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Abstract  

 

Server  based  systems  are  widely  used  in  modern  computer  systems.  Understanding  the            
performance  of  web  server  based  systems,  under  different  conditions  is  important.  This             
requires  a  step  by  step  approach  that  includes  modelling,  designing,  implementing,            
performance  testing  and  analyzing  of  results.  In  this  research,  we  aim  at  characterizing  the               
web  server  systems  under  different  configurations.  We  present  a  summary  of  prevalent  server              
architectures,  provide  a  systematic  approach  for  performance  testing,  and  present  a  novel             
open  source  Python  library  for  latency  analysis.  We  experiment  on  existing  server             
architectures,  and  propose  eight  new  server  architectures.  Our  analysis  shows  that  under             
different  conditions  the  new  architectures  outperform  the  existing  architectures.  Moreover           
we   do   an   extensive   tail   latency   analysis   of   Java   microservices.  
 
Key   words :   Server   architectures,   tail   index,   performance,   latency,   throughput,   web  
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1.   INTRODUCTION  

Server  based  systems  are  widely  used  in  modern  computer  systems.  Hence,            

understanding  the performance  of  web  server  based  systems,  under  different           

conditions  is  essential.  This  requires  a  systematic  approach  that  consists  of            

modelling,  designing,  implementing,  performance  testing  and  analysing  the  results.          

In  this  research,  we  aim  at  characterizing  the  web  server  systems  under  different              

configurations.  

 

Server  based  systems  cover  a  wide  range  of  applications  that  can  be  categorized  into               

different  architectures.  Hence  it is  important  to  first  understand  different  architectural            

styles  such  as  monolithic  and  service  oriented  architecture.  We  first  present  a  case              

study   of   existing   web   architectures,   such   as   monolithic,   and   microservices.  

 

Second  we  provide  a  systematic  approach  to  characterize  the  server  based  system             

performance.  We  explore  the  benchmarks,  workload  generation,  theoretical  models,          

tools  and  measurement  technologies.  There,  we  present  a  novel  open  source  Python             

library   for   latency   analysis.  

 

Third,  we  discuss  the  existing  server  architectures,  Blocking,  NIO,  NIO2  and  Staged             

event  driven  architecture,  and  message  passing  architectures,  Queue,  Disruptor  and           

Actors.  Then  we  propose  12  web  server  architectures,  eight  of  which  are  novel,              

which  are  combinations  of  above  server  architectures  and  message  passing           

architectures.  We  perform  an  extensive  analysis  of  the  12  architectures  and  show  that              

the   novel   architectures   outperform   the   existing   architectures   for   some   use   cases.  

 

High  tail  latency  is  an  important  area  of  systems  research.  Many  prior  work  have               

attempted  to  characterize  and  mitigate  the  long  tail  latency  values  of  different  types              

of  systems.  However,  tail  latency  characteristics  of  microservices  is  still  an  unknown             

area  with  little  to  no  existing  prior  works.  As  the  fourth  part  of  this  thesis,  we  explore                  

the  tail  latency  characteristics  of  microservices.  Our  findings  and  conclusions  are            
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published  in  Tennage  et  al.  [89],  hence  we  only  provide  the  references  in  this  thesis.                

An   interested   reader   can   refer   to   our   original   publication   [89]   for   complete   details.   

 

We  then  focus  on  scalability  characteristics  of  web  servers.  We  first  discuss  the              

theoretical  models  of  scalability,  Amdahl’s  law  and  Universal  Scalability  law.  Then            

we  perform  an  extensive  analysis  of  WSO2  Enterprise  Integrator  scalability  using            

Universal   scalability   law   as   the   model.  

 

Discrete  event  simulation  is  a  technique  that  can  be  used  to  model  server  based               

systems,  without  performing  extensive  tests.  In  this  approach  a  server  is  simulated  in             

a virtual environment. Due to its flexibility and cost effectiveness, discrete event 

simulation  has  gathered  a  wide  recognition  in  workload  characterization.  As  the            

seventh  part  of  this  research  we  explore  how  to  use  discrete  event  simulation  for               

modelling  web  server  systems.  We  propose  a  novel  method  to  model  the  closed              

system  model  using  discrete  event  simulation  and  study  the  impact  of  number  of              

cores   and   concurrency   on   performance.  

 

Load  balancing  is  a  popular  scaling  technique  for  web  servers.  However,  there  is  a               

myth  that  load  balancing  always  improves  performance.  To  address  this  problem,  we             

study  the  impact  of  load  balancing  for  web  server  systems.  Our  analysis  shows  that               

blindly  adding  multiple  resources  using  a  load  balancer  does  not  improve  the             

performance   and   explain   in   detail   the   performance   impact   of   load   balancing.  

 

Following   are   the   major   contributions   of   this   research.  

1. A   novel   open   source   Python   library   for   workload   characterization  

2. A   systematic   approach   for   performance   testing   of   web   servers  

3. Propose   eight   new   server   architectures  

4. Hardware,   Software   implications   for   server   performance  

5. Tail   latency   analysis   of   microservices  
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6. Identifying  the  scalability  characteristics  of  middleware  using  Universal  law          

of   scalability  

7. A  novel  approach  to  model  web  server  closed  system  performance  using            

discrete   event   simulation  

8. Identifying   the   impact   of   load   balancing   for   server   based   systems.  

 

1.1.   Research   Problem  

1.1.1   Motivation   and   overview  

Server  based  systems  are  widely  used  in  modern  computer  systems.  High            

performance  is  a  requirement  of  server  based  systems  to  ensure  the  service  level             

agreements. Hence, it is important to understand the performance behaviours of 

server  based  systems.  We  explore  the  performance  characteristics  of  server  based            

systems   for   different   architectures   and   configurations.  

 

1.1.2   Problem   statement  

In   this   research   we   focus   on   characterizing   the   performance   of   server   based   systems.  

 

1.2.   Research   Objectives  

Objective  of  this  research  is  to  identify  the  performance  behaviour  of  server  based              

systems.   Our   specific   aims   include  

1. Implementing   an   open   source   Python   library   to   analyse   latency.  

2. Design   and   implement   eight   new   server   architectures.  

3. Tail   latency   analysis   of   microservices.  

4. Application   of   universal   scalability   law   to   analyse   middleware   scalability.  

5. Implementing  closed  system  performance  tests  using  discrete  event         

simulation.  

6. Explore   the   impact   of   load   balancing   for   server   based   systems.  
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2.   RELATED   WORK  

2.1   Web   Services  

Web  Services  are  widely  adopted  in  modern  computer  systems.  Web  services  are            

based  on  Hypertext  Transfer  Protocol  (HTTP).  Web  services  replaced  Remote           

Procedure  Call  (RPC)  technology  which  was  the  state  of  the  art  method  before  web               

services.  Using  explicit  message  passing  techniques,  web  services  provide          

communication   between   nodes   [1].  

 

XML  based  RPC  adapts  RPC  technologies  to  web  services  [1].  XML-RPC  uses             

POST  requests  (HTTP)  for  executing  procedure  calls.  Though  XML  based  RPC            

(XML-RPC)  uses  some  of  the  features  available  in  HTTP  protocol,  there  is  a              

considerable   number   of   features   of   HTTP   that   are   not   used   in   XML-RPC   [1]   [2]   .  

 

SOAP  is  an  improved  version  of  XML-RPC,  which  addresses  some  limitations            

inherent  in  XML-RPC.  SOAP  specification  defines  the  message  format  and  methods            

for  the  exchange  of  messages  between  services  [3].  There  exist  several  variations  of              

SOAP  which  are  labelled  as  WS-*.  These  extensions  address  the  additional  features             

of   SOAP   including   security   and   service   orchestration   [1].  

 

Web  services  description  language  (WSDL)  is  a standard  for  inter  service            

communication  [4]. Unlike  RPC  based  protocols,  WSDL  uses  service  descriptions           

that   are   in   XML   format.  

 

Universal  Description,  Discovery  and  Integration  (UDDI)  is  another  method  in  web            

services,  which  was  originally  used  to  provide  registry  functions  [5].  Due  to             

emerging  new  technologies,  which  we  discuss  in  the  later  sections,  UDDI’s           

importance   is   almost   lost.  
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Although  SOAP,  WSDL  and  UDDI  have  gained  much  popularity  in  web  services,  it              

does  not  cover  the  full  spectrum  of  web.  Though  HTTP  can  be  used  as  an  application                 

level   protocol,   SOAP   and   WSDL   use   HTTP   only   as   a   communication   protocol.  

Representational  State  Transfer  (REST)  addresses  these  issues  in  WSDL  and  SOAP            

[6].  REST  incorporates  most  of  the  fundamentals  of  the  World  Wide  Web.  REST              

architectural   style   specifies   a   wide   range   of   HTTP   features.   

 

There   are   several   features   of   resource   oriented   architecture.  

1. Client-server  architecture:  Separation  of  responsibilities  is  the  major  aspect          

of  this  architecture.  Client  Server  architecture  proposes  to  evolve  client  and            

server as two independent systems. This enables decoupled code which is 

easy   to   develop.   

 

2. Statelessness:  Statelessness  property  of  resource  oriented  architecture        

promotes   scalability   and   reliability.  

 

3. None  shared  cache:  Helps  to  reduce  latency  and  improves  efficiency  by            

reducing   misses.  

 

4. Layered  system:  Layer  is  a  group  of  reusable  components  that  are  reusable  in              

similar  circumstances.  Using  a  layered  system  enables  to  balance  the  server            

workload   among   many   nodes.  

 

5. Code-on-Demand:  This  is  a  component  of  resource  oriented  architecture          

which   provides   extensible   deployment.  

 

6. Uniform  interface:  This  enables  to  use  and  access  resources  using  HTTP            

methods   such   as   GET   and   POST.   
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2.2   Concurrency  

Running  multiple  activities  at  the  same  time  is  defined  as  the concurrency  [7].              

Though  executed  in  parallel,  the  tasks  may  interact  among  them.  Concurrency  in             

computer  systems  is  available  in  many  forms  such  as  multiple  cores  and  single              

core–multiple  threads.  When  implemented  correctly,  concurrency  can  reduce  the          

latency   and   improve   the   level   of   throughput.  

Web  applications  are  also  inherently  concurrent.  Both  the  application  server  and  the             

web  server  should  handle  the  concurrency  issues.  Roy  et  al.  [7]  states  four  main               

approaches  for  programming  concurrency,  concurrency  based  on  shared  state,          

concurrency  based  on  message  passing,  concurrency  based  on  declaration  and  no            

concurrency (sequential program execution). 

  

Concurrency  in  distributed  systems  has  a  set  of  inherent  challenges  as  shown  by              

Arnon  et  al.  [9].  Network,  infrastructure,  latency,  topology,  transport  and  bandwidth            

are  shown  as  the major  challenges  in  developing  concurrent  applications  in  a             

distributed   environment.  

 

Ghosh  et  al.  [10]  have  evaluated  different  programming  languages  such  as  Java  and              

C++  with  respect  to  their  adoption  in  distributed  systems.  They  have  shown  the              

limitations  of  existing  languages  and  suggested  different  approaches  to  mitigate           

them.  Hence  novel  languages  such  as  Ballerina  [11]  are  emerging  for  distributed             

application   development.  

 

2.3   Scalability  

Scalability  aims  at  handling  dynamic  workload  by  changing  the  deployment,  either           

hardware  or  software.  Scalability  becomes  a  requirement  that  necessitates  the  usage            

of   a   distributed   system.  

 

There  are  two  methods  of  scaling;  1.  Vertical  and  2.  Horizontal.  In  vertical  scaling,               

more  resources  (such  as  RAM  and  CPU  cores)  are  added  to  a  single  computing  unit.                
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Hence,  the  node  can  handle  more  tasks.  In  contrast,  more  nodes  are  added  in  the               

horizontal  scaling  approach.  Horizontal  scaling  requires  specific  treatment  in  the           

application   implementation   [1].  

 

2.4   Web   Server   Architectures  

Web  server  architecture  defines  how  the  input  output  of  requests  are  handled  and              

how  different  threads  are  allocated.  Web  servers are  designed  with  the  aim  of              

maximizing  the  performance  while  using  a  minimum  number  of  resources  [1].  Kegel             

et   al.   [12]   have   highlighted   the   need   for   improved   server   architectures.  

 

Thread based and event based are the most widely used web server architectures, 

from  which  most  other  architectures  are  derived.  More  sophisticated  variants  have            

emerged   which   combine   these   two   approaches   [13]   [14]   [15].   

 

The  thread-based/process  based  approach  associates  each  incoming  connection  with          

a separate  thread/process  (synchronous  blocking  I/O).  Thread/process  based         

approach   is   supported   by   many   programming   languages.  

 

Process  per  connection  is  the  first  attempt  on  building  web  server  architectures  [16].              

In  this  approach  a  separate  process  is  assigned  to  each  client  request.  Though  this               

model  is  easy  to  implement,  it  has  been  shown  that  this  method  cannot  support  very                

high concurrencies.  Processes  are  heavy  weight  and  require  a  lot  of  computer             

resources.  When  the  concurrency  increases,  the  server  cannot  fork  processes  than  a             

maximum   that   is   imposed   by   the   underlying   hardware   and   operating   system.  

 

Thread  per  request  architecture  is  the  successor  of  process  per  connection  approach             

[16].  In  this  architecture,  a  thread  is  assigned  for  each  client.  Compared  to  processes,               

threads  are  lightweight.  Hence  this  architecture  scales  more  than  the  process  per             

connection  architecture.  However,  when  the  concurrency  increases  beyond  a          

threshold,  the  underlying  hardware  cannot  support  a  large  amount  of  threads.  To             
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address  this  issue,  bounded  thread  pool  architecture  was  proposed  [16].  In  this             

approach,  a  predefined  thread  pool  is  used.  If  the  number  of  clients  is  greater  than  the                 

size   of   the   thread   pool,   the   additional   requests   queue   up.  

 

However,  thread  per  connection  approach  does  not  provide  good  quality  of  service  at              

high  concurrency  levels,  due  to  overheads  of  context  switching  and  stack            

management.  Non-blocking  IO  which  is  also  called  as  event  driven  architecture            

addresses  these  issues  by  handling  multiple  connections  using  a  single  thread  [17].  In              

this  approach,  a  single  thread  listens  to  all  the  events  (accept,  read  and  write  events)               

and  handles  them  in  a  non-blocking  fashion  [17].  This  method  scales  well  until  all               

the operations are non-blocking. 

 

Welsh  et  al.  [15]  have  combined  these  two  approaches;  thread  pool  and  event  based,               

and  proposed  an  architecture  called  staged  event  driven  architecture  (SEDA).  In  this             

architecture,  a  stage  is  defined  as  an  execution  unit  which  has  a  thread  pool.  Request                

processing  is  done  at  several  stages,  for  example  the  first  stage  accepts  the              

connections,  and  the  second  stage  reads  the  sockets.  This  enables  to  improve  the              

non-blocking  IO  performance.  A  later  study  [18]  has  argued  that  SEDA  performance             

suffers   when   the   workload   is   low,   due   to   its   implicit   restrictions   on   stages.  

 

2.5   Message   Passing   Architectures  

Message  passing  architectures  account  for  the  mechanism  that  is  used  to  pass  a              

message  from  one  thread/process  to  another.  There  exist  three  widely  used  message             

passing   architectures.  

 

1. Queue  

Queue  is  a  data  structure  that  is  commonly  used  in  programming.  Queue             

support  operations  such  as  enqueue  and  dequeue.  Queue  follows          

First-In-First-Out  methodology.  Most  thread  pool  based  architectures  use         

queues   to   enqueue   new   runnable   items.  

 
8  



2. Disruptor  

LMAX  [19]  addresses  some  fundamental  limits  with  conventional  queues,          

such  as  latency  costs.  Disruptor  introduces  a  ring  buffer  that  can  be  used              

instead  of  queues.  Disruptor  aims  at  reducing  cache  misses  by  pre  allocating             

the   objects   in   the   ring   buffer.  

 

3. Actor  

Actor  model  is  a  method  of  decoupling  different  entities.  It  provides  explicit             

asynchronous  message  passing  techniques  using  mail  boxes  [20]  [21].  Actors           

can   perform   the   following   actions.  

● Send a message to another actor. 

● Create   new   actors.  

● Change   actor’s   own   internal   behaviour   

 

2.6   Microservices  

Please   refer   to   the   literature   review   section   of   our   previous   publication   [89].  

 

2.7   Summary  

In  this  section  we  first  discussed  the  evaluation  of  web  services.  Then  we  presented  a                

summary  of  prevalent  concurrency  architectures  in  web  servers.  Moreover,  we           

discussed  existing  server  architectures  while  highlighting  their  pros  and  cons.  Finally            

we  reviewed  literature  on  Microservices;  the  architecture,  their  wide  adoption  and  the             

importance   of   microservices   performance   characterization.   
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3.   SERVER   ARCHITECTURES  

3.1   Introduction  

Server  architectures  have  evolved  rapidly  over  the  last  three  decades.  In  this  research,              

several  server  architectures,  including  monolithic,  and  microservices  are  discussed  in           

terms   of   their   performance.  

 

3.2   Client   Server   Paradigm  

Client-Server  paradigm  is  the  first  widely  adopted  architecture  for  developing           

systems  that  are  distributed  [40].  In  this  model,  two  programs  communicate  with           

each  other,  client  and  the  server.  Client  initiates  the  communication  using  a  request              

which   is   received   by   the   server.   

 

In  this  architecture,  the  server  is  the  component  which  provides  all  the  resources              

requested  by  the  client  [41].  This  architecture  was  initially  proposed  as  an  all  in  one                

architecture.  Later  on,  due  to  complexities  of  all  in  one  method,  tired  architecture              

was  proposed.  There,  the  server  is  broken  into  n-tiers.  Three-tier  architecture  is  one              

of   the   most   popular   approaches.  

 

3.3   Mobile   Agents  

Mobile  agents  architecture  addresses  the  limitations  of  the  client  server  architecture            

[23].  In  this  architecture,  an  agent  can  move  from  one  node  to  another  with  its  code                 

and  data  structures  [42].  Mobile  agents  have  three  main  components:  owner,            

locations  visited  and  the  adversary.  Ismail  et  al.  [40]  have  shown  that  depending  on               

the   visited   nodes   an   agent   can   evolve   on   its   own.  

 

3.4   Service   Oriented   Architecture  

Service  Oriented  Architecture  (SOA)  is  the  most  successful  alternative  for  client            

server  architecture  [43].  SOA  promotes  less  coupling  among  services  [40].  SOA            

defines   explicit   boundaries   between   different   services.   
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Enterprise  Service  Bus  (ESB)  plays  an  important  role  in  SOA.  Each  client  request  is               

first  handled  by  the  ESB.  ESB  specifies  the  relevant  service  that  can  serve  the  request                

using   its   registry   [44].   

 

3.5   Microservices  

Microservices  is  an  architectural  style  that  was  proposed  recently  [45]  [46]  [47].             

Microservices  aims  at  building  loosely  coupled  services  which  are  easy  to  deploy.             

Though  argued  as  an  extension  of  SOA,  microservices  is  a  bottom  up  approach  that               

addresses   the   requirements   of   distributed   systems.  

 

Microservices  comprises  a  set  of  small  services  which  can  run  independently.            

Communication  between  services  is  strictly  using  message  passing.  Though  its           

performance  suffers  compared  to  monolithic  architecture,  its  improved  usability,          

flexibility  and  ease  of  deploying  have  made  it  the  de  facto  method  of  distributed               

computing.   
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4.   PERFORMANCE   ENGINEERING  

4.1   Introduction  

Workload  characterization  is  a  sub  field  of  distributed  computing,  which  tries  to             

implement  systems,  collect  data,  and  analyse  to  draw  conclusions.  It  requires  both             

implementation  skills,  and  analytical  skills  to  perform  a  good  workload           

characterization.   

 

Workload   characterization   is   important   in   many   different   aspects.  

1. Helps  to  identify  current  performance  of  your  system,  which  can  be  used  for             

service   level   agreements   of   commercial   applications.  

 

2. Helps   to   identify   the   optimum   setup   of   a   system.  

 

3. Helps   to   identify   the   performance   bottlenecks   in   a   system.  

 

Workload  characterization  has  emerged  as  a  systematic  procedure,  with  several  best            

practices   of   its   own.   These   best   practices   are   as   follows.  

1. Selecting   the   correct   benchmark  

Selecting  the  correct  benchmark  is  the  most  crucial  and  essential  part  in             

workload  characterization.  For  example,  if  one  intends  to  do  a  performance            

analysis  of  microservices,  it  is  required  to  select  a  standard  microservices            

benchmark  like  Socks  Shop.  A  benchmark  should  have  the  following  set  of             

characteristics.  

a. Should   represent   a   read   world   application  

b. Should   be   able   to   handle   real   world   workload  

c. Should   adhere   to   the   standard   best   practices   of   the   architecture  

2. Selecting   the   correct   model  

There   are   three   main   models   that   can   be   used   for   performance   testing.  

a. Open   model  

b. Closed   model  
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c. Half   open   model  

Each  of  these  models  are  suitable  for  different  purposes,  for  example,  the             

open  model  is  suitable  for  tail  latency  analysis,  whereas  the  closed  system             

model  is  used  for  analysing  the  maximum  sustainable  throughput  of  a  server.             

In   the   following   sections,   each   of   these   models   are   described   in   depth.  

  

3. Selecting   the   correct   workload   generation   tools   and   workload  

For  each  type  of  model  mentioned  above,  there  are  corresponding  workload            

generation  tools,  for  example  Apache  JMeter  [48]  is  a  widely  used  tool  for              

closed   model   workload   generation.  

Also,  there are  two  types  of  workloads,  synthetic  and  real.  Synthetic            

workloads  mean  the  work  that  is  generated  synthetically,  for  example  sending            

requests  to  a  server  using  JMeter  using  a  specified  level  concurrency.  In             

contrast,  there  are  standard  real  workloads  such  as  98  World  cup  dataset,             

which   are   accepted   as   standard   for   a   web   server   workload.  

 

4. Standard   performance   metrics  

There  are  a  set  of  performance  metrics  that  are  accepted  both  in  industry  and               

academia;  average  latency,  throughput,  99  percentile  latency.  Selecting  the          

right  set  of  performance  metrics  for  the  intended  work  is  very  crucial.  In  the               

following  sections,  an  introduction  to  most  important  performance  metrics  are           

given.  

 

4.2   Benchmarks  

In  this  section,  the  popular  benchmarks  that  are  used  for  server  workload             

characterization   are   listed.  

1. Microservices   Benchmarks  

a. Acme   Air  

b. Spring   Cloud   demo   apps  
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c. Socks   Shop   

d. MusicStore   

 

2. Monolithic   Server   Benchmarks  

a. SPECweb   2009  

b. TPC   –   C  

c. TPC   –   W  

d. SpecjEnterprise   2010  

 

4.3   Workload   Generation  

Once a suitable benchmark has been selected, a suitable workload generation 

mechanism   should   be   used.   There   are   two   main   workload   generation   mechanisms.  

 

4.3.1   Real   workloads  

In  real  workloads,  real  user  traffic  that  are  extracted  using  HTTP  Logs  are  replayed.               

This  enables  to  simulate  the  system  as  in  a  real  world  deployment.  For  a  given                

application,  it  is  possible  to  collect  HTTP  logs  over  a  period  of  time,  and  then  use                 

these  logs  to  replay  the  traffic.  Also,  there  are  standard  workloads  that  are  widely               

accepted   in   literature   such   as   the   1998   World   Soccer   Cup   dataset.  

 

However   there   are   several   bottlenecks   of   using   real   workloads.  

1. Takes   a   long   time   to   collect   data.  

2. Cannot   collect   data   for   different   configurations   in   a   production   environment.  

3. There  may  not  be  standard  workloads  for  newer  architectures  such  as           

microservices.  

 

4.3.2   Synthetic   workloads   

To  address  the  problems  associated  with  real  workloads,  workload  characterization           

experts  use  synthetic  workloads;  workloads  that  are  generated  artificially.  This           

approach   has   several   advantages.  
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1. Can   do   perform   test   in   a   reasonable   time  

2. In  a  case  where  a  huge  number  of  events  (requests)  are  needed  to              

characterize,  this  is  the  only  option,  since  the  earlier  approach  of  real             

workloads   does   not   allow   to   get   many   requests.  

3. Can   change   the   server   parameters   and   perform   the   tests.  

 

4.4   Performance   Models  

Workload  generators  are  classified  based  on  a  performance  model  [54].  Performance            

models  impact  the  performance  numbers,  hence  they  are  a  major  concern  in             

performance   engineering.  

4.4.1   Open   loop   model  

In  the  open  loop  model,  a  client  sends  a  request  to  a  server  and  then  leaves  the                  

system  immediately.  A  typical  Google  search  operation  can  be  taken  as  an  example              

of  this  model.  There,  a  user  sends  a  request  to  the  Google  server  and  with  a  high                  

priority   leaves   the   Google   server   by   going   to   another   web   site.  

 

4.4.2   Closed   loop   model  

In  the  closed  loop  model,  a  client  repeatedly  sends  requests  to  the  server.  First  the                

client  sends  a  request  to  the  server.  Upon  receiving  the  request,  the  client  sends               

another   request   to   the   same   server.   

 

4.4.3   Half   open   model  

None  of  the  above  two  models  are  representative  of  real  traffic.  In  a  real  client  server                 

interaction,  a  client  first  sends  a  request  to  the  server,  and  then  for  some  time  acts  like                 

in  a  closed  system  loop,  and  once  the  intended  work  is  done  leaves  the  system.  This                 

model   is   called   the   half   open   model.  
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4.5   Tools  

There  are  several  standard  tools  that  emulate  the  user  traffic.  Table  4.1  below              

summarizes   the   workload   generation   tools.  

 

In  this  research  we  use  Apache  JMeter  for  all  the  workload  generation  tasks,  and  we                

incorporate  the  closed  system  model.  We  use  this  model  since  we  are  interested  in               

characterizing  the  performance  of  the  server  under  server’s  peak  sustainable           

throughput.  

 

JMeter  

We  use  the  load  testing  tool,  JMeter  to  simulate  the  virtual  users.  Figure  4.1  depicts                

the  experimental  setup  for  load  testing.  At  a  given  concurrency  level,  JMeter  client              

sends  the  same  request  to  the  configured  endpoint  (address  of  the  server).  For              

example,  if  we  use  a  concurrency  of  100  users,  JMeter  starts  100  threads  and  starts                

sending  requests  to  the  Server.  Upon  receiving  a  request,  the  server  processes  the              

request  and  sends  the  response  back  to  the  JMeter  client.  Upon  receiving  the             

response  from  the  server,  each  JMeter  thread  sends  the  next  request  (a  user  can               

specify  a  think  time).  It  is  assumed  that  JMeter  client  has  enough  hardware  resources               

to  handle  the  given  concurrency  level.  If  the  concurrency  level  is  greater  than  the               

maximum  capacity  of  the  machine,  a  distributed  JMeter  setup  should  be  used  to              

distribute  the  load  among  many  JMeter  nodes.  By  collecting  the  JTL  file  (saved  in               

the   JMeter   client),   latency   values   for   each   request   are   collected.  

 

 

Figure   4.1:   JMeter   Experimental   Setup  
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Table   4.1   Workload   Generation   Tools  

Benchmark   Type  Examples  Workload   Model  

Model   based   web  

workload   generation  

Surge,   WaspClient,   Geist  Closed  

Playback   mechanisms   for  

HTTP   request   streams  

MS   web   application   stress  

tool  

Open  

Proxy   server   benchmarks  Wisconsin   proxy  

benchmark  

Closed  

Database   benchmark   for  

e-   commerce    workloads  

TPC-W  Closed  

Auction   website  

benchmark  

Rubis  Closed  

Online   bulletin  

benchmark  

Rubbos  Closed  

Database   benchmark   for  

online   transaction  

processing  

TPC-C  Closed  

Model   based   packet   level  

web   traffic   generators  

IPB  Closed  

Mail   server   benchmark  SpecMail  Open  

Java   client   server  

benchmark  

SPECJ2EE  Open  

Web   authentication   and  

authorization  

AuthMark Closed  
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Network   file   servers  NetBench  Closed  

Streaming   media   service  Medisyn  Open  

 

4.6   Performance   Measurement   

Once  a  suitable  benchmark  and  a  workload  generation  tool  are  selected,            

comprehensive  performance  tests  are  run.  Then,  using  the  results,  it  is  possible  to              

extract  different  performance  measurements  that  are  useful  for  analysing  the           

performance.  In  this  research  we  extract  performance  measurements  using  JMeter           

reports,   garbage   collection   logs,   Linux   SAR   reports   and   Linux   PERF   reports.  

 

4.7   Latency   Analysis   Methods  

Latency  values  are  the  most  important  dependent  variable  in  a  performance  test.             

Analysing  latency  should  be  done  with  care.  There  exist  several  mathematical            

methods  of  latency  characterization.  Yet,  there  is  no  implementation  for  these            

methods.  In  this  research,  we  implement  a  novel  python  library  that  helps  to              

mathematically  analyse  the  latency  values  [55].  In  the  following  sections,  each            

method   is   described   in   detail.  

 

4.7.1   Average   latency  

Average  latency  gives  an  overview  of  the  overall  performance  of  the  system.  Though              

average  latency  is  not  capable  of  revealing  the  extreme  values  of  the  dataset  (also               

known  as  tail  latency  values),  it  is  still  useful  to  get  a  general  idea  about  the                 

performance.   

 

4.7.2   Latency   percentiles  

As  we  mentioned  earlier,  the  average  latency  does  not  reflect  the  impact  of  extreme               

values.  Hence  we  need  robust  figures  to  analyse  the  extreme  latency  values.             

Furthermore,  when  writing  commercial  applications,  it  is  vital  to  make  sure  that  these              
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extreme  values  are  within  the  agreed  values  in  the  service  level  agreements  (SLA).              

Hence,   there   exists   a   significant   importance   to   identify   these   extreme   latency   values.  

 

In  general,  most  computer  workload  latency  distributions  are  right  skewed,  meaning            

that  there  exist  extreme  values.  Hence,  higher  order  latency  percentile  values  are             

used   to   capture   these   extreme   latency   values.  

 

Percentile  of  a  dataset  is  the  value  which  is  the  lowest  among  the  values  which  are                 

higher  than  a  given  fraction  of  values.  For  instance,  assume  a  sample  dataset  of  100                

values,  organized  in  ascending  order.  Then  the  value  at  90th  position  is  greater  than               

90% of the values in this dataset; hence it is the 90th percentile of the dataset. 

 

4.7.3   Distribution   analysis  

Computer  Workload  latency  values  come  from  continuous  distributions.  Hence  they           

can  take  any  value  in  a  given  range.  Hence  there  exists  an  underlying  distribution  for                

the  latency  values  observed  in  a  computer  system  workload.  Identifying  this            

underlying  distribution  of  a  given  set  of  latency  values  helps  us  to  characterize  the               

system  better.  This  enables  us  to  synthetically  generate  the  workload  and  experiment             

further  on  the  computer  system.  In  this  section,  first  the  most  basic  form  of               

distribution  analysis,  histograms  and  probability  density  functions  are  presented.         

Then  methods  on  how  to  check  whether  a  given  latency  distribution  adheres  to  a               

theoretical  continuous  distribution  are  explored.  Maximum  Likelihood  Estimation  is          

used  to  fit  the  observed  latency  values  to  a  given  theoretical  distribution.  Then              

goodness  of  fit  tests  are  used  to  identify  how  well  theoretical  distributions             

characterize  observed  latency  distributions.  Three  most  widely  used  goodness  of  fit            

tests,   Quantile-Quantile   Plot   (Q-Q   plot),   K-S   test   and   Chi   Squared   test   are   presented.  

 

Histogram  

Histograms  are  the  most  basic  method  of  characterizing  latency  values.  It  simply             

shows  the  frequency  of  different  values.  Histograms  are  useful  when  analysing  a             
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relatively  small  set  of  latency  values  (less  than  100),  and  are  more  applicable  when               

the  range  of  the  data  (maximum  value  -  minimum  value)  is  relatively  small.  When               

the  range  is  large,  logarithmic  binning  should  be  used.  To  have  more  meaningful              

representation  of  data,  a  technique  called  binning  is  used.  Dividing  the  range  into              

small  regions  is  meant  by  binning.  For an  example,  if  there  is  a  set  of  latency  values                  

in  the  range  (0,  100),  it  is  more  meaningful  to  use  a  bin  size  of  10,  such  that  values  in                     

a  given  bin  (for  example  values  in  the  range  (0,  10)  are  treated  as  the  same.  Figure                  

4.2  illustrates  a  sample  histogram  obtained  using  a  normal  distribution  with  mean  1             

and   standard   deviation   0.5.  

 

 

Figure   4.2:   Histogram  
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Probability   density   function  

Probability  Density  Function  (PDF)  PDF  calculates  the  probability  of  occurring  a            

value   in   a   given   range.   Equation   (4.1)   denotes   the   pdf   equation.  

 

.............................................(4.1)  

 

The  pdf  f,  is  not  a  probability.  At  any  given  x  value,  it  has  a  value  of  0.  By                    

multiplying  by  the  range,  it  can  be  converted  to  a  probability.  Probability density              

function  of  a  set  of  latency  values  is  calculated  using  Kernel  Density  Estimation.  Let               

(x 1 ,  x 2 ,  …,  x n )  be  an  independent  and  univariate  sample  drawn  from  an  unknown               

distribution  with  an  unknown  density  function  f.  Then  its  kernel  density  estimator  is              

calculated   using   (4.2).  

 

.................................................................(4.2)  

 

k  is  the  kernel  function  which  is  non-negative  Figure  4.3  depicts  a  sample  kernel               

density   estimation.  

 

 

Figure   4.3:   Probability   Density   Function  
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Cumulative   distribution   function  

Cumulative  distribution  function  (CDF)  F  is  defined  as  the  probability  that  a  set  of               

latency   values   is   smaller   than   or   equal   to   a   given   latency,   as   denoted   in   (4.3)   

 

..........................................................................(4.3)  

Since  latency  values  are  continuous,  the  CDF  is  obtained  by  integrating  the  PDF,  as               

denoted   in   (4.4).   

..............................................................................(4.4)  

In  equation  4.4,  f  denotes  the  PDF  whereas  F  denotes  the  CDF.  Figure  4.4  below                

depicts  the  CDF  obtained  for  the  sample  dataset  obtained  from  random  number             

generation   using   Pareto   distribution   with   tail   index   1.  

 

Figure   4.4:   Cumulative   Distribution   Function 
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4.7.4   Theoretical   distributions  

Computer  Systems’  workloads  have  specific  distributions.  These distributions         

sometimes  follow  known  theoretical  distributions  such  as  the  Pareto  Distribution  and            

Exponential   Distribution.   

 

Understanding  the  underlying  distribution  of  the  latency  values  helps  us  characterize            

the  system  better.  Moreover,  it  paves  us  way  to  use  Computer  Simulation  for  capacity               

planning.  

 

Theoretical   Distributions   have   three   types   of   parameters.  

1. Shape Parameters: denotes the shape of the distribution 

2. Location  Parameters:  denotes  the  value  around  which  the  distribution  is           

located   (for   example   mean   value   in   the   normal   distribution)  

3. Scale  Parameters:  denotes  the  amount  the  distribution  is  spread  out  (for            

example   the   standard   deviation   in   the   normal   distribution)  

 

Hence,  the  first  step  of  checking  latency  distributions  against  the  standard  continuous             

distributions  is  to  identify  these  parameters.  In  this  research,  we  focus  on  the  most               

widely  used  parameter  estimation  method,  Maximum  Likelihood  estimation.  Once          

parameters  are  calculated,  it  is  then  needed  to  know  how  good  latency  distribution              

fits  with  the  theoretical  distribution  with  the  calculated  parameters.  For  that  purpose,             

three   widely   used   Goodness   of   fit   tests,   Q-Q   plot,   K-S   test   and   χ2   test   are   used.  

 

Maximum   likelihood   parameter   estimation  

Maximum  likelihood  method  retrieves  the  parameters  that  maximizes  the  opportunity           

of  observing  the  given  data.  The  likelihood  function  is  the  probability  of  observing  a               

set  of  values  given  that  they  fit  to  a  distribution.  If  parameter  θ  defines  the                

distribution,  equation  4.5  gives  the  maximum  likelihood  estimation  for  a  set  of             

latency   values,   x 1 ,   .   .   .   ,   x n .   
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............................................................(4.5)  

 

Once  the  set  of  parameters  in  the  theoretical  distribution  are  calculated,  then  it  is               

possible  to  draw  the  theoretical  distribution  with  the  calculated  maximum  likelihood            

parameters.   Figure   4.5   depicts   the   calculated   Pareto   distribution.  

 

Figure   4.5:   Maximum   likelihood   Pareto   fit   of   data  

 

Goodness   of   fit   tests  

Once  the  parameters  are  estimated  using  maximum  likelihood  estimation,  we  should            

test  how  good  our  parameter  approximation  is.  There  exists  three  main  methods  of              

testing  the  goodness  of  fit  tests;  Quantile-Quantile  plots,  Kolmogorov  and  Smirnov            

test   (K-S   test),   and   χ2   test.  

 

Quantile-quantile   plot  

Quantile-Quantile  plot  is  a  method  of  comparing  distributions.  The  percentiles  of  one             

distribution  is  plotted  against  the  respective  percentiles  of  the  other  distribution.  If             

the  observed  distribution  follows  the  theoretical  distribution,  the  percentiles  should           

lead  to  a  straight  line  with  slope  one.  Except  the  graphical  plot,  this  method  does  not                 

provide   any   quantitative   value   indicating   the   goodness   of   fit.   
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Kolmogorov   and   smirnov   test  

The  Kolmogorov  and  Smirnov  test  calculates  the  maximum  distance  between  the            

CDF  of  the  theoretical  distribution  and  empirical  distribution.  If  the  samples  follow             

the   theoretical   distribution   F(x),   then  

 

.............................................(4.6)  

 

................................................................(4.7)  

 

With   n   as   the   number   of   data   points,   Fn(x)   is   a   unit   step   function.   Hence,  

 

.........(4.8)  

 

If  the  D n is  small  enough  (with  respect  to  the  chosen  significant  level),  the  empirical                

distribution   follows   the   theoretical   distribution.  

 

When  deciding  whether  the  latency  distribution  fits  the  theoretical  distribution  of            

interest,  we  check  the  p  value  returned  by  the  Kolmogorov  and  Smirnov  test.  If  this  p                 

value  is  greater  than  our  pre  specified  significance  level  (0.05  in  practice),  we  say               

that   this   is   a   good   fit.  

 

In  reality,  we  don’t  exactly  know  what  the  underlying  theoretical  distribution  our             

observed  latency  values  follow.  In  that  case,  we  should  check  for  all  possible              

theoretical  distributions  and  then  select  the  theoretical  distribution  which  closely           

matches   with   our   observed   latency   distribution.  
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χ2   method  

In  χ2  method,  random  samples  are  drawn  from  the  theoretical  distribution  of  interest.              

Then  these  samples  are  compared  against  the  observed  samples.  χ2  test  statistic  is              

computed   as   in   (4.9).  

 

........................................................................(4.9)  

 

4.7.5   Long   tail   distribution   analysis  

In  most  cases,  Computer  Workloads  are  long  tailed,  meaning  that  there  exist  a  small               

fraction  of  latency  values  that  are  relatively  large  compared  to  the  mode  and  average               

latency.  Hence,  there  exists  a  significant  importance  in  characterizing  the  long  tail             

nature  of  latency  values.  In  this  section,  we  first  present  two  properties  of  long  tail                

distributions,  power  law  behaviour  and  mass  count  disparity.  We  then  present  a             

method  to  discriminate  between  heavy  tailed  distributions  and  non-heavy  tailed           

distributions.  Finally,  we  present  three  methods  to  calculate  the  tail  index,  which  is              

the   most   widely   used   statistical   method   of   characterizing   long   tailed   distributions.  

.  

Properties   of   long   tail   distributions  

 

Power   law   behaviour  

The   long   tailed   distributions   can   be   characterized   using   power   law   equation   (4.10).   

 

...........................................................(4.10)  

 

Pr (X>x)  is  the  survival  function,  which  is  (1  -  F(x))  where  F(x)  is  the  empirical                

cumulative  distribution  function.  The  exponent  ‘a’  is  called  the  tail  index,  which            

determines  the  tail  behaviour  of  the  distribution.  Lower  the  value  of  a,  higher  the  tail                

of  the  distribution  (chance  of  observing  a  small  fraction  of  very  high  latency  values               

becomes   high).  
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Mass   count   disparity  

Mass-count  disparity  is  a  property  of  long-tailed  distributions.  This  means  a  typical             

item is  short,  but  a  typical  item  of  total  test  belongs  to  an  item  whose  length  is  very                  

large.  Mass  count  disparity  is  characterized  by  comparing  mass  distribution  with  the             

count   distribution.  

 

Count  distribution  is  the  Cumulative  Distribution  Function.  Assuming  a  probability           

density   function,   f(x)   mass   distribution   can   be   expressed   as   in   (4.11).  

 

............................(4.11)  

 

 

Figure   4.6:   Mass   Count   Disparity  

 

Mass  count  disparity  provides  four  main  quantitative  measurements  to  identify  the            

long   tail   behaviour   of   data;   joint   ratio,   N   half,   W   half   and   Gini   coefficient.  

 

Joint  ratio  is  the  value  ‘p’,  such  that  p%  of  the  items  account  for  (100  −  p)  %  of  the                     

mass,   whereas   (100   −   p)%   of   the   items   account   for   p%   of   the   mass.   
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............................(4.12)  

 

N-1/2  and  W-1/2  are  two  generalizations  of  50/0  principle.  50/0  principle  states  that              

50   percent   of   the   items   account   for   a   negligible   mass.   

 

..............................(4.13)  

...........................................(4.14)  

 

Smaller   the   values   of   N-1/2   and   W-1/2,   heavier   the   tail   of   the   dataset   becomes.  

 

Gini  coefficient  is  another  measurement  of  estimating  the  long  tailedness  of  data,             

which  uses  mass  distribution  and  count  distribution.  Gini  coefficient  uses  Lorenz            

curve,  which  is  the  percentile-percentile  plot  of  mass  distribution  and  count           

distribution.  

 

Gini  coefficient  computes  the  inequality  between  mass  distribution  and  count           

distribution.  Gini  coefficient  is  the  ratio  of  the  area  between  the  equality  line  and  the                

Lorenz  curve,  and  all  the  area  below  the  equality  line  (figure  4.7).  Gini  coefficient               

varies   in   the   range   (0,   1).  

 

...................................................................(4.15)  

 

 
28  



 

Figure   4.7:   Lorenz   Curve  

 

Heavy   tailed   distributions  

Heavy  tailed  distributions  are  a  subset  of  long tail  distributions  with  some  specific              

characteristics.   Heavy   tailed   distributions   have   the   following   three   properties.  

1. Power   Law   behaviour   

2. Stable   distribution   condition  

3. Tail   index   in   the   range   (0,   2)  

 

Figure   4.8:   Heavy   tailed   distributions  

Source:   Feitelson,   D.   G.   (2015).   Workload   modeling   for   computer   systems  

performance   evaluation.  
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Stable   distributions  

Heavy  tailed  distributions  are  stable  distributions.  If  the  observed  latency  values  have             

a  finite  variance  (which  is  not  the  case  in  heavy  tailed  distributions),  then  the              

distribution  of  average  values  of  that  dataset  should  follow  a  normal  distribution.             

Since  heavy  tailed  distributions  have  an  infinite  variance,  above  condition  does  not             

hold.   

 

Distributions  which  have  the  same distribution  as  the  original  distribution,  when            

aggregated  are  called  stable  distributions.  We  use  the  following  aggregation  function            

(4.16),   to   get   the   aggregated   samples.   

................................................................(4.16)  

 

Heavy  tailed  distributions  have  a  right  tail  with  the  same  tail  index  as  the  original                

distribution,  when  aggregated.  Pareto  distribution  displays  heavy  tailed  behaviour  in           

the   complete   range   it   is   defined,   when   ‘a’   is   in   the   range   (0,   2).  

 

Tail   index  

In  this  section  we  focus  on  three  different  methods  of  calculating  the  tail  index  of  a                 

long  tailed  distribution.  Log-log  complementary  graphs  method  can  be  applied  to  a             

distribution  even  in  the  absence  of  heavy  tailed  nature.  Maximum  likelihood  and  Hill              

estimator  can  be  used  only  when  the  underlying  latency  distribution  has  the  heavy              

tailed   behaviour.   

 

Log-log   complementary   graphs  

Log-log  complementary  graphs  (LLCD)  are  based  on  (4.10).  Taking  the  log  of  both              

sides   of   equation   (4.10)   yields,  
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.................................................(4.17)  

 

Hence  plotting  the  log  of  the  fraction  of  observations  larger  than  x  as  a  function  of                 

log  x  should  lead  to  a  straight  line  with  slope  −a,  where  ‘a’  is  the  tail  index.                 

Distributions  like  Pareto  distribution,  with  tail  index  in  the  range  (0,  2)  results  in  a                

straight  LLCD  plot  in  the  entire  region  it  is  spread.  For  actual  latency  distribution,  we                

only  observe  the  long  tail  behaviour  in  the  final  1%  of  the  data,  when  ordered  in                 

ascending  order.  Hence  when  calculating  the  tail  index  for  actual  workloads,  we             

always   consider   only   the   last   1%   of   the   dataset.  

 

Figure   4.9   below   shows   the   LLCD   plot   obtained   using   this   method.  

 

 

Figure   4.9:   LLCD  

 

Maximum   likelihood   estimation  

In  this  method,  we  use  standard  Maximum  likelihood  estimation  to  calculate  the             

parameters  of  the  underlying  Pareto  distribution.  The  estimated  parameter  is  the  tail             

index,  we  are  interested  in.  The  maximum  likelihood  estimation  of  Pareto  index  (tail              

index)   is   given   in   (4.18).   (‘k‘   stands   for   the   minimum   latency   value)  
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.............................................................(4.18)  

 

Hill   estimator  

Hill  estimator  works  only  when  the  data  follows  heavy  tailed  behaviour.  It  is  based               

on   Equation   (4.19).  

.........................(4.19)  

 

X m  is  the m th  order  statistic.  When  only  the  last  k  samples  are  considered  to  be  the                  

tail,  this  is  the  same  as  maximum  likelihood  estimation.  For  different  values  of  k,  tail               

index  is  calculated  and  plotted.  If  the  values  converge,  then  it  is  taken  as  the  estimate                 

for   the   tail   index.  

 

When  the  data  exhibits  a  power  law  behaviour,  but  not  heavy  tailed  behaviour,  this               

estimator   does   not   converge.  

 

Figure   4.10   shows   the   sample   Hill   plot.  

 

Figure   4.10:   Hill   plot  
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5.   WEB   SERVER   ARCHITECTURES  

In  this  section,  we  aim  at  building  and  analysing  new  high  performance  server              

architectures.  We  first  implement  the  existing  well  known  server  architectures  such            

as  blocking  server,  non-blocking  I/O  (NIO)  server,  SEDA  server.  Then  using  actor             

pattern  and  LMAX  disruptor,  we  extend  these  architectures  to  new  architectures.  We            

then   perform   an   extensive   analysis   of   all   the   server   architectures.   

 

5.1   Web   Server   Architectures  

There  are  three  main  web  server  architectures;  blocking  thread  per  connection  model,             

NIO  model  which is  event  driven  and  staged  event  driven  architecture  (SEDA).  In             

this   section   we   first   focus   on   the   basics   of   these   three   architectures.  

 

5.1.1   Thread   per   request   architecture  

Thread  per  request  model  is  used  in  RPC  [56]  and  Java  Remote  Method  Invocation               

[57].  Thread  per  request  model  is  supported  by  modern  languages  and  programming             

environments   such   as   Java   and   C++.   

 

A  separate  thread  is  allocated  for  each  client  connection.  Since  a  thread  is  created  for               

each  request,  synchronization  operations  are  used  to  maintain  correctness.  The           

operating  system  transparently  switches  among  threads.  This  enables  to  increase  the            

CPU   utilization   in   case   where   most   threads   are   waiting   for   I/O   operations.  

 

To  avoid  the  increasing  number  of  threads,  systems  use  thread  pools.  In  this              

approach,  a  fixed  sized  (or  dynamically  resizing)  thread  pool  is  used.  Hence,  there  is               

an upper  bound  of  concurrently  served  requests.  Apache  [58]  and  IIS  [59]  use  thread               

pools.  

 

However,  this  approach  of  dropping  connections  affects  the  availability.  When  all  the             

threads  are  running,  additional  requests  get  queued  up.  This  causes  clients  to             
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experience  arbitrarily  large  waiting  times.  Figure  5.1  below  depicts  the  class  diagram             

for   thread   per   request   model  

 

 

Figure   5.1:   Thread   Per   Request   Class   Diagram  

 

5.1.2   Event   driven   architecture  

Thread  per  request  architecture  fails  to  scale  when  the  workload  is  high.  Though             

threads  are  lightweight  components,  context  switching  overhead  and  the  stack           

management  overhead  imposed  by  threads  is  non  negligible  when  the  number  of             

threads   is   high.  

 

Event  driven  architecture  addresses  these  issues  by  handling  the  I/O  in  a  none              

blocking  manner.  It  uses  a  single  thread  to  handle  a  growing  amounts  of  threads.  In                

this  approach,  the  I/O  handling  thread  never  blocks.  Each  connection  is  registered             

with the  selector,  and  get  its  share once  it  is  ready  to  perform  I/O.  Internally,  this  uses                  

select  ()  and  epoll()  system  calls  to  check  the  readiness  of  channels.  There  are  two                

variations   of   event   driven   architecture,   reactor   and   proactor.   

 

Reactor   pattern  

Figure  5.2  depicts  the  class  diagram  for  reactor  pattern.  Reactor  based  NIO  is  the               

most  popular  approach  of  event  driven  architecture.  The  selector  registers  all  the             
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accepted  sockets  with  it.  When  the  channel  is  ready  to  perform  the  I/O,  it  notifies  the                 

selector.   Then   the   selector   selects   this   channel   for   I/O.  

 

Figure   5.2:   Reactor   pattern  

Source:   https://www.javacodegeeks.com/2012/08/io-demystified.html  

 

However,  in  the  reactor  model,  there  is  no  absolute  guarantee  that  the  event  handler               

will   do   the   I/O   operation   in   a   non-blocking   manner.  

 

Proactor   pattern   

Proactor  pattern  uses  asynchronous  I/O  model.  Figure  5.3  depicts  class  diagram  for             

Proactor   pattern.  

 

Figure   5.3:   Proactor   pattern  

Source:   https://www.javacodegeeks.com/2012/08/io-demystified.html  
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Proactor  pattern  addresses  a  limitation  of  the  reactor  pattern.  In  the  reactor  pattern,              

the  selector  notifies  only  the  readiness,  and  does  not  guarantee  the  non-blocking             

execution  of  events.  In  contrast,  in  the  Proactor  pattern,  the  application  delegates  this              

work  to  the  OS.  Event  completion  handlers  are  triggered  only  when  the  I/O  is               

completed.  

 

5.1.3   Staged   event   driven   architecture  

Welsh  et  al.  [15]  have  proposed  a  novel  architecture  that  uses  the  strengths  of  both                

multi-threading  and  event  driven  notifications.  The  smallest  unit  of  processing  within            

Staged  Event  Driven  Architecture  (SEDA)  is  the  stage.  A  stage  consists  of  an  input               

queue, output queue, a thread pool and controllers (optional). 

 

At  each  iteration  in  the  stage,  a  set  of  events  are  dequeued  from  the  input  queue  and                  

then  processed.  Number  of  concurrently  handled  requests  are  determined  by  the            

batching  factor.  Upon  completing  the  processing  of  a  set  of  events,  the  events  are               

added   to   the   output   queue.   

 

Event  handlers,  which  contain  the  logic  to  process  events,  are  not  tightly  coupled              

with  stage  operations.  Unlike  the  original  SEDA  work  [15],  we  do  not  employ              

resource  controllers  in  the  research.  Figure  5.4  illustrates  the  structure  of  a             

SEDA-based   application   in   the   original   SEDA   specification   [15].   

 

 

Figure   5.4:   SEDA   architecture  

Source:   SEDA:   An   Architecture   for   Well-Conditioned,   Scalable   Internet   Services  
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5.2   Message   Passing   Architectures  

There  are  three  widely  used  architectures  for  inter  thread  communication;  sending           

messages  from  one  thread  to  another.  In  this  section  each  of  these  three  methods  will                

be   explored.  

 

5.2.1   Queue  

Queue  is  a  data  structure  that  is  widely  used  in  programming.  Queue  follows              

First-In-First-Out  principle.  Data  items  stored  first  will  be  accessed  first.  Queue  is             

implemented   using   Arrays,   Linked-lists,   Pointers   and   Structures.  

 

Basic   Operations  

1. enqueue()   −   store   an   item   to   the   queue   (added   to   the   tail).  

2. dequeue()   −   remove   an   item   from   the   queue   (using   the   head).  

3. peek()   −   get   the   front   element   without   removing   it.  

4. isfull()   −   checks   if   the   queue   is   full.  

5. isempty()   −   checks   if   the   queue   is   empty.  

 

Though  queues  have  advantages  such  as  concurrent  access  by  many  threads,            

increased  throughput  due  to  queuing,  it  has  many  disadvantages,  as  shown  in  [60].              

Increased  latency,  costs  of  locks  to  maintain  the  correctness,  write  contention  on  the              

head  and  tail,  production  of  more  garbage  objects  are  some  of  the  key  disadvantages               

of  queues.  Hence  a  more  advanced  method  message  passing;  disruptor  and  message             

passing   are   employed.  

 

5.2.2   Disruptor  

Disruptor  is  a  high  performance  message  exchange  mechanism  [60].  Disruptor           

addresses  the  contention  issues  of  the  queue.  Disruptor  is  based  on  a  concept  called               

Mechanical   sympathy.   
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Mechanical   sympathy  

Mechanical  sympathy  accounts  for  how  different  memory  allocations  affect  the           

performance.  When  the  CPU  requests  data,  it  is  searched  in  Register,  L1,  L2,  L3,               

memory  and  hard  disk  order.  Table  5.1  summarizes  the  typical  values  for  each              

operation.   

 

Table   5.1:   Mechanical   Sympathy  

Latency   from   CPU   to  CPU   cycles  Time  

Main   memory  Multiple  ~60-80   ns  

L3   cache  ~40-45   cycles  ~15   ns  

L2   cache  ~10   cycles  ~3   ns  

L1   cache  ~3-4   cycles  ~1   ns  

Register  1   cycle  Very   quick  

 

Following   figure   5.5   depicts   the   structure   of   the   disruptor.  
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Figure   5.5:   Disruptor   structure  

Source:    https://www.baeldung.com/lmax-disruptor-concurrency  

 

Disruptor  uses  a  ring  buffer  based  mechanism  to  pass  data  between  two  independent              

units  of  a  program.  Ring  buffer  is  a  pre-allocated  linked  list.  When  a  producer               

publishes  an  event,  all  the  consumers  are  notified.  Since  the  buffer  is  pre  allocated,               

we  can  safely  assume  that  the  adjacent  elements  of  the  buffer  fit  into  the  same  cache                 

line.   This   reduces   cache   miss   rates.   

 

5.2.3   Actors  

An  actor  represents  an  independent  computation  unit  (same  as  a  thread).  Unlike             

threads,  Actors  are  very  high  level  objects  that  communicate  only  using  messages.             

Each  actor  has  an  address  and  a  mailbox  to  which  other  actors  add  messages  in  an                 

asynchronous   manner.  

There   are   several   advantages   to   using   Actors. 

1. Can   write   the   code   without   worrying   about   the   synchronization   issues  

2. Supports   asynchronous   message   passing  

3. Automatic   error   handling   
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5.3   Methodology   and   Implementation  

Using  the  four  web  server  architectures,  and  three  message  passing  architectures,  we             

come  up  with  12  web  server  architectures,  eight  of  which  are  novel.  Table  5.2  below                

lists   all   the   web   server   architectures   we   implement.   

 

All  these  implementations  are  publicly  available  at  [61].  Since  each  of  the  server              

architectures  is  self-explanatory,  only  a  brief  introduction  to  each  architecture  will  be             

given.  

1. Blocking:   A   simple   blocking   threaded   server   with   a   thread   pool   of   size   four  

 

2. Blocking Disruptor: Instead of using a thread pool, a Disrupter is used to send 

the   accepted   socket   to   a   handler.   There   are   four   handlers.  

 

3. Blocking  Actor:  Threads  in  the  original  blocking  server  is  replaced  by  Actors.             

There   are   four   handler   actors  

 

4. NIO:  Non-blocking  I/O  single  threaded  server,  which  is  based  on  reactor            

pattern  

 

Table   5.2:   Server   architectures  

Name  Novelty  Multi-threading   support  

Blocking  Existing  Yes  

Blocking   Actor  Novel  Yes  

Blocking   Disruptor  Novel  Yes  

NIO  Existing  No  

NIO   Disruptor  Novel  Yes  
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NIO   Actor  Novel  Yes  

NIO2  Existing  Yes  

NIO2   Disruptor  Novel  Yes  

NIO2   Actor  Novel  Yes  

SEDA   Queue  Existing  Yes  

SEDA   Disruptor  Novel  Yes  

SEDA   Actor  Novel  Yes  

 

 

5. NIO  Actor:  The  original  NIO  server  is  modified  to  support  multi-threading.            

The  main  thread  accepts,  reads  from  the  socket,  and  the  subsequent            

operations  are  passed  to  the  handler  actor  which  runs  in  a  separate  thread.              

There   are   four   such   handlers.  

 

6. NIO  Disruptor:  Same  as  the  NIO  actor  model,  except  the  actor  model  is              

replaced   by   a   disruptor.   There   are   four   handlers.  

 

7. NIO2:   Non-blocking   I/O   server   based   on   Proactor   pattern  

 

8. NIO2  Disruptor:  NIO2  server  is  modified,  and  the  actual  processing  of  the             

request  is  done  using  an  event  handler.  Events  are  passed  to  the  handlers              

using   a   Disruptor.  

 

9. NIO2  Actor:  Same  as  NIO2  disruptor,  except  that  the  Disruptor  and  handlers             

are   replaced   with   Actors.  
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10. SEDA  Queue:  Implementation  of  the  original  SEDA  architecture  using          

queues  

 

11. SEDA  Disruptor:  Queues  in  the  SEDA  queue  architecture  are  replaced  with            

Disruptors  

 

12. SEDA  Actor:  Queues  and  threads  in  the  SEDA  queue  server  is  replaced  with              

Actors.  

 

5.3.1   Micro   benchmark   applications  

We   use   the   micro   benchmark   applications   we   defined   in   our   publication   [89].  

 

5.3.2   Workload   generation  

For  all  the  experiments,  we  use  a  two  machine  setup  (connected  using  a  LAN),  where                

one  machine  hosts  the  server  application  while  the  other  machine  generates  the             

workload.   We   use   a   separate   machine   to   host   the   database.  

 

We  use  Java  8,  the  most  widely  used  virtual  machine  based  language  for  servers  to                

build  the  micro  benchmarks.  MySQL  5.0.27  database  was  used  as  the  database             

application.  

 

Synthetic  workloads  are  used  due  to  two  main  reasons,  1.  Ability  to  change              

independent  variables  and  collect  data  for  a  wide  range  of  situations  2.  Time              

constraints  on  collecting  actual  workloads  using  real  systems,  and  our  requirement  to            

evaluate  many  different  combinations  of  heap  sizes,  concurrency  levels,  and           

workloads.   

 

We  use  apache  JMeter  4.0  [51]  which  is  widely  used  in  workload  characterization              

literature  [63]  [38].  We  send  the  same  request  to  the  micro  benchmark  application,              

for  example  the  same  prime  number  is  sent  to  the  Prime  service,  in  each  user  request.                 
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We  use  this  approach  because  we  focus  on  exploring  the  performance  only  under             

service’s  peak  sustainable  throughput.  Sending  the  same  request  reduces  the  impact            

of  just  in  time  compilation  and  class  loading  time,  since  the  same  set  of  Java  methods                 

are  invoked  in  each  request.  Our  workload  generation  scripts  are  publicly  available  at              

[64].  

 

For  each  micro  benchmark  application,  built  using  each  12  web  server  architectures,             

we  experiment  on  two  heap  sizes  (100MB  and  2GB)  by  specifying  the  Xmx  and  Xms                

in  Java_OPTS  environment  variable.  For  each  heap  size,  we  experiment  on  two             

different  levels  of  concurrency,  10  and  300.  Then  for  each  concurrency  level,  we  vary               

the service demand by varying the parameters in the request. 

 

For  the  CPU  bound  micro  benchmark,  the  service  time  is  mainly  affected  by  the               

prime  number.  Hence  we  arbitrary  choose  two  different  prime  numbers,  11  and             

27059   to   represent   low   service   demand   and   high   service   demand.  

 

For  the  memory  bound  micro  Benchmark,  we  consider  two  sizes,  10  and  1000  as               

service   demands.   We   use   integers   for   our   calculations   (four   bytes   per   number).   

 

We  use  two  industry  standard  message  sizes  that  are  used  in  Middleware             

performance  testing  [65]  as  our  service  demands  for  network  I/O  bound  micro             

benchmark,  10B,  and  1KB.  We  do  not  alter  the  service  demands  for  the  database  I/O                

bound   micro   benchmark.  

 

In  total,  we  collect  data  for  362  number  of  combinations.  We  run  our  experiments  for                

a  period  of  15  minutes  for  each  combination  of  web  server  architecture,  micro              

benchmark,  heap  size,  concurrency  level,  and  service  demand.  The  total  dataset  size             

is  828GB.  Due  to  space  limitations,  we  have  not  published  this  online,  yet  can  be                

made   available   on   request.  

 

 
43  



In  order  to  remove  Java  just-in-time  compilation  and  class  loading  effects  from  our              

results,  we  remove  the  first  M  minutes  results  using  JMeter  Splitter  [66].  We  observe               

an  almost  constant  throughput,  after  five  minutes  of  test  initiation.  Hence  we  chose              

M  to  be  five  minutes.  We  collect  Java  garbage  collection  (GC)  logs  and  load  average                

statistics   using   SAR   [67]   reports   and   hardware   counters   using   perf   [68].  

 

5.4   Experiment   Setup  

We  use  a  bare  metal  setup  for  our  web  server  architecture  performance  tests.  For  each                

machine  (client,  server  and  database  host)  we  use  a  server-class  machine  (Intel(R)             

Core(TM)  i5-2400  CPU  @  3.10GHz,  8  GB  of  RAM,  1TB  hard  disk)  connected  using               

Gigabit Ethernet. 

 

5.5   Results  

In  our  tests,  we  record  the  configuration  (heap  size  and  etc),  latency,  throughput  and               

the  values  extracted  from  garbage  collection  logs,  SAR  reports  and  perf  tests.  In  total               

we  collect  101  number  of  features  for  each  configuration.  Due  to  space  limitations              

we  will  not  present  the  results  table  here.  The  complete  result  sheet  is  published               

publicly   in   [70]   and   in   Appendix   -   A.   

 

5.6   Discussion  

In   this   section,   we   use   the   following   terminology   to   denote   specific   configurations.  

1. Low   heap   =   100MB  

2. High   heap   =   2GB  

3. Low   concurrency   =    10  

4. High   concurrency   =   300  

5. Low   service   demand   

a. I/O   =   10B  

b. CPU   =   isPrime(11)  

c. Memory   =   merge-sort(10)  

6. High   Service   demand   
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a. I/O   =   1KB  

b. CPU   =   isPrime(27059)  

c. Memory   =   merge-sort(1000)  

 

5.6.1   Blocking   architectures  

IO   bound   micro   benchmark  

We  observe  that  Blocking  architecture  gives  significant  throughput  compared  to           

Blocking  Actor  and  Blocking  Disruptor  architectures,  for  the  following          

configurations.  

1. Low   heap,   low   concurrency   and   low   service   demand  

2. Low heap, high concurrency and high service demand 

3. High   heap,   high   concurrency   and   high   service   demand  

 

For  example,  we  observe  a  throughput  of  7565  requests  per  second  for  Blocking              

architecture  for  the  low  heap,  low  concurrency  and  low  service  demand            

configuration,  where  the  respective  throughput  values  of  Blocking  Actor  and           

Blocking  Disruptor  are  7473  and  5766  requests  per  second.  We  explain  this             

behaviour   as   follows.  

 

For  each  three  configurations  we  mentioned  above,  we  observe  that  the  average             

garbage  collection  pause,  number  of  CPU  cycles  and  number  of  executed  instructions             

are  very  low  in  Blocking  architecture.  Since  blocking  architecture  is  the  minimal             

overhead  implementation,  compared  to  other  two  Blocking  architectures,  it  uses  less            

memory   and   instructions.   This   causes   high   throughput   for   the   Blocking   Server.  

 

We  also  observe  that  Blocking  Disruptor  architecture  performs  poorly  for  the            

following   two   configurations.  

1. Low   heap,   low   concurrency   and   low   service   demand  

2. High   heap,   low   concurrency   and   low   service   demand  
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For  example,  we  observe  that  for  the  low  heap,  low  concurrency  and  low  service               

demand  configuration,  Blocking  Disruptor  throughput  equals  to  4675  requests  per           

second,  whereas  for  the  Blocking  and  Blocking  Actor  architectures  the  respective            

throughput  values  are  5876  and  5743  requests  per  second.  We  explain  this  behaviour              

as   follows.   

 

Blocking  Disruptor  architecture  consumes  more  memory  compared  to  the  other  two            

architectures.  Hence  we  observe  very  high  full  garbage  collection  pauses  for  the             

Blocking  Disruptor  architecture.  Garbage  collection  events  are  stop  the  world  events            

which   halt   the   application   threads.   Hence   the   performance   suffers.   

 

We  also  observe  very  low  throughput  in  Blocking  Actor  architecture,  compared  to             

the   other   two   architectures,   in   the   following   configurations.  

1. Low   heap,   high   concurrency,   low   Service   demand  

2. High   heap,   high   concurrency   and   low   service   demand  

 

For  example  for  the  low  heap,  high  concurrency,  low  service  demand  configuration,             

we  observe  a  throughput  of  2567  requests  per  second  for  the  Blocking  Actor              

architecture,  whereas  the  respective  values  for  the  Blocking  and  Blocking  Disruptor            

are   7008   and   5907   requests   per   second.   We   explain   this   behaviour   as   follows.  

 

Blocking  Actor  shows  a  high  idle  processing  time,  which  is  also  reflected  in  load               

average  statistics. This  indicates  that  Blocking  Actor  is  not  able  to  fully  utilize  its               

resources.  We  believe  having  only  four  actors  as  workers  is  the  main  reason  for  this                

behaviour.  If  the  number  of  actors  are  increased  to  a  higher  value,  the  throughput  can                

be   increased.  

 

CPU   bound   micro   benchmark  

We  observe  that  with  low  heap  size,  low  concurrency  and  low  service  demand,              

Blocking  Disruptor  performs  very  poor  compared  to  other  two  Blocking           
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architectures.  For  example,  for  this  configuration  we  observe  a  throughput  of  5732             

requests  per  second  for  Blocking  Disruptor,  whereas  for  the  other  two  architectures,             

the   throughput   values   are   greater   than   7400   requests   per   second.  

 

Analysis  of  the  hardware  and  software  counters  revealed  high  full  garbage  collection             

pauses  as  the  main reason  for  getting  this  performance  degradation.  Also,  we  observe              

high  task  clock  rates,  high  context  switches,  high  CPU  migrations  and  high  cache              

misses   in   the   Blocking   Disruptor   architecture.  

 

Although  Disruptor  is  designed  with  low  cache  misses  in  mind,  high  garbage             

collection  operations  make  its  value  a  little.  When  garbage  collection  happens,  the             

application  threads  are  halted.  This  causes  high  context  switches,  which eventually            

leads  to  high  CPU  migrations.  High  CPU  migrations  causes’  high  cache  misses,  since              

the   thread   changes   the   processor   on   which   it   runs.  

 

We  also  observe  that  with  low  heap,  low  concurrency  and  high  service  demand,  our               

novel  Blocking  Actor  architecture  performs  significantly  better  than  the  other  two            

architectures.  We  observe  a  throughput  of  7228  requests  per  second  in  the  Blocking              

architecture,  whereas  the  maximum  observed  throughput  for  the  other  two           

architectures  is  6704  requests  per  second.  This  behaviour  is  also  seen  in  CPU              

hardware  performance  counters,  idle  time  percentage  and  load  average.  We  observe  a             

low  idle  time  percentage  (hence  more  useful  work  is  done  in  application),  and  high               

load   average   (CPU   is   fully   utilized).  

 

Memory   bound   micro   benchmark  

We  observe  that  with  low  heap,  low  concurrency,  low  service  demand,  the             

performance  of  Blocking  Disruptor  architecture  is  significantly  low.  For  example,  for            

the  above  scenario,  the  throughput  of  Blocking  Disruptor  is  5741  requests  per             

second,  whereas  the  minimum  throughput  of  other  two  architectures  is  7500  requests            

per   second.   We   explain   this   behaviour   as   follows.  
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For  this  configuration,  Blocking  Disruptor  shows  significantly  high  context  switches,           

a  very  high  CPU  migration  number  and  a  high  number  of  cache  misses.  This  result  is                 

non-trivial  because  the  Disruptor  was  originally  proposed  with  low  cache  misses  in             

mind.  But  our  results  suggest  that  Disruptor  is  not  a  silver  bullet,  and  for  some  cases,                 

adding   a   Disruptor   makes   the   system   perform   poorer.  

 

We  also  observe  that  for  low  heap,  high  concurrency  and  low  service  demand              

configuration,  the  Blocking  Actor  performance  is  significantly  low.  For  example,  the            

throughput  of  Blocking  Actor  is  2687  requests  per  second,  whereas  the  minimum            

throughput  of  other  two  Blocking  architectures  is  6689  requests  per  second.  We             

explain   this   behaviour   as   follows.  

 

Idle  time  percentage  is  very  high  in  Blocking  Actor  implementation  for  the  above              

configuration.  Low  load  average  values  observed  for  this  configuration  also           

supplements  this  factor.  This  indicates  that  the  CPU  is  not  fully  utilized.  Hence,  more               

handler   Actors   should   be   added   to   increase   the   throughput.  

 

DB   bound   micro   benchmark  

We  do  not  observe  a  significant  performance  difference  between  the  three  Blocking             

architectures,  for  the  DB  bound  micro  benchmark.  For  all  configurations  we  observe             

a  throughput  close  to  1200  requests  per  second.  This  behaviour  can  be  described  as               

follows.  

 

In  this  DB  bound  micro  benchmark,  an  external  I/O  operation  is  performed  (the              

Database  access).  This  adds  a  high  latency.  Hence  the  overall  system  is  bound  by  the                

speed   of   Database   access   and   network   speed.   
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5.6.2   NIO   architectures  

We  observe  that  for  all  configurations  of  I/O  bound,  CPU  bound  and  memory  bound               

micro  benchmarks,  NIO  architecture  performs  significantly  better  than  the  other  two            

architectures.  For  example,  for  the  low  heap,  low  concurrency  and  low  service             

demand  configuration  of  I/O  bound  micro  benchmark,  we  observe  a  throughput  of             

3538  requests  per second  for  the  NIO  architecture,  whereas  the  maximum  of  other              

two  architectures  is  1334  requests  per  second.  This  behaviour  can  be  explained  as              

follows.  

 

When  the  actual  processing  of  the  request  is  very  low,  the  overhead  of  transferring               

the processing to another worker is higher than that of doing it in the main thread 

itself.   This   leads   to   decreased   throughput   in   multi-threaded   implementations.  

 

We  also  observe  a  very  low  number  of  context  switches  and  very  low  number  of                

CPU  migrations  in  the  NIO  architecture.  Since  the  NIO  architecture  uses  only  a              

single  thread,  this  result  can  be  accepted.  Since  the  other  two  NIO  architectures  use               

multiple  threads,  they  incur  higher  number  context  switches  and  higher  number  of             

CPU   migrations.  

 

In  contrast,  we  observe  a  drastic  performance  gain  in  our  newly  proposed  NIO  Actor               

and  NIO  Disruptor architectures,  for  the  Database  I/O  bound  benchmark.  For            

example,  in  the  DB  bound  micro  benchmark,  for  low  heap,  low  concurrency             

configuration,  we  observe  throughputs  of  635  and  653  requests  per  seconds  for  NIO              

disruptor  and  NIO  Actor  architectures  respectively,  whereas  the  respective  value  for           

the   NIO   architecture   is   333.46   requests   per   second.  

 

Analysis  of  the  CPU  counters  revealed  high  I/O  wait  percentage  and  the  high  idle               

time  percentage  as  the  main  reasons  for  the  above  observation.  DB  calls  require  a               

significant  amount of  time.  In  the  NIO  architecture,  the  main  and  the  single  available               

thread  halts  until  the  database  response  is  available.  This  negatively  affects  the             
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performance.  In  the  new  architectures,  NIO  Actor  and  NIO  Disruptor,  this  heavy             

waiting  is  done  using  another  thread.  This  leads  to  increased  throughput  in  the  new               

NIO   architectures.  

 

5.6.3   NIO2   architectures  

We  observe  that  for  each  micro  benchmark,  for  each  heap  size,  for  each  level  of               

concurrency  and  service  demand,  NIO2  architecture  outperforms  NIO2  Actor  and           

NIO2  Disruptor  by  a  significant  margin.  For  example,  in  the  DB  bound  micro              

benchmark,  for  low  heap,  low  concurrency,  we  observe  a  throughput  of  1310             

requests  per  second  for  NIO2,  whereas  the  maximum  throughput  of  other  two             

architectures is 287 requests per second. This result is a bit surprising, and we reason 

this   behaviour   as   follows.  

 

NIO2  is  inherently  multi-threaded;  each  request  is  handled  by  three  different  threads.             

Also,  it  can  deploy  many  numbers  of  threads  to  support  a  given  concurrency  level.  In                

the  NIO2  Actor  and  NIO2  Disruptor  architectures,  we  hand  over  the  processing  to  an               

external  thread.  Yet,  we  have  fixed  the  number  of  handlers  to  four.  Hence,  the  overall                

operations  are  constrained  by  the  number  of  handlers.  This  drastically  drops  the             

throughput.  

 

We  also  observe  that  for  all  the  configurations,  the  task  clock  is  very  low  in  the  NIO2                  

architecture.  This  indicates  that  NIO2  has  performed  less  work  compared  to  NIO2             

Actor  and  NIO2  Disruptor.  Yet,  as  we  have  already  shown  above,  throughput  is              

maximum  for  NIO2  compared  to  NIO2  Actor  and  NIO2  Disruptor.  We  reason  this              

behaviour   as   follows.  

 

NIO2  Actor  and  NIO2  Disruptor  architectures  employ  additional  processing  for  a            

request,  due  to  the  addition  of  handlers.  This  only  includes  more  processing  for  a               

request,   and   does   not   help   increase   throughput.   
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5.6.4   SEDA   architectures  

We  observe  a  significantly  low  throughput  for  the  SEDA  Disruptor  architecture,  for             

each  benchmark,  each  heap  size,  for  each  concurrency  and  for  each  service  demand.              

We   explain   this   behaviour   as   follows.   

 

SEDA  disruptor  architecture  displays  significantly  high  garbage  collection  pauses,          

very  high  page  faults.  This  suggests  that  Disruptor  architecture  consumes more            

memory  than  others.  The  garbage  collection  delays  and  time  consumed  for  page             

faults   impact   the   throughput.  

 

We also observe significant throughput gains in our novel SEDA Actor architecture, 

for   the   following   scenarios.  

1. I/O  bound  micro  benchmark  for  all  heap  sizes,  all  concurrency  levels  and             

high   workloads.  

2. CPU  bound  micro  benchmark  for  high  heap  size,  all  concurrency  levels  and             

all   workloads.  

3. Memory  bound  micro  benchmark  for  high  heap,  high  concurrency  and  high            

service   demand.  

We   explain   this   behaviour   as   follows.  

 

SEDA Actor  architecture  incurs  very  less  garbage  collection  overheads,  as  resembled            

in  the  accumulated  garbage  collection  pause  times.  Also,  SEDA  Actor  shows  a             

significantly  low  number  of  context  switches,  page  faults.  These  factors  improve  the             

throughput.  

 

5.7   Summary  

In  this  section,  we  first  described  the  12  web  server  architectures,  eight  of  which  are                

novel.  We  then  presented  a  micro  benchmark  application  as  a  tool  to  isolate  different               

types  of  service  calls.  We  then  performed  an  extensive  performance  analysis  of  each              

web  server  architecture  for  different  number  of  concurrent  users,  heap  and  service             
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demands.  Our  analysis  shows  that  the  novel  proposed  server  architectures  outperform            

the   existing   architectures,   and   provides   insights   into   further   improvements.   
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6.   JAVA   MICROSERVICES   TAIL   LATENCY   ANALYSIS  

All   the   contributions   on   this   topic   appear   in   our   publication,   Tennage   et   al.   [89].  
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7.   SCALABILITY  

7.1   Introduction  

Scalability   of   a   system   can   be   measured   in   two   ways.   

1. Hardware   Scalability   

2. Software   Scalability  

 

Hardware  scalability  refers  to  how  the  system  scales  when  more  hardware  resources             

are  added.  For  example,  if  a  certain  server  gives  a  throughput  of  x,  what  will  be  the                  

throughput   when   the   number   of   nodes   are   doubled?  

 

In  the  software  scalability,  given  a  fixed  hardware  configuration,  we  find  the             

scalability   characteristics   of   the   application   under   different   concurrency   levels.  

 

Consider  a  simple  web  application  running  on  a  machine  with  fixed  hardware.  When              

the  application  is  run  with  100  concurrent  users,  assume  a  1000  transactions  per              

second  maximum  throughput.  When  the  concurrency  level is  increased  to  200,            

ideally  a  throughput  of  2000  transactions  per  second  should  be  observed.  However,             

the  maximum  throughput  at  a  200  concurrency  level  is  less  than  2000  transactions              

per  second.  When  the  level  of  concurrency  is  further  increased,  the  throughput  starts              

to   display   retrograde   behaviour.  

 

Exhaustive  capacity  planning  can  explore  this  issue.  In  capacity  planning,  the            

throughput  of  the  system  is  measured  while  increasing  the  level  of  concurrency  until              

the  concurrency  level  which  shows  retrograde  throughput  behaviour  is  found.  Yet,            

exhaustive  capacity  planning  requires  a  larger  budget  and  a  substantial  amount  of             

time. Instead  Universal  Scalability  Law  (USL)  proposes  an  analytical  method  which            

is   effective   in   time   and   budget.  

 

In  this  section,  first  the  USL  for  software  is  presented  by  extending  Amdahl’s  law.              

Then   the   USL   is   applied   for   a   class   of   server   workloads   called   middleware.   

 
54  



7.2   Amdahl’s   Law   for   Software   Scalability  

Amdahl’s  Law  calculates  the  reduction  of  speed  up  due  to  the  part  of  the  program                

that   runs   sequentially   [85].   This   can   be   represented   using   (7.1).  

 

.................................................................................................................................(7.1)  

 

In  this  equation,  the  Fraction enhanced  is  the  portion  of  runtime  to  reduce.  Speedup enhanced              

is   the   inverse   of   the   fractional   time   reduction.  

  

If  fraction  enhanced  is  denoted  by  π  and  speed  up  enhanced  (fractional  time              

reduction)   by   φ,   equation   (7.1)   can   be   written   as   (7.2).  

 

..................................................................(7.2)  

 

Let   σ   =   1   -   π,   where   σ   is   the   serial   fraction   of   the   workload.  

 

Assume   π   (fraction   enhanced)   can   be   divided   into   N   parts.   Then   φ   =   1/N.  

 

Then   equation   (7.2)   is   reduced   to   (7.3)   and   (7.4)  

 

...........................................................(7.3)  

................................................................(7.4)  

 

Equation  (7.4)  is  the  equation  of  Amdahl’s  Law  for  software.  Using  this  formula,  the               

USL  equation  for  software  scalability  is  derived  by  adding  the  impact  of  interprocess              

communication   among   different   users.  
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7.3   Universal   Scalability   Law   for   Software   Scalability  

 

Gunther  et  al.  [86]  have  provided  a  formal  equation  for  software  scalability  as  in               

(7.5).  When  there  are  N  number  of  concurrent  users,  there  will  be  a  maximum  of                

N(N-1)  number  of  interactions  among  user  processes.  To  capture  this  behaviour,  a             

new   parameter   β,   which   is   called   coherency   is   added   to   (7.4).   

 

 

................(7.5)  

 

Being  a  rational  function,  equation  (7.5)  can  be  differentiated  with  respect  to  N.  The               

value  of  N  at  which  Csw(N)  is  maximum  is  shown  in  (7.6).  Then  the  maximum  value                 

of   Csw(N)   is   Csw(N*)  

 

...........................................................................(7.6)  

 

In  software  scalability  tests,  scalability  is  measured  as  a  function  of  the  number  of               

users  N.  It  is  assumed  that  the  underlying  hardware  platform is  fixed  for  all  measured               

points   of   N.  

 

To   summarize,   USL   is   a   rational   function   of   three   parameters   

1. Level   of   concurrency   (N)  

2. Contention   (α)   which   is   the   serial   fraction   of   the   workload  

3. Coherency   (β)   which   is   the   penalty   for   interprocess   communication.  

 

In  the  following  section,  USL  for  software  is  calculated  for  a  class  of  server               

workloads;  middleware.  Widely  used  Enterprise  Integrator  WSO2  EI  is  used  for  this             

purpose.  
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7.4   WSO2   Enterprise   Integrator   Dataset  

 

The  WSO2  EI  is  an  open  source  product  distributed  under  the  Apache  Software              

License  v2.0.  WSO2  EI  allows  message  routing,  mediation,  transformation,  logging,           

task scheduling,  failover  routing,  load  balancing,  and  more.  In this  section  a  basic  use              

case   of   EI,   which   is   Direct   Proxy   or   Simple   Pass-Through   Proxy   is   used.  

 

A  simple  Netty  Echo  service  is  deployed  as  the  backend  for  the  WSO2  EI.  Three                

JMeter  instances  are  deployed  in  order  to  handle  a  large  concurrency  level,  and  to               

ensure  that  JMeter  nodes  do  not  run  out  of  resources  when  running  in  very  high                

concurrency  levels  (usually  more  than  1000).  Figure  7.1  below  illustrates  the  EI             

setup.  

 

 

 

 

Figure   7.1:   EI   setup  

  Source:   https://github.com/ThishaniLucas/performance-ei/tree/perf-test  

 

7.5   Experimental   Setup  

WSO2  EI  6.4.0  is  used  for  the  experiments.  Three  different  industry  standard             

message  sizes;  500B,  1KB,  and  10KB  are  tested.  For  each  message  size,  four              

different  concurrency  levels,  100,  200,  500,  and  1000  tested.  For  each  message  size              
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and  concurrency  level  configuration,  tests  are  run  in  c5.xlarge  Amazon  EC2  instance             

for  15  minutes.  The maximum  heap  size  is  fixed  to  4GB  and  backend  service  delay                

to  zero  seconds.  The  first  five  minutes  results  from  the  JTL  files  are  removed  in  order                 

to   get   only   the   steady   state   results.   

 

7.6   Results   and   Discussion  

Table   7.1   summarizes   the   performance   results.  

 

USL  package  in  the  R  language  is  used  to  compute  the  universal  scalability  law               

parameters.  Table  7.2  summarizes  the  USL  parameters  for  this  dataset.  Figure  7.2             

depicts the USL curves for three message sizes. 

 

As  the  message  size  increases,  we  observe  a  significant  drop  in  throughput.  Using              

USL  parameters,  we  can  identify  that  increasing  the  message  size  increases            

contention  and  coherency  parameters.  For  example,  when  the  message  size  increases            

from  500B  to  10KB,  contention  (α)  significantly  increases  from  7.306e-02  to            

7.494e-02  and  the  coherency  (β)  increases  from  6.554e-07  to  9.883e-06.  As  a  result,              

the  concurrency  level  which  starts  to  display  the  retrograde  behaviour  decreases  from             

1189   at   500B   message   size   to   306   at   10KB   message   size.  

 

Table   7.1:   Universal   law   of   scalability   performance   results  

 

Message   Size  

(KB)  

Concurrency   (N)  Throughput  

(requests   per  

second)  

Average   Latency  

(ms)  

500B  100  17588.2   5.63  

200  19509.07  10.17  

500  19940.62  24.92  
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1000  19764.01  50.5  

1KB  100  16667.76  5.93  

200  18175.66  10.87  

500  18235.69  27.23  

1000  18255.44  54.69  

10KB  100  13173.19  7.5  

200  13937.52  14.22  

500  13434.7  37.1  

1000  13203.39  75.63  

 

Table   7.2:   USL   parameters   

Message   Size  α  β  Max   users  

(N*)  

Max   throughput  

(requests/second)  

500B  7.306e-02  6.554e-07  1189  19921.33  

1KB  7.372e-02  2.413e-06  620  18343.21  

10KB  7.494e-02  9.883e-06  306  13852.88  
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Figure   7.2:   USL   curves  

 

 

Contention  (α)  and  cohesion  (β),  reveal  the  factors  that hinder  the  performance  of  a               

software  system.  If  a  high  α  value  is  observed,  then  the  software  should  be  modified                

to  minimize  serialization.  If  a  high  β  is  observed,  it  reflects  that  the  software  system                

has  many  inter  thread  communication.  Hence,  inter  thread  communication  should  be            

minimized.  

 

7.7   Summary  

When  developing  an  application  software,  it  is  important  to  focus  on  the  scalability              

characteristics.  USL  provides  a  more  analytical  approach  to  explore  this  problem.            

This  section  explored  USL  for  software  and  a  use  case.  First  the  USL  equation  was                

derived  by  extending  Amdahl’s  Law.  Then  using  R  language  library  usl,  the             

parameters  for  the  WSO2  EI  simple  proxy  was  found.  Finally,  the  scalability             

characteristics   of   EI   were   discussed   using   USL.  
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8.   DISCRETE   EVENT   SIMULATION  

8.1   Introduction  

As  we  have  already  shown  in  the  above  sections,  performance  testing  of  web  servers               

requires  a  large  time  and  cost.  In  practice,  sometimes  it  is  not  required  to  get  the                 

exact  performance  numbers  (for  example  the  exact  latency),  but  general  trends  about             

the  performance  is  sufficient.  Discrete  event  simulation  (DES)  can  be  used for  such              

scenarios.  

 

DES  models  a  system  as  a  discrete  sequence  of  events  in  time.  An  event  in  this                 

context  is  an  item  that  changes  the  state  of  the  system.  DES  is  used  in  diagnosing                 

process   issues,   modelling   hospital   applications,   and   etc.  

 

Since  we  employed  the  closed  system  model  throughout  this  research,  we  will  use              

the   closed   system   model   for   the   following   DES   experiments.   

 

In  this  section,  we  first  discuss  the  basic  concepts  of  DES.  Then,  we  explore  the  DES                 

package-Simpy.  The  code  for  a  single  server  closed  loop  performance  test  is             

presented  afterwards.  We  then  extend  the  simple  version  of  the  single  server  to              

multiple   servers,   which   has   inter-service   calls   (abstraction   for   microservices).  

 

8.2   Definitions  

Discrete  event  simulation  (DES)  simulates  the  behaviour  of  a  process.  In  DES,  a              

system   is   modelled   as   a   series   of   events   that   occur   over   time.   

 

There  are  three  major  DES  paradigms:  activity  oriented,  event  oriented,  and  process             

oriented.   

 

Activity   Oriented   Paradigm  

In  Activity  Oriented  Paradigm,  time  is  broken  into  small  increments.  At  each  time              

point,   the   code   would   look   around   all   the   activities.  
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Event   Oriented   Paradigm  

In  Event  Oriented  Paradigm,  the  time  counter  is  advanced  to  the  time  of  the  next                

event.   This   approach   saves   the   CPU   cycles.  

 

Process   Oriented   Paradigm  

In  Process  Oriented  Paradigm  activity  is  modelled  as  a  process.  This  is  the  widely               

used   approach   in   current   state-of-the   art   DES   systems.  

 

The   DES   framework   SimPy,   uses   a   process   oriented   paradigm.   

 

8.3   SimPy  

SimPy  is  a  process-based  discrete-event  simulation  framework.  Processes  in  SimPy           

are  implemented  using  generator  functions.  Processes  are  used  to  model  the  web             

servers   and   Clients.   SimPy   also   has   shared   resources,   for   example   SimPy   resources.  

 

8.3.1   Major   concepts  

Yield  

A  SimPy  process  can  be  yielded.  When  a  process  is  yielded,  the  execution  returns               

from  the  process  for  the  given  event,  and  returns.  The  process  resumes  upon  the               

completion   of   the   event.   

 

Timeout  

Timeout   is   an   event   that   gets   executed   after   a   timeout.  

 

Process   interactions  

There   are   two   main   process   interactions   in   SymPy:   

a. Waiting   for   another   process   to   finish  

b. Interrupting   another   process.  
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Shared   resources  

Shared  resources  can  be  shared  among  other  different  resources  (for example  the             

queue   between   the   clients   and   the   server   is   a   shared   resource   called   a   Pipe)  

 

8.4   Closed   System   DES   Simulation  

The  setup  depicted  in  Figure  8.1  is  used  as  a  model  for  the  initial  closed  model  DES                  

setup.  The  workload  generator  represents  a  set  of  clients.  Figure  8.2  shows  the  DES               

abstraction   for   the   model   shown   in   Figure   8.1.  

 

 

Figure   8.1:   DES   abstraction  

 

In  this  setup,  N  clients  are  used.  The  server  application  runs  in  an  N  core  machine.  It                  

is  assumed  that  the  server  application  can  handle  N  number  of  requests  concurrently.              

Two  queues  are  used:  input  queue  and  output queue.  Each  client  adds  a  requests  to                

the  input  queue.  The  requests  gets  queued  in  the  queue  and  each  core  fetches  the                

request at the top and processes them. Upon completion, the request is added to the 

output  queue.  Then  the  response  is  received  by  the  client.  Upon  receiving  the              

response,   each   client   sends   the   subsequent   request.   
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Figure   8.2:   Single   server   pseudo   code  

 

The  number  of  clients  (concurrency)  are  specified  in  line  11,  and  the  number  of  cores                

at   line   12.   This   program   has   two   process   methods;   client   and   server.  
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8.4.1   Client   process  

Line  15-24  shows  the  client  process.  Parameter  env  is  the  Simpy  environment  in              

which  the  process  runs.  in_pipe  is  the  input  queue  to  the  client  (to  which  the  server                 

puts  the  responses).  out_pipe  is  the output  pipe,  into  which  the  client  puts  the               

requests.   i   is   the   identity   of   the   client.  

 

First,  the  client  process  generates  a  pseudo  random  number  using  exponential            

distribution,  using  the  given  processing  rate.  Then  it  keeps  track  of  the  arrival  time.               

Then   the   request   is   put   to   the   out_pipe.  

 

The  client  process  waits  until  it  gets  the  response  to  its  request.  All  the  responses  for                 

each  client  request  is  put  to  the  shared  in_pipe.  A  special  pipe  of  type  FilterStore  is                 

used  as  the  in_pipe.  Using  the  lambda  function,  the  relevant  response  is  received  by               

the   client.  

 

8.4.2   Server   process  

In  a  continuous  loop,  the  server  checks  for  new  requests.  Once  the  server  receives  a                

request  from  the  in_pipe,  it  extracts  it.  Then  the  server  calculates  the  time  difference               

between  starting  the  processing of  the  request  and  the  request  creation  time.  Then  the               

server   core   yields   the   corresponding   processing   time.   

 

This  code  is  run  for  three  different  concurrency  levels  (100, 200,  and  500)  and  for                

each  concurrency  level,  the  number  of  cores  (1,  2,  and  4)  are  varied.  Table  8.1  below                 

shows   the   results.  
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Table   8.1:   Closed   System   DES   Results  

Concurrenc 

y  

Number  

of   Cores  

Average   Latency  

(Time   Steps)  

99   Percentile  

Latency   (Time  

Steps)  

Throughput   (Request  

Per   Time   Step)  

100  1  2496.148  3151.9094  39.35  

100  2  1252.6918  1566.3316  80.25  

100  4  624.48957  792.1198  159.88  

200  1  4985.5102  5917.101204  39.35  

200  2  2503.9160  2950.10  80.25  

200  4  1248.598  1473.52731  159.88  

500  1  12415.056  14242.556  39.35  

500  2  6248.57563  6968.6093200  80.25  

500  4  3118.48955  3471.48797  159.88  

 

 

8.4.3   Results   and   discussion  

We  observe  that  when  the  level  of  concurrency  increases,  the  average  latency  and  99               

percentile  latency  increase.  For  example,  when  the  core  count  is  fixed  at  four,  when               
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concurrency  increases  from  100  to  200,  the  average  latency  increases  from  624  time              

steps  to  1248  time  steps.  Also,  the  99  percentile  latency,  increases  from  792  time               

steps   to   1473   time   steps.   This   behaviour   is   explained   as   follows.  

 

When  the  concurrency  increases,  the  waiting  time  increases.  This  leads  to  an             

increased   latency   values.  

 

Second,  we  observe  that  the  level  of  concurrency  does  not  impact  the  throughput.              

When  the  level  of  concurrency  is  varied  from  100  to  200  and  500,  the  throughput                

remains  constant  at  39.  This  behaviour  validates  the  theoretical  proof;  in  a  closed              

system,  throughput  is  independent  of  the  level  of  concurrency,  and  depends  only  on              

the   service   rate   [87].  

 

Third,  it  is  observed  that  when  the  number  of  cores  increases,  average  latency  and  99                

percentile  latency  decreases.  For  example,  when  the  concurrency  is  fixed  at  500,             

when  the  number  of  cores  is  increased  from  one  to  two,  the  average  latency  reduces                

from  12415  time  steps  to  6248  time  steps,  whereas,  the  99  percentile  latency  reduces               

from   14242   to   6968   time   steps.   This   observation   can   be   explained   as   follows.  

 

When  the  number  of  cores  increases,  the  requests  which  are  queued  in  the  server              

input  queue,  get  scheduled  faster;  thus  reducing  the  queue  waiting  times.  Hence  the              

response   time   decreases.  

 

Finally,  we  observe  that  when  the  core  count  increases,  the  throughput  increases.  For              

example,  when  the  number  of  cores  is  increased  from  one  to  four,  the  throughput               

increases  from  39.5  to  159.8.  When  the  number  of  cores  is  increased,  the  amount  of                

work   that   are   done   in   a   given   time   period   increases.   Hence,   the   throughput   increases.  
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8.5   Modelling   Interservice   Calls  

In  this  section,  we  extend  the  above  closed  system  simulation  to  support  interservice              

calls.   Figure   8.3   depicts   the   DES   abstraction   for   a   system   with   one   interservice   call.  

 

 

 

Figure   8.3:   Interservice   Calls   DES   abstraction  

 

In  this  abstraction,  two  servers  are  used.  The clients  send  requests  into  the  input               

queue  of  the  first  server.  Upon  the  completion  of  processing,  server  1  puts  the               

partially  processed  request  to  the  input  queue  of  server  2.  Server  2  then  processes  for                

completion  and  puts  the  response  to  server  2's  output  queue.  Server  1  forwards  the               

response   back   to   the   client.  

 

Figure   8.4   shows   the   pseudo   code   for   interservice   calls.  
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Figure   8.4:   Interservice   calls,   Pseudo   code  

 

Two  pseudo  random  numbers  are  generated,  one  for  server  1  processing  time  and  the               

other  for  server  2  processing  time.  Server  1  process  is  divided  into  two  methods,               

server_1_1   (for   actual   processing)   and   server_1_2   (for   response   forwarding).   
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8.5.1   Results   and   analysis  

Table   8.2   below   shows   the   results.  

 

Table   8.2:   Interservice   calls   DES   results  

Concurrenc 

y  

Number   of  

Interservice  

Calls  

Average  

Latency   (Time  

Steps)  

Throughput  

(Requests   per   Time  

Step)  

99   Percentile  

Latency   (Time  

Steps)  

100  0  6238.893  159.88  7992.514  

100  1  12539.17644  79.3  16485.4686  

100  2  12653.462  78.54  15825.8872  

200  0  12442.118  159.88  14902.873  

200  1  24913.124596  79.3  31621.465  

200  2  25154.7919  78.54  29512.536  

500  0  30830.13843  159.88  35722.7764  

500  1  61063.3348  79.3  70531.2472  

500  2  61774.7721  78.54  70094.39  

 

 

We  first  observe  that  when  the  number  of  inter  service  calls  increases,  the  average               

latency  and  99  percentile  latency  increase.  For  example,  when  the  number  of             

interservice  calls  increases  from  zero  to  one,  the  average  latency  increases  from  6238              

to  12539  time  steps,  when  the  concurrency  is  fixed  at  100.  This  behaviour  can  be                

explained   as   follows.  
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When  the  number  of  interservice  calls  increases,  each  request  has  to  stay  at              

increasing  number  of  queues.  This  increases  the  accumulated  queue  waiting  time  for             

a  given  request.  This  waiting  time  causes  the  average  latency  and  99  percentile              

latency   to   increase.  

 

Second,  we  observe  that  when  the  number  of  interservice  service  calls  increases,  the              

throughput  decreases.  For  example,  when  the  number  of  interservice  calls  increases            

from  zero  to  one,  the  throughput  decreases  from  159.88  to  79.3.  This  observation  can               

be   explained   as   follows.   

 

When the number of interservice calls increases, the queue waiting times increases 

significantly.  This  leads  to  an  increased  round  trip  time  response  times,  thus  reducing             

throughput.  

 

8.6   Summary  

In   this   section,   we   made   the   following   contributions.  

1. Implementing   closed   system   model   performance   testing   using   DES.  

2. Show   that   when   concurrency   increases   the   response   time   increases.  

3. Show  that  throughput  is  independent  of  concurrency  in  a  closed  system            

model.  

4. Show   that   when   the   number   of   cores   increases,   the   latency   decreases  

5. Show   that   when   the   number   of   cores   increases,   throughput   increases  

6. Show   that   when   number   of   interservice   calls   increases,   the   latency   increases  

7. Show  that  when  the  number  of  interservice  calls  increases  the  throughput            

decreases.  
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9.   LOAD   BALANCING  

9.1   Introduction  

Load  balancing  distributes  incoming  traffic  across  a  set  of  backend  servers  or  shapes              

them.  With  the  advent  of  API  management  and  service  meshes,  load  balancers  are              

becoming   an   essential   part   of   most   architectures.  

 

In  general,  it  is  believed  that  load  balancing  reduces  latency  and  improves             

throughput.  However,  this  view  ignores  the  overhead  introduced  by  the  load  balancer.             

A  load  balancer  does  not  always  improve  performance,  and,  in  some  cases,  load              

balancing   can   degrade   performance.  

 

This  section  explores  the  impact  of  load  balancing.  The  following  are  the  major              

findings.  

● With  a  backend  service  with  low  CPU-bound  use  cases,  single-server           

performance  is  better  than  two  servers  and  three  servers  with  a  load  balancer,              

in   both   average   latency   and   throughput.  

● When  the  backend  service’s  CPU  usage  is  moderately  high,  a  load  balancer             

with   two   and   three   server   setups   exhibit   performance   gains.  

● We  only  observe  a  linear  speedup  with  the  number  of  servers  only  when  CPU               

usage   is   very   high.  

● There  is  no  difference  in  99  percentile  latency  values  between  three-server            

and  two-server  configurations;  however,  there  is  a  significant  variation          

between   one-server   and   two-server   configurations.  

 

In  conclusion,  we  argue  that  the  overhead  introduced  by  a  load  balancer  should  be               

carefully   considered   in   capacity   planning.  

 

9.2   Definition  

Distributing  traffic  across  a  set  of  servers  is  known  as  load  balancing.  Modern  web               

systems  receive  very  high  traffic  that  makes  it  impossible  to  serve  them  using  a               
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single-server  instance.  Service  providers  use  a  load  balancer  to  distribute  traffic            

across  multiple  replicas  and  provide  high  availability.  A  load  balancer  provides  the             

following   functionalities.  

1. Acts   as   a   gateway   for   all   the   requests   (i.e.,   a   single   entry   point)  

2. Routes   traffic   across   a   set   of   servers  

3. Helps  achieve  service  level  objectives  by  reducing  latency  and  increasing           

throughput   by   scaling   the   system.  

4. Improves   utilization   of   each   backend   server   by   optimally   distributing   traffic  

5. Avoids   backend   servers   going   beyond   peak   utilization.  

6. Provides   failure   tolerance   by   automatically   identifying   failed   backend   servers  

7. Supports automatic scaling of backend servers 

 

Over  the  years,  we  have  observed  several  cases  where  adding  a  load  balancer  and  a                

set  of  replicas  slowed  down  the  system.  However,  this  only  happens  in  some  use               

cases.  We  designed  and  carried  out  an  experiment  designed  to  confirm  this             

observation  and  to  pin  down  the  conditions  under  which  load  balancing  slows  down              

the   system.  

 

We  first  describe  our  experimental  setup,  high-level  architecture,  workload          

generation  using  JMeter,  load  balancing  application,  and  back-end  web  service.           

Then,   we   provide   a   detailed   discussion   of   our   observations.  

 

9.3   Experiment   Setup  

The  setup  includes  clients,  load  balancers,  and  backend  servers.  Backend  servers  are             

the  servers  to  which  we  want  to  load  balance  the  requests.  We  conducted  the               

experiments  on  three  configurations  as  shown  in  Figure  9.1,  9.2  and  9.3.  In  the  first                

setup  (Figure  9.1),  we  did  not  use  a  load  balancer.  In  setups  2  and  3  (Figures  9.2  and                   

9.3),  we  used  a  load  balancer  and  distributed  the  incoming  traffic  from  the  client               

among   two   and   three   backend   servers,   respectively.  
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Figure   9.1:   Single   service  

 

 

Figure   9.2:   Two   services  

 

 

Figure   9.3:   Three   services  

 

We  used  JMeter,  a  widely  used  load  testing  tool,  to  simulate  the  virtual  users.  At  a                 

given  concurrency  level  (500  in  our  tests),  JMeter  sends  requests  to  the  configured              

endpoint  (address  of  the  services  for  single  services  configuration,  the  address  of  the              

load  balancer  for  two  services  and  three  services  configurations).  We  verified  that             

JMeter   has   enough   hardware   resources   to   handle   the   given   concurrency   level.  

 

We  used NGINX  [88]  as  the  load  balancer  for two-service  and  three-service             

configurations.  We  utilized  a  round-robin  load  balancing  algorithm,  since  each           

request   for   a   given   scenario   has   the   same   computational   complexity.  
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As  the  backend  service,  we  used  a  service  that  adapts  a  well-known  CPU  benchmark,               

first  introduced  by  SysBench  manual.  This  application  tests  whether  the  given            

number  in  the  request  is  prime  or  not  and  returns  a  true/false  response  to  the  client.                 

We  used  Java  as  the  implementation  language  and  Spring  Boot  as  the  framework,             

owing   to   their   wide   adoption.   

In  our  prime  testing  web  service,  we  checked  for  four  number  of  prime  numbers,  11,                

541,  66601  and  1303031  that  represent  different  CPU  workloads  (the  prime  checking             

application’s  computational  complexity  is  proportional  to  the  prime  number          

provided).  Hence,  the  CPU  intensity  increases  with  an  increasing  prime  number            

(CPU-Intensity(11)  <  CPU-Intensity(541)  <  CPU-Intensity(66601)  <       

CPU-Intensity(1303031)).  These  four  numbers  represent  different  levels  of  CPU          

utilization   of   the   application.  

 

To  make  our  results  reproducible,  we  ran  all  our  tests  in  Amazon  EC2.  Table  9.1                

below   summarizes   the   hardware   configurations   we   used.  

 

Table   9.1:   Hardware   configurations  

Machine  Instance   Name  Number   of   virtual   CPUs  Memory   (GB)  

JMeter  m4.2xlarge  8  32  

Backend   services  

(One   per   service)  

m4.xlarge  4  16  

Load   Balancer  m4.xlarge  4  16  

 

 

9.4   Results   and   Discussion  

Table  9.2  below  summarizes  the  results  for  each  configuration.  In  the  following             

discussion,  we  use  the  notation  isPrime(x)  to  denote  the  set  of  requests  that  have  x  as                 
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the  prime  number.  For  example,  isPrime(11)  denotes  the  test  where  we  send  the              

number   11   in   the   request   to   check   whether   11   is   prime.  

 

Table   9.2:   Load   balancing   Results  

Number   of  

Backend   services  

Prime  

Number  

Average  

Latency   (ms)  

Throughput   (Requests  

Per   Second)  

99   percentile  

Latency   (ms)  

Single   service  11  28  19364  99  

Single   service  541  28  17804  105  

Single   service  66601  51  9684  236  

Single   service  1303031  518  963  1001  

Two   services  11  43  17025  670  

Two   services  541  41  12005  665  

Two   services  66601  42  11769  613  

Two   services  1303031  267  1679  2731  

Three   services  11  40  12076  679  

Three   services  541  40  12060  682  

Three   services  66601  40  12075  664  

Three   services  1303031  188  2523  2228  

 

First,  we  observed  that  there  is  no  difference  between  isPrime(11)  and  isPrime(541)             

regarding  average  latency  for  all  three  scenarios.  We  believe  this  is  because  the              

backend  service  is  IO  bound  and  not  CPU  bound.  When  we  increase  the  prime               

number,  the  CPU  utilization  increases  while  maintaining  all  other  resources’           
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utilization  almost  constant.  When  comparing  isPrime(11)  with  isPrime(541),  with          

500  concurrency  level,  both  are  not  sufficient  to  stress  the  CPU  to  its  maximum               

utilization;   therefore,   additional   work   added   by   isPrime(541)   did   not   add   latency.  

 

Second,  we  observed  that  in  low  CPU  usage  (isPrime(11)  and  isPrime(541))  cases,             

single-service  performance  is  better  than  two-service  or  three-service  configurations,          

with respect  to  average  latency  and  throughput.  For  example,  for  the  isPrime(11)  test,              

we  observed  an  average  latency  of  28ms  for  the  single-service  configuration,            

whereas  for  two-service  and  three-service  configurations,  we  observed  an  average           

latency  of  43ms  and  40ms,  respectively.  We  believe  this  is  because  of  the  trade-off               

between  gains  due  to  more  nodes  and  additional  latency  due  to  an  additional  hop.  For                

example,  in  the  isPrime(11)  and  isPrime(541)  tests,  the  CPU  is  not  fully  utilized;              

therefore,  the  average  latency  and  throughput  are  mainly  governed  by  the  speed  of              

the  network  (given  that  the  prime  check  application  has  a  very  little  memory              

footprint).  Hence,  adding  more  servers  with  a  load  balancer  only  adds  an  additional             

hop,  and  the  load  balancer  has  to  do  twice  as  much  IO  as  the  backend  server  (adding                  

more  servers  does  not  improve  the  response  time  from  a  backend  service).  This              

shows  that  when  scaling  a  system,  we  should  first  identify  the  limiting  factor  and               

then  scale  that  resource.  Blindly  scaling  a  system  with  many  servers  will  degrade              

performance.  

 

Third,  we  observed  that  when  CPU  usage  is  high  (isPrime(66601)),  there  is  a              

performance  gain  in  two-service  and  three-service  setups.  However,  the  percentage           

performance  gain  (average  latency  and  throughput)  is  small  (increase  the  number  of             

services  by  two  and  throughput  increases  by  a  factor  much  less  than  two).  For               

example,  in  the  isPrime(66601)  case,  we  get  a  percentage  throughput  increase  of  1.21              

at   two   services   and   1.24   at   three   services.  
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Also,  we  observed  that  when  CPU  usage  is  very  high  (isPrime(1303031)),  there  is  a               

speed  up  close  to  x,  where  x  is  the  number  of  services.  For  example,  in  the                 

isPrime(1303031)   test,   we   noted   a   percentage   throughput   increase   of   1.74   and   2.62.   

We  believe  this  is  because  the  cost  and  gains  of  the  load  balancer  add  up  positively                 

with CPU-heavy  backend  services.  For  example,  in  the  isPrime(66601)  test,  the  CPU             

utilization  is  comparatively  high,  and  in  the  isPrime(1303031)  test,  CPU utilization  is             

even  higher.  Hence,  we  can  make  an  assumption  that  a  single-service  configuration             

CPU  is  operating  at  its  peak  level.  When  we  increase  the  number  of  services,  the  load                 

on  a  single  service  decreases.  For  example,  the  CPU  load  decreases  in  our  tests.              

When  the  CPU  utilization  decreases,  the  queue  lengths  decrease.  Hence,  the  response             

times   decreases   significantly.  

 

In  order  to  obtain  the  intended  return  on  investment,  we  should  only  add  resources               

that  are  limiting  resources  (bottlenecks).  For  example,  in  these  tests,  for  the  low-CPU              

intensity  cases,  (isPrime(11)  and  isPrime(541)),  adding  more  services  does  not           

improve  performance  because  the  existing  resources  in  the  system  are  not  fully             

utilized.  When  we  increase  the  CPU  intensity  to  a  higher  level  (so  that  CPU               

utilization   is   very   high),   we   get   benefits   by   scaling   the   system.  

 

Finally,  we  observed  that  there  is  no  difference  in  99  percentile  latency  values              

between  two-service  and  three-service  configurations;  however,  we  noted  a          

significant  variance  between  one-service  and  two-service  configurations.  We  believe          

this  is  because  of  the  number  of  network  hops.  For  example,  the  number  of  network                

hops  per  request  is  two  for  single  service,  four  for  two  services  and  four  for  three                

services.  In  the  workload  characterization  of  web  servers,  it  has  been  shown  that              

network  traffic  has  a  high  99  percentile  latency.  When  the  number  of  network  links               

per  request  increases  from  two  to  four,  the  99  percentile  latency  increases.  But,  when               

scaling  from  two  services  to  three  services,  the  number  of  network  links  per  request               

remains   constant   at   four.   Therefore,   the   99   percentile   latency   is   not   affected.  
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9.5   Summary  

In  this  section,  we  looked  at  the  performance  impact  of  load  balancing.  We  used  a                

prime  checking  backend  service  that  can  simulate  different  levels  of  CPU  use.  By              

changing  the  prime  number,  we  tested  the  performance  of  four  different  CPU             

intensity  levels.  We  showed  that  for  low  CPU-bound  workloads,  adding  a  load             

balancer  and  more  server  replications  do  not  give  a  performance  gain,  and,             

sometimes,  can  lead  to  decreased  performance.  Also,  we  observed  that  when  the             

backend  CPU  utilization  is  high,  adding  more  servers  with  a  load  balancer  gives  a               

performance   gain.  

 

These  observations  are  very  useful  in  capacity  planning.  We  often  try  to  improve  the               

performance  of  a  computer  system  by  adding  more  resources  with  a  load  balancer.             

As  we  have  shown  in  this  section,  adding  more  resources  sometimes  degrades             

performance.  Hence,  a  more  general  guideline  to  capacity  planning  should  include            

checking  the  backend  server’s  utilization  to  make  sure  it  is  fully  utilized.  If  the               

backend  service  is  lightly  loaded  before  adding  more  backend  servers,  adding  more             

servers   will   often   degrade   system   performance.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
79  



10.   CONCLUSION  

Due  to  the  wide  adoption  of  Server  based  systems,  understanding  the  performance  of              

server  based  systems,  under  different  conditions  is  important.  In  this  research,  we             

characterized  the  web  server  systems  under  different  configurations.  We  first           

presented  a  summary  of  prevalent  server  architectures.  Second,  we  provided  a            

systematic  approach  for  performance  testing,  and  presented  a  novel  Python  open            

source  library  for  latency analysis.  Third,  we  experimented  on  existing  server            

architectures,  and  proposed  eight  new  server  architectures.  Our  analysis  shows  that            

under  different  conditions  the  new  architectures  outperform  the  existing          

architectures.  Fourth,  we  did  an  extensive  tail  latency  analysis  of  Java  microservices.             

Fifth, we  explored  the  scalability  characteristics  of  web  servers.  Sixth,  we  proposed  a              

novel  approach  to  model  the  closed  system  performance  using  discrete  event            

simulation.  Finally,  we  showed  that  unless  used  carefully,  load  balancing  decreases            

the   performance   of   server   based   systems.  

 

In   summary   we   make   the   following   contributions   in   this   research  

1. Implemented   a   novel   open   source   library   for   workload   characterization  

2. Proposed   a   systematic   approach   for   performance   testing   of   web   servers  

3. Proposed   eight   new   server   architectures  

4. Discussed   the   hardware,   software   implications   for   server   performance  

5. Performed   an   extensive   tail   latency   analysis   of   microservices  

6. Identified  the  scalability  characteristics  of  middleware  using  Universal  law  of           

scalability  

7. Proposed  a  novel  approach  to  model  web  server  closed  system  performance            

using   discrete   event   simulation  

8. Identified   the   impact   of   load   balancing   for   server   based   systems.  

 

We  explored  several  weaknesses  in  our  novel  server  architectures,  and  proved  the            

claims  using  hardware  and  software  performance  counters.  These  lead  to  further            
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improvements  of  the  novel  server  architectures.  We  expect  to  explore  them  in  the              

future.  

 

Discrete  event  simulation  for  half  open  systems  are  still  unknown.  Also,  employing             

queues  and  processing  elements  at  different  layers  in  the  OSI  model  are  promising              

future   works.  
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Appendix   A:   Server   Architecture   Results  

 

Use   Case  

Backend  

Architecture  Heap  Concurrency  Workload  

Average  

Latency  Throughput  

Percentile  

99  

io  Blocking  2g  300  1024  47.25204112  6334.343333  450  

io  Blocking  2g  10  1024  1.614496805  5895.805  3  

io  Blocking  100m  300  1024  47.19426614  6341.978333  450  

io  Blocking  100m  10  1024  1.621038504  5876.463333  3  

io  Blocking  2g  300  10  43.25755656  6909.336667  1025  

io  Blocking  2g  10  10  1.258362928  7610.721667  4  

io  Blocking  100m  300  10  42.65937912  7008.3  1026  

io  Blocking  100m  10  10  1.265719998  7565.363333  5  

io  

Blocking  

Disruptor  2g  300  1024  60.12030311  4985.13  1041  

io  

Blocking  

Disruptor  2g  10  1024  2.038677007  4700.855  4  

io  

Blocking  

Disruptor  100m  300  1024  55.82458767  5361.035  1038  

io  

Blocking  

Disruptor  100m  10  1024  2.05127292  4675.47  4  

io  

Blocking  

Disruptor  2g  300  10  45.25049488  6615.258333  1029  

io  

Blocking  

Disruptor  2g  10  10  1.659779774  5796.76  4  

io  

Blocking  

Disruptor  100m  300  10  48.83835211  5907.48  1030  

io  

Blocking  

Disruptor  100m  10  10  1.667509315  5766.868333  4  

io  Blocking   Actor  2g  300  1024  66.589535  4495.97  1029  

io  Blocking   Actor  2g  10  1024  1.661425391  5739.803333  3  

io  Blocking   Actor  100m  300  1024  70.4562375  4249.566667  1046  

io  Blocking   Actor  100m  10  1024  1.660005594  5743.82  3  

io  Blocking   Actor  2g  300  10  125.697167  2382.946667  1181  

io  Blocking   Actor  2g  10  10  1.27070197  7546.645  9  

io  Blocking   Actor  100m  300  10  116.6674021  2567.8  1174  

 
93  



io  Blocking   Actor  100m  10  10  1.282053627  7473.543333  9  

io  NIO  2g  300  1024  77.38879295  3868.991667  1239  

io  NIO  2g  10  1024  2.493246301  3859.613333  3  

io  NIO  100m  300  1024  75.08709919  3988.651667  1237  

io  NIO  100m  10  1024  2.469132083  3899.95  3  

io  NIO  2g  300  10  65.07476999  4342.718333  1235  

io  NIO  2g  10  10  2.422317976  4011.46  9  

io  NIO  100m  300  10  61.84589727  4400.646667  1067  

io  NIO  100m  10  10  2.753854226  3538.756667  10  

io  NIO   Disruptor  2g  300  1024  222.2785216  1348.303333  225  

io  NIO   Disruptor  2g  10  1024  7.455909614  1318.05  10  

io  NIO   Disruptor  100m  300  1024  222.6888782  1346.171667  226  

io  NIO   Disruptor  100m  10  1024  7.419150765  1324.368333  10  

io  NIO   Disruptor  2g  300  10  222.8983815  1345.195  226  

io  NIO   Disruptor  2g  10  10  7.370149589  1336.441667  10  

io  NIO   Disruptor  100m  300  10  219.1836567  1367.96  222  

io  NIO   Disruptor  100m  10  10  7.380497187  1334.508333  10  

io  nio.netty  2g  300  1024  45.61846781  6560.621667  1026  

io  nio.netty  2g  10  1024  1.583609054  6017.57  3  

io  nio.netty  100m  300  1024  44.95371866  6656.175  1023  

io  nio.netty  100m  10  1024  1.631862682  5840.95  3  

io  nio.netty  2g  300  10  46.31986796  6425.781667  1014  

io  nio.netty  2g  10  10  2.975211939  3291.436667  13  

io  nio.netty  100m  300  10  44.29790401  6737.075  893  

io  nio.netty  100m  10  10  2.76077569  3543.083333  12  

io  NIO   Actor  2g  300  1024  219.9928153  1362.395  222  

io  NIO   Actor  2g  10  1024  7.402816905  1326.988333  8  

io  NIO   Actor  100m  300  1024  220.0707037  1362.116667  222  

io  NIO   Actor  100m  10  1024  7.53036429  1305.096667  9  

io  NIO   Actor  2g  300  10  219.4570582  1366.325  221  

io  NIO   Actor  2g  10  10  7.530835706  1309.331667  9  

io  NIO   Actor  100m  300  10  223.7686258  1340.008333  225  

io  NIO   Actor  100m  10  10  7.472770738  1318.373333  9  
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io  SEDA   Actor  2g  300  1024  52.41849097  5713.15  1038  

io  SEDA   Actor  2g  10  1024  1.890702227  5075.355  16  

io  SEDA   Actor  100m  300  1024  50.74854106  5898.981667  1037  

io  SEDA   Actor  100m  10  1024  1.860883214  5156.435  14  

io  SEDA   Actor  2g  300  10  53.0544053  5620.408333  1036  

io  SEDA   Actor  2g  10  10  2.052792265  4726.45  15  

io  SEDA   Actor  100m  300  10  49.88658862  5995.356667  1039  

io  SEDA   Actor  100m  10  10  1.908247946  5072.656667  13  

io  SEDA   Disruptor  2g  300  1024  214.231783  1397.981667  1301  

io  SEDA   Disruptor  2g  10  1024  26.50623424  356.2316667  168  

io  SEDA   Disruptor  100m  300  1024  315.2990178  950.1216667  1681  

io  SEDA   Disruptor  100m  10  1024  30.51067582  320.35  181  

io  SEDA   Disruptor  2g  300  10  270.9059618  1102.92  1534  

io  SEDA   Disruptor  2g  10  10  27.06932625  349.3866667  180  

io  SEDA   Disruptor  100m  300  10  354.9513499  843.78  1849  

io  SEDA   Disruptor  100m  10  10  29.5695385  319.715  183  

io  SEDA   Queue  2g  300  1024  51.74499456  5711.538333  1037  

io  SEDA   Queue  2g  10  1024  1.312791451  4084.446667  2  

io  SEDA   Queue  100m  300  1024  56.26819309  5239.421667  1046  

io  SEDA   Queue  100m  10  1024  1.348066278  4006.478333  3  

io  SEDA   Queue  2g  300  10  47.97686453  5957.086667  1038  

io  SEDA   Queue  2g  10  10  1.318392991  5833.943333  3  

io  SEDA   Queue  100m  300  10  50.50901413  5839.166667  1044  

io  SEDA   Queue  100m  10  10  1.157056782  5022.461667  3  

io  NIO2  2g  300  1024  104.9787417  2823.525  476  

io  NIO2  2g  10  1024  2.231680448  4320.088333  3  

io  NIO2  100m  300  1024  98.44197418  3008.905  496  

io  NIO2  100m  10  1024  2.235508971  4311.201667  3  

io  NIO2  2g  300  10  109.0944621  2710.081667  504  

io  NIO2  2g  10  10  2.385472207  4064.21  3  

io  NIO2  100m  300  10  104.4051619  2823.916667  552  

io  NIO2  100m  10  10  2.393698387  4046.371667  3  

io  NIO2   Actor  2g  300  1024  218.206772  1373.59  222  
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io  NIO2   Actor  2g  10  1024  7.300048074  1345.14  8  

io  NIO2   Actor  100m  300  1024  217.3206885  1379.485  222  

io  NIO2   Actor  100m  10  1024  7.295037464  1346.388333  8  

io  NIO2   Actor  2g  300  10  216.8088632  1383.015  218  

io  NIO2   Actor  2g  10  10  7.49558239  1316.7  8  

io  NIO2   Actor  100m  300  10  221.1185063  1356.088333  222  

io  NIO2   Actor  100m  10  10  7.467339722  1320.181667  8  

io  NIO2   Disruptor  2g  300  1024  217.1027458  1380.753333  226  

io  NIO2   Disruptor  2g  10  1024  7.407343018  1326.793333  10  

io  NIO2   Disruptor  100m  300  1024  216.6023524  1383.951667  227  

io  NIO2   Disruptor  100m  10  1024  7.426707164  1323.003333  10  

io  NIO2   Disruptor  2g  300  10  219.3027871  1367.198333  230  

io  NIO2   Disruptor  2g  10  10  7.416778905  1327.778333  10  

io  NIO2   Disruptor  100m  300  10  215.8492122  1389.093333  224  

io  NIO2   Disruptor  100m  10  10  7.427054933  1326.523333  10  

cpu  Blocking  2g  300  27059  41.95057963  7127.661667  1026  

cpu  Blocking  2g  10  27059  1.41473609  6779.206667  6  

cpu  Blocking  100m  300  27059  42.53772236  7031.351667  1027  

cpu  Blocking  100m  10  27059  1.429942939  6704.808333  6  

cpu  Blocking  2g  300  11  41.61693832  7185.248333  1025  

cpu  Blocking  2g  10  11  1.253746778  7642.678333  3  

cpu  Blocking  100m  300  11  42.1766678  7082.888333  1025  

cpu  Blocking  100m  10  11  1.265173866  7571.598333  5  

cpu  

Blocking  

Disruptor  2g  300  27059  49.59746153  6034.996667  1032  

cpu  

Blocking  

Disruptor  2g  10  27059  2.001308216  4822.09  4  

cpu  

Blocking  

Disruptor  100m  300  27059  48.18726793  6211.376667  1033  

cpu  

Blocking  

Disruptor  100m  10  27059  2.019313812  4783.623333  4  

cpu  

Blocking  

Disruptor  2g  300  11  45.95102757  6511.248333  1029  

cpu  

Blocking  

Disruptor  2g  10  11  1.670978532  5758.915  4  
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cpu  

Blocking  

Disruptor  100m  300  11  46.28904181  6463.263333  1029  

cpu  

Blocking  

Disruptor  100m  10  11  1.677011875  5732.981667  4  

cpu  Blocking   Actor  2g  300  27059  61.23965546  4890.34  1096  

cpu  Blocking   Actor  2g  10  27059  1.310621717  7315.468333  10  

cpu  Blocking   Actor  100m  300  27059  55.17637527  5429.465  1046  

cpu  Blocking   Actor  100m  10  27059  1.327115442  7228.335  10  

cpu  Blocking   Actor  2g  300  11  111.827449  2678.58  1171  

cpu  Blocking   Actor  2g  10  11  1.266810457  7561.166667  9  

cpu  Blocking   Actor  100m  300  11  107.077582  2797.148333  1167  

cpu  Blocking   Actor  100m  10  11  1.285105749  7455.818333  9  

cpu  NIO  2g  300  27059  80.50125035  3698.963333  1449  

cpu  NIO  2g  10  27059  2.849994063  3410.731667  4  

cpu  NIO  100m  300  27059  76.44050117  3910.076667  1445  

cpu  NIO  100m  10  27059  2.438170855  3980.148333  4  

cpu  NIO  2g  300  11  62.63000496  4367.288333  1228  

cpu  NIO  2g  10  11  2.450226367  3967.378333  9  

cpu  NIO  100m  300  11  62.10817903  4473.633333  1047  

cpu  NIO  100m  10  11  2.623294613  3712.99  9  

cpu  NIO   Disruptor  2g  300  27059  222.7917755  1345.783333  225  

cpu  NIO   Disruptor  2g  10  27059  7.360839116  1337.678333  9  

cpu  NIO   Disruptor  100m  300  27059  219.6892039  1364.78  225  

cpu  NIO   Disruptor  100m  10  27059  7.464027541  1319.25  10  

cpu  NIO   Disruptor  2g  300  11  222.9030043  1345.111667  226  

cpu  NIO   Disruptor  2g  10  11  7.412936035  1328.305  10  

cpu  NIO   Disruptor  100m  300  11  219.0704957  1368.618333  222  

cpu  NIO   Disruptor  100m  10  11  7.379793255  1334.818333  10  

cpu  nio.netty  2g  300  27059  44.23255581  6743.721667  1011  

cpu  nio.netty  2g  10  27059  2.723406408  3590.683333  13  

cpu  nio.netty  100m  300  27059  43.79176838  6814.983333  1012  

cpu  nio.netty  100m  10  27059  2.656892085  3681.203333  13  

cpu  nio.netty  2g  300  11  46.30761705  6434.64  1010  

cpu  nio.netty  2g  10  11  3.008830878  3256.376667  13  
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cpu  nio.netty  100m  300  11  44.82422817  6654.346667  901  

cpu  nio.netty  100m  10  11  2.98788177  3278.531667  13  

cpu  NIO   Actor  2g  300  27059  220.176354  1361.796667  225  

cpu  NIO   Actor  2g  10  27059  7.539217225  1306.505  9  

cpu  NIO   Actor  100m  300  27059  219.7191533  1364.653333  221  

cpu  NIO   Actor  100m  10  27059  7.531401009  1307.866667  9  

cpu  NIO   Actor  2g  300  11  223.3663803  1342.448333  225  

cpu  NIO   Actor  2g  10  11  7.571894124  1302.088333  9  

cpu  NIO   Actor  100m  300  11  219.1776658  1368.065  221  

cpu  NIO   Actor  100m  10  11  7.457694817  1320.661667  9  

cpu  SEDA   Actor  2g  300  27059  47.70376547  6247.071667  1029  

cpu  SEDA   Actor  2g  10  27059  1.794509583  5390.665  11  

cpu  SEDA   Actor  100m  300  27059  46.84409358  6382.675  1034  

cpu  SEDA   Actor  100m  10  27059  2.008573827  4825.15  12  

cpu  SEDA   Actor  2g  300  11  55.85708172  5335.52  1036  

cpu  SEDA   Actor  2g  10  11  1.990665332  4875.91  13  

cpu  SEDA   Actor  100m  300  11  50.78160474  5891.573333  1039  

cpu  SEDA   Actor  100m  10  11  1.824942505  5296.821667  13  

cpu  SEDA   Disruptor  2g  300  27059  283.0924037  1056.451667  1581  

cpu  SEDA   Disruptor  2g  10  27059  25.63170368  367.0866667  144  

cpu  SEDA   Disruptor  100m  300  27059  384.2951838  780.2766667  2134.35  

cpu  SEDA   Disruptor  100m  10  27059  29.07306338  339.2716667  162  

cpu  SEDA   Disruptor  2g  300  11  269.3688588  1110.736667  1486  

cpu  SEDA   Disruptor  2g  10  11  26.93552676  358.495  170  

cpu  SEDA   Disruptor  100m  300  11  350.4485533  854.4766667  1853  

cpu  SEDA   Disruptor  100m  10  11  30.46472607  316.57  188  

cpu  SEDA   Queue  2g  300  27059  52.44140238  5670.68  1041  

cpu  SEDA   Queue  2g  10  27059  2.094543423  4567.76  5  

cpu  SEDA   Queue  100m  300  27059  58.64852046  5069.256667  1049  

cpu  SEDA   Queue  100m  10  27059  2.22345567  4190.301667  6  

cpu  SEDA   Queue  2g  300  11  47.1127137  6162.146667  1037  

cpu  SEDA   Queue  2g  10  11  1.28204123  5820.313333  3  

cpu  SEDA   Queue  100m  300  11  50.56040038  5827.405  1044  
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cpu  SEDA   Queue  100m  10  11  1.140802349  5065.043333  2  

cpu  NIO2  2g  300  27059  117.2916844  2514.138333  494  

cpu  NIO2  2g  10  27059  2.246075444  4306.538333  4  

cpu  NIO2  100m  300  27059  103.8334423  2847.861667  517  

cpu  NIO2  100m  10  27059  2.265022354  4277.708333  4  

cpu  NIO2  2g  300  11  107.9167758  2739.768333  532  

cpu  NIO2  2g  10  11  2.379587755  4069.665  3  

cpu  NIO2  100m  300  11  105.0399429  2815.896667  553  

cpu  NIO2  100m  10  11  2.395911577  4046.303333  3  

cpu  NIO2   Actor  2g  300  27059  217.3721299  1379.33  221  

cpu  NIO2   Actor  2g  10  27059  7.299981337  1348.511667  8  

cpu  NIO2   Actor  100m  300  27059  217.7210193  1377.078333  221  

cpu  NIO2   Actor  100m  10  27059  7.300840766  1348.77  8  

cpu  NIO2   Actor  2g  300  11  220.6770699  1358.761667  222  

cpu  NIO2   Actor  2g  10  11  7.495656335  1316.668333  8  

cpu  NIO2   Actor  100m  300  11  216.7076451  1383.723333  218  

cpu  NIO2   Actor  100m  10  11  7.468013434  1320.033333  8  

cpu  NIO2   Disruptor  2g  300  27059  215.8142028  1389.166667  223  

cpu  NIO2   Disruptor  2g  10  27059  7.401870705  1329.98  10  

cpu  NIO2   Disruptor  100m  300  27059  217.7303616  1377.041667  228  

cpu  NIO2   Disruptor  100m  10  27059  7.378452228  1334.585  10  

cpu  NIO2   Disruptor  2g  300  11  215.7898692  1389.46  224  

cpu  NIO2   Disruptor  2g  10  11  7.399554304  1331.25  10  

cpu  NIO2   Disruptor  100m  300  11  218.0454974  1375.06  232  

cpu  NIO2   Disruptor  100m  10  11  7.315622473  1345.721667  10  

memory  

Blocking  

Disruptor  2g  300  1000  57.38226122  4961.973333  1032  

memory  

Blocking  

Disruptor  2g  10  1000  2.058496138  4691.876667  4  

memory  

Blocking  

Disruptor  100m  300  1000  48.20441609  6215.9  1032  

memory  

Blocking  

Disruptor  100m  10  1000  2.126659063  4538.956667  5  

memory  

Blocking  

Disruptor  2g  300  10  45.47019469  6577.183333  1029  
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memory  

Blocking  

Disruptor  2g  10  10  1.668440935  5772.646667  4  

memory  

Blocking  

Disruptor  100m  300  10  44.72179648  6689.886667  1030  

memory  

Blocking  

Disruptor  100m  10  10  1.676153966  5741.36  4  

memory  NIO   Disruptor  2g  300  1000  222.7781791  1345.71  226  

memory  NIO   Disruptor  2g  10  1000  7.491363329  1314.356667  10  

memory  NIO   Disruptor  100m  300  1000  222.9036318  1344.876667  226  

memory  NIO   Disruptor  100m  10  1000  7.486477652  1315.476667  10  

memory  NIO   Disruptor  2g  300  10  222.9440996  1344.653333  225  

memory  NIO   Disruptor  2g  10  10  7.364011886  1337.126667  10  

memory NIO Disruptor 100m 300 10 222.1136343 1349.71 226

memory  NIO   Disruptor  100m  10  10  7.50402936  1312.45  10  

memory  SEDA   Disruptor  2g  300  1000  279.6512118  1071.433333  1489  

memory  SEDA   Disruptor  2g  10  1000  25.50148368  381.9333333  144  

memory  SEDA   Disruptor  100m  300  1000  429.931371  694.6533333  2363  

memory  SEDA   Disruptor  100m  10  1000  28.31486146  334.8033333  157  

memory  SEDA   Disruptor  2g  300  10  263.1137873  1135.656667  1474  

memory  SEDA   Disruptor  2g  10  10  26.5646119  342.9966667  161  

memory  SEDA   Disruptor  100m  300  10  357.6517459  837.3866667  1974.85  

memory  SEDA   Disruptor  100m  10  10  29.89491636  316.6366667  177  

memory  NIO2   Disruptor  2g  300  1000  217.9252634  1375.676667  227  

memory  NIO2   Disruptor  2g  10  1000  7.300700286  1348.02  10  

memory  NIO2   Disruptor  100m  300  1000  219.7771736  1364.036667  230  

memory  NIO2   Disruptor  100m  10  1000  7.447452073  1322.316667  10  

memory  NIO2   Disruptor  2g  300  10  218.6954218  1370.846667  228  

memory  NIO2   Disruptor  2g  10  10  7.302063804  1347.673333  10  

memory  NIO2   Disruptor  100m  300  10  215.7715067  1389.45  228  

memory  NIO2   Disruptor  100m  10  10  7.323086156  1344.11  10  

memory  Blocking  2g  300  1000  42.64624893  7011.116667  1026  

memory  Blocking  2g  10  1000  1.478129265  6493.99  5  

memory  Blocking  100m  300  1000  42.87363651  6981.183333  1028  

memory  Blocking  100m  10  1000  1.52629881  6302.756667  6  
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memory  Blocking  2g  300  10  41.67864073  7172.076667  1025  

memory  Blocking  2g  10  10  1.254431934  7643.013333  4  

memory  Blocking  100m  300  10  43.35887077  6896.716667  1025  

memory  Blocking  100m  10  10  1.254498375  7629.976667  5  

memory  Blocking   Actor  2g  300  1000  57.18545169  5229.016667  1062  

memory  Blocking   Actor  2g  10  1000  1.33131509  7207.036667  10  

memory  Blocking   Actor  100m  300  1000  49.01724848  6113.003333  1041  

memory  Blocking   Actor  100m  10  1000  1.377947892  6960.483333  10  

memory  Blocking   Actor  2g  300  10  111.4497778  2687.023333  1172  

memory  Blocking   Actor  2g  10  10  1.26675205  7565.84  9  

memory  Blocking   Actor  100m  300  10  111.498195  2687.013333  1178  

memory  Blocking   Actor  100m  10  10  1.276549779  7500.156667  9  

memory  NIO  2g  300  1000  80.65254989  3704.34  1450  

memory  NIO  2g  10  1000  2.765818798  3513.646667  4  

memory  NIO  100m  300  1000  82.04025574  3639.646667  1452  

memory  NIO  100m  10  1000  2.59596046  3739.04  4  

memory  NIO  2g  300  10  63.65103585  4380.306667  1236  

memory  NIO  2g  10  10  2.739827378  3551.116667  10  

memory  NIO  100m  300  10  63.0827016  4519.3  1124.11  

memory  NIO  100m  10  10  2.699877314  3605.403333  10  

memory  nio.netty  2g  300  1000  44.28918859  6736.803333  1008  

memory  nio.netty  2g  10  1000  2.92139817  3351.236667  13  

memory  nio.netty  100m  300  1000  46.61649371  6393.306667  1019  

memory  nio.netty  100m  10  1000  3.012913656  3251.596667  13  

memory  nio.netty  2g  300  10  45.65709803  6520.026667  1010  

memory  nio.netty  2g  10  10  2.993488616  3270.17  12  

memory  nio.netty  100m  300  10  44.96001928  6633.446667  852  

memory  nio.netty  100m  10  10  3.003493724  3262.04  13  

memory  NIO   Actor  2g  300  1000  223.8766281  1339.23  225  

memory  NIO   Actor  2g  10  1000  7.535887156  1307.06  9  

memory  NIO   Actor  100m  300  1000  219.6253645  1364.98  222  

memory  NIO   Actor  100m  10  1000  7.387707116  1332.586667  9  

memory  NIO   Actor  2g  300  10  219.1936367  1368.043333  221  
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memory  NIO   Actor  2g  10  10  7.431850569  1326.276667  9  

memory  NIO   Actor  100m  300  10  220.5712611  1359.366667  225  

memory  NIO   Actor  100m  10  10  7.561912532  1303.263333  9  

memory  SEDA   Actor  2g  300  1000  48.25100919  6179.893333  1032  

memory  SEDA   Actor  2g  10  1000  1.779618835  5428.443333  11  

memory  SEDA   Actor  100m  300  1000  47.82822075  6251.57  1035  

memory  SEDA   Actor  100m  10  1000  2.065136683  4695.766667  12  

memory  SEDA   Actor  2g  300  10  57.76178995  5134.74  1034  

memory  SEDA   Actor  2g  10  10  2.137923132  4537.793333  15  

memory  SEDA   Actor  100m  300  10  49.61449731  6020.52  1038  

memory  SEDA   Actor  100m  10  10  1.85018471  5220.806667  13  

memory  SEDA   Queue  2g  300  1000  53.17559428  5594.126667  1042  

memory  SEDA   Queue  2g  10  1000  2.144646035  4407.356667  5  

memory  SEDA   Queue  100m  300  1000  62.05078233  4793.793333  1053  

memory  SEDA   Queue  100m  10  1000  2.340584305  4032.256667  7  

memory  SEDA   Queue  2g  300  10  45.26939448  6304.026667  1036  

memory  SEDA   Queue  2g  10  10  1.253120441  5874.436667  2  

memory  SEDA   Queue  100m  300  10  50.16397017  5854.52  1044  

memory  SEDA   Queue  100m  10  10  1.178564427  4999.166667  3  

memory  NIO2  2g  300  1000  118.4348793  2491.68  478  

memory  NIO2  2g  10  1000  2.245223203  4309.896667  4  

memory  NIO2  100m  300  1000  104.1195928  2836.206667  507  

memory  NIO2  100m  10  1000  2.283280989  4235.876667  4  

memory  NIO2  2g  300  10  106.0849223  2782.623333  509  

memory  NIO2  2g  10  10  2.381603309  4066.963333  3  

memory  NIO2  100m  300  10  102.9536321  2866.636667  548  

memory  NIO2  100m  10  10  2.391047775  4050.613333  3  

memory  NIO2   Actor  2g  300  1000  217.9572432  1375.453333  221  

memory  NIO2   Actor  2g  10  1000  7.298456634  1348.783333  8  

memory  NIO2   Actor  100m  300  1000  216.2855391  1386.08  220  

memory  NIO2   Actor  100m  10  1000  7.413493069  1328.583333  8  

memory  NIO2   Actor  2g  300  10  216.1211267  1387.39  218  

memory  NIO2   Actor  2g  10  10  7.497318848  1315.976667  8  
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memory  NIO2   Actor  100m  300  10  216.7826268  1383.09  218  

memory  NIO2   Actor  100m  10  10  7.322956051  1345.353333  8  

db  

Blocking  

Disruptor  2g  300  NA  233.689187  1282.69  1855  

db  

Blocking  

Disruptor  2g  10  NA  8.633328468  1141.866667  36  

db  

Blocking  

Disruptor  100m  300  NA  238.7980426  1254.39  3031  

db  

Blocking  

Disruptor  100m  10  NA  8.78149961  1123.003333  35  

db  NIO   Disruptor  2g  300  NA  418.8492762  715.68  1117  

db  NIO   Disruptor  2g  10  NA  15.47579397  641.7133333  47  

db  NIO   Disruptor  100m  300  NA  420.7102861  712.8066667  1082  

db  NIO   Disruptor  100m  10  NA  15.62353336  635.5233333  43  

db  SEDA   Disruptor  2g  300  NA  571.6627365  523.8633333  2379  

db  SEDA   Disruptor  2g  10  NA  29.65767285  320.22  145  

db  SEDA   Disruptor  100m  300  NA  583.4391146  512.9033333  3173  

db  SEDA   Disruptor  100m  10  NA  36.234157  274.5166667  162  

db  NIO2   Disruptor  2g  300  NA  457.9816822  655.4633333  2220.62  

db  NIO2   Disruptor  2g  10  NA  14.63030723  678.32  37  

db  NIO2   Disruptor  100m  300  NA  421.1748972  433.8166667  1689.56  

db  Blocking  2g  300  NA  231.3806648  1295.286667  1310  

db  Blocking  2g  10  NA  8.034807203  1226.853333  32  

db  Blocking  100m  300  NA  234.5933349  1277.3  1482  

db  Blocking  100m  10  NA  8.206684223  1201.236667  31  

db  Blocking   Actor  2g  300  NA  244.1716129  1227.433333  949  

db  Blocking   Actor  2g  10  NA  8.127702277  1212.403333  33  

db  Blocking   Actor  100m  300  NA  246.4228971  1216.253333  925  

db  Blocking   Actor  100m  10  NA  8.23261636  1197.006667  32  

db  NIO  2g  300  NA  585.6595774  335.8766667  8095.04  

db  NIO  2g  10  NA  29.63652604  335.87  35  

db  NIO  100m  300  NA  593.4068349  333.3866667  8879.85  

db  NIO  100m  10  NA  29.83828145  333.46  42  

db  nio.netty  2g  300  NA  246.1001774  1217.34  1823  
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db  nio.netty  2g  10  NA  8.165427207  1207.963333  32  

db  nio.netty  100m  300  NA  241.9146173  1238.463333  1483  

db  nio.netty  100m  10  NA  8.339160002  1183.256667  32  

db  NIO   Actor  2g  300  NA  418.7870012  715.81  1054  

db  NIO   Actor  2g  10  NA  15.14102623  655.67  38  

db  NIO   Actor  100m  300  NA  424.7576495  706.36  895  

db  NIO   Actor  100m  10  NA  15.19570864  653.25  35  

db  SEDA   Actor  2g  300  NA  247.4738464  1210.54  1293  

db  SEDA   Actor  2g  10  NA  8.474252849  1163.753333  33  

db  SEDA   Actor  100m  300  NA  250.5738879  1196.046667  1296  

db  SEDA   Actor  100m  10  NA  8.622383002  1143.963333  32  

db  SEDA   Queue  2g  300  NA  225.751635  1327.736667  1083.8  

db  SEDA   Queue  2g  10  NA  8.401889501  1160.8  37  

db  SEDA   Queue  100m  300  NA  229.705122  1303.386667  1388  

db  SEDA   Queue  100m  10  NA  8.601418007  1136.336667  34  

db  NIO2  2g  300  NA  149.7219324  1976.773333  1127  

db  NIO2  2g  10  NA  7.372583664  1335.7  26  

db  NIO2  100m  300  NA  182.0857958  1639.706667  1246  

db  NIO2  100m  10  NA  7.509059137  1310.463333  25  

db  NIO2   Actor  2g  300  NA  1043.713581  287.33  1156  

db  NIO2   Actor  2g  10  NA  34.7034771  287.1166667  36  

db  NIO2   Actor  100m  300  NA  1061.39425  282.5366667  1106  

db  NIO2   Actor  100m  10  NA  34.59198416  287.93  43  
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