 3

1.1.1 Motivation and overview 3

1.1.2 Problem statement 3

1.2. Research Objectives 3

2. RELATED WORK 4

2.1 Web Services 4

2.2 Concurrency 6

2.3 Scalability 6

2.4 Web Server Architectures 7

2.5 Message Passing Architectures 8

2.6 Microservices 9

2.7 Summary 9

3. SERVER ARCHITECTURES 10

3.1 Introduction 10

3.2 Client Server Paradigm 10

3.3 Mobile Agents 10

3.4 Service Oriented Architecture 10

3.5 Microservices 11

4. PERFORMANCE ENGINEERING 12

4.1 Introduction 12

4.2 Benchmarks 13

4.3 Workload Generation 14

6

iv

4.3.1 Real workloads 14

4.3.2 Synthetic workloads 14

4.4 Performance Models 15

4.4.1 Open loop model 15

4.4.2 Closed loop model 15

4.4.3 Half open model 15

4.5 Tools 16

4.6 Performance Measurement 18

4.7 Latency Analysis Methods 18

4.7.1 Average latency 18

4.7.2 Latency percentiles 18

4.7.3 Distribution analysis 19

4.7.4 Theoretical distributions 23

4.7.5 Long tail distribution analysis 26

5. WEB SERVER ARCHITECTURES 33

5.1 Web Server Architectures 33

5.1.1 Thread per request architecture 33

5.1.2 Event driven architecture 34

5.1.3 Staged event driven architecture 36

5.2 Message Passing Architectures 37

5.2.1 Queue 37

5.2.2 Disruptor 37

5.2.3 Actors 39

5.3 Methodology and Implementation 40

5.3.1 Micro benchmark applications 42

5.3.2 Workload generation 42

5.4 Experiment Setup 44

5.5 Results 44

5.6 Discussion 44

5.6.1 Blocking architectures 45

5.6.2 NIO architectures 49

5.6.3 NIO2 architectures 50

5.6.4 SEDA architectures 51

5.7 Summary 51

6. JAVA MICROSERVICES TAIL LATENCY ANALYSIS 53

7. SCALABILITY 54

7

 v

7.1 Introduction 54

7.2 Amdahl’s Law for Software Scalability 55

7.3 Universal Scalability Law for Software Scalability 56

7.4 WSO2 Enterprise Integrator Dataset 57

7.5 Experimental Setup 57

7.6 Results and Discussion 58

7.7 Summary 60

8. DISCRETE EVENT SIMULATION 61

8.1 Introduction 61

8.2 Definitions 61

8.3 SimPy 62

8.3.1 Major concepts 62

8.4 Closed System DES Simulation 63

8.4.1 Client process 65

8.4.2 Server process 65

8.4.3 Results and discussion 66

8.5 Modelling Interservice Calls 68

8.5.1 Results and analysis 70

8.6 Summary 71

9. LOAD BALANCING 72

9.1 Introduction 72

9.2 Definition 72

9.3 Experiment Setup 73

9.4 Results and Discussion 75

9.5 Summary 79

10. CONCLUSION 80

Appendix A: Server Architecture Results 93

8

vi

List of Figures

Figure 4.1 JMeter Experimental Setup 16

Figure 4.2 Histogram 20

Figure 4.3 Probability Density Function 21

Figure 4.4 Cumulative Distribution Function 22

Figure 4.5 Maximum Likelihood Pareto Fit of Data 24

Figure 4.6 Mass Count Disparity 27

Figure 4.7 Lorenz Curve 29

Figure 4.8 Heavy Tailed Distributions 29

Figure 4.9 LLCD 31

Figure 4.10 Hill Plot 32

Figure 5.1 Thread per Request Class Diagram 34

Figure 5.2 Reactor Pattern 35

Figure 5.3 Proactor Pattern 35

Figure 5.4 SEDA Architecture 36

Figure 5.5 Disruptor Structure 39

Figure 7.1 EI setup 57

Figure 7.2 USL curves 60

Figure 8.1 DES Abstraction 63

Figure 8.2 Single Server Python Code 64

Figure 8.3 Interservice Calls DES Abstraction 68

Figure 8.4 Interservice Calls, Python Code 69

Figure 9.1 Single Service 74

Figure 9.2 Two Services 74

Figure 9.3 Three Services 74

9

vii

List of Tables

Table 4.1 Workload Generation Tools 17

Table 5.1 Mechanical Sympathy 38

Table 5.2 Server Architectures 40

Table 7.1 Universal Law of Scalability Performance Results 58

Table 7.2 USL Parameters 59

Table 8.1 Closed System DES Results 66

Table 8.2 Interservice calls DES results 70

Table 9.1 Hardware Configurations 75

Table 9.2 Load Balancing Results 76

10

viii

List of Abbreviations

Abbreviation Description

CCDF Complementary Cumulative Distribution Function

CDF Cumulative Distribution Function

DES Discrete Event Simulation

HTTP HyperText Transfer Protocol

LLCD Log Log Complementary Graphs

PDF Probability Density Function

REST Representational State Transfer

RPC Remote Procedure Call

SEDA Staged Event-driven Architecture

SOAP Simple Object Access Protocol

UDDI Universal Description, Discovery, and Integration

URI Uniform Resource Identifier

WSDL Web Services Description Language

XML-RPC XML Based RPC

11

ix

1. INTRODUCTION

Server based systems are widely used in modern computer systems. Hence,

understanding the performance of web server based systems, under different

conditions is essential. This requires a systematic approach that consists of

modelling, designing, implementing, performance testing and analysing the results.

In this research, we aim at characterizing the web server systems under different

configurations.

Server based systems cover a wide range of applications that can be categorized into

different architectures. Hence it is important to first understand different architectural

styles such as monolithic and service oriented architecture. We first present a case

study of existing web architectures, such as monolithic, and microservices.

Second we provide a systematic approach to characterize the server based system

performance. We explore the benchmarks, workload generation, theoretical models,

tools and measurement technologies. There, we present a novel open source Python

library for latency analysis.

Third, we discuss the existing server architectures, Blocking, NIO, NIO2 and Staged

event driven architecture, and message passing architectures, Queue, Disruptor and

Actors. Then we propose 12 web server architectures, eight of which are novel,

which are combinations of above server architectures and message passing

architectures. We perform an extensive analysis of the 12 architectures and show that

the novel architectures outperform the existing architectures for some use cases.

High tail latency is an important area of systems research. Many prior work have

attempted to characterize and mitigate the long tail latency values of different types

of systems. However, tail latency characteristics of microservices is still an unknown

area with little to no existing prior works. As the fourth part of this thesis, we explore

the tail latency characteristics of microservices. Our findings and conclusions are

1

published in Tennage et al. [89], hence we only provide the references in this thesis.

An interested reader can refer to our original publication [89] for complete details.

We then focus on scalability characteristics of web servers. We first discuss the

theoretical models of scalability, Amdahl’s law and Universal Scalability law. Then

we perform an extensive analysis of WSO2 Enterprise Integrator scalability using

Universal scalability law as the model.

Discrete event simulation is a technique that can be used to model server based

systems, without performing extensive tests. In this approach a server is simulated in

a virtual environment. Due to its flexibility and cost effectiveness, discrete event

simulation has gathered a wide recognition in workload characterization. As the

seventh part of this research we explore how to use discrete event simulation for

modelling web server systems. We propose a novel method to model the closed

system model using discrete event simulation and study the impact of number of

cores and concurrency on performance.

Load balancing is a popular scaling technique for web servers. However, there is a

myth that load balancing always improves performance. To address this problem, we

study the impact of load balancing for web server systems. Our analysis shows that

blindly adding multiple resources using a load balancer does not improve the

performance and explain in detail the performance impact of load balancing.

Following are the major contributions of this research.

1. A novel open source Python library for workload characterization

2. A systematic approach for performance testing of web servers

3. Propose eight new server architectures

4. Hardware, Software implications for server performance

5. Tail latency analysis of microservices

2

6. Identifying the scalability characteristics of middleware using Universal law

of scalability

7. A novel approach to model web server closed system performance using

discrete event simulation

8. Identifying the impact of load balancing for server based systems.

1.1. Research Problem

1.1.1 Motivation and overview

Server based systems are widely used in modern computer systems. High

performance is a requirement of server based systems to ensure the service level

agreements. Hence, it is important to understand the performance behaviours of

server based systems. We explore the performance characteristics of server based

systems for different architectures and configurations.

1.1.2 Problem statement

In this research we focus on characterizing the performance of server based systems.

1.2. Research Objectives

Objective of this research is to identify the performance behaviour of server based

systems. Our specific aims include

1. Implementing an open source Python library to analyse latency.

2. Design and implement eight new server architectures.

3. Tail latency analysis of microservices.

4. Application of universal scalability law to analyse middleware scalability.

5. Implementing closed system performance tests using discrete event

simulation.

6. Explore the impact of load balancing for server based systems.

3

2. RELATED WORK

2.1 Web Services

Web Services are widely adopted in modern computer systems. Web services are

based on Hypertext Transfer Protocol (HTTP). Web services replaced Remote

Procedure Call (RPC) technology which was the state of the art method before web

services. Using explicit message passing techniques, web services provide

communication between nodes [1].

XML based RPC adapts RPC technologies to web services [1]. XML-RPC uses

POST requests (HTTP) for executing procedure calls. Though XML based RPC

(XML-RPC) uses some of the features available in HTTP protocol, there is a

considerable number of features of HTTP that are not used in XML-RPC [1] [2] .

SOAP is an improved version of XML-RPC, which addresses some limitations

inherent in XML-RPC. SOAP specification defines the message format and methods

for the exchange of messages between services [3]. There exist several variations of

SOAP which are labelled as WS-*. These extensions address the additional features

of SOAP including security and service orchestration [1].

Web services description language (WSDL) is a standard for inter service

communication [4]. Unlike RPC based protocols, WSDL uses service descriptions

that are in XML format.

Universal Description, Discovery and Integration (UDDI) is another method in web

services, which was originally used to provide registry functions [5]. Due to

emerging new technologies, which we discuss in the later sections, UDDI’s

importance is almost lost.

4

Although SOAP, WSDL and UDDI have gained much popularity in web services, it

does not cover the full spectrum of web. Though HTTP can be used as an application

level protocol, SOAP and WSDL use HTTP only as a communication protocol.

Representational State Transfer (REST) addresses these issues in WSDL and SOAP

[6]. REST incorporates most of the fundamentals of the World Wide Web. REST

architectural style specifies a wide range of HTTP features.

There are several features of resource oriented architecture.

1. Client-server architecture: Separation of responsibilities is the major aspect

of this architecture. Client Server architecture proposes to evolve client and

server as two independent systems. This enables decoupled code which is

easy to develop.

2. Statelessness: Statelessness property of resource oriented architecture

promotes scalability and reliability.

3. None shared cache: Helps to reduce latency and improves efficiency by

reducing misses.

4. Layered system: Layer is a group of reusable components that are reusable in

similar circumstances. Using a layered system enables to balance the server

workload among many nodes.

5. Code-on-Demand: This is a component of resource oriented architecture

which provides extensible deployment.

6. Uniform interface: This enables to use and access resources using HTTP

methods such as GET and POST.

5

2.2 Concurrency

Running multiple activities at the same time is defined as the concurrency [7].

Though executed in parallel, the tasks may interact among them. Concurrency in

computer systems is available in many forms such as multiple cores and single

core–multiple threads. When implemented correctly, concurrency can reduce the

latency and improve the level of throughput.

Web applications are also inherently concurrent. Both the application server and the

web server should handle the concurrency issues. Roy et al. [7] states four main

approaches for programming concurrency, concurrency based on shared state,

concurrency based on message passing, concurrency based on declaration and no

concurrency (sequential program execution).

Concurrency in distributed systems has a set of inherent challenges as shown by

Arnon et al. [9]. Network, infrastructure, latency, topology, transport and bandwidth

are shown as the major challenges in developing concurrent applications in a

distributed environment.

Ghosh et al. [10] have evaluated different programming languages such as Java and

C++ with respect to their adoption in distributed systems. They have shown the

limitations of existing languages and suggested different approaches to mitigate

them. Hence novel languages such as Ballerina [11] are emerging for distributed

application development.

2.3 Scalability

Scalability aims at handling dynamic workload by changing the deployment, either

hardware or software. Scalability becomes a requirement that necessitates the usage

of a distributed system.

There are two methods of scaling; 1. Vertical and 2. Horizontal. In vertical scaling,

more resources (such as RAM and CPU cores) are added to a single computing unit.

6

Hence, the node can handle more tasks. In contrast, more nodes are added in the

horizontal scaling approach. Horizontal scaling requires specific treatment in the

application implementation [1].

2.4 Web Server Architectures

Web server architecture defines how the input output of requests are handled and

how different threads are allocated. Web servers are designed with the aim of

maximizing the performance while using a minimum number of resources [1]. Kegel

et al. [12] have highlighted the need for improved server architectures.

Thread based and event based are the most widely used web server architectures,

from which most other architectures are derived. More sophisticated variants have

emerged which combine these two approaches [13] [14] [15].

The thread-based/process based approach associates each incoming connection with

a separate thread/process (synchronous blocking I/O). Thread/process based

approach is supported by many programming languages.

Process per connection is the first attempt on building web server architectures [16].

In this approach a separate process is assigned to each client request. Though this

model is easy to implement, it has been shown that this method cannot support very

high concurrencies. Processes are heavy weight and require a lot of computer

resources. When the concurrency increases, the server cannot fork processes than a

maximum that is imposed by the underlying hardware and operating system.

Thread per request architecture is the successor of process per connection approach

[16]. In this architecture, a thread is assigned for each client. Compared to processes,

threads are lightweight. Hence this architecture scales more than the process per

connection architecture. However, when the concurrency increases beyond a

threshold, the underlying hardware cannot support a large amount of threads. To

7

address this issue, bounded thread pool architecture was proposed [16]. In this

approach, a predefined thread pool is used. If the number of clients is greater than the

size of the thread pool, the additional requests queue up.

However, thread per connection approach does not provide good quality of service at

high concurrency levels, due to overheads of context switching and stack

management. Non-blocking IO which is also called as event driven architecture

addresses these issues by handling multiple connections using a single thread [17]. In

this approach, a single thread listens to all the events (accept, read and write events)

and handles them in a non-blocking fashion [17]. This method scales well until all

the operations are non-blocking.

Welsh et al. [15] have combined these two approaches; thread pool and event based,

and proposed an architecture called staged event driven architecture (SEDA). In this

architecture, a stage is defined as an execution unit which has a thread pool. Request

processing is done at several stages, for example the first stage accepts the

connections, and the second stage reads the sockets. This enables to improve the

non-blocking IO performance. A later study [18] has argued that SEDA performance

suffers when the workload is low, due to its implicit restrictions on stages.

2.5 Message Passing Architectures

Message passing architectures account for the mechanism that is used to pass a

message from one thread/process to another. There exist three widely used message

passing architectures.

1. Queue

Queue is a data structure that is commonly used in programming. Queue

support operations such as enqueue and dequeue. Queue follows

First-In-First-Out methodology. Most thread pool based architectures use

queues to enqueue new runnable items.

8

2. Disruptor

LMAX [19] addresses some fundamental limits with conventional queues,

such as latency costs. Disruptor introduces a ring buffer that can be used

instead of queues. Disruptor aims at reducing cache misses by pre allocating

the objects in the ring buffer.

3. Actor

Actor model is a method of decoupling different entities. It provides explicit

asynchronous message passing techniques using mail boxes [20] [21]. Actors

can perform the following actions.

● Send a message to another actor.

● Create new actors.

● Change actor’s own internal behaviour

2.6 Microservices

Please refer to the literature review section of our previous publication [89].

2.7 Summary

In this section we first discussed the evaluation of web services. Then we presented a

summary of prevalent concurrency architectures in web servers. Moreover, we

discussed existing server architectures while highlighting their pros and cons. Finally

we reviewed literature on Microservices; the architecture, their wide adoption and the

importance of microservices performance characterization.

9

3. SERVER ARCHITECTURES

3.1 Introduction

Server architectures have evolved rapidly over the last three decades. In this research,

several server architectures, including monolithic, and microservices are discussed in

terms of their performance.

3.2 Client Server Paradigm

Client-Server paradigm is the first widely adopted architecture for developing

systems that are distributed [40]. In this model, two programs communicate with

each other, client and the server. Client initiates the communication using a request

which is received by the server.

In this architecture, the server is the component which provides all the resources

requested by the client [41]. This architecture was initially proposed as an all in one

architecture. Later on, due to complexities of all in one method, tired architecture

was proposed. There, the server is broken into n-tiers. Three-tier architecture is one

of the most popular approaches.

3.3 Mobile Agents

Mobile agents architecture addresses the limitations of the client server architecture

[23]. In this architecture, an agent can move from one node to another with its code

and data structures [42]. Mobile agents have three main components: owner,

locations visited and the adversary. Ismail et al. [40] have shown that depending on

the visited nodes an agent can evolve on its own.

3.4 Service Oriented Architecture

Service Oriented Architecture (SOA) is the most successful alternative for client

server architecture [43]. SOA promotes less coupling among services [40]. SOA

defines explicit boundaries between different services.

10

Enterprise Service Bus (ESB) plays an important role in SOA. Each client request is

first handled by the ESB. ESB specifies the relevant service that can serve the request

using its registry [44].

3.5 Microservices

Microservices is an architectural style that was proposed recently [45] [46] [47].

Microservices aims at building loosely coupled services which are easy to deploy.

Though argued as an extension of SOA, microservices is a bottom up approach that

addresses the requirements of distributed systems.

Microservices comprises a set of small services which can run independently.

Communication between services is strictly using message passing. Though its

performance suffers compared to monolithic architecture, its improved usability,

flexibility and ease of deploying have made it the de facto method of distributed

computing.

11

4. PERFORMANCE ENGINEERING

4.1 Introduction

Workload characterization is a sub field of distributed computing, which tries to

implement systems, collect data, and analyse to draw conclusions. It requires both

implementation skills, and analytical skills to perform a good workload

characterization.

Workload characterization is important in many different aspects.

1. Helps to identify current performance of your system, which can be used for

service level agreements of commercial applications.

2. Helps to identify the optimum setup of a system.

3. Helps to identify the performance bottlenecks in a system.

Workload characterization has emerged as a systematic procedure, with several best

practices of its own. These best practices are as follows.

1. Selecting the correct benchmark

Selecting the correct benchmark is the most crucial and essential part in

workload characterization. For example, if one intends to do a performance

analysis of microservices, it is required to select a standard microservices

benchmark like Socks Shop. A benchmark should have the following set of

characteristics.

a. Should represent a read world application

b. Should be able to handle real world workload

c. Should adhere to the standard best practices of the architecture

2. Selecting the correct model

There are three main models that can be used for performance testing.

a. Open model

b. Closed model

12

c. Half open model

Each of these models are suitable for different purposes, for example, the

open model is suitable for tail latency analysis, whereas the closed system

model is used for analysing the maximum sustainable throughput of a server.

In the following sections, each of these models are described in depth.

3. Selecting the correct workload generation tools and workload

For each type of model mentioned above, there are corresponding workload

generation tools, for example Apache JMeter [48] is a widely used tool for

closed model workload generation.

Also, there are two types of workloads, synthetic and real. Synthetic

workloads mean the work that is generated synthetically, for example sending

requests to a server using JMeter using a specified level concurrency. In

contrast, there are standard real workloads such as 98 World cup dataset,

which are accepted as standard for a web server workload.

4. Standard performance metrics

There are a set of performance metrics that are accepted both in industry and

academia; average latency, throughput, 99 percentile latency. Selecting the

right set of performance metrics for the intended work is very crucial. In the

following sections, an introduction to most important performance metrics are

given.

4.2 Benchmarks

In this section, the popular benchmarks that are used for server workload

characterization are listed.

1. Microservices Benchmarks

a. Acme Air

b. Spring Cloud demo apps

13

c. Socks Shop

d. MusicStore

2. Monolithic Server Benchmarks

a. SPECweb 2009

b. TPC – C

c. TPC – W

d. SpecjEnterprise 2010

4.3 Workload Generation

Once a suitable benchmark has been selected, a suitable workload generation

mechanism should be used. There are two main workload generation mechanisms.

4.3.1 Real workloads

In real workloads, real user traffic that are extracted using HTTP Logs are replayed.

This enables to simulate the system as in a real world deployment. For a given

application, it is possible to collect HTTP logs over a period of time, and then use

these logs to replay the traffic. Also, there are standard workloads that are widely

accepted in literature such as the 1998 World Soccer Cup dataset.

However there are several bottlenecks of using real workloads.

1. Takes a long time to collect data.

2. Cannot collect data for different configurations in a production environment.

3. There may not be standard workloads for newer architectures such as

microservices.

4.3.2 Synthetic workloads

To address the problems associated with real workloads, workload characterization

experts use synthetic workloads; workloads that are generated artificially. This

approach has several advantages.

14

1. Can do perform test in a reasonable time

2. In a case where a huge number of events (requests) are needed to

characterize, this is the only option, since the earlier approach of real

workloads does not allow to get many requests.

3. Can change the server parameters and perform the tests.

4.4 Performance Models

Workload generators are classified based on a performance model [54]. Performance

models impact the performance numbers, hence they are a major concern in

performance engineering.

4.4.1 Open loop model

In the open loop model, a client sends a request to a server and then leaves the

system immediately. A typical Google search operation can be taken as an example

of this model. There, a user sends a request to the Google server and with a high

priority leaves the Google server by going to another web site.

4.4.2 Closed loop model

In the closed loop model, a client repeatedly sends requests to the server. First the

client sends a request to the server. Upon receiving the request, the client sends

another request to the same server.

4.4.3 Half open model

None of the above two models are representative of real traffic. In a real client server

interaction, a client first sends a request to the server, and then for some time acts like

in a closed system loop, and once the intended work is done leaves the system. This

model is called the half open model.

15

4.5 Tools

There are several standard tools that emulate the user traffic. Table 4.1 below

summarizes the workload generation tools.

In this research we use Apache JMeter for all the workload generation tasks, and we

incorporate the closed system model. We use this model since we are interested in

characterizing the performance of the server under server’s peak sustainable

throughput.

JMeter

We use the load testing tool, JMeter to simulate the virtual users. Figure 4.1 depicts

the experimental setup for load testing. At a given concurrency level, JMeter client

sends the same request to the configured endpoint (address of the server). For

example, if we use a concurrency of 100 users, JMeter starts 100 threads and starts

sending requests to the Server. Upon receiving a request, the server processes the

request and sends the response back to the JMeter client. Upon receiving the

response from the server, each JMeter thread sends the next request (a user can

specify a think time). It is assumed that JMeter client has enough hardware resources

to handle the given concurrency level. If the concurrency level is greater than the

maximum capacity of the machine, a distributed JMeter setup should be used to

distribute the load among many JMeter nodes. By collecting the JTL file (saved in

the JMeter client), latency values for each request are collected.

Figure 4.1: JMeter Experimental Setup

16

Table 4.1 Workload Generation Tools

Benchmark Type Examples Workload Model

Model based web

workload generation

Surge, WaspClient, Geist Closed

Playback mechanisms for

HTTP request streams

MS web application stress

tool

Open

Proxy server benchmarks Wisconsin proxy

benchmark

Closed

Database benchmark for

e- commerce workloads

TPC-W Closed

Auction website

benchmark

Rubis Closed

Online bulletin

benchmark

Rubbos Closed

Database benchmark for

online transaction

processing

TPC-C Closed

Model based packet level

web traffic generators

IPB Closed

Mail server benchmark SpecMail Open

Java client server

benchmark

SPECJ2EE Open

Web authentication and

authorization

AuthMark Closed

17

Network file servers NetBench Closed

Streaming media service Medisyn Open

4.6 Performance Measurement

Once a suitable benchmark and a workload generation tool are selected,

comprehensive performance tests are run. Then, using the results, it is possible to

extract different performance measurements that are useful for analysing the

performance. In this research we extract performance measurements using JMeter

reports, garbage collection logs, Linux SAR reports and Linux PERF reports.

4.7 Latency Analysis Methods

Latency values are the most important dependent variable in a performance test.

Analysing latency should be done with care. There exist several mathematical

methods of latency characterization. Yet, there is no implementation for these

methods. In this research, we implement a novel python library that helps to

mathematically analyse the latency values [55]. In the following sections, each

method is described in detail.

4.7.1 Average latency

Average latency gives an overview of the overall performance of the system. Though

average latency is not capable of revealing the extreme values of the dataset (also

known as tail latency values), it is still useful to get a general idea about the

performance.

4.7.2 Latency percentiles

As we mentioned earlier, the average latency does not reflect the impact of extreme

values. Hence we need robust figures to analyse the extreme latency values.

Furthermore, when writing commercial applications, it is vital to make sure that these

18

extreme values are within the agreed values in the service level agreements (SLA).

Hence, there exists a significant importance to identify these extreme latency values.

In general, most computer workload latency distributions are right skewed, meaning

that there exist extreme values. Hence, higher order latency percentile values are

used to capture these extreme latency values.

Percentile of a dataset is the value which is the lowest among the values which are

higher than a given fraction of values. For instance, assume a sample dataset of 100

values, organized in ascending order. Then the value at 90th position is greater than

90% of the values in this dataset; hence it is the 90th percentile of the dataset.

4.7.3 Distribution analysis

Computer Workload latency values come from continuous distributions. Hence they

can take any value in a given range. Hence there exists an underlying distribution for

the latency values observed in a computer system workload. Identifying this

underlying distribution of a given set of latency values helps us to characterize the

system better. This enables us to synthetically generate the workload and experiment

further on the computer system. In this section, first the most basic form of

distribution analysis, histograms and probability density functions are presented.

Then methods on how to check whether a given latency distribution adheres to a

theoretical continuous distribution are explored. Maximum Likelihood Estimation is

used to fit the observed latency values to a given theoretical distribution. Then

goodness of fit tests are used to identify how well theoretical distributions

characterize observed latency distributions. Three most widely used goodness of fit

tests, Quantile-Quantile Plot (Q-Q plot), K-S test and Chi Squared test are presented.

Histogram

Histograms are the most basic method of characterizing latency values. It simply

shows the frequency of different values. Histograms are useful when analysing a

19

relatively small set of latency values (less than 100), and are more applicable when

the range of the data (maximum value - minimum value) is relatively small. When

the range is large, logarithmic binning should be used. To have more meaningful

representation of data, a technique called binning is used. Dividing the range into

small regions is meant by binning. For an example, if there is a set of latency values

in the range (0, 100), it is more meaningful to use a bin size of 10, such that values in

a given bin (for example values in the range (0, 10) are treated as the same. Figure

4.2 illustrates a sample histogram obtained using a normal distribution with mean 1

and standard deviation 0.5.

Figure 4.2: Histogram

20

Probability density function

Probability Density Function (PDF) PDF calculates the probability of occurring a

value in a given range. Equation (4.1) denotes the pdf equation.

...(4.1)

The pdf f, is not a probability. At any given x value, it has a value of 0. By

multiplying by the range, it can be converted to a probability. Probability density

function of a set of latency values is calculated using Kernel Density Estimation. Let

(x 1 , x 2 , …, x n) be an independent and univariate sample drawn from an unknown

distribution with an unknown density function f. Then its kernel density estimator is

calculated using (4.2).

...(4.2)

k is the kernel function which is non-negative Figure 4.3 depicts a sample kernel

density estimation.

Figure 4.3: Probability Density Function

21

Cumulative distribution function

Cumulative distribution function (CDF) F is defined as the probability that a set of

latency values is smaller than or equal to a given latency, as denoted in (4.3)

..(4.3)

Since latency values are continuous, the CDF is obtained by integrating the PDF, as

denoted in (4.4).

..(4.4)

In equation 4.4, f denotes the PDF whereas F denotes the CDF. Figure 4.4 below

depicts the CDF obtained for the sample dataset obtained from random number

generation using Pareto distribution with tail index 1.

Figure 4.4: Cumulative Distribution Function

22

4.7.4 Theoretical distributions

Computer Systems’ workloads have specific distributions. These distributions

sometimes follow known theoretical distributions such as the Pareto Distribution and

Exponential Distribution.

Understanding the underlying distribution of the latency values helps us characterize

the system better. Moreover, it paves us way to use Computer Simulation for capacity

planning.

Theoretical Distributions have three types of parameters.

1. Shape Parameters: denotes the shape of the distribution

2. Location Parameters: denotes the value around which the distribution is

located (for example mean value in the normal distribution)

3. Scale Parameters: denotes the amount the distribution is spread out (for

example the standard deviation in the normal distribution)

Hence, the first step of checking latency distributions against the standard continuous

distributions is to identify these parameters. In this research, we focus on the most

widely used parameter estimation method, Maximum Likelihood estimation. Once

parameters are calculated, it is then needed to know how good latency distribution

fits with the theoretical distribution with the calculated parameters. For that purpose,

three widely used Goodness of fit tests, Q-Q plot, K-S test and χ2 test are used.

Maximum likelihood parameter estimation

Maximum likelihood method retrieves the parameters that maximizes the opportunity

of observing the given data. The likelihood function is the probability of observing a

set of values given that they fit to a distribution. If parameter θ defines the

distribution, equation 4.5 gives the maximum likelihood estimation for a set of

latency values, x 1 , . . . , x n .

23

..(4.5)

Once the set of parameters in the theoretical distribution are calculated, then it is

possible to draw the theoretical distribution with the calculated maximum likelihood

parameters. Figure 4.5 depicts the calculated Pareto distribution.

Figure 4.5: Maximum likelihood Pareto fit of data

Goodness of fit tests

Once the parameters are estimated using maximum likelihood estimation, we should

test how good our parameter approximation is. There exists three main methods of

testing the goodness of fit tests; Quantile-Quantile plots, Kolmogorov and Smirnov

test (K-S test), and χ2 test.

Quantile-quantile plot

Quantile-Quantile plot is a method of comparing distributions. The percentiles of one

distribution is plotted against the respective percentiles of the other distribution. If

the observed distribution follows the theoretical distribution, the percentiles should

lead to a straight line with slope one. Except the graphical plot, this method does not

provide any quantitative value indicating the goodness of fit.

24

Kolmogorov and smirnov test

The Kolmogorov and Smirnov test calculates the maximum distance between the

CDF of the theoretical distribution and empirical distribution. If the samples follow

the theoretical distribution F(x), then

...(4.6)

..(4.7)

With n as the number of data points, Fn(x) is a unit step function. Hence,

.........(4.8)

If the D n is small enough (with respect to the chosen significant level), the empirical

distribution follows the theoretical distribution.

When deciding whether the latency distribution fits the theoretical distribution of

interest, we check the p value returned by the Kolmogorov and Smirnov test. If this p

value is greater than our pre specified significance level (0.05 in practice), we say

that this is a good fit.

In reality, we don’t exactly know what the underlying theoretical distribution our

observed latency values follow. In that case, we should check for all possible

theoretical distributions and then select the theoretical distribution which closely

matches with our observed latency distribution.

25

χ2 method

In χ2 method, random samples are drawn from the theoretical distribution of interest.

Then these samples are compared against the observed samples. χ2 test statistic is

computed as in (4.9).

..(4.9)

4.7.5 Long tail distribution analysis

In most cases, Computer Workloads are long tailed, meaning that there exist a small

fraction of latency values that are relatively large compared to the mode and average

latency. Hence, there exists a significant importance in characterizing the long tail

nature of latency values. In this section, we first present two properties of long tail

distributions, power law behaviour and mass count disparity. We then present a

method to discriminate between heavy tailed distributions and non-heavy tailed

distributions. Finally, we present three methods to calculate the tail index, which is

the most widely used statistical method of characterizing long tailed distributions.

.

Properties of long tail distributions

Power law behaviour

The long tailed distributions can be characterized using power law equation (4.10).

...(4.10)

Pr (X>x) is the survival function, which is (1 - F(x)) where F(x) is the empirical

cumulative distribution function. The exponent ‘a’ is called the tail index, which

determines the tail behaviour of the distribution. Lower the value of a, higher the tail

of the distribution (chance of observing a small fraction of very high latency values

becomes high).

26

Mass count disparity

Mass-count disparity is a property of long-tailed distributions. This means a typical

item is short, but a typical item of total test belongs to an item whose length is very

large. Mass count disparity is characterized by comparing mass distribution with the

count distribution.

Count distribution is the Cumulative Distribution Function. Assuming a probability

density function, f(x) mass distribution can be expressed as in (4.11).

............................(4.11)

Figure 4.6: Mass Count Disparity

Mass count disparity provides four main quantitative measurements to identify the

long tail behaviour of data; joint ratio, N half, W half and Gini coefficient.

Joint ratio is the value ‘p’, such that p% of the items account for (100 − p) % of the

mass, whereas (100 − p)% of the items account for p% of the mass.

27

............................(4.12)

N-1/2 and W-1/2 are two generalizations of 50/0 principle. 50/0 principle states that

50 percent of the items account for a negligible mass.

..............................(4.13)

...(4.14)

Smaller the values of N-1/2 and W-1/2, heavier the tail of the dataset becomes.

Gini coefficient is another measurement of estimating the long tailedness of data,

which uses mass distribution and count distribution. Gini coefficient uses Lorenz

curve, which is the percentile-percentile plot of mass distribution and count

distribution.

Gini coefficient computes the inequality between mass distribution and count

distribution. Gini coefficient is the ratio of the area between the equality line and the

Lorenz curve, and all the area below the equality line (figure 4.7). Gini coefficient

varies in the range (0, 1).

...(4.15)

28

Figure 4.7: Lorenz Curve

Heavy tailed distributions

Heavy tailed distributions are a subset of long tail distributions with some specific

characteristics. Heavy tailed distributions have the following three properties.

1. Power Law behaviour

2. Stable distribution condition

3. Tail index in the range (0, 2)

Figure 4.8: Heavy tailed distributions

Source: Feitelson, D. G. (2015). Workload modeling for computer systems

performance evaluation.

29

Stable distributions

Heavy tailed distributions are stable distributions. If the observed latency values have

a finite variance (which is not the case in heavy tailed distributions), then the

distribution of average values of that dataset should follow a normal distribution.

Since heavy tailed distributions have an infinite variance, above condition does not

hold.

Distributions which have the same distribution as the original distribution, when

aggregated are called stable distributions. We use the following aggregation function

(4.16), to get the aggregated samples.

..(4.16)

Heavy tailed distributions have a right tail with the same tail index as the original

distribution, when aggregated. Pareto distribution displays heavy tailed behaviour in

the complete range it is defined, when ‘a’ is in the range (0, 2).

Tail index

In this section we focus on three different methods of calculating the tail index of a

long tailed distribution. Log-log complementary graphs method can be applied to a

distribution even in the absence of heavy tailed nature. Maximum likelihood and Hill

estimator can be used only when the underlying latency distribution has the heavy

tailed behaviour.

Log-log complementary graphs

Log-log complementary graphs (LLCD) are based on (4.10). Taking the log of both

sides of equation (4.10) yields,

30

...(4.17)

Hence plotting the log of the fraction of observations larger than x as a function of

log x should lead to a straight line with slope −a, where ‘a’ is the tail index.

Distributions like Pareto distribution, with tail index in the range (0, 2) results in a

straight LLCD plot in the entire region it is spread. For actual latency distribution, we

only observe the long tail behaviour in the final 1% of the data, when ordered in

ascending order. Hence when calculating the tail index for actual workloads, we

always consider only the last 1% of the dataset.

Figure 4.9 below shows the LLCD plot obtained using this method.

Figure 4.9: LLCD

Maximum likelihood estimation

In this method, we use standard Maximum likelihood estimation to calculate the

parameters of the underlying Pareto distribution. The estimated parameter is the tail

index, we are interested in. The maximum likelihood estimation of Pareto index (tail

index) is given in (4.18). (‘k‘ stands for the minimum latency value)

31

...(4.18)

Hill estimator

Hill estimator works only when the data follows heavy tailed behaviour. It is based

on Equation (4.19).

.........................(4.19)

X m is the m th order statistic. When only the last k samples are considered to be the

tail, this is the same as maximum likelihood estimation. For different values of k, tail

index is calculated and plotted. If the values converge, then it is taken as the estimate

for the tail index.

When the data exhibits a power law behaviour, but not heavy tailed behaviour, this

estimator does not converge.

Figure 4.10 shows the sample Hill plot.

Figure 4.10: Hill plot

32

5. WEB SERVER ARCHITECTURES

In this section, we aim at building and analysing new high performance server

architectures. We first implement the existing well known server architectures such

as blocking server, non-blocking I/O (NIO) server, SEDA server. Then using actor

pattern and LMAX disruptor, we extend these architectures to new architectures. We

then perform an extensive analysis of all the server architectures.

5.1 Web Server Architectures

There are three main web server architectures; blocking thread per connection model,

NIO model which is event driven and staged event driven architecture (SEDA). In

this section we first focus on the basics of these three architectures.

5.1.1 Thread per request architecture

Thread per request model is used in RPC [56] and Java Remote Method Invocation

[57]. Thread per request model is supported by modern languages and programming

environments such as Java and C++.

A separate thread is allocated for each client connection. Since a thread is created for

each request, synchronization operations are used to maintain correctness. The

operating system transparently switches among threads. This enables to increase the

CPU utilization in case where most threads are waiting for I/O operations.

To avoid the increasing number of threads, systems use thread pools. In this

approach, a fixed sized (or dynamically resizing) thread pool is used. Hence, there is

an upper bound of concurrently served requests. Apache [58] and IIS [59] use thread

pools.

However, this approach of dropping connections affects the availability. When all the

threads are running, additional requests get queued up. This causes clients to

33

experience arbitrarily large waiting times. Figure 5.1 below depicts the class diagram

for thread per request model

Figure 5.1: Thread Per Request Class Diagram

5.1.2 Event driven architecture

Thread per request architecture fails to scale when the workload is high. Though

threads are lightweight components, context switching overhead and the stack

management overhead imposed by threads is non negligible when the number of

threads is high.

Event driven architecture addresses these issues by handling the I/O in a none

blocking manner. It uses a single thread to handle a growing amounts of threads. In

this approach, the I/O handling thread never blocks. Each connection is registered

with the selector, and get its share once it is ready to perform I/O. Internally, this uses

select () and epoll() system calls to check the readiness of channels. There are two

variations of event driven architecture, reactor and proactor.

Reactor pattern

Figure 5.2 depicts the class diagram for reactor pattern. Reactor based NIO is the

most popular approach of event driven architecture. The selector registers all the

34

accepted sockets with it. When the channel is ready to perform the I/O, it notifies the

selector. Then the selector selects this channel for I/O.

Figure 5.2: Reactor pattern

Source: https://www.javacodegeeks.com/2012/08/io-demystified.html

However, in the reactor model, there is no absolute guarantee that the event handler

will do the I/O operation in a non-blocking manner.

Proactor pattern

Proactor pattern uses asynchronous I/O model. Figure 5.3 depicts class diagram for

Proactor pattern.

Figure 5.3: Proactor pattern

Source: https://www.javacodegeeks.com/2012/08/io-demystified.html

35

Proactor pattern addresses a limitation of the reactor pattern. In the reactor pattern,

the selector notifies only the readiness, and does not guarantee the non-blocking

execution of events. In contrast, in the Proactor pattern, the application delegates this

work to the OS. Event completion handlers are triggered only when the I/O is

completed.

5.1.3 Staged event driven architecture

Welsh et al. [15] have proposed a novel architecture that uses the strengths of both

multi-threading and event driven notifications. The smallest unit of processing within

Staged Event Driven Architecture (SEDA) is the stage. A stage consists of an input

queue, output queue, a thread pool and controllers (optional).

At each iteration in the stage, a set of events are dequeued from the input queue and

then processed. Number of concurrently handled requests are determined by the

batching factor. Upon completing the processing of a set of events, the events are

added to the output queue.

Event handlers, which contain the logic to process events, are not tightly coupled

with stage operations. Unlike the original SEDA work [15], we do not employ

resource controllers in the research. Figure 5.4 illustrates the structure of a

SEDA-based application in the original SEDA specification [15].

Figure 5.4: SEDA architecture

Source: SEDA: An Architecture for Well-Conditioned, Scalable Internet Services

36

5.2 Message Passing Architectures

There are three widely used architectures for inter thread communication; sending

messages from one thread to another. In this section each of these three methods will

be explored.

5.2.1 Queue

Queue is a data structure that is widely used in programming. Queue follows

First-In-First-Out principle. Data items stored first will be accessed first. Queue is

implemented using Arrays, Linked-lists, Pointers and Structures.

Basic Operations

1. enqueue() − store an item to the queue (added to the tail).

2. dequeue() − remove an item from the queue (using the head).

3. peek() − get the front element without removing it.

4. isfull() − checks if the queue is full.

5. isempty() − checks if the queue is empty.

Though queues have advantages such as concurrent access by many threads,

increased throughput due to queuing, it has many disadvantages, as shown in [60].

Increased latency, costs of locks to maintain the correctness, write contention on the

head and tail, production of more garbage objects are some of the key disadvantages

of queues. Hence a more advanced method message passing; disruptor and message

passing are employed.

5.2.2 Disruptor

Disruptor is a high performance message exchange mechanism [60]. Disruptor

addresses the contention issues of the queue. Disruptor is based on a concept called

Mechanical sympathy.

37

Mechanical sympathy

Mechanical sympathy accounts for how different memory allocations affect the

performance. When the CPU requests data, it is searched in Register, L1, L2, L3,

memory and hard disk order. Table 5.1 summarizes the typical values for each

operation.

Table 5.1: Mechanical Sympathy

Latency from CPU to CPU cycles Time

Main memory Multiple ~60-80 ns

L3 cache ~40-45 cycles ~15 ns

L2 cache ~10 cycles ~3 ns

L1 cache ~3-4 cycles ~1 ns

Register 1 cycle Very quick

Following figure 5.5 depicts the structure of the disruptor.

38

Figure 5.5: Disruptor structure

Source: https://www.baeldung.com/lmax-disruptor-concurrency

Disruptor uses a ring buffer based mechanism to pass data between two independent

units of a program. Ring buffer is a pre-allocated linked list. When a producer

publishes an event, all the consumers are notified. Since the buffer is pre allocated,

we can safely assume that the adjacent elements of the buffer fit into the same cache

line. This reduces cache miss rates.

5.2.3 Actors

An actor represents an independent computation unit (same as a thread). Unlike

threads, Actors are very high level objects that communicate only using messages.

Each actor has an address and a mailbox to which other actors add messages in an

asynchronous manner.

There are several advantages to using Actors.

1. Can write the code without worrying about the synchronization issues

2. Supports asynchronous message passing

3. Automatic error handling

39

5.3 Methodology and Implementation

Using the four web server architectures, and three message passing architectures, we

come up with 12 web server architectures, eight of which are novel. Table 5.2 below

lists all the web server architectures we implement.

All these implementations are publicly available at [61]. Since each of the server

architectures is self-explanatory, only a brief introduction to each architecture will be

given.

1. Blocking: A simple blocking threaded server with a thread pool of size four

2. Blocking Disruptor: Instead of using a thread pool, a Disrupter is used to send

the accepted socket to a handler. There are four handlers.

3. Blocking Actor: Threads in the original blocking server is replaced by Actors.

There are four handler actors

4. NIO: Non-blocking I/O single threaded server, which is based on reactor

pattern

Table 5.2: Server architectures

Name Novelty Multi-threading support

Blocking Existing Yes

Blocking Actor Novel Yes

Blocking Disruptor Novel Yes

NIO Existing No

NIO Disruptor Novel Yes

40

NIO Actor Novel Yes

NIO2 Existing Yes

NIO2 Disruptor Novel Yes

NIO2 Actor Novel Yes

SEDA Queue Existing Yes

SEDA Disruptor Novel Yes

SEDA Actor Novel Yes

5. NIO Actor: The original NIO server is modified to support multi-threading.

The main thread accepts, reads from the socket, and the subsequent

operations are passed to the handler actor which runs in a separate thread.

There are four such handlers.

6. NIO Disruptor: Same as the NIO actor model, except the actor model is

replaced by a disruptor. There are four handlers.

7. NIO2: Non-blocking I/O server based on Proactor pattern

8. NIO2 Disruptor: NIO2 server is modified, and the actual processing of the

request is done using an event handler. Events are passed to the handlers

using a Disruptor.

9. NIO2 Actor: Same as NIO2 disruptor, except that the Disruptor and handlers

are replaced with Actors.

41

10. SEDA Queue: Implementation of the original SEDA architecture using

queues

11. SEDA Disruptor: Queues in the SEDA queue architecture are replaced with

Disruptors

12. SEDA Actor: Queues and threads in the SEDA queue server is replaced with

Actors.

5.3.1 Micro benchmark applications

We use the micro benchmark applications we defined in our publication [89].

5.3.2 Workload generation

For all the experiments, we use a two machine setup (connected using a LAN), where

one machine hosts the server application while the other machine generates the

workload. We use a separate machine to host the database.

We use Java 8, the most widely used virtual machine based language for servers to

build the micro benchmarks. MySQL 5.0.27 database was used as the database

application.

Synthetic workloads are used due to two main reasons, 1. Ability to change

independent variables and collect data for a wide range of situations 2. Time

constraints on collecting actual workloads using real systems, and our requirement to

evaluate many different combinations of heap sizes, concurrency levels, and

workloads.

We use apache JMeter 4.0 [51] which is widely used in workload characterization

literature [63] [38]. We send the same request to the micro benchmark application,

for example the same prime number is sent to the Prime service, in each user request.

42

We use this approach because we focus on exploring the performance only under

service’s peak sustainable throughput. Sending the same request reduces the impact

of just in time compilation and class loading time, since the same set of Java methods

are invoked in each request. Our workload generation scripts are publicly available at

[64].

For each micro benchmark application, built using each 12 web server architectures,

we experiment on two heap sizes (100MB and 2GB) by specifying the Xmx and Xms

in Java_OPTS environment variable. For each heap size, we experiment on two

different levels of concurrency, 10 and 300. Then for each concurrency level, we vary

the service demand by varying the parameters in the request.

For the CPU bound micro benchmark, the service time is mainly affected by the

prime number. Hence we arbitrary choose two different prime numbers, 11 and

27059 to represent low service demand and high service demand.

For the memory bound micro Benchmark, we consider two sizes, 10 and 1000 as

service demands. We use integers for our calculations (four bytes per number).

We use two industry standard message sizes that are used in Middleware

performance testing [65] as our service demands for network I/O bound micro

benchmark, 10B, and 1KB. We do not alter the service demands for the database I/O

bound micro benchmark.

In total, we collect data for 362 number of combinations. We run our experiments for

a period of 15 minutes for each combination of web server architecture, micro

benchmark, heap size, concurrency level, and service demand. The total dataset size

is 828GB. Due to space limitations, we have not published this online, yet can be

made available on request.

43

In order to remove Java just-in-time compilation and class loading effects from our

results, we remove the first M minutes results using JMeter Splitter [66]. We observe

an almost constant throughput, after five minutes of test initiation. Hence we chose

M to be five minutes. We collect Java garbage collection (GC) logs and load average

statistics using SAR [67] reports and hardware counters using perf [68].

5.4 Experiment Setup

We use a bare metal setup for our web server architecture performance tests. For each

machine (client, server and database host) we use a server-class machine (Intel(R)

Core(TM) i5-2400 CPU @ 3.10GHz, 8 GB of RAM, 1TB hard disk) connected using

Gigabit Ethernet.

5.5 Results

In our tests, we record the configuration (heap size and etc), latency, throughput and

the values extracted from garbage collection logs, SAR reports and perf tests. In total

we collect 101 number of features for each configuration. Due to space limitations

we will not present the results table here. The complete result sheet is published

publicly in [70] and in Appendix - A.

5.6 Discussion

In this section, we use the following terminology to denote specific configurations.

1. Low heap = 100MB

2. High heap = 2GB

3. Low concurrency = 10

4. High concurrency = 300

5. Low service demand

a. I/O = 10B

b. CPU = isPrime(11)

c. Memory = merge-sort(10)

6. High Service demand

44

a. I/O = 1KB

b. CPU = isPrime(27059)

c. Memory = merge-sort(1000)

5.6.1 Blocking architectures

IO bound micro benchmark

We observe that Blocking architecture gives significant throughput compared to

Blocking Actor and Blocking Disruptor architectures, for the following

configurations.

1. Low heap, low concurrency and low service demand

2. Low heap, high concurrency and high service demand

3. High heap, high concurrency and high service demand

For example, we observe a throughput of 7565 requests per second for Blocking

architecture for the low heap, low concurrency and low service demand

configuration, where the respective throughput values of Blocking Actor and

Blocking Disruptor are 7473 and 5766 requests per second. We explain this

behaviour as follows.

For each three configurations we mentioned above, we observe that the average

garbage collection pause, number of CPU cycles and number of executed instructions

are very low in Blocking architecture. Since blocking architecture is the minimal

overhead implementation, compared to other two Blocking architectures, it uses less

memory and instructions. This causes high throughput for the Blocking Server.

We also observe that Blocking Disruptor architecture performs poorly for the

following two configurations.

1. Low heap, low concurrency and low service demand

2. High heap, low concurrency and low service demand

45

For example, we observe that for the low heap, low concurrency and low service

demand configuration, Blocking Disruptor throughput equals to 4675 requests per

second, whereas for the Blocking and Blocking Actor architectures the respective

throughput values are 5876 and 5743 requests per second. We explain this behaviour

as follows.

Blocking Disruptor architecture consumes more memory compared to the other two

architectures. Hence we observe very high full garbage collection pauses for the

Blocking Disruptor architecture. Garbage collection events are stop the world events

which halt the application threads. Hence the performance suffers.

We also observe very low throughput in Blocking Actor architecture, compared to

the other two architectures, in the following configurations.

1. Low heap, high concurrency, low Service demand

2. High heap, high concurrency and low service demand

For example for the low heap, high concurrency, low service demand configuration,

we observe a throughput of 2567 requests per second for the Blocking Actor

architecture, whereas the respective values for the Blocking and Blocking Disruptor

are 7008 and 5907 requests per second. We explain this behaviour as follows.

Blocking Actor shows a high idle processing time, which is also reflected in load

average statistics. This indicates that Blocking Actor is not able to fully utilize its

resources. We believe having only four actors as workers is the main reason for this

behaviour. If the number of actors are increased to a higher value, the throughput can

be increased.

CPU bound micro benchmark

We observe that with low heap size, low concurrency and low service demand,

Blocking Disruptor performs very poor compared to other two Blocking

46

architectures. For example, for this configuration we observe a throughput of 5732

requests per second for Blocking Disruptor, whereas for the other two architectures,

the throughput values are greater than 7400 requests per second.

Analysis of the hardware and software counters revealed high full garbage collection

pauses as the main reason for getting this performance degradation. Also, we observe

high task clock rates, high context switches, high CPU migrations and high cache

misses in the Blocking Disruptor architecture.

Although Disruptor is designed with low cache misses in mind, high garbage

collection operations make its value a little. When garbage collection happens, the

application threads are halted. This causes high context switches, which eventually

leads to high CPU migrations. High CPU migrations causes’ high cache misses, since

the thread changes the processor on which it runs.

We also observe that with low heap, low concurrency and high service demand, our

novel Blocking Actor architecture performs significantly better than the other two

architectures. We observe a throughput of 7228 requests per second in the Blocking

architecture, whereas the maximum observed throughput for the other two

architectures is 6704 requests per second. This behaviour is also seen in CPU

hardware performance counters, idle time percentage and load average. We observe a

low idle time percentage (hence more useful work is done in application), and high

load average (CPU is fully utilized).

Memory bound micro benchmark

We observe that with low heap, low concurrency, low service demand, the

performance of Blocking Disruptor architecture is significantly low. For example, for

the above scenario, the throughput of Blocking Disruptor is 5741 requests per

second, whereas the minimum throughput of other two architectures is 7500 requests

per second. We explain this behaviour as follows.

47

For this configuration, Blocking Disruptor shows significantly high context switches,

a very high CPU migration number and a high number of cache misses. This result is

non-trivial because the Disruptor was originally proposed with low cache misses in

mind. But our results suggest that Disruptor is not a silver bullet, and for some cases,

adding a Disruptor makes the system perform poorer.

We also observe that for low heap, high concurrency and low service demand

configuration, the Blocking Actor performance is significantly low. For example, the

throughput of Blocking Actor is 2687 requests per second, whereas the minimum

throughput of other two Blocking architectures is 6689 requests per second. We

explain this behaviour as follows.

Idle time percentage is very high in Blocking Actor implementation for the above

configuration. Low load average values observed for this configuration also

supplements this factor. This indicates that the CPU is not fully utilized. Hence, more

handler Actors should be added to increase the throughput.

DB bound micro benchmark

We do not observe a significant performance difference between the three Blocking

architectures, for the DB bound micro benchmark. For all configurations we observe

a throughput close to 1200 requests per second. This behaviour can be described as

follows.

In this DB bound micro benchmark, an external I/O operation is performed (the

Database access). This adds a high latency. Hence the overall system is bound by the

speed of Database access and network speed.

48

5.6.2 NIO architectures

We observe that for all configurations of I/O bound, CPU bound and memory bound

micro benchmarks, NIO architecture performs significantly better than the other two

architectures. For example, for the low heap, low concurrency and low service

demand configuration of I/O bound micro benchmark, we observe a throughput of

3538 requests per second for the NIO architecture, whereas the maximum of other

two architectures is 1334 requests per second. This behaviour can be explained as

follows.

When the actual processing of the request is very low, the overhead of transferring

the processing to another worker is higher than that of doing it in the main thread

itself. This leads to decreased throughput in multi-threaded implementations.

We also observe a very low number of context switches and very low number of

CPU migrations in the NIO architecture. Since the NIO architecture uses only a

single thread, this result can be accepted. Since the other two NIO architectures use

multiple threads, they incur higher number context switches and higher number of

CPU migrations.

In contrast, we observe a drastic performance gain in our newly proposed NIO Actor

and NIO Disruptor architectures, for the Database I/O bound benchmark. For

example, in the DB bound micro benchmark, for low heap, low concurrency

configuration, we observe throughputs of 635 and 653 requests per seconds for NIO

disruptor and NIO Actor architectures respectively, whereas the respective value for

the NIO architecture is 333.46 requests per second.

Analysis of the CPU counters revealed high I/O wait percentage and the high idle

time percentage as the main reasons for the above observation. DB calls require a

significant amount of time. In the NIO architecture, the main and the single available

thread halts until the database response is available. This negatively affects the

49

performance. In the new architectures, NIO Actor and NIO Disruptor, this heavy

waiting is done using another thread. This leads to increased throughput in the new

NIO architectures.

5.6.3 NIO2 architectures

We observe that for each micro benchmark, for each heap size, for each level of

concurrency and service demand, NIO2 architecture outperforms NIO2 Actor and

NIO2 Disruptor by a significant margin. For example, in the DB bound micro

benchmark, for low heap, low concurrency, we observe a throughput of 1310

requests per second for NIO2, whereas the maximum throughput of other two

architectures is 287 requests per second. This result is a bit surprising, and we reason

this behaviour as follows.

NIO2 is inherently multi-threaded; each request is handled by three different threads.

Also, it can deploy many numbers of threads to support a given concurrency level. In

the NIO2 Actor and NIO2 Disruptor architectures, we hand over the processing to an

external thread. Yet, we have fixed the number of handlers to four. Hence, the overall

operations are constrained by the number of handlers. This drastically drops the

throughput.

We also observe that for all the configurations, the task clock is very low in the NIO2

architecture. This indicates that NIO2 has performed less work compared to NIO2

Actor and NIO2 Disruptor. Yet, as we have already shown above, throughput is

maximum for NIO2 compared to NIO2 Actor and NIO2 Disruptor. We reason this

behaviour as follows.

NIO2 Actor and NIO2 Disruptor architectures employ additional processing for a

request, due to the addition of handlers. This only includes more processing for a

request, and does not help increase throughput.

50

5.6.4 SEDA architectures

We observe a significantly low throughput for the SEDA Disruptor architecture, for

each benchmark, each heap size, for each concurrency and for each service demand.

We explain this behaviour as follows.

SEDA disruptor architecture displays significantly high garbage collection pauses,

very high page faults. This suggests that Disruptor architecture consumes more

memory than others. The garbage collection delays and time consumed for page

faults impact the throughput.

We also observe significant throughput gains in our novel SEDA Actor architecture,

for the following scenarios.

1. I/O bound micro benchmark for all heap sizes, all concurrency levels and

high workloads.

2. CPU bound micro benchmark for high heap size, all concurrency levels and

all workloads.

3. Memory bound micro benchmark for high heap, high concurrency and high

service demand.

We explain this behaviour as follows.

SEDA Actor architecture incurs very less garbage collection overheads, as resembled

in the accumulated garbage collection pause times. Also, SEDA Actor shows a

significantly low number of context switches, page faults. These factors improve the

throughput.

5.7 Summary

In this section, we first described the 12 web server architectures, eight of which are

novel. We then presented a micro benchmark application as a tool to isolate different

types of service calls. We then performed an extensive performance analysis of each

web server architecture for different number of concurrent users, heap and service

51

demands. Our analysis shows that the novel proposed server architectures outperform

the existing architectures, and provides insights into further improvements.

52

6. JAVA MICROSERVICES TAIL LATENCY ANALYSIS

All the contributions on this topic appear in our publication, Tennage et al. [89].

53

7. SCALABILITY

7.1 Introduction

Scalability of a system can be measured in two ways.

1. Hardware Scalability

2. Software Scalability

Hardware scalability refers to how the system scales when more hardware resources

are added. For example, if a certain server gives a throughput of x, what will be the

throughput when the number of nodes are doubled?

In the software scalability, given a fixed hardware configuration, we find the

scalability characteristics of the application under different concurrency levels.

Consider a simple web application running on a machine with fixed hardware. When

the application is run with 100 concurrent users, assume a 1000 transactions per

second maximum throughput. When the concurrency level is increased to 200,

ideally a throughput of 2000 transactions per second should be observed. However,

the maximum throughput at a 200 concurrency level is less than 2000 transactions

per second. When the level of concurrency is further increased, the throughput starts

to display retrograde behaviour.

Exhaustive capacity planning can explore this issue. In capacity planning, the

throughput of the system is measured while increasing the level of concurrency until

the concurrency level which shows retrograde throughput behaviour is found. Yet,

exhaustive capacity planning requires a larger budget and a substantial amount of

time. Instead Universal Scalability Law (USL) proposes an analytical method which

is effective in time and budget.

In this section, first the USL for software is presented by extending Amdahl’s law.

Then the USL is applied for a class of server workloads called middleware.

54

7.2 Amdahl’s Law for Software Scalability

Amdahl’s Law calculates the reduction of speed up due to the part of the program

that runs sequentially [85]. This can be represented using (7.1).

...(7.1)

In this equation, the Fraction enhanced is the portion of runtime to reduce. Speedup enhanced

is the inverse of the fractional time reduction.

If fraction enhanced is denoted by π and speed up enhanced (fractional time

reduction) by φ, equation (7.1) can be written as (7.2).

..(7.2)

Let σ = 1 - π, where σ is the serial fraction of the workload.

Assume π (fraction enhanced) can be divided into N parts. Then φ = 1/N.

Then equation (7.2) is reduced to (7.3) and (7.4)

...(7.3)

..(7.4)

Equation (7.4) is the equation of Amdahl’s Law for software. Using this formula, the

USL equation for software scalability is derived by adding the impact of interprocess

communication among different users.

55

7.3 Universal Scalability Law for Software Scalability

Gunther et al. [86] have provided a formal equation for software scalability as in

(7.5). When there are N number of concurrent users, there will be a maximum of

N(N-1) number of interactions among user processes. To capture this behaviour, a

new parameter β, which is called coherency is added to (7.4).

................(7.5)

Being a rational function, equation (7.5) can be differentiated with respect to N. The

value of N at which Csw(N) is maximum is shown in (7.6). Then the maximum value

of Csw(N) is Csw(N*)

...(7.6)

In software scalability tests, scalability is measured as a function of the number of

users N. It is assumed that the underlying hardware platform is fixed for all measured

points of N.

To summarize, USL is a rational function of three parameters

1. Level of concurrency (N)

2. Contention (α) which is the serial fraction of the workload

3. Coherency (β) which is the penalty for interprocess communication.

In the following section, USL for software is calculated for a class of server

workloads; middleware. Widely used Enterprise Integrator WSO2 EI is used for this

purpose.

56

7.4 WSO2 Enterprise Integrator Dataset

The WSO2 EI is an open source product distributed under the Apache Software

License v2.0. WSO2 EI allows message routing, mediation, transformation, logging,

task scheduling, failover routing, load balancing, and more. In this section a basic use

case of EI, which is Direct Proxy or Simple Pass-Through Proxy is used.

A simple Netty Echo service is deployed as the backend for the WSO2 EI. Three

JMeter instances are deployed in order to handle a large concurrency level, and to

ensure that JMeter nodes do not run out of resources when running in very high

concurrency levels (usually more than 1000). Figure 7.1 below illustrates the EI

setup.

Figure 7.1: EI setup

 Source: https://github.com/ThishaniLucas/performance-ei/tree/perf-test

7.5 Experimental Setup

WSO2 EI 6.4.0 is used for the experiments. Three different industry standard

message sizes; 500B, 1KB, and 10KB are tested. For each message size, four

different concurrency levels, 100, 200, 500, and 1000 tested. For each message size

57

and concurrency level configuration, tests are run in c5.xlarge Amazon EC2 instance

for 15 minutes. The maximum heap size is fixed to 4GB and backend service delay

to zero seconds. The first five minutes results from the JTL files are removed in order

to get only the steady state results.

7.6 Results and Discussion

Table 7.1 summarizes the performance results.

USL package in the R language is used to compute the universal scalability law

parameters. Table 7.2 summarizes the USL parameters for this dataset. Figure 7.2

depicts the USL curves for three message sizes.

As the message size increases, we observe a significant drop in throughput. Using

USL parameters, we can identify that increasing the message size increases

contention and coherency parameters. For example, when the message size increases

from 500B to 10KB, contention (α) significantly increases from 7.306e-02 to

7.494e-02 and the coherency (β) increases from 6.554e-07 to 9.883e-06. As a result,

the concurrency level which starts to display the retrograde behaviour decreases from

1189 at 500B message size to 306 at 10KB message size.

Table 7.1: Universal law of scalability performance results

Message Size

(KB)

Concurrency (N) Throughput

(requests per

second)

Average Latency

(ms)

500B 100 17588.2 5.63

200 19509.07 10.17

500 19940.62 24.92

58

1000 19764.01 50.5

1KB 100 16667.76 5.93

200 18175.66 10.87

500 18235.69 27.23

1000 18255.44 54.69

10KB 100 13173.19 7.5

200 13937.52 14.22

500 13434.7 37.1

1000 13203.39 75.63

Table 7.2: USL parameters

Message Size α β Max users

(N*)

Max throughput

(requests/second)

500B 7.306e-02 6.554e-07 1189 19921.33

1KB 7.372e-02 2.413e-06 620 18343.21

10KB 7.494e-02 9.883e-06 306 13852.88

59

Figure 7.2: USL curves

Contention (α) and cohesion (β), reveal the factors that hinder the performance of a

software system. If a high α value is observed, then the software should be modified

to minimize serialization. If a high β is observed, it reflects that the software system

has many inter thread communication. Hence, inter thread communication should be

minimized.

7.7 Summary

When developing an application software, it is important to focus on the scalability

characteristics. USL provides a more analytical approach to explore this problem.

This section explored USL for software and a use case. First the USL equation was

derived by extending Amdahl’s Law. Then using R language library usl, the

parameters for the WSO2 EI simple proxy was found. Finally, the scalability

characteristics of EI were discussed using USL.

60

8. DISCRETE EVENT SIMULATION

8.1 Introduction

As we have already shown in the above sections, performance testing of web servers

requires a large time and cost. In practice, sometimes it is not required to get the

exact performance numbers (for example the exact latency), but general trends about

the performance is sufficient. Discrete event simulation (DES) can be used for such

scenarios.

DES models a system as a discrete sequence of events in time. An event in this

context is an item that changes the state of the system. DES is used in diagnosing

process issues, modelling hospital applications, and etc.

Since we employed the closed system model throughout this research, we will use

the closed system model for the following DES experiments.

In this section, we first discuss the basic concepts of DES. Then, we explore the DES

package-Simpy. The code for a single server closed loop performance test is

presented afterwards. We then extend the simple version of the single server to

multiple servers, which has inter-service calls (abstraction for microservices).

8.2 Definitions

Discrete event simulation (DES) simulates the behaviour of a process. In DES, a

system is modelled as a series of events that occur over time.

There are three major DES paradigms: activity oriented, event oriented, and process

oriented.

Activity Oriented Paradigm

In Activity Oriented Paradigm, time is broken into small increments. At each time

point, the code would look around all the activities.

61

Event Oriented Paradigm

In Event Oriented Paradigm, the time counter is advanced to the time of the next

event. This approach saves the CPU cycles.

Process Oriented Paradigm

In Process Oriented Paradigm activity is modelled as a process. This is the widely

used approach in current state-of-the art DES systems.

The DES framework SimPy, uses a process oriented paradigm.

8.3 SimPy

SimPy is a process-based discrete-event simulation framework. Processes in SimPy

are implemented using generator functions. Processes are used to model the web

servers and Clients. SimPy also has shared resources, for example SimPy resources.

8.3.1 Major concepts

Yield

A SimPy process can be yielded. When a process is yielded, the execution returns

from the process for the given event, and returns. The process resumes upon the

completion of the event.

Timeout

Timeout is an event that gets executed after a timeout.

Process interactions

There are two main process interactions in SymPy:

a. Waiting for another process to finish

b. Interrupting another process.

62

Shared resources

Shared resources can be shared among other different resources (for example the

queue between the clients and the server is a shared resource called a Pipe)

8.4 Closed System DES Simulation

The setup depicted in Figure 8.1 is used as a model for the initial closed model DES

setup. The workload generator represents a set of clients. Figure 8.2 shows the DES

abstraction for the model shown in Figure 8.1.

Figure 8.1: DES abstraction

In this setup, N clients are used. The server application runs in an N core machine. It

is assumed that the server application can handle N number of requests concurrently.

Two queues are used: input queue and output queue. Each client adds a requests to

the input queue. The requests gets queued in the queue and each core fetches the

request at the top and processes them. Upon completion, the request is added to the

output queue. Then the response is received by the client. Upon receiving the

response, each client sends the subsequent request.

63

Figure 8.2: Single server pseudo code

The number of clients (concurrency) are specified in line 11, and the number of cores

at line 12. This program has two process methods; client and server.

64

8.4.1 Client process

Line 15-24 shows the client process. Parameter env is the Simpy environment in

which the process runs. in_pipe is the input queue to the client (to which the server

puts the responses). out_pipe is the output pipe, into which the client puts the

requests. i is the identity of the client.

First, the client process generates a pseudo random number using exponential

distribution, using the given processing rate. Then it keeps track of the arrival time.

Then the request is put to the out_pipe.

The client process waits until it gets the response to its request. All the responses for

each client request is put to the shared in_pipe. A special pipe of type FilterStore is

used as the in_pipe. Using the lambda function, the relevant response is received by

the client.

8.4.2 Server process

In a continuous loop, the server checks for new requests. Once the server receives a

request from the in_pipe, it extracts it. Then the server calculates the time difference

between starting the processing of the request and the request creation time. Then the

server core yields the corresponding processing time.

This code is run for three different concurrency levels (100, 200, and 500) and for

each concurrency level, the number of cores (1, 2, and 4) are varied. Table 8.1 below

shows the results.

65

Table 8.1: Closed System DES Results

Concurrenc

y

Number

of Cores

Average Latency

(Time Steps)

99 Percentile

Latency (Time

Steps)

Throughput (Request

Per Time Step)

100 1 2496.148 3151.9094 39.35

100 2 1252.6918 1566.3316 80.25

100 4 624.48957 792.1198 159.88

200 1 4985.5102 5917.101204 39.35

200 2 2503.9160 2950.10 80.25

200 4 1248.598 1473.52731 159.88

500 1 12415.056 14242.556 39.35

500 2 6248.57563 6968.6093200 80.25

500 4 3118.48955 3471.48797 159.88

8.4.3 Results and discussion

We observe that when the level of concurrency increases, the average latency and 99

percentile latency increase. For example, when the core count is fixed at four, when

66

concurrency increases from 100 to 200, the average latency increases from 624 time

steps to 1248 time steps. Also, the 99 percentile latency, increases from 792 time

steps to 1473 time steps. This behaviour is explained as follows.

When the concurrency increases, the waiting time increases. This leads to an

increased latency values.

Second, we observe that the level of concurrency does not impact the throughput.

When the level of concurrency is varied from 100 to 200 and 500, the throughput

remains constant at 39. This behaviour validates the theoretical proof; in a closed

system, throughput is independent of the level of concurrency, and depends only on

the service rate [87].

Third, it is observed that when the number of cores increases, average latency and 99

percentile latency decreases. For example, when the concurrency is fixed at 500,

when the number of cores is increased from one to two, the average latency reduces

from 12415 time steps to 6248 time steps, whereas, the 99 percentile latency reduces

from 14242 to 6968 time steps. This observation can be explained as follows.

When the number of cores increases, the requests which are queued in the server

input queue, get scheduled faster; thus reducing the queue waiting times. Hence the

response time decreases.

Finally, we observe that when the core count increases, the throughput increases. For

example, when the number of cores is increased from one to four, the throughput

increases from 39.5 to 159.8. When the number of cores is increased, the amount of

work that are done in a given time period increases. Hence, the throughput increases.

67

8.5 Modelling Interservice Calls

In this section, we extend the above closed system simulation to support interservice

calls. Figure 8.3 depicts the DES abstraction for a system with one interservice call.

Figure 8.3: Interservice Calls DES abstraction

In this abstraction, two servers are used. The clients send requests into the input

queue of the first server. Upon the completion of processing, server 1 puts the

partially processed request to the input queue of server 2. Server 2 then processes for

completion and puts the response to server 2's output queue. Server 1 forwards the

response back to the client.

Figure 8.4 shows the pseudo code for interservice calls.

68

Figure 8.4: Interservice calls, Pseudo code

Two pseudo random numbers are generated, one for server 1 processing time and the

other for server 2 processing time. Server 1 process is divided into two methods,

server_1_1 (for actual processing) and server_1_2 (for response forwarding).

69

8.5.1 Results and analysis

Table 8.2 below shows the results.

Table 8.2: Interservice calls DES results

Concurrenc

y

Number of

Interservice

Calls

Average

Latency (Time

Steps)

Throughput

(Requests per Time

Step)

99 Percentile

Latency (Time

Steps)

100 0 6238.893 159.88 7992.514

100 1 12539.17644 79.3 16485.4686

100 2 12653.462 78.54 15825.8872

200 0 12442.118 159.88 14902.873

200 1 24913.124596 79.3 31621.465

200 2 25154.7919 78.54 29512.536

500 0 30830.13843 159.88 35722.7764

500 1 61063.3348 79.3 70531.2472

500 2 61774.7721 78.54 70094.39

We first observe that when the number of inter service calls increases, the average

latency and 99 percentile latency increase. For example, when the number of

interservice calls increases from zero to one, the average latency increases from 6238

to 12539 time steps, when the concurrency is fixed at 100. This behaviour can be

explained as follows.

70

When the number of interservice calls increases, each request has to stay at

increasing number of queues. This increases the accumulated queue waiting time for

a given request. This waiting time causes the average latency and 99 percentile

latency to increase.

Second, we observe that when the number of interservice service calls increases, the

throughput decreases. For example, when the number of interservice calls increases

from zero to one, the throughput decreases from 159.88 to 79.3. This observation can

be explained as follows.

When the number of interservice calls increases, the queue waiting times increases

significantly. This leads to an increased round trip time response times, thus reducing

throughput.

8.6 Summary

In this section, we made the following contributions.

1. Implementing closed system model performance testing using DES.

2. Show that when concurrency increases the response time increases.

3. Show that throughput is independent of concurrency in a closed system

model.

4. Show that when the number of cores increases, the latency decreases

5. Show that when the number of cores increases, throughput increases

6. Show that when number of interservice calls increases, the latency increases

7. Show that when the number of interservice calls increases the throughput

decreases.

71

9. LOAD BALANCING

9.1 Introduction

Load balancing distributes incoming traffic across a set of backend servers or shapes

them. With the advent of API management and service meshes, load balancers are

becoming an essential part of most architectures.

In general, it is believed that load balancing reduces latency and improves

throughput. However, this view ignores the overhead introduced by the load balancer.

A load balancer does not always improve performance, and, in some cases, load

balancing can degrade performance.

This section explores the impact of load balancing. The following are the major

findings.

● With a backend service with low CPU-bound use cases, single-server

performance is better than two servers and three servers with a load balancer,

in both average latency and throughput.

● When the backend service’s CPU usage is moderately high, a load balancer

with two and three server setups exhibit performance gains.

● We only observe a linear speedup with the number of servers only when CPU

usage is very high.

● There is no difference in 99 percentile latency values between three-server

and two-server configurations; however, there is a significant variation

between one-server and two-server configurations.

In conclusion, we argue that the overhead introduced by a load balancer should be

carefully considered in capacity planning.

9.2 Definition

Distributing traffic across a set of servers is known as load balancing. Modern web

systems receive very high traffic that makes it impossible to serve them using a

72

single-server instance. Service providers use a load balancer to distribute traffic

across multiple replicas and provide high availability. A load balancer provides the

following functionalities.

1. Acts as a gateway for all the requests (i.e., a single entry point)

2. Routes traffic across a set of servers

3. Helps achieve service level objectives by reducing latency and increasing

throughput by scaling the system.

4. Improves utilization of each backend server by optimally distributing traffic

5. Avoids backend servers going beyond peak utilization.

6. Provides failure tolerance by automatically identifying failed backend servers

7. Supports automatic scaling of backend servers

Over the years, we have observed several cases where adding a load balancer and a

set of replicas slowed down the system. However, this only happens in some use

cases. We designed and carried out an experiment designed to confirm this

observation and to pin down the conditions under which load balancing slows down

the system.

We first describe our experimental setup, high-level architecture, workload

generation using JMeter, load balancing application, and back-end web service.

Then, we provide a detailed discussion of our observations.

9.3 Experiment Setup

The setup includes clients, load balancers, and backend servers. Backend servers are

the servers to which we want to load balance the requests. We conducted the

experiments on three configurations as shown in Figure 9.1, 9.2 and 9.3. In the first

setup (Figure 9.1), we did not use a load balancer. In setups 2 and 3 (Figures 9.2 and

9.3), we used a load balancer and distributed the incoming traffic from the client

among two and three backend servers, respectively.

73

Figure 9.1: Single service

Figure 9.2: Two services

Figure 9.3: Three services

We used JMeter, a widely used load testing tool, to simulate the virtual users. At a

given concurrency level (500 in our tests), JMeter sends requests to the configured

endpoint (address of the services for single services configuration, the address of the

load balancer for two services and three services configurations). We verified that

JMeter has enough hardware resources to handle the given concurrency level.

We used NGINX [88] as the load balancer for two-service and three-service

configurations. We utilized a round-robin load balancing algorithm, since each

request for a given scenario has the same computational complexity.

74

As the backend service, we used a service that adapts a well-known CPU benchmark,

first introduced by SysBench manual. This application tests whether the given

number in the request is prime or not and returns a true/false response to the client.

We used Java as the implementation language and Spring Boot as the framework,

owing to their wide adoption.

In our prime testing web service, we checked for four number of prime numbers, 11,

541, 66601 and 1303031 that represent different CPU workloads (the prime checking

application’s computational complexity is proportional to the prime number

provided). Hence, the CPU intensity increases with an increasing prime number

(CPU-Intensity(11) < CPU-Intensity(541) < CPU-Intensity(66601) <

CPU-Intensity(1303031)). These four numbers represent different levels of CPU

utilization of the application.

To make our results reproducible, we ran all our tests in Amazon EC2. Table 9.1

below summarizes the hardware configurations we used.

Table 9.1: Hardware configurations

Machine Instance Name Number of virtual CPUs Memory (GB)

JMeter m4.2xlarge 8 32

Backend services

(One per service)

m4.xlarge 4 16

Load Balancer m4.xlarge 4 16

9.4 Results and Discussion

Table 9.2 below summarizes the results for each configuration. In the following

discussion, we use the notation isPrime(x) to denote the set of requests that have x as

75

the prime number. For example, isPrime(11) denotes the test where we send the

number 11 in the request to check whether 11 is prime.

Table 9.2: Load balancing Results

Number of

Backend services

Prime

Number

Average

Latency (ms)

Throughput (Requests

Per Second)

99 percentile

Latency (ms)

Single service 11 28 19364 99

Single service 541 28 17804 105

Single service 66601 51 9684 236

Single service 1303031 518 963 1001

Two services 11 43 17025 670

Two services 541 41 12005 665

Two services 66601 42 11769 613

Two services 1303031 267 1679 2731

Three services 11 40 12076 679

Three services 541 40 12060 682

Three services 66601 40 12075 664

Three services 1303031 188 2523 2228

First, we observed that there is no difference between isPrime(11) and isPrime(541)

regarding average latency for all three scenarios. We believe this is because the

backend service is IO bound and not CPU bound. When we increase the prime

number, the CPU utilization increases while maintaining all other resources’

76

utilization almost constant. When comparing isPrime(11) with isPrime(541), with

500 concurrency level, both are not sufficient to stress the CPU to its maximum

utilization; therefore, additional work added by isPrime(541) did not add latency.

Second, we observed that in low CPU usage (isPrime(11) and isPrime(541)) cases,

single-service performance is better than two-service or three-service configurations,

with respect to average latency and throughput. For example, for the isPrime(11) test,

we observed an average latency of 28ms for the single-service configuration,

whereas for two-service and three-service configurations, we observed an average

latency of 43ms and 40ms, respectively. We believe this is because of the trade-off

between gains due to more nodes and additional latency due to an additional hop. For

example, in the isPrime(11) and isPrime(541) tests, the CPU is not fully utilized;

therefore, the average latency and throughput are mainly governed by the speed of

the network (given that the prime check application has a very little memory

footprint). Hence, adding more servers with a load balancer only adds an additional

hop, and the load balancer has to do twice as much IO as the backend server (adding

more servers does not improve the response time from a backend service). This

shows that when scaling a system, we should first identify the limiting factor and

then scale that resource. Blindly scaling a system with many servers will degrade

performance.

Third, we observed that when CPU usage is high (isPrime(66601)), there is a

performance gain in two-service and three-service setups. However, the percentage

performance gain (average latency and throughput) is small (increase the number of

services by two and throughput increases by a factor much less than two). For

example, in the isPrime(66601) case, we get a percentage throughput increase of 1.21

at two services and 1.24 at three services.

77

Also, we observed that when CPU usage is very high (isPrime(1303031)), there is a

speed up close to x, where x is the number of services. For example, in the

isPrime(1303031) test, we noted a percentage throughput increase of 1.74 and 2.62.

We believe this is because the cost and gains of the load balancer add up positively

with CPU-heavy backend services. For example, in the isPrime(66601) test, the CPU

utilization is comparatively high, and in the isPrime(1303031) test, CPU utilization is

even higher. Hence, we can make an assumption that a single-service configuration

CPU is operating at its peak level. When we increase the number of services, the load

on a single service decreases. For example, the CPU load decreases in our tests.

When the CPU utilization decreases, the queue lengths decrease. Hence, the response

times decreases significantly.

In order to obtain the intended return on investment, we should only add resources

that are limiting resources (bottlenecks). For example, in these tests, for the low-CPU

intensity cases, (isPrime(11) and isPrime(541)), adding more services does not

improve performance because the existing resources in the system are not fully

utilized. When we increase the CPU intensity to a higher level (so that CPU

utilization is very high), we get benefits by scaling the system.

Finally, we observed that there is no difference in 99 percentile latency values

between two-service and three-service configurations; however, we noted a

significant variance between one-service and two-service configurations. We believe

this is because of the number of network hops. For example, the number of network

hops per request is two for single service, four for two services and four for three

services. In the workload characterization of web servers, it has been shown that

network traffic has a high 99 percentile latency. When the number of network links

per request increases from two to four, the 99 percentile latency increases. But, when

scaling from two services to three services, the number of network links per request

remains constant at four. Therefore, the 99 percentile latency is not affected.

78

9.5 Summary

In this section, we looked at the performance impact of load balancing. We used a

prime checking backend service that can simulate different levels of CPU use. By

changing the prime number, we tested the performance of four different CPU

intensity levels. We showed that for low CPU-bound workloads, adding a load

balancer and more server replications do not give a performance gain, and,

sometimes, can lead to decreased performance. Also, we observed that when the

backend CPU utilization is high, adding more servers with a load balancer gives a

performance gain.

These observations are very useful in capacity planning. We often try to improve the

performance of a computer system by adding more resources with a load balancer.

As we have shown in this section, adding more resources sometimes degrades

performance. Hence, a more general guideline to capacity planning should include

checking the backend server’s utilization to make sure it is fully utilized. If the

backend service is lightly loaded before adding more backend servers, adding more

servers will often degrade system performance.

79

10. CONCLUSION

Due to the wide adoption of Server based systems, understanding the performance of

server based systems, under different conditions is important. In this research, we

characterized the web server systems under different configurations. We first

presented a summary of prevalent server architectures. Second, we provided a

systematic approach for performance testing, and presented a novel Python open

source library for latency analysis. Third, we experimented on existing server

architectures, and proposed eight new server architectures. Our analysis shows that

under different conditions the new architectures outperform the existing

architectures. Fourth, we did an extensive tail latency analysis of Java microservices.

Fifth, we explored the scalability characteristics of web servers. Sixth, we proposed a

novel approach to model the closed system performance using discrete event

simulation. Finally, we showed that unless used carefully, load balancing decreases

the performance of server based systems.

In summary we make the following contributions in this research

1. Implemented a novel open source library for workload characterization

2. Proposed a systematic approach for performance testing of web servers

3. Proposed eight new server architectures

4. Discussed the hardware, software implications for server performance

5. Performed an extensive tail latency analysis of microservices

6. Identified the scalability characteristics of middleware using Universal law of

scalability

7. Proposed a novel approach to model web server closed system performance

using discrete event simulation

8. Identified the impact of load balancing for server based systems.

We explored several weaknesses in our novel server architectures, and proved the

claims using hardware and software performance counters. These lead to further

80

improvements of the novel server architectures. We expect to explore them in the

future.

Discrete event simulation for half open systems are still unknown. Also, employing

queues and processing elements at different layers in the OSI model are promising

future works.

81

REFERENCES

[1] B. Erb, "Concurrent Programming for Scalable Web Architectures", Diploma,

Institute of Distributed Systems Faculty of Engineering and Computer Science Ulm

University, 2012.

[2] "XML-RPC Specification", Xmlrpc.scripting.com, 2019. [Online]. Available:

http://xmlrpc.scripting.com/spec.html. [Accessed: 24- Jun- 2019].

[3] "SOAP Version 1.2 Part 1: Messaging Framework (Second Edition)", W3.org,

2019. [Online]. Available: https://www.w3.org/TR/soap12-part1/. [Accessed: 24-

Jun- 2019].

[4] “WSDL Specification ”, 2019. [Online]. Available:

https://www.w3.org/TR/2007/REC-wsdl20-20070626/. [Accessed: 24- Jun- 2019].

[5] "OASIS UDDI Specification TC | OASIS", Oasis-open.org, 2019. [Online].

Available:https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=uddi-sp

ec. [Accessed: 24- Jun- 2019].

[6] F. Royomas, “Architectural styles and the design of network-based software

architectures”, Ph.D. thesis, University of California, Irvine (2000)

[7] p. Roy and S. Hafidi, Concepts, techniques and models of computer

programming. New Delhi: PHI Learning Private Ltd., 2009.

[8] B. Cantrill and J. Bonwick, "Real-world Concurrency", Queue, vol. 6, no. 5, p.

16, 2008. Available: 10.1145/1454456.1454462.

[9] R. Arnon. Gosling, James and L. Deutsch, “Fallacies of Distributed Computing

Explained”, Tech. Rep., Sun Microsystems (2006)

82

[10] G. Debasish, S. Justin, T. Kresten and V. Steve, “Programming language impact

on the development of distributed systems”, Journal of Internet Services and

Applications (2011), vol. Issue 2 / 2011:pp. 1–8, 10.1007/s13174-011-0042-y

[11] I. WSO2, "Cloud Native Programming Language", Ballerina.io, 2019. [Online].

Available: https://ballerina.io/. [Accessed: 24- Jun- 2019].

[12] K. Dan, “C10K problem”, Tech. Rep., Kegel.com (2006)

[13] O. John, “Why reads are a Bad Idea (for most purposes)”, in USENIX Winter

Technical Conference

[14] V. Behren, R. Condit, Jeremy, B. Eric, “Why events are a bad idea (for

high-concurrency servers), in: Proceedings of the 9th conference on Hot Topics in

Operating Systems - Volume 9, USENIX Association, Berkeley, CA, USA, pp. 4–4

[15] M. Welsh, D. Culler, and B. Eric, “SEDA: an architecture for well conditioned,

scalable internet services”, in: Proceedings of the eighteenth ACM symposium on

Operating systems principles, SOSP ’01, ACM, New York, NY, USA,pp. 230–243

[16] W. Stevens,.F. Richard, R. Bill and M. Andrew, “Unix Network Programming”,

Volume 1: e Sockets Networking API (3rd Edition), Addison-Wesley Professional

(2003)

[17] S. Vivek, P. Druschel, W. Zwaenepoel ,”Flash: an efficient and portable web

server, in: Proceedings of the annual conference on USENIX Annual Technical

Conference, USENIX Association, Berkeley, CA, USA, pp. 15–15

[18] M. Welsh, “A Retrospective on SEDA, Blog Post”,

http://mattwelsh.blogspot.com/2010/07/retrospective-on-seda.html (2010)

83

[19] Lmax-exchange.github.io, 2019. [Online]. Available:

https://lmax-exchange.github.io/disruptor/files/Disruptor-1.0.pdf. [Accessed: 24-

Jun- 2019].

[20] C. Hewitt, P. Bishop, and R. Steiger, ”A universal modular ACTOR formalism

for artificial intelligence, in: Proceedings of the 3rd international joint conference on

Artificial intelligence, IJCAI’73, Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, pp. 235–245

[21] C. Hoare, “Communicating sequential processes”. Commun. ACM (1978), vol.

21(8):pp. 666–677

[22] M. Mazzara and B. Meyer, Present and ulterior software engineering.

[s.l.]: Springer, PU, 2017.

[23] T. Salah, J. Zemerly, C. Yeun, M. Al-Qutayri and Y. Al-Hammadi, "The

evolution of distributed systems towards microservices architecture", in 11th

International Conference for Internet Technology and Secured Transactions, 2016.

[24] V. Pacheco, Microservice patterns and best practices [s.3.], PL, 2013..

[25] A. Balalaie, A. Heydarnoori and P. Jamshidi, "Microservices Architecture

Enables DevOps: Migration to a Cloud-Native Architecture", IEEE Software, vol.

33, no. 3, pp. 42-52, 2016. Available: 10.1109/ms.2016.64.

[26] M. Villamizar, O. GarcÃl’s, H. Castro, M. Verano, L. Salamanca and R.Casallas,

"Evaluating the monolithic and the microservice architecture pattern to deploy web

applications in the cloud", in 10th Computing Colombian Conference, 2015.

84

[27] R. Heinrich et al., "Performance Engineering for Microservices: Research

Challenges and Directions", in Proceedings of the 8th ACM/SPEC on International

Conference on Performance Engineering Companion, 2017.

[28] "TPC-W - Homepage", 2019. [Online]. Available: http://www.tpc.org/tpcw/.

[Accessed: 13- Mar- 2019].

[29] "SPECjvm2008", Spec.org, 2019. [Online]. Available:

https://www.spec.org/jvm2008/. [Accessed: 13- Mar- 2019].

[30] "JPetStore Demo", Jpetstore.cfapps.io, 2019. [Online]. Available:

https://jpetstore.cfapps.io/. [Accessed: 13- Mar- 2019].

[31] C. Aderaldo, N. Mendonca, C. Pahl and P. Jamshidi, "Benchmark Requirements

for Microservices Architecture Research", in IEEE/ACM 1st International Workshop

on Establishing the Community-Wide Infrastructure for Architecture-Based Software

Engineering, 2017.

[32] "Acme Air", GitHub, 2019. [Online]. Available: https://github.com/acmeair/.

[Accessed: 13- Mar- 2019].

[33]”Spring cloud demo apps” 2019. [Online]. Available:

ttps://github.com/kbastani/spring-cloudmicroservices-example. [Accessed: 13- Mar-

2019].

[34] "Microservices Demo: Sock Shop", Microservices-demo.github.io, 2019.

[Online]. Available: https://microservices-demo.github.io. [Accessed:13- Mar- 2019].

[35]"aspnet/MusicStore", GitHub, 2019. [Online].

Available:https://github.com/aspnet/MusicStore. [Accessed: 13- Mar- 2019].

85

[36] A. Sriraman and T. Wenisch, " M Suite: A Benchmark Suite for Microservices",

in IEEE International Symposium on Workload Characterization, 2018.

[37] A. Camargo, I. Salvadori, R. Mello and F. Siqueira, "An architecture to automate

performance tests on microservices", in Proceedings of the 18th International

Conference on Information Integration and Web-based Applications and Services,

2016.

[38] T. Ueda, T. Nakaike and M. Ohara, "Workload characterization for

microservices", in IEEE International Symposium on Workload Characterization,

2016.

[39] M. Amaral, J. Polo, D. Carrera, I. Mohomed, M. Unuvar and M. Steinder,

"Performance Evaluation of Microservices Architectures Using Containers", in NCA

’15 Proceedings of the 2015 IEEE 14th International Symposium on Network

Computing and Applications (NCA),

2015.

[40] L. Ismail, D. Hagimont, and J. Mossi'ere, "Evaluation of the mobile agents

technology: Comparison with the client/server paradigm," Information Science and

Technology (1ST) , vol. 19, 2000.

[41] W. A. De Vries and R. A. Fleck, "Client/server infrastructure: a case study in

planning and conversion," Industrial Management & Data Systems, vol. 97, no, 6,

pp, 222-232, 1997

[42] K. Kulesza, Z. Kotulski, and K. Kulesza, "On mobile agents resistance to traffic

analysis," Electronic Notes in Theoretical Computer Science, vol. 142, pp. 181-193,

2006

86

[43] S. Newman, Building Microservices. " O'Reilly Media, Inc.", 2015

[44] Wen, Y. Ma, and X. Chen, "ESB infrastructure's autonomous mechanism of

SOA," in 2009 International Symposium on Intelligent Ubiquitous Computing and

Education. IEEE, 2009, pp. 13 -17.

[45] Y. Sun, S. Nanda, and T. Jaeger, "Security-as-a-service for Microservices based

cloud applications," in 2015 IEEE 7th International Conference on Cloud Computing

Technology and Science (Cloud Corn). IEEE, 2015, pp. 50-5 7.

[46] 2015, pp. 50-5 7. [28] Hassan, M., Zhao, W., & Yang, J. (2010, July).

Provisioning web services from resource constrained mobile devices. In Cloud

Computing (CLOUD), 2010 IEEE 3rd International Conference on (pp. 490-497).

IEEE.

[47] Namiot, D., & Sneps-Sneppe, M. (2014). On Micro-services Architecture.

International Journal of Open Information Technologies, 2(9), 24-27.

[48] "Apache JMeter - Apache JMeter", JMeter.apache.org, 2019. [Online].

Available: https://JMeter.apache.org/. [Accessed: 13- Mar- 2019].

[49] “Creating a pagerank analytics platform using Spring Boot microservices,”

http://www.kennybastani.com/2016/01/spring-boot-graphprocessing-microservices.ht

ml, 2016, [Online; accessed 18-January2017]

[50] “MusicStore – steeltoeoss samples,”

https://github.com/SteeltoeOSS/Samples/tree/master/MusicStore, 2017, [Online;

accessed 18-January-2017]

87

[51]"SPECweb 2009 Benchmark", Spec.org, 2019. [Online]. Available:

https://www.spec.org/web2009/. [Accessed: 24- Jun- 2019].

[52]"TPC-C - Homepage", Tpc.org, 2019. [Online]. Available:

http://www.tpc.org/tpcc/. [Accessed: 24- Jun- 2019].

[53]"SPECjEnterprise®2010", Spec.org, 2019. [Online]. Available:

https://www.spec.org/jEnterprise2010/. [Accessed: 24- Jun- 2019].

[54] B. Schroeder, A. Wierman and M. Harchol-Balter, "Closed versus open system

models and their impact on performance and scheduling", in Symposium on

Networked Systems Design and Implementation (NSDI), 2006

[55] "PasinduTennage/python-latency-analysis", GitHub, 2019. [Online]. Available:

https://github.com/PasinduTennage/python-latency-analysis. [Accessed: 24- Jun-

2019].

[56] Sun Microsystems. RPC: Remote Procedure Call Protocol Specification Version

2. Internet Network Working Group RFC1057, June 1988.

[57] Sun Microsystems, Inc. Java Remote Method Invocation.

http://java.sun.com/products/jdk/rmi/ .

[58] Apache Software Foundation. The Apache web server. http://www. Apache.org

[59]Microsoft Corporation. IIS 5.0 Overview.

http://www.microsoft.com/windows2000/library/howitworks/

iis/iis5techove%rview.asp

88

[60] M. Thompson, D. Gregory, M. Farley, P. Barker and A. Stewart. “Disruptor :

High performance alternative to bounded queues for exchanging data between

concurrent threads.” (2011).

[61] "PasinduTennage/server-architectures", GitHub, 2019. [Online]. Available:

https://github.com/PasinduTennage/server-architectures/. [Accessed: 13- Mar- 2019]

[62]Imysql.com, 2019. [Online]. Available:

http://imysql.com/wpcontent/uploads/2014/10/sysbench-manual.pdf. [Accessed: 13-

Mar2019].

[63] S. Lehrig, R. Sanders, G. Brataas, M. Cecowski, S. Ivansek and J. Polutnik,

"CloudStore - towards scalability, elasticity, and efficiency benchmarking and

analysis in Cloud computing", Future Generation Computer Systems, vol. 78, pp.

115-126, 2018. Available: 10.1016/j.future.2017.04.018.

[64] "PasinduTennage/GC-Perfomance", GitHub, 2019. [Online]. Available:

https://github.com/PasinduTennage/GC-Perfomance/. [Accessed:

13- Mar- 2019].

[65] "Integration - On-Premise and in the Cloud", Wso2.com, 2019. [Online].

Available: https://wso2.com/integration/. [Accessed: 24- Jun- 2019].

[66] "wso2/performance-common", GitHub, 2019. [Online]. Available:

https://github.com/wso2/performance-common. [Accessed: 13- Mar2019].

[67] "Ubuntu Manpage: sar - Collect, report, or save system activity information.",

Manpages.ubuntu.com, 2019. [Online]. Available:

http://manpages.ubuntu.com/manpages/cosmic/man1/sar.sysstat.1.html . [Accessed:

13- Mar- 2019].

89

[68] Man7.org. (2019). perf(1) - Linux manual page. [online] Available at:

http://man7.org/linux/man-pages/man1/perf.1.html [Accessed 24 Jun. 2019].

[69] "Ubuntu Manpage: iftop - display bandwidth usage on an interface by host",

Manpages.ubuntu.com, 2019. [Online]. Available:

http://manpages.ubuntu.com/manpages/bionic/man8/iftop.8.html . [Accessed: 13-

Mar- 2019].

[70] "Server Architecture Test Results.xlsx", Google Docs, 2019. [Online].

Available:

https://drive.google.com/file/d/1PDULdT83xCCxHsMGmn5Pl_gZqW-IqYwx/view?

usp=sharing. [Accessed: 24- Jun- 2019].

[71]T. Brecht, E. Arjomandi, C. Li and H. Pham, "Controlling garbage collection and

heap growth to reduce the execution time of Java applications", ACM SIGPLAN

Notices, vol. 36, no. 11, pp. 353-366, 2001. Available: 10.1145/504311.504308.

[72] S. Blackburn, P. Cheng and K. McKinley, "Myths and realities", ACM

SIGMETRICS Performance Evaluation Review, vol. 32, no. 1, p. 25, 2004.

Available: 10.1145/1012888.1005693.

[73] L. Gidra, G. Thomas, J. Sopena and M. Shapiro, "A study of the scalability of

stop-the-world garbage collectors on multicores", ACM SIGPLAN Notices, vol. 48,

no. 4, p. 229, 2013. Available: 10.1145/2499368.2451142.

[74] M. Carpen-Amarie, P. Marlier, P. Felber and G. Thomas, "A performance study

of Java garbage collectors on multicore architectures", in . In: Proceedings of the

Sixth International Workshop on Programming Models and Applications for

Multicores and Manycores, 2015.

90

[75] J. Thönes, “microservices," IEEE Software, Vol. 32, Issue. 1, pp. 113-116.

[76] "Spring Projects", Spring.io, 2019. [Online]. Available:

https://spring.io/projects/spring-boot. [Accessed: 13- Mar- 2019]

[77] "PasinduTennage/springboot-test", GitHub, 2019. [Online]. Available:

https://github.com/PasinduTennage/springboot-test. [Accessed: 13- Mar2019].

[78]"microservices-demo/load-test", GitHub, 2019. [Online].

Available: https://github.com/microservices-demo/loadtest/blob/master/locustfile.py.

[Accessed: 13- Mar- 2019].

[79] "PasinduTennage/socksshopJMeter", GitHub, 2019. [Online]. Available:

https://github.com/PasinduTennage/socksshopJMeter. [Accessed:

13- Mar- 2019].

[80] "Amazon EC2 Instance Types - Amazon Web Services", Amazon Web Services,

Inc., 2019. [Online]. Available: https://aws.amazon.com/ec2/instance-types/.

[Accessed: 13- Mar2019].

[81] "Overview - SimPy 3.0.11 documentation", Simpy.readthedocs.io, 2019.

[Online]. Available: https://simpy.readthedocs.io/en/latest/. [Accessed:

13- Mar- 2019].

[82] J. Li, N. Sharma, D. Ports and S. Gribble, "Tales of the Tail: Hardware, OS, and

Application-level Sources of Tail Latency", in Proceedings of the ACM Symposium

on Cloud Computing, 2014.

91

[83] "PasinduTennage/microservices-descrete-event-simulation", GitHub, 2019.

[Online].

Available:https://github.com/PasinduTennage/microservices-descrete-eventsimulatio

n. [Accessed: 13- Mar- 2019].

[84] "PasinduTennage/micro-services-tail-index-analysis-results", GitHub,

2019. [Online]. Available:

https://github.com/PasinduTennage/microservices-tail-index-analysis-results.

[Accessed: 13- Mar- 2019].

[85] J. Hennessy and D. Patterson, Computer architecture, 6th edition, 2017

[86] N. Gunther, Guerrilla capacity planning. Berlin: Springer, 2011.

[87] Amazon.com, 2019. [Online]. Available:

https://www.amazon.com/Performance-Modeling-Design-Computer-Systems/dp/110

7027500. [Accessed: 24- Jun- 2019].

[88] "What is NGINX? - NGINX", NGINX, 2019. [Online]. Available:

https://www.nginx.com/resources/glossary/nginx/. [Accessed: 24- Jun- 2019].

[89] P. Tennage, S. Perera, M. Jayasinghe and S. Jayasena, "An Analysis of Holistic

Tail Latency Behaviors of Java Microservices," 2019 IEEE 21st International

Conference on High Performance Computing and Communications; IEEE 17th

International Conference on Smart City; IEEE 5th International Conference on Data

Science and Systems (HPCC/SmartCity/DSS), Zhangjiajie, China, 2019, pp.

697-705, doi: 10.1109/HPCC/SmartCity/DSS.2019.00104.

92

Appendix A: Server Architecture Results

Use Case

Backend

Architecture Heap Concurrency Workload

Average

Latency Throughput

Percentile

99

io Blocking 2g 300 1024 47.25204112 6334.343333 450

io Blocking 2g 10 1024 1.614496805 5895.805 3

io Blocking 100m 300 1024 47.19426614 6341.978333 450

io Blocking 100m 10 1024 1.621038504 5876.463333 3

io Blocking 2g 300 10 43.25755656 6909.336667 1025

io Blocking 2g 10 10 1.258362928 7610.721667 4

io Blocking 100m 300 10 42.65937912 7008.3 1026

io Blocking 100m 10 10 1.265719998 7565.363333 5

io

Blocking

Disruptor 2g 300 1024 60.12030311 4985.13 1041

io

Blocking

Disruptor 2g 10 1024 2.038677007 4700.855 4

io

Blocking

Disruptor 100m 300 1024 55.82458767 5361.035 1038

io

Blocking

Disruptor 100m 10 1024 2.05127292 4675.47 4

io

Blocking

Disruptor 2g 300 10 45.25049488 6615.258333 1029

io

Blocking

Disruptor 2g 10 10 1.659779774 5796.76 4

io

Blocking

Disruptor 100m 300 10 48.83835211 5907.48 1030

io

Blocking

Disruptor 100m 10 10 1.667509315 5766.868333 4

io Blocking Actor 2g 300 1024 66.589535 4495.97 1029

io Blocking Actor 2g 10 1024 1.661425391 5739.803333 3

io Blocking Actor 100m 300 1024 70.4562375 4249.566667 1046

io Blocking Actor 100m 10 1024 1.660005594 5743.82 3

io Blocking Actor 2g 300 10 125.697167 2382.946667 1181

io Blocking Actor 2g 10 10 1.27070197 7546.645 9

io Blocking Actor 100m 300 10 116.6674021 2567.8 1174

93

io Blocking Actor 100m 10 10 1.282053627 7473.543333 9

io NIO 2g 300 1024 77.38879295 3868.991667 1239

io NIO 2g 10 1024 2.493246301 3859.613333 3

io NIO 100m 300 1024 75.08709919 3988.651667 1237

io NIO 100m 10 1024 2.469132083 3899.95 3

io NIO 2g 300 10 65.07476999 4342.718333 1235

io NIO 2g 10 10 2.422317976 4011.46 9

io NIO 100m 300 10 61.84589727 4400.646667 1067

io NIO 100m 10 10 2.753854226 3538.756667 10

io NIO Disruptor 2g 300 1024 222.2785216 1348.303333 225

io NIO Disruptor 2g 10 1024 7.455909614 1318.05 10

io NIO Disruptor 100m 300 1024 222.6888782 1346.171667 226

io NIO Disruptor 100m 10 1024 7.419150765 1324.368333 10

io NIO Disruptor 2g 300 10 222.8983815 1345.195 226

io NIO Disruptor 2g 10 10 7.370149589 1336.441667 10

io NIO Disruptor 100m 300 10 219.1836567 1367.96 222

io NIO Disruptor 100m 10 10 7.380497187 1334.508333 10

io nio.netty 2g 300 1024 45.61846781 6560.621667 1026

io nio.netty 2g 10 1024 1.583609054 6017.57 3

io nio.netty 100m 300 1024 44.95371866 6656.175 1023

io nio.netty 100m 10 1024 1.631862682 5840.95 3

io nio.netty 2g 300 10 46.31986796 6425.781667 1014

io nio.netty 2g 10 10 2.975211939 3291.436667 13

io nio.netty 100m 300 10 44.29790401 6737.075 893

io nio.netty 100m 10 10 2.76077569 3543.083333 12

io NIO Actor 2g 300 1024 219.9928153 1362.395 222

io NIO Actor 2g 10 1024 7.402816905 1326.988333 8

io NIO Actor 100m 300 1024 220.0707037 1362.116667 222

io NIO Actor 100m 10 1024 7.53036429 1305.096667 9

io NIO Actor 2g 300 10 219.4570582 1366.325 221

io NIO Actor 2g 10 10 7.530835706 1309.331667 9

io NIO Actor 100m 300 10 223.7686258 1340.008333 225

io NIO Actor 100m 10 10 7.472770738 1318.373333 9

94

io SEDA Actor 2g 300 1024 52.41849097 5713.15 1038

io SEDA Actor 2g 10 1024 1.890702227 5075.355 16

io SEDA Actor 100m 300 1024 50.74854106 5898.981667 1037

io SEDA Actor 100m 10 1024 1.860883214 5156.435 14

io SEDA Actor 2g 300 10 53.0544053 5620.408333 1036

io SEDA Actor 2g 10 10 2.052792265 4726.45 15

io SEDA Actor 100m 300 10 49.88658862 5995.356667 1039

io SEDA Actor 100m 10 10 1.908247946 5072.656667 13

io SEDA Disruptor 2g 300 1024 214.231783 1397.981667 1301

io SEDA Disruptor 2g 10 1024 26.50623424 356.2316667 168

io SEDA Disruptor 100m 300 1024 315.2990178 950.1216667 1681

io SEDA Disruptor 100m 10 1024 30.51067582 320.35 181

io SEDA Disruptor 2g 300 10 270.9059618 1102.92 1534

io SEDA Disruptor 2g 10 10 27.06932625 349.3866667 180

io SEDA Disruptor 100m 300 10 354.9513499 843.78 1849

io SEDA Disruptor 100m 10 10 29.5695385 319.715 183

io SEDA Queue 2g 300 1024 51.74499456 5711.538333 1037

io SEDA Queue 2g 10 1024 1.312791451 4084.446667 2

io SEDA Queue 100m 300 1024 56.26819309 5239.421667 1046

io SEDA Queue 100m 10 1024 1.348066278 4006.478333 3

io SEDA Queue 2g 300 10 47.97686453 5957.086667 1038

io SEDA Queue 2g 10 10 1.318392991 5833.943333 3

io SEDA Queue 100m 300 10 50.50901413 5839.166667 1044

io SEDA Queue 100m 10 10 1.157056782 5022.461667 3

io NIO2 2g 300 1024 104.9787417 2823.525 476

io NIO2 2g 10 1024 2.231680448 4320.088333 3

io NIO2 100m 300 1024 98.44197418 3008.905 496

io NIO2 100m 10 1024 2.235508971 4311.201667 3

io NIO2 2g 300 10 109.0944621 2710.081667 504

io NIO2 2g 10 10 2.385472207 4064.21 3

io NIO2 100m 300 10 104.4051619 2823.916667 552

io NIO2 100m 10 10 2.393698387 4046.371667 3

io NIO2 Actor 2g 300 1024 218.206772 1373.59 222

95

io NIO2 Actor 2g 10 1024 7.300048074 1345.14 8

io NIO2 Actor 100m 300 1024 217.3206885 1379.485 222

io NIO2 Actor 100m 10 1024 7.295037464 1346.388333 8

io NIO2 Actor 2g 300 10 216.8088632 1383.015 218

io NIO2 Actor 2g 10 10 7.49558239 1316.7 8

io NIO2 Actor 100m 300 10 221.1185063 1356.088333 222

io NIO2 Actor 100m 10 10 7.467339722 1320.181667 8

io NIO2 Disruptor 2g 300 1024 217.1027458 1380.753333 226

io NIO2 Disruptor 2g 10 1024 7.407343018 1326.793333 10

io NIO2 Disruptor 100m 300 1024 216.6023524 1383.951667 227

io NIO2 Disruptor 100m 10 1024 7.426707164 1323.003333 10

io NIO2 Disruptor 2g 300 10 219.3027871 1367.198333 230

io NIO2 Disruptor 2g 10 10 7.416778905 1327.778333 10

io NIO2 Disruptor 100m 300 10 215.8492122 1389.093333 224

io NIO2 Disruptor 100m 10 10 7.427054933 1326.523333 10

cpu Blocking 2g 300 27059 41.95057963 7127.661667 1026

cpu Blocking 2g 10 27059 1.41473609 6779.206667 6

cpu Blocking 100m 300 27059 42.53772236 7031.351667 1027

cpu Blocking 100m 10 27059 1.429942939 6704.808333 6

cpu Blocking 2g 300 11 41.61693832 7185.248333 1025

cpu Blocking 2g 10 11 1.253746778 7642.678333 3

cpu Blocking 100m 300 11 42.1766678 7082.888333 1025

cpu Blocking 100m 10 11 1.265173866 7571.598333 5

cpu

Blocking

Disruptor 2g 300 27059 49.59746153 6034.996667 1032

cpu

Blocking

Disruptor 2g 10 27059 2.001308216 4822.09 4

cpu

Blocking

Disruptor 100m 300 27059 48.18726793 6211.376667 1033

cpu

Blocking

Disruptor 100m 10 27059 2.019313812 4783.623333 4

cpu

Blocking

Disruptor 2g 300 11 45.95102757 6511.248333 1029

cpu

Blocking

Disruptor 2g 10 11 1.670978532 5758.915 4

96

cpu

Blocking

Disruptor 100m 300 11 46.28904181 6463.263333 1029

cpu

Blocking

Disruptor 100m 10 11 1.677011875 5732.981667 4

cpu Blocking Actor 2g 300 27059 61.23965546 4890.34 1096

cpu Blocking Actor 2g 10 27059 1.310621717 7315.468333 10

cpu Blocking Actor 100m 300 27059 55.17637527 5429.465 1046

cpu Blocking Actor 100m 10 27059 1.327115442 7228.335 10

cpu Blocking Actor 2g 300 11 111.827449 2678.58 1171

cpu Blocking Actor 2g 10 11 1.266810457 7561.166667 9

cpu Blocking Actor 100m 300 11 107.077582 2797.148333 1167

cpu Blocking Actor 100m 10 11 1.285105749 7455.818333 9

cpu NIO 2g 300 27059 80.50125035 3698.963333 1449

cpu NIO 2g 10 27059 2.849994063 3410.731667 4

cpu NIO 100m 300 27059 76.44050117 3910.076667 1445

cpu NIO 100m 10 27059 2.438170855 3980.148333 4

cpu NIO 2g 300 11 62.63000496 4367.288333 1228

cpu NIO 2g 10 11 2.450226367 3967.378333 9

cpu NIO 100m 300 11 62.10817903 4473.633333 1047

cpu NIO 100m 10 11 2.623294613 3712.99 9

cpu NIO Disruptor 2g 300 27059 222.7917755 1345.783333 225

cpu NIO Disruptor 2g 10 27059 7.360839116 1337.678333 9

cpu NIO Disruptor 100m 300 27059 219.6892039 1364.78 225

cpu NIO Disruptor 100m 10 27059 7.464027541 1319.25 10

cpu NIO Disruptor 2g 300 11 222.9030043 1345.111667 226

cpu NIO Disruptor 2g 10 11 7.412936035 1328.305 10

cpu NIO Disruptor 100m 300 11 219.0704957 1368.618333 222

cpu NIO Disruptor 100m 10 11 7.379793255 1334.818333 10

cpu nio.netty 2g 300 27059 44.23255581 6743.721667 1011

cpu nio.netty 2g 10 27059 2.723406408 3590.683333 13

cpu nio.netty 100m 300 27059 43.79176838 6814.983333 1012

cpu nio.netty 100m 10 27059 2.656892085 3681.203333 13

cpu nio.netty 2g 300 11 46.30761705 6434.64 1010

cpu nio.netty 2g 10 11 3.008830878 3256.376667 13

97

cpu nio.netty 100m 300 11 44.82422817 6654.346667 901

cpu nio.netty 100m 10 11 2.98788177 3278.531667 13

cpu NIO Actor 2g 300 27059 220.176354 1361.796667 225

cpu NIO Actor 2g 10 27059 7.539217225 1306.505 9

cpu NIO Actor 100m 300 27059 219.7191533 1364.653333 221

cpu NIO Actor 100m 10 27059 7.531401009 1307.866667 9

cpu NIO Actor 2g 300 11 223.3663803 1342.448333 225

cpu NIO Actor 2g 10 11 7.571894124 1302.088333 9

cpu NIO Actor 100m 300 11 219.1776658 1368.065 221

cpu NIO Actor 100m 10 11 7.457694817 1320.661667 9

cpu SEDA Actor 2g 300 27059 47.70376547 6247.071667 1029

cpu SEDA Actor 2g 10 27059 1.794509583 5390.665 11

cpu SEDA Actor 100m 300 27059 46.84409358 6382.675 1034

cpu SEDA Actor 100m 10 27059 2.008573827 4825.15 12

cpu SEDA Actor 2g 300 11 55.85708172 5335.52 1036

cpu SEDA Actor 2g 10 11 1.990665332 4875.91 13

cpu SEDA Actor 100m 300 11 50.78160474 5891.573333 1039

cpu SEDA Actor 100m 10 11 1.824942505 5296.821667 13

cpu SEDA Disruptor 2g 300 27059 283.0924037 1056.451667 1581

cpu SEDA Disruptor 2g 10 27059 25.63170368 367.0866667 144

cpu SEDA Disruptor 100m 300 27059 384.2951838 780.2766667 2134.35

cpu SEDA Disruptor 100m 10 27059 29.07306338 339.2716667 162

cpu SEDA Disruptor 2g 300 11 269.3688588 1110.736667 1486

cpu SEDA Disruptor 2g 10 11 26.93552676 358.495 170

cpu SEDA Disruptor 100m 300 11 350.4485533 854.4766667 1853

cpu SEDA Disruptor 100m 10 11 30.46472607 316.57 188

cpu SEDA Queue 2g 300 27059 52.44140238 5670.68 1041

cpu SEDA Queue 2g 10 27059 2.094543423 4567.76 5

cpu SEDA Queue 100m 300 27059 58.64852046 5069.256667 1049

cpu SEDA Queue 100m 10 27059 2.22345567 4190.301667 6

cpu SEDA Queue 2g 300 11 47.1127137 6162.146667 1037

cpu SEDA Queue 2g 10 11 1.28204123 5820.313333 3

cpu SEDA Queue 100m 300 11 50.56040038 5827.405 1044

98

cpu SEDA Queue 100m 10 11 1.140802349 5065.043333 2

cpu NIO2 2g 300 27059 117.2916844 2514.138333 494

cpu NIO2 2g 10 27059 2.246075444 4306.538333 4

cpu NIO2 100m 300 27059 103.8334423 2847.861667 517

cpu NIO2 100m 10 27059 2.265022354 4277.708333 4

cpu NIO2 2g 300 11 107.9167758 2739.768333 532

cpu NIO2 2g 10 11 2.379587755 4069.665 3

cpu NIO2 100m 300 11 105.0399429 2815.896667 553

cpu NIO2 100m 10 11 2.395911577 4046.303333 3

cpu NIO2 Actor 2g 300 27059 217.3721299 1379.33 221

cpu NIO2 Actor 2g 10 27059 7.299981337 1348.511667 8

cpu NIO2 Actor 100m 300 27059 217.7210193 1377.078333 221

cpu NIO2 Actor 100m 10 27059 7.300840766 1348.77 8

cpu NIO2 Actor 2g 300 11 220.6770699 1358.761667 222

cpu NIO2 Actor 2g 10 11 7.495656335 1316.668333 8

cpu NIO2 Actor 100m 300 11 216.7076451 1383.723333 218

cpu NIO2 Actor 100m 10 11 7.468013434 1320.033333 8

cpu NIO2 Disruptor 2g 300 27059 215.8142028 1389.166667 223

cpu NIO2 Disruptor 2g 10 27059 7.401870705 1329.98 10

cpu NIO2 Disruptor 100m 300 27059 217.7303616 1377.041667 228

cpu NIO2 Disruptor 100m 10 27059 7.378452228 1334.585 10

cpu NIO2 Disruptor 2g 300 11 215.7898692 1389.46 224

cpu NIO2 Disruptor 2g 10 11 7.399554304 1331.25 10

cpu NIO2 Disruptor 100m 300 11 218.0454974 1375.06 232

cpu NIO2 Disruptor 100m 10 11 7.315622473 1345.721667 10

memory

Blocking

Disruptor 2g 300 1000 57.38226122 4961.973333 1032

memory

Blocking

Disruptor 2g 10 1000 2.058496138 4691.876667 4

memory

Blocking

Disruptor 100m 300 1000 48.20441609 6215.9 1032

memory

Blocking

Disruptor 100m 10 1000 2.126659063 4538.956667 5

memory

Blocking

Disruptor 2g 300 10 45.47019469 6577.183333 1029

99

memory

Blocking

Disruptor 2g 10 10 1.668440935 5772.646667 4

memory

Blocking

Disruptor 100m 300 10 44.72179648 6689.886667 1030

memory

Blocking

Disruptor 100m 10 10 1.676153966 5741.36 4

memory NIO Disruptor 2g 300 1000 222.7781791 1345.71 226

memory NIO Disruptor 2g 10 1000 7.491363329 1314.356667 10

memory NIO Disruptor 100m 300 1000 222.9036318 1344.876667 226

memory NIO Disruptor 100m 10 1000 7.486477652 1315.476667 10

memory NIO Disruptor 2g 300 10 222.9440996 1344.653333 225

memory NIO Disruptor 2g 10 10 7.364011886 1337.126667 10

memory NIO Disruptor 100m 300 10 222.1136343 1349.71 226

memory NIO Disruptor 100m 10 10 7.50402936 1312.45 10

memory SEDA Disruptor 2g 300 1000 279.6512118 1071.433333 1489

memory SEDA Disruptor 2g 10 1000 25.50148368 381.9333333 144

memory SEDA Disruptor 100m 300 1000 429.931371 694.6533333 2363

memory SEDA Disruptor 100m 10 1000 28.31486146 334.8033333 157

memory SEDA Disruptor 2g 300 10 263.1137873 1135.656667 1474

memory SEDA Disruptor 2g 10 10 26.5646119 342.9966667 161

memory SEDA Disruptor 100m 300 10 357.6517459 837.3866667 1974.85

memory SEDA Disruptor 100m 10 10 29.89491636 316.6366667 177

memory NIO2 Disruptor 2g 300 1000 217.9252634 1375.676667 227

memory NIO2 Disruptor 2g 10 1000 7.300700286 1348.02 10

memory NIO2 Disruptor 100m 300 1000 219.7771736 1364.036667 230

memory NIO2 Disruptor 100m 10 1000 7.447452073 1322.316667 10

memory NIO2 Disruptor 2g 300 10 218.6954218 1370.846667 228

memory NIO2 Disruptor 2g 10 10 7.302063804 1347.673333 10

memory NIO2 Disruptor 100m 300 10 215.7715067 1389.45 228

memory NIO2 Disruptor 100m 10 10 7.323086156 1344.11 10

memory Blocking 2g 300 1000 42.64624893 7011.116667 1026

memory Blocking 2g 10 1000 1.478129265 6493.99 5

memory Blocking 100m 300 1000 42.87363651 6981.183333 1028

memory Blocking 100m 10 1000 1.52629881 6302.756667 6

100

memory Blocking 2g 300 10 41.67864073 7172.076667 1025

memory Blocking 2g 10 10 1.254431934 7643.013333 4

memory Blocking 100m 300 10 43.35887077 6896.716667 1025

memory Blocking 100m 10 10 1.254498375 7629.976667 5

memory Blocking Actor 2g 300 1000 57.18545169 5229.016667 1062

memory Blocking Actor 2g 10 1000 1.33131509 7207.036667 10

memory Blocking Actor 100m 300 1000 49.01724848 6113.003333 1041

memory Blocking Actor 100m 10 1000 1.377947892 6960.483333 10

memory Blocking Actor 2g 300 10 111.4497778 2687.023333 1172

memory Blocking Actor 2g 10 10 1.26675205 7565.84 9

memory Blocking Actor 100m 300 10 111.498195 2687.013333 1178

memory Blocking Actor 100m 10 10 1.276549779 7500.156667 9

memory NIO 2g 300 1000 80.65254989 3704.34 1450

memory NIO 2g 10 1000 2.765818798 3513.646667 4

memory NIO 100m 300 1000 82.04025574 3639.646667 1452

memory NIO 100m 10 1000 2.59596046 3739.04 4

memory NIO 2g 300 10 63.65103585 4380.306667 1236

memory NIO 2g 10 10 2.739827378 3551.116667 10

memory NIO 100m 300 10 63.0827016 4519.3 1124.11

memory NIO 100m 10 10 2.699877314 3605.403333 10

memory nio.netty 2g 300 1000 44.28918859 6736.803333 1008

memory nio.netty 2g 10 1000 2.92139817 3351.236667 13

memory nio.netty 100m 300 1000 46.61649371 6393.306667 1019

memory nio.netty 100m 10 1000 3.012913656 3251.596667 13

memory nio.netty 2g 300 10 45.65709803 6520.026667 1010

memory nio.netty 2g 10 10 2.993488616 3270.17 12

memory nio.netty 100m 300 10 44.96001928 6633.446667 852

memory nio.netty 100m 10 10 3.003493724 3262.04 13

memory NIO Actor 2g 300 1000 223.8766281 1339.23 225

memory NIO Actor 2g 10 1000 7.535887156 1307.06 9

memory NIO Actor 100m 300 1000 219.6253645 1364.98 222

memory NIO Actor 100m 10 1000 7.387707116 1332.586667 9

memory NIO Actor 2g 300 10 219.1936367 1368.043333 221

101

memory NIO Actor 2g 10 10 7.431850569 1326.276667 9

memory NIO Actor 100m 300 10 220.5712611 1359.366667 225

memory NIO Actor 100m 10 10 7.561912532 1303.263333 9

memory SEDA Actor 2g 300 1000 48.25100919 6179.893333 1032

memory SEDA Actor 2g 10 1000 1.779618835 5428.443333 11

memory SEDA Actor 100m 300 1000 47.82822075 6251.57 1035

memory SEDA Actor 100m 10 1000 2.065136683 4695.766667 12

memory SEDA Actor 2g 300 10 57.76178995 5134.74 1034

memory SEDA Actor 2g 10 10 2.137923132 4537.793333 15

memory SEDA Actor 100m 300 10 49.61449731 6020.52 1038

memory SEDA Actor 100m 10 10 1.85018471 5220.806667 13

memory SEDA Queue 2g 300 1000 53.17559428 5594.126667 1042

memory SEDA Queue 2g 10 1000 2.144646035 4407.356667 5

memory SEDA Queue 100m 300 1000 62.05078233 4793.793333 1053

memory SEDA Queue 100m 10 1000 2.340584305 4032.256667 7

memory SEDA Queue 2g 300 10 45.26939448 6304.026667 1036

memory SEDA Queue 2g 10 10 1.253120441 5874.436667 2

memory SEDA Queue 100m 300 10 50.16397017 5854.52 1044

memory SEDA Queue 100m 10 10 1.178564427 4999.166667 3

memory NIO2 2g 300 1000 118.4348793 2491.68 478

memory NIO2 2g 10 1000 2.245223203 4309.896667 4

memory NIO2 100m 300 1000 104.1195928 2836.206667 507

memory NIO2 100m 10 1000 2.283280989 4235.876667 4

memory NIO2 2g 300 10 106.0849223 2782.623333 509

memory NIO2 2g 10 10 2.381603309 4066.963333 3

memory NIO2 100m 300 10 102.9536321 2866.636667 548

memory NIO2 100m 10 10 2.391047775 4050.613333 3

memory NIO2 Actor 2g 300 1000 217.9572432 1375.453333 221

memory NIO2 Actor 2g 10 1000 7.298456634 1348.783333 8

memory NIO2 Actor 100m 300 1000 216.2855391 1386.08 220

memory NIO2 Actor 100m 10 1000 7.413493069 1328.583333 8

memory NIO2 Actor 2g 300 10 216.1211267 1387.39 218

memory NIO2 Actor 2g 10 10 7.497318848 1315.976667 8

102

memory NIO2 Actor 100m 300 10 216.7826268 1383.09 218

memory NIO2 Actor 100m 10 10 7.322956051 1345.353333 8

db

Blocking

Disruptor 2g 300 NA 233.689187 1282.69 1855

db

Blocking

Disruptor 2g 10 NA 8.633328468 1141.866667 36

db

Blocking

Disruptor 100m 300 NA 238.7980426 1254.39 3031

db

Blocking

Disruptor 100m 10 NA 8.78149961 1123.003333 35

db NIO Disruptor 2g 300 NA 418.8492762 715.68 1117

db NIO Disruptor 2g 10 NA 15.47579397 641.7133333 47

db NIO Disruptor 100m 300 NA 420.7102861 712.8066667 1082

db NIO Disruptor 100m 10 NA 15.62353336 635.5233333 43

db SEDA Disruptor 2g 300 NA 571.6627365 523.8633333 2379

db SEDA Disruptor 2g 10 NA 29.65767285 320.22 145

db SEDA Disruptor 100m 300 NA 583.4391146 512.9033333 3173

db SEDA Disruptor 100m 10 NA 36.234157 274.5166667 162

db NIO2 Disruptor 2g 300 NA 457.9816822 655.4633333 2220.62

db NIO2 Disruptor 2g 10 NA 14.63030723 678.32 37

db NIO2 Disruptor 100m 300 NA 421.1748972 433.8166667 1689.56

db Blocking 2g 300 NA 231.3806648 1295.286667 1310

db Blocking 2g 10 NA 8.034807203 1226.853333 32

db Blocking 100m 300 NA 234.5933349 1277.3 1482

db Blocking 100m 10 NA 8.206684223 1201.236667 31

db Blocking Actor 2g 300 NA 244.1716129 1227.433333 949

db Blocking Actor 2g 10 NA 8.127702277 1212.403333 33

db Blocking Actor 100m 300 NA 246.4228971 1216.253333 925

db Blocking Actor 100m 10 NA 8.23261636 1197.006667 32

db NIO 2g 300 NA 585.6595774 335.8766667 8095.04

db NIO 2g 10 NA 29.63652604 335.87 35

db NIO 100m 300 NA 593.4068349 333.3866667 8879.85

db NIO 100m 10 NA 29.83828145 333.46 42

db nio.netty 2g 300 NA 246.1001774 1217.34 1823

103

db nio.netty 2g 10 NA 8.165427207 1207.963333 32

db nio.netty 100m 300 NA 241.9146173 1238.463333 1483

db nio.netty 100m 10 NA 8.339160002 1183.256667 32

db NIO Actor 2g 300 NA 418.7870012 715.81 1054

db NIO Actor 2g 10 NA 15.14102623 655.67 38

db NIO Actor 100m 300 NA 424.7576495 706.36 895

db NIO Actor 100m 10 NA 15.19570864 653.25 35

db SEDA Actor 2g 300 NA 247.4738464 1210.54 1293

db SEDA Actor 2g 10 NA 8.474252849 1163.753333 33

db SEDA Actor 100m 300 NA 250.5738879 1196.046667 1296

db SEDA Actor 100m 10 NA 8.622383002 1143.963333 32

db SEDA Queue 2g 300 NA 225.751635 1327.736667 1083.8

db SEDA Queue 2g 10 NA 8.401889501 1160.8 37

db SEDA Queue 100m 300 NA 229.705122 1303.386667 1388

db SEDA Queue 100m 10 NA 8.601418007 1136.336667 34

db NIO2 2g 300 NA 149.7219324 1976.773333 1127

db NIO2 2g 10 NA 7.372583664 1335.7 26

db NIO2 100m 300 NA 182.0857958 1639.706667 1246

db NIO2 100m 10 NA 7.509059137 1310.463333 25

db NIO2 Actor 2g 300 NA 1043.713581 287.33 1156

db NIO2 Actor 2g 10 NA 34.7034771 287.1166667 36

db NIO2 Actor 100m 300 NA 1061.39425 282.5366667 1106

db NIO2 Actor 100m 10 NA 34.59198416 287.93 43

104

