
Automatic Generation of Elementary Level Mathematical
Questions

P. L. V. S. Keerthisrini

188100U

Thesis/Dissertation submitted in partial fulfillment of the requirements for the degree

Master of Science in Computer Science and Engineering

Department of Computer Science & Engineering

University of Moratuwa

Sri Lanka

January 2020

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without ac-

knowledgement any material previously submitted for a Degree or Diploma in any other

University or institute of higher learning and to the best of my knowledge and belief it

does not contain any material previously published or written by another person except

where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce

and distribute my dissertation, in whole or in part in print, electronic or other medium.

I retain the right to use this content in whole or part in future works (such as articles or

books).

Signature: Date:

The above candidate has carried out research for the Masters thesis/Dissertation under my

supervision.

Signature of the Supervisor: Date:

i

ACKNOWLEDGEMENTS

I am sincerely grateful for the advice and guidance ofmy supervisorDr.SurangikaRanathunga.

Without her help and encouragement this project would not have been completed. I would

like to thank her for taking time out of her busy schedule to be available anytime that was

needed with help and advice.

I would also like to thank my progress review committee, Professor. Sanath Jayasena

and Dr. Amal Raj. Their valuable insights and guidance helped me immensely.

I would like to thank the entire staff of the Department of Computer Science and Engi-

neering, both academic and non-academic for all their help during the course of this work

and for providing me with the resources necessary to conduct my research.

The funding for this project was provided by the Senate Research grant, University of

Moratuwa.

Finally, I wish to convey my sincere appreciation to Mr. Ruchira Jayathunga, Ms.

Kulakshi Fernando, Ms. Ishadi Jayasinghe, Ms. Rameela Azeez, my family and all my

friends for all the love and support.

Thank you!

ii

ABSTRACT

Mathematical Word Problems (MWPs) play a vital role in mathematics education. An MWP is
a combination of not only the numerical quantities, units, and variables, but also textual content.
Therefore, in order to understand a particular MWP, a student requires knowledge in mathematics
as well as in literacy. This makes it difficult to solve MWPs when compared with other types of
mathematics problems. Therefore, students require a large number of similar questions to practice.
On the other hand, the composition of numerical quantities, units, and mathematical operations
impel the problems to possess specific constraints. Therefore, due to the inherent nature of MWPs,
tutors find it difficult to produce a lot of similar yet creative questions. Therefore, there is a timely
requirement of a platform that can automatically generate accurate and constraint-wise satisfied
MWPs.

Due to the template-based nature of existing approaches for automatically generating MWPs,
they tend to limit the creativity and novelty of the generated MWPs. Regarding the generation of
MWPs in multiple languages, language-specific morphological and syntactic features paves way
for extra constraints. Existing template-oriented techniques for MWP generation cannot identify
constraints that are language-dependant, especially in morphologically rich yet low resource lan-
guages such as Sinhala and Tamil.

Utilizing deep neural language generation mechanisms, we deliver a solution for the afore-
mentioned restrictions. This thesis elaborates an approach by which a Long Short Term Memory
(LSTM) network which can generate simple MWPs while fulfilling above-mentioned constraints.
The methodology inputs a blend of character embeddings, word embeddings, and Part of Speech
(POS) tag embeddings to the LSTM network and the attention is produced for units and numerical
values. We used our model to generate MWPS in three languages, English, Sinhala, and Tamil. Ir-
respective of the language, the model was capable of generating single and multi sentenced MWPs
with an average BLEU score of more than 20%.

Keywords: Multi-lingual Mathematical Word Problem generation; Natural Language Generation;

Neural Networks; Embeddings;

iii

TABLE OF CONTENTS

Declaration of the Candidate & Supervisor i

Ackowledgement ii

Abstract iii

Table of Contents iv

List of Figures vi

List of Tables vii

List of Abbreviations 1

1 Introduction 2

1.1 Background 2

1.2 Problem & Motivation 2

1.3 Objectives 4

1.4 Methodology 4

1.5 Contribution 5

1.6 Publications 5

1.7 Organization 6

2 Background 7

2.1 Overview 7

2.2 Auto-regressive Models 7

2.3 Reinforcement Learning 11

2.4 Generative Adversarial Networks 12

3 Literature Survey 14

3.1 Natural Language Generation 14

3.1.1 Knowledge Intensive Approaches 15

3.1.2 Knowledge-light Approaches 15

3.1.3 Statistical Machine Translation 18

3.1.4 Semi-automatic Approaches 19

3.2 Evaluation Metrics 19

3.2.1 Bi-lingual Evaluation Understudy 19

iv

3.2.2 Quality vs Diversity Trade-off of Deep Learning Models 20

3.3 Mathematical Word Problem Generation 21

3.4 Summary 27

4 Methodology 28

4.1 Introduction 28

4.2 TextGAN model 28

4.3 Vanilla MLE Model 29

4.4 Improvement with POS-tag based Post Processing Mechanism 30

4.5 End to End MLE Model with Attention and Different Embeddings 33

4.5.1 Different forms of Embeddings 33

4.5.2 Attention Mechanism 36

4.5.3 Additional Improvements 37

4.5.4 Architecture Diagram 37

5 Evaluation and Results 39

5.1 Introduction 39

5.2 Dataset 39

5.3 Human Evaluation 39

5.4 Machine-based Evaluation 41

5.5 Discussion 42

6 Conclusion and Future work 47

References 48

v

LIST OF FIGURES

Figure 2.1 Example of a Recurrent Neural Network

Source: Keras lstm tutorial by Andy Thomas [1] 8

Figure 2.2 LSTM cell diagram Image

Source: Keras lstm tutorial by Andy Thomas [1] 9

Figure 3.1 The quality versus diversity trade-off with temperature sweep

Source: Caccia et al.(2018) [2] 21

Figure 4.1 Architecture diagram of our first approach 32

Figure 4.2 Capture from Text Understanding from Scratch [3] 34

Figure 4.3 One hot encoding example 35

Figure 4.4 Heat map regarding the applied attention mechanism 37

Figure 4.5 Architecture diagram of our current approach 38

Figure 5.1 Negative Test-BLEU VS Self-BLEU graph for simple MWPs in English 43

Figure 5.2 Negative Test-BLEU VS Self-BLEU graph for complex MWPs in English 43

Figure 5.3 Negative Test-BLEU VS Self-BLEU graph for simple MWPs in Sinhala 44

Figure 5.4 Negative Test-BLEU VS Self-BLEU graph for simple MWPs in Tamil 44

vi

LIST OF TABLES

Table 5.1 Datasets created 40

Table 5.2 Human evaluation results in terms of TTG (Time To Generate) 10 fresh

MWPs VS TTE (Time To Edit) 10 MWPs that are generated by our model 41

Table 5.3 BLEU Scores Generated By Various Models Concerning the Creation of

simple English MWPs. WP: Word + POS embeddings, WPC: Word + POS

+ Character embeddings, A: Attention 41

Table 5.4 BLEU Scores Generated By Various Models Concerning the Creation of

Complex English MWPs 42

Table 5.5 BLEU Scores Generated By Various Models Concerning the Creation of

simple Sinhala MWPs 42

Table 5.6 BLEU Scores Generated By Various Models Concerning the Creation of

simple Tamil MWPs 42

vii

LIST OF ABBREVIATIONS

MWP Mathematical Word Problem

RNN Recurrent Neural Network

LSTM Long Short Memory Network

CL-LSTM Character Level Long Short Memory Network

WL-LSTM Word Level Long Short Memory Network

RL Reinforcement Learning

GAN Generative Adversarial Network

MLE Maximum Likelihood Estimation

OOV Out-Of-Vocabulary

1

Chapter 1

INTRODUCTION

1.1 Background

A Mathematical Word Problem (MWP) is ‘a mathematical exercise, where significant

background information on the problem is presented as text rather than in mathematical

notation’ [4]. Solving an MWP requires knowledge in mathematics as well as in com-

prehension. This makes it difficult to solve MWPs when compared with other types of

mathematics problems. Therefore, students require a lot of similar questions to practice.

But due to the inherent nature of MWPs, tutors find it difficult to produce a lot of sim-

ilar, yet creative MWPs. Therefore, there is a timely requirement of a platform that can

automatically generate MWPs.

Natural Language Generation (NLG) is a proliferating technique that facilitates ma-

chines to generate meaningful and human-readable natural language text. NLG is popular

among many domains such as spoken dialogue systems [5], story generation [6], lyric gen-

eration [7], question generation [8] and news generation [9]. NLG can be performed by

template-based approaches or by machine learning approaches in which a model is trained

using existing data. Currently, the latter approach is mushrooming with the advancements

available in Deep Learning (DL).

1.2 Problem &Motivation

MWP generation contrasts from general NLG, due to the fact that they contain many in-

herent features. These features pave the way for many constraints as listed below,

1. Constraints related to the quantities used.

• eg: Kamal had 10 balloons and he gave Fred 4 of the balloons, how many balloons

does he now have?

• In this question, the first numeric figure must be higher than the second numeric

figure.

2

2. Constraints related to the units applicable.

• eg: Amal made bread and he used 12l water and 15kg flour. How much less water

than flour did Amal use?

• Here, appropriate units should be used (Example: l for water and kg for flour).

3. Combination of ingredients/ materials should be chosen appropriately.

• eg: Mia built a house and she used 9 kg cement and 4 L water. How much more

cement than water did Mia use?

• Regarding this example cement and water are a couple of materials required for

building houses.

4. MWPs should not invalidate mathematical concepts.

• eg: The total of two integers is 52. Dividing the larger number by the smaller num-

ber yields 1 with a remainder of 8. What are the 2 integers?

• The numerical values chosen in the above question should be able to produce a

couple of simultaneous equations, which once solved will give two integers as the

answers.

Therefore, the generation should be handled carefully for its own inherent constraints.

Furthermore, MWPs possess language specific constraints. For an example, consider

the MWP, ‘In a car parking area there are 40 cars as blue and red cars. 15 of them are red.

How many blue cars are there?’. This problem can be demonstrated in Sinhala and Tamil

languages as follows,

In Sinhala language:

• වාහන නැවැƮɫෙȼ ස්ථානයක ǧɢ සහ රƱ කාə වɣǦ කාə 40 ú ඇත. ඒවාɐǦ 15 ú

රƱ ය. ǧɢ කාə üයú Ưෙȩද?

• Transliteration: vāhana nævætvīmē sthānayaka nil saha ratu kār valin kār 40 k æta.

ēvāyin 15 k ratu ya. nil kār kīyak tibēda?

In Tamil language:

3

• கா� பா�tகிu ப�திய�� ந�ல ம�²� சிவ~© கா�கள�� 40 கா�க�

உ�ளன. அவ�றி� 15 சிவ~©. எ{தைன ந�ல நிற கா�க� உ�ளன?

• Transliteration: Kār pārkkin pakutiyil nīlamarrum civappu kārkalịl 40 kārkal ụlḷạna.

Avarril 15 civappu. Ettanai nīla nira kārkal ụlḷạna?

Therefore, we can easily visualize that the language structures are different. For an

example, ‘40 cars’ in English is represented as ‘ කාə 40 ú ’ and ‘40 கா�க�’ in Sinhala

and Tamil, respectively. Therefore, there is a requirement of a language independentmodel

for automatic MWP generation.

Already availablemethodologies forMWPgeneration are semi or fully template-based

[10; 11; 12; 13; 14; 15] which force the generated problems to follow specific patterns,

compromising the novelty and creativity of the generated problems and making them

language-specific.

As mentioned earlier, deep learning has been used in many other domains such as spo-

ken dialogue systems [5], story generation [6], lyric generation [7], question generation [8]

and news generation [9]. Any mechanism to employ deep learning approaches to satisfy

the aforementioned MWP constraints has not been explored.

1.3 Objectives

The objectives of this research are to,

• Implement a language-independent deep learning based MWP generation mecha-

nism that is tailored to satisfy the MWP specific constraints, and

• Enhance the performance of the implemented system by introducing linguistic input

features.

1.4 Methodology

Following were carried out,

• Explore different Neural models for NLG and experiment MWP generation using

those existing models and evaluate the outputs that each model produce, and choose

4

the best model for MWP generation.

• Apply attention mechanism on numerical values and units to improve constraint

satisfaction of the generated problems.

• Incorporate input features such as Part of Speech (POS) embeddings, character em-

beddings, and pre-trained word embeddings for the DL model we used for MWP

generation to enhance the accuracy of its outputs.

• Deliver an end to end system incorporating the aforementioned features.

1.5 Contribution

Following contributions are reported,

• Delivered the first DL-based approach forMWPgeneration that satisfies constraints.

• Created MWP datasets in English, Sinhala and Tamil languages. We have created

two types of MWPs as simple MWPs and algebraic MWPs and all these datasets

are publicly released 1.

1.6 Publications

• Vijni Liyanage, Surangika Ranathunga, “AMulti-language Platform for Generating

Algebraic Mathematical Word Problems”, In 2019 ICIIS (14th IEEE International

Conference on Industrial & Information Systems) Published

• Vijni Liyanage, Surangika Ranathunga, “Multi-lingual Mathematical Word Prob-

lem Generation using Long Short Term Memory Networks with Enhanced Input

Features”, In 2020 LREC (12th edition of the Language Resources and Evaluation

Conference) Published

• Vijni Liyanage, Surangika Ranathunga, “Algebraic Mathematical Word Problem

Generation using Neural Language Generation Models”, In 2019 NeuralIPS work-

shop WiML (14th Women in Machine Learning workshop)
1https://github.com/vijini/MWP_generation.git

5

https://github.com/vijini/MWP_generation.git

- Was awarded with a travel grant

Accepted abstract

1.7 Organization

The rest of the thesis is arranged as follows. Background is presented under Chapter 2.

Chapter 3 presents the past work done in the area of NLG andMWP generation. Chapter 4

presents the methodology we used in our NLG model. Chapter 5 describes the evaluation

metrics and associated results. We conclude this document in Chapter 6 with a discussion

on the results obtained.

6

Chapter 2

BACKGROUND

2.1 Overview

Automatic MWP generation can be regarded as a sub-area under Natural Language Gen-

eration. NLG is a domain that uses many of the advancements in deep learning tech-

niques. First, we discuss different generic models for neural text generation such as Auto-

regressivemodels, Reinforcement Learningmodels, andGenerativeAdversarial Networks.

Then the limitations of these models are discussed. Finally, the optimization techniques

that can be applied to the models are discussed.

2.2 Auto-regressive Models

Recurrent Neural Networks (RNN) [16] are referred to as maximum likelihood estimation

(MLE)-based or auto-regressive models. A simple type of densely connected neural net-

work can be considered as a recurrent neural network at its most basic level. The RNNs are

distinguished from normal feedforward networks with the introduction of time. Normal

feed-forward neural networks consume inputs and transform them into an output with a

supervised learning mechanism. Basically, a feed-forward neural network maps patterns

between inputs and outputs. A trained set of weights is used to accurately map the rela-

tionship between inputs and outputs. A feed-forward neural network considers only the

inputs in the current example at a particular time. Therefore, it does not consider the order

in time or keep track of previous outputs.

A Recurrent Neural Network (RNN) on the other hand considers the outputs they have

produced previously in addition to the current input. They have a feedback loop to consider

their past behavior. In order to keep track of previous outputs, they have introduced a novel

concept called a ‘hidden’ state. The hidden states in RNNs facilitate modeling of long-term

dependencies.

The mathematical explanation of the hidden state is depicted in the equation 2.1. Here

7

ht represents the hidden state at current time t. It is a sigmoid function (ϕ) of the current

input (xt), which is multiplied by the applicable weight matrix W, added with the hidden

state of the previous time step (ht−1), which is multiplied by its hidden state to hidden state

matrix U.

ht = ϕ(Wxt +Uht−1) (2.1)

Since the feedback loop occurs at every time step within the sequence, each hidden

state refers to the previous time step, making each hidden state to contain not only the

previous state but all the previous states up to a memory level the model can keep track

of. To further understand this procedure, let’s focus on the illustration provided in Figure

2.1. Consider the text string “A girl walked into a shop and she said, ‘Can I have a pen

please?’. The shop owner said, ‘Certainly”. There are many options that can fill this

blank such as Ma‘am, Miss, and so on. By learning through the fed sequence patterns, an

RNN is capable of predicting the next word of the sequence.

Figure 2.1: Example of a Recurrent Neural Network
Source: Keras lstm tutorial by Andy Thomas [1]

Although RNN is considered a step forward from the normal feed-forward neural net-

work, it has some limitations. Ideally, we would require to have relationships of data with

larger distances of time in between. But when there are more time steps available within

the neural network, the back-propagation gradient may gather and shatter or diminish to

zero. Back-propagation [17] is a training mechanism used in neural networks, which lets

the neural network to learn by back-propagating the errors. Back-propagation adjusts the

weights of the model such that the difference of the actual output and the desired output

8

is minimized. A cost function is defined to identify how much the actual output deviates

from the desired output. Therefore, back-propagation aims to minimize this cost function

by adjusting the weights and biases of the network. At each hidden layer, a partial deriva-

tive is calculated as ∂E/∂W . Then these derivatives are used by the gradient descent

learning rule to adjust the weights so that the error E is minimized. With the chain rule,

the final partial derivative at each layer can be expressed as a product of previous partial

derivatives. When these are lower than one, the final value will be vanishing. This issue

is known as the vanishing gradient issue, which has been resolved once the Long Short

Term Memory networks (LSTM) [18] are introduced.

LSTM network was introduced as a gradient-based model to resolve the aforemen-

tioned issues. Originally the LSTM was introduced with only the input and output gates

and back-propagation was used as the training mechanism. Later Gers et.al [19] intro-

duced a novel concept called the ‘Forget gate’, which enables the LSTM to reset its state.

Forget gate decides the states that should be remembered or unremembered. This helps the

models to reduce the multiplicative effect of little gradients. The structure of the LSTM is

depicted in figure 2.2.

Figure 2.2: LSTM cell diagram Image
Source: Keras lstm tutorial by Andy Thomas [1]

A tanh function is used to compress the input to a value between -1 and +1 as shown

in equation 2.2.

9

g = tanh(bg + xtUg +ht−1V g) (2.2)

HereUg and V g are weights of the current input and the previous output respectively.

Input bias is represented as bg. Equation 2.3 represents the output of the input gate, which

is multiplied element-wise with the input equation. This allows the gate to determine

which inputs should be switched on and off. Therefore, the output at the input stage is

represented by g o i, where the operator o expresses element-wise multiplication.

i = σ(bi + xtU i +ht−1V i) (2.3)

Here σ denotes the sigmoid activation.

A new inner state is introduced as St . This state is delayed by a one-time step, St−1,

and added to the output at the input stage, which is g o i. There is a forget gate, which is

represented in equation 2.4. This is also element-wise multiplied with St−1, to determine

which previous states should be remembered or forgotten. Then the forget gate output is

added to the input and the output of this operation is expressed as St . Therefore, the current

state is defined in equation 2.5.

f = σ(b f + xtU f +ht−1V f) (2.4)

St = St−1 o f + g o i (2.5)

Finally, there is the output gate, which is expressed in equation 2.6. This is multiplied

by the compressed state St . Therefore, the final output of the cell is depicted in equation

2.7.

O = σ(bo + xtUo +ht−1V o) (2.6)

ht = tanh(St) o O (2.7)

10

2.3 Reinforcement Learning

Reinforcement Learning [20] is a widely used machine learning technique by which an

agent should identify what action needs to be taken next, given the facts of the environ-

ment. The behavior of the agent is decided in terms of the rewards and the punishments

(negative rewards) it receives. In simple terms, reinforcement learning is a goal oriented

algorithm in which the aim is to maximize the objective function. Here the agent is not

instructed of what action should be taken next. Instead, the agent should discover what

action it needs to take in order to get the highest reward. Therefore, reinforcement learn-

ing is different from supervised learning, because supervised learning [21] is a process of

learning from a training set using labeled data. On the other hand, we cannot state that

reinforcement learning is unsupervised learning, because unsupervised learning [22] is a

process to identify the structures hidden among unlabelled data.

Other than the agent and the environment, reinforcement learning has some elements

such as a policy, a reward, a value function, and a model of the environment. A policy

is used to define the behavior of a particular agent at a given time. Therefore, a policy

can be considered as a mapping between the recognized states of the environment and the

actions. A reward means the goal in a reinforcement learning environment. The agent has

an objective to maximize its rewards. A value function is used to determine the value of

being in a state. The value of a state means the cumulative reward the agent is capable

of gaining at that particular state. Finally, the model of the environment is used to gather

inferences on the behavior of the environment. That is, when the state and action are

provided, the model will be able to predict the next state and the reward.

Reinforcement learning can be considered as a continuation of state-action pairs that

occur sequentially. An example of an objective function can be demonstrated as given

in equation 2.8. As shown in the equation, the reward function r can be calculated for t

number of time steps. Here x(t) provides the state at time step t, while a(t) provides the

action at that particular time step.

∑t=∞
t=0 γ t r (x(t), a(t)) (2.8)

11

Reinforcement learning is a process where the agent goes through sequences of state-

action pairs. Depending on the rewards it gains and adapting to the predictions made by

policy function, the agent tries to predict the best path it can take. After some time, rein-

forcement learning repeats the actions that lead to rewards by skipping other alternatives.

There is a trade-off between the exploitation of known rewards and the exploration of new

actions to be taken.

Reinforcement learning uses aMarkovmodel [23], which is a mathematical model that

assumes the future states only depend on the current state, not the previous states. There-

fore, when there is a requirement for sequential data modeling, reinforcement learning

will have its own limitations. Furthermore, one of the major problems with reinforcement

learning is that it requires a large amount of data and days of computations, which will

make the modeling expensive.

2.4 Generative Adversarial Networks

Generative Adversarial Networks (GAN) [24] is a novel paradigm introduced under deep

learning. A GAN is comprised of two competing neural networks, the Generator and the

Discriminator. The Generator is responsible for producing the outputs, while the Discrim-

inator is responsible for evaluating the generated data for authenticity. That is, distinguish-

ing the generated output data from the original data.

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(Z)[log(1−D(G(Z)))] (2.9)

As presented in the equation 2.9, V (D,G) represents the value function of the GAN.

HereG andD stand for the Generator and the Discriminator, respectively. Pdata(x) stands

for distribution of original data, whileP(z) stands for the distribution of the generated data.

D(x) and G(z) represent Discriminator and Generator networks, respectively. There is a

mini-max game in GANs, where the Discriminator is trying to maximize its reward, while

the Generator is trying to minimize the Discriminator’s reward.

The training stage of a GAN is comprised of two phases. Within the first phase, the

Discriminator is trained on real data, and it checks whether it can identify them as real

and trained on generated data and checks whether it can identify them as fake. Within

12

this phase, the Generator is not doing any task. The second phase of training is where

the Generator is trained, and let it try to fool the discriminator by generating data that are

similar to real data. This process is continued until the generator is capable of generating

data that are as similar to the real data.

The generator produces the same output repeatedly, once it figures out that output

satisfies the discriminator. This issue is termed as ‘Mode Collapse’ [25]. Since the two

networks are trying to optimize two opposing objectives, it is difficult to keep the two

networks in balance, thereby making the training process slow. Also, if the generator is

performing so well, then the training of the generator can fail as a result of vanishing

gradients.

13

Chapter 3

LITERATURE SURVEY

Under this section, we provide a thorough analysis of previous research that has con-

tributed to the domains of Natural Language Generation (NLG) and Mathematical Word

Problem (MWP) generation.

3.1 Natural Language Generation

Natural Language Generation (NLG) is a process by which sequences of natural utterances

are automatically created from provided structured data. NLG is comprised of six basic

tasks, which are listed as below [26],

• Content determination: This step identifies which content is required to be included

in the generated text.

• Discourse planning: Under this stage, a structure with the format and order of the

content is defined.

• Sentence aggregation: This step determines how the texts should be combined to

form the sentences.

• Lexicalization: This stage is used to identify the specific textual representations

such as words or phrases that need to be selected to indicate the concepts in the

considered domain.

• Referring expression generation: Domain attributes are recognized by selecting

suitable words and phrases under this stage.

• Linguistic realization: As the final step, syntactic, orthographical, and morpholog-

ical precisions are ensured by the application of grammar rules.

Primarily, NLG can be categorized under twomain criteria as knowledge-intensive ap-

proaches and knowledge-light systems [27; 28]. Knowledge-intensive approaches require

14

a large amount of human effort, while knowledge-light approaches use statistical mod-

els or deep learning techniques for NLG. Moreover, NLG is considered as a Statistical

Machine Translation task as well.

3.1.1 Knowledge Intensive Approaches

Knowledge-intensive methods require domain experts to extract explicit rules and to col-

lect the correct knowledge [29]. Therefore, these approaches highly depend on human

knowledge and effort. Knowledge-intensive approaches can be further classified as template-

based and rule-based approaches. Some of the examples include SunTime [30], FoG [31]

and PLANDOC [32] systems. Due to the restrictive nature of the knowledge-intensive

systems, knowledge-light approaches have become popular over time.

3.1.2 Knowledge-light Approaches

Fundamentally, knowledge-light approaches are either statistical models or deep learning-

based models. Statistical NLG systems such as Nitrogen [33; 34] and Oxygen [35], statis-

tical n-gram based NLG systems [36], neural network based NLG systems [37], and case

based NLG systems [38] can be considered as some categories of the knowledge-light

approaches.

3.1.2.1 Statistical Approaches

Statistical NLG incorporates the concept of Markov chains [39] for the generation task.

Here only the current word is considered to determine the next word by a probability

mechanism. Therefore, by considering only the current word, this modeling technique

ignores the whole preceding context. An alternative approach is proposed with the use

of neural networks, which allows the model to consider the whole preceding sequence

of words in a sentence when identifying the next word. Since the deep learning-based

approach allows us to model non-linear relationships, it is currently considered as the most

promising approach in the domain of NLG.

15

3.1.2.2 Deep Learning Approaches

In the recent past, deep learning-based techniques for Natural Language Generation (NLG)

have become popular amongmany research domains including spoken dialogue systems [5],

story generation [6], lyric generation [7], question generation [8] and news generation [9].

NLG models became popular because they facilitate the generation of human-readable

natural language text, from structured data provided, with less human involvement.

Deep learning based NLG can be performed using three main approaches [40], [41];

1. Maximum likelihood estimation (MLE)-based or Auto-regressive models [42], 2. Re-

inforcement learning (RL)-based models [43] and 3. Generative Adversarial Networks

(GANs) [24].

Recurrent Neural Networks

The research done by Xu and Rudnicky [44] can be considered as the first attempt to

replace statistical language modeling using artificial neural networks. They have experi-

mented with language modeling with a single input word without hidden units, which has

hindered the model identifying unigram and bigram statistics. The turning point in the

history of neural network-based NLG has happened with the introduction of the research

done by Bengio et al. [45]. They identified a solution to the curse of dimensionality with

artificial neural networks, in which a neural network is trained with a sequence of words

as input and to generate the next word of the sequence as output. Their model has been

capable of conquering the state of the art n-gram models while allowing the model to con-

sider longer contexts. All the other advanced neural models have considered the research

of Bengio et al. [45] as the baseline for their models.

Merity et al. [46] have experimented with two categories of LSTMs, Character Level

LSTM (CL-LSTM) that produces succeeding character and Word Level LSTM (WL-

LSTM) that produces succeeding word. Here they have identified several issues with

WL-LSTM such as increased computational expenditure as a result of huge vocabulary

sizes and the requirement to substitute rare words with Out-Of-Vocabulary (OOV) tokens.

On the other hand, since the number of tokens in CL-LSTMs increases, they are slow

to process than WL-LSTMs. But Merity et al. [46] show that a Softmax function that

is adjustable can improve both CL-LSTM and WL-LSTM, empowering them to achieve

16

state-of-the-art results and have mentioned that CL-LSTMs can produce better results than

WL-LSTMs.

DropConnect [47] is an optimization techniquewhich can be applied on the weight ma-

trices of recurrent layers to reduce the overfitting of a neural networkmodel such as LSTM.

Many of the previous works have used a regularization mechanism known as Dropout,

where a sub class of activations are made zero. But, DropConnect only makes a randomly

chosen sub class of weights to zero. Therefore, DropConnect provides advantages over

Dropout, because it can work without altering the formulation of RNN.Moreover, Average

Stochastic Gradient Descent (ASGD) [48] is a mechanism which can be used to enhance

the training process of the NLG model.

Reinforcement Learning

Reinforcement Learning (RL) can be used for NLG when NLG is considered as a sta-

tistical planning problem [49]. With respect to text generation, writing words is considered

as the actions, while already written words are considered as the states. Actions will be re-

peated until the agent reaches the end of the sentence. After the sentence is completed, the

agent receives a reward. Due to the large size of the vocabulary, choosing the best word

to write is a difficult task. Policy gradient [50] is a technique that is used in reinforcement

learning to handle huge action spaces like text generation. Here, a policy identifies the

next action to perform (next word to write) for every state. A major limitation in this sort

of high dimensional spaces is the difficulty of identifying next word to write, when there

is no reward for the model.

GANs

When GANs are used for NLG, the output of the generator has to be fed to the discrim-

inator, to minimize 1-D(G(z)), which is the loss function. Therefore, in order to reach the

generator, the gradients have to undergo the picking generation, which cannot be differen-

tiated. This paves way for an issue since back-propagation depends on the differentiability

of all the layers in the network.

As a solution to the aforementioned issue, two categories of GANs for NLG are intro-

duced [51],

• GANs that utilize algorithms in reinforcement learning (RL) for natural language

17

generation such as SeqGAN [52], MaliGAN [53], RankGAN [54], MaskGAN [55]

and LeakGAN [56]. GAN models under this category have complex designs which

make their training slow.

• GANs that do not use reinforcement learning such as TextGAN[57] andGSGAN[58],

which use the soft-argmax [59] and Gumbel-softmax [60] tricks, respectively, to

deal with discrete data. Since they tend to keep the original GAN loss function,

they tend to face the gradient-vanishing issue.

RLwith a policy gradient concept is usedwithGANs to overcome the above-mentioned

issue. In this case, the discriminator is considered as a reward function for the agent. On

the other hand, a policy gradient is used to decide the action that needs to be picked at a

particular time. The policy gradient creates a distribution of probabilities over all the ac-

tions, which allows the model to pick the most suitable next word. Discriminator network

considers a sentence as the input and produces a value that shows the realistic nature of

the generated sentence. This output value can be used as the corresponding reward for the

input sentence and it will be fed back to the generator to update its policy.

Since the policy gradient is determined by considering just a few samples, there can

be a high gradient variance from one episode to another. Therefore, this paves way for

an unstable training process, and the convergence can be very slow. On the other hand,

the policy gradient tends to converge to a local maximum. Moreover possessing large

state-action space can make it hard to explore the whole area.

An alternative was proposed usingGumbel softmax distribution [60]. Gumbel softmax

distribution is used as a continuous approximation to a multi-nominal distribution param-

eterized in terms of the softmax function. Here a word is sampled from a multi-nominal

probability distribution that is generated by the softmax function.

3.1.3 Statistical Machine Translation

NLG is considered similar to statistical machine translation (SMT) since both the processes

follow the same process, which is to generate textual representations from an existing tex-

tual representation. Some research [61; 62] identified NLG as another machine translation

task. Such models used SMT for generation tasks.

18

Bels et. al (2009) [62] has employed a phrase-based statistical machine translation

model (PB-SMT) [63] for NLG. Later the Mountain system [61] used the MOSES SMT

toolkit [64], which is an advanced implementation of PBSMT to generate text. Despite

SMT’s contribution to NLG, these systems were not as efficient as statistical NLG plat-

forms such as Oxygen [35] and Nitrogen [33; 34].

3.1.4 Semi-automatic Approaches

Several approaches can be considered as semi-automatic because they contain features

of both knowledge-intensive and knowledge light systems. One example of such ap-

proaches is an NLG system, which uses a Probabilistic synchronous context-free grammar

(PSCFG) [65].

3.2 Evaluation Metrics

3.2.1 Bi-lingual Evaluation Understudy

Bi-lingual Evaluation Understudy (BLEU) [66] is a speedy, automatic evaluation metric

which does not depend on the language. It counts the number of matches comparing the

altered n-grams of the produced text (candidate) with that of the reference dataset, which

means it is a metric that is scored at the word level. BLEU scores are calculated as BLEU-

1, BLEU-2, and so on, such that an average BLEU score can be calculated finally.

Consider the following example,

• Reference sentence: Bill has 3 balloons.

• Generated sentence: Bill Bill Bill Bill.

Here, to compare the above two sentences, one can look at the generated sentence and

assign each word 1, if that word appears in the reference sentence, or else 0. Then, you

can get the total and divide it by the number of words in the generated sentence, which is

termed as “unigram precision”. But, in this particular example, since the word “Bill” has

occurred 4 times, we will get a score of 1. But, it provides a misleading score. Therefore,

to prevent this issue, the BLEU metric modifies the score a bit by capping the number of

times to count each word based on the highest number of times it appears in any reference

19

sentence. Accordingly, the BLEU score will be 0.25. Specifically, we call this BLEU-1

score, since we are considering one word at a time. But, if the words are jumbled, still we

can get a high BLEU score, which is not good. This issue can be mitigated by counting

not just individual words, but words that occur next to each other. These are called n-

grams, where n is the number of words per group. Depending on the number of words we

consider, the BLEU score changes appropriately. For instance, if we use BLEU-2 for the

above example, the score will be calculated considering the bi-grams. Here the BLEU-

2 score will be zero since there is no single pair of words in the generated sentence that

matches with a pair of words in the reference sentence.

3.2.2 Quality vs Diversity Trade-off of Deep Learning Models

Cífka et al. [67], has introduced a novel method in which the trade-off between the two di-

mensions quality and diversity of deep learning models is mapped. The dimension quality

takes the accuracy of a particular sentence that is been generated by the model into ac-

count. Diversity is the dimension that compares the generated sentences with each other

for their similarities. But as depicted in Figure 3.1 left side graph, using two different

matrices for the evaluation makes it difficult to compare the results and arrive at a con-

clusion. Here the performance of the two models is plotted and the two models perform

better in the two dimensions. Therefore, it is hard to arrive at a conclusion. Therefore,

one of the latest research [2] identified the importance of the softmax temperature [68]

for the trade-off between the two dimensions. When the temperature is high, a particular

model is capable to generate an output of high diversity but low quality. This is because

high temperature increases entropy increasing the diversity and decreases the probability

decreasing the quality. In this research [2] as depicted in Figure 3.1 (middle), the quality

vs diversity for two models have been plotted for a range of temperatures. This procedure

is termed as temperature sweep. As per Figure 3.1 (right) we can see that the blue model

dominates the red. Therefore, this research shows that for any desired diversity level, at a

particular temperature the blue model outperforms the red model in terms of quality (and

vice versa). They [2] have used temperature sweep to evaluate MLE models and GAN

models and have identified that a well temperature-tuned MLE model outperforms GANs.

20

Figure 3.1: The quality versus diversity trade-off with temperature sweep
Source: Caccia et al.(2018) [2]

3.3 Mathematical Word Problem Generation

None of the aforementioned Natural Language Generation (NLG) techniques has experi-

mented with MWPs. Since MWPs should be properly examined for the constraints related

toMathematical concepts, numerical values, units, and variable handling, constraint-based

language generation is required. Existing approaches [13; 69; 14] for MWP generation are

deprived of full automation since they are knowledge-heavy techniques. Therefore, the

MWPs generated by such models follow similar patterns, lacking creativity and novelty.

A template-based database approach has been considered as the most common ap-

proach for automatic generation of MWPs [15; 10; 11]. Although this approach has been

capable of generating MWPs, it has limitations in terms of customizability because the

generated problems follow a template. Some of the template-based approaches are elabo-

rated in the following paragraphs.

Deane and Sheehan [15] have introduced an NLG approach that uses frame semantics

to generateMWPs automatically. Their templates are based on a distance-rate-timemodel,

in which blanks should be filled by choosing items from lists. Here the connection of the

mathematical content and the verbal content is demonstrated neither at the level of the

individual words nor at the predetermined verbal template level. Instead, the relationship

is represented within an inclusive concept like motion, which contains several items such

as vehicle, distance, movement, or time. They have introduced the concept of Frame

semantics as the method of representing verbal content by providing the basis for NLG

and also as the generic conceptual structure for MWPs. A frame is defined as a ‘data

structure to represent a standardized situation’ [70]. Filmore [71] introduced the concept

of Frame semantics in which they identified the relationship between a noun and a verb

21

follows a set of fundamental patterns. Deane and Sheehan [15] visualized the relevance

of the frame semantics for the vocabulary patterns in MWPs. That is they identified that

every word problem belongs to a specific semantic frame.

For example, consider the semantic case motion. Here the following vocabulary can

be identified at the most abstract level,

• The theme: the entity that is capable of moving,

• The source: the starting point of the theme’s movement,

• The goal: Destination of the theme,

• The route: Mapping from the source to the goal,

• The distance: the length of the route

Then the structure should be analyzed considering the motion-time relationship as given

below,

• The start time: time the source is left by the theme,

• The end time: time the goal is reached by the theme,

• The duration: time to reach the goal,

• The motion event: motion which occurs between start time and end time,

• The rate or speed: calculated by dividing distance from duration.

Thereafter the actions by which the agent’s movement occurs should be considered,

• The agent: Motion occurs as a result of this,

• The instrument: The item that affects motion

Although this approach proves to be a step forward for the domain of NLG and auto-

matic MWP generation, this research highly depends on the templates and frame seman-

tics, thus making the generated problems to follow the same pattern.

Polozov et al. [10] have followed the same architecture and have used Answer Set

Programming (ASP) [72] for MWP generating logic to assure a set of educational and

22

chronicle requirements. Polozov et al. are capable of generating personalized MWPs

while taking into account tutor requirements (in terms of difficulty level), as well as student

requirements (in terms of the character and story themes). In their approach first, they

consider the set of requirements R. This can be further categorized as tutor requirements

(RT) and student requirements (RS). Tutor requirements basically consider the pedagogical

constraints within the MWPs. For example, a tutor would consider which mathematical

operations should the MWP possess. On the other hand, the requirements of students can

have varieties as follows,

• Setting requirements: This defines the background on which the MWP should be

based on. Example: Fantasy or Fiction

• Character requirements: This defines the characters that should be included in the

MWP.

• Relationship requirements: This defines the relationship between different charac-

ters.

There are two phases defined in the system presented by Polozov et al. [10], the phase

that generates logic and the phase that produces language. A logical depiction is con-

structed under the logical phase while considering the defined requirements R. This will

generate a logical graph including actors, actions, and entities. Depending on the tutor re-

quirements (RT), an equation E is created. Then every variable in the equation is defined

based on the student requirements (RS). This way relevant actors and actions for the plot

are selected.

Under the NLG phase, the logical graph is converted to a textual representation us-

ing pre-defined templates are used and this makes the generated narratives to look alike.

Therefore, they apply some post-processing techniques to make these MWPs look natural.

First, there is a step to arrange sentences by which the sentences generated by the templates

are arranged into a linear story referring to the casual and the temporal mappings within

sentences. Then in the next step, a determination of references is done bywhich each entity

that is referenced within the narrative is realized into a textual representation. Some of the

examples for the entities are articles, pronouns, etc. Here they use a reference resolution

23

algorithm to make sure that every reference gets a non-repetitive representation.

Although this approach facilitates the generation of personalized MWPs, still it de-

pends upon the templates. Therefore, we cannot conclude that this approach as a contri-

bution to fully automatic MWP generation.

A template oriented mechanism which is semi-automated was proposed by Singh et

al. [11] for algebra proof problems. This paradigm is capable of generating similar prob-

lems to a proof problem by an equation. First they syntactically generalize the problem a

query. Their methodology includes three stages,

• Generating Query: Under this a query is generated for each MWP.

• Running Query: Under this a list of similar MWPs are produced. This helps in

eliminating invalid problems, trivial problems, and equivalent problems out of the

problems that are generated by the query generation phase. They use optimization

algorithms such as polynomial identity testing [73] for this task.

• Adjusting Query: The query will be altered, if the produced MWP is unacceptable.

The first two steps are automated, while the last one is donemanually. Wewill consider

the following time series example given in equation 3.1.

lim
n→∞

n

∑
i=0

2i2 + i + 1
5i =

5
2

(3.1)

Then a query problem is generated for this problem as given in equation 3.2.

lim
n→∞

n

∑
i=0

Coi2 + C1i + C2

5i =
C4

C5
(3.2)

Then the required query constraints are defined as below,

• C5 ̸= 0 ∧ C4 ̸= 0 ∧ gcd(C4,C5) = 1

• gcd(C0,C1,C2) = 1

• C0 ̸= 0

24

Then random numbers can be assigned for these constants and generate required sim-

ilar examples.

This approach makes sure new questions are formed for a given question. But we

can see that the generated problems look alike. On the other hand, the system should

define the constraints for every query generalization. Although they state that there is a

narrative generation part, the generated problems are simply the proof problems but cannot

be considered as MWPs.

Koncel et al. [12] proposed a theme rewriting approach by which the same problem

is rewritten using a more interesting theme such as Star Wars. Still, this approach is inca-

pable of generating fresh MWPs. Therefore, all these stated theme-based techniques are

constricted to produce MWPs depending on the templates, making the produced MWPs

to possess pre-defined patterns compromising the creativity.

Comparatively, a limited number of research has tried to generate fresh MWPs. We

consider such contributions in the following paragraphs.

William [74] has used Web Ontology language (OWL) to represent MWPs. If a par-

ticular ontology has OWL Data Property Assertion statements (axioms) where integers

are used to define literal values, this research is capable of creating MWPs from that. For

example consider the following example for a travel ontology,

DataPropertyAssertion(

DataProperty (hasPopulation)

NamedIndividual (benbecula)

Literal (DataTypeIRI = integer 1219)

The above ontology represents that an individual named benbecula has the data prop-

erty hasPopulation with an integer value of 1219. Then using SWAT tools [75], the appro-

priate English sentences are assigned. Then the extracted OWL statements are refactored

and aggregated to compose the MWP. This research has pointed out five basic elements

that facilitate automatic tuning,

• Ability to read the output.

• Incorporation of distracting numbers.

25

• Inclusion of extra details on the textual representation.

• The sequence of numbers.

• Conceptual complexity of MWPs.

Since the level of complication is only varied by altering the generated MWPs or by in-

corporating the aforementioned distractions to the MWP, this approach is capable of only

producing a limited number of MWPs.

Wand and Su [76] introduced a novel concept in which expression trees are used to

generate narratives to compose the MWPs. There are two phases in this research one

phase for the equation generator and another phase for the narrative generator. Under the

equation generator phase, there are four steps included as stated below with the example,

1. Synthesize a seed equation

X(du) = Y(textitdu)

2. Assign du the dimensional unit meters

X(meters) = Y(meters)

3. Unroll X via X1 (meters/ hour) * X2 (hour) = X(meters)

X1 (meters/ hour) * X2 (hour) = Y(meters)

4. Unroll Y via Y1 (meters/ lap) * Y2 (lap) = Y(meters)

X1 (meters/ hour) * X2 (hour) = Y1 (meters/ lap) * Y2 (lap)

Then under the narrative generation phase, there are also four steps as mentioned below,

1. Apply the binary expression tree: The synthesized equation is transformed into a

Binary Expression Tree (BET).

2. Supplement the keywords: Each Atomic Expression Tree (AET) of the BET is tra-

versed. Then a sub-story is assigned to each AET. Then those sub-stories are con-

catenated.

3. Perform auxiliary tasks: This is the stage where known values are assigned for three

slots, keeping one slot blank. When assigning values, a suitable range of values is

26

chosen for each variable. Any other constraint in terms of values is also handled at

this step.

4. Combine all the sub-stories: Since all the keywords and values are allocated, now

the relevant sub-stories can be assigned.

Here the sub-stories are chosen from a database of templates. This system is capable

of producing original, varied and and configurable MWPs and can be considered as an

improvement when compared with the other existing systems. But, this technique strongly

based on units to produce the BETs, while the templates are utilized to obtain sub-stories

from produced Atomic Expression Trees.

3.4 Summary

We haven’t found a prevailing system which utilizes state-of-the-art NLG techniques (dis-

cussed in section 3.1) to produce MWPs. Even Wang and Su [13] are using previously

designed skeletons that are required to be filled up with different numerical values and

units that are extracted from a synthesized equation. This makes the generated problems

to follow similar patterns or structures. Moreover, the generation of MWPs depends on

the languages that the templates are written with.

27

Chapter 4

METHODOLOGY

4.1 Introduction

Recent research [2; 77] have proved a temperature-tuned MLE (Maximum Likelihood

Estimation) model can perform better than considered GANmodels such as TextGAN [57]

and LeakGAN [56]. Moreover, reinforcement learning techniques fail in identifying the

next action to choose (the next word to write) when the model cannot receive a reward.

Despite above observations, we experimented with the generation of MWPs in three

languages of English, Sinhala, and Tamil with both GAN and MLE models. We utilized

TextGAN [57] to produce theMWPs, that includesGumbel-softmax and soft-argmax trick,

instead of RL based GANS which usually yield high-variance gradient estimates, known

to be challenging for optimization [78] and possesses lengthy training periods [51].

Within the auto-regressive technique, our approach utilized both word-level (WL) and

character-level (CL) LSTMs to produce MWPs. Being provided under Chapter 5, CL-

LSTM could generate better results, when compared with WL-LSTM. Moreover, the CL-

LSTM required a relatively small time for training. Thus, we selected CL-LSTM from all

the considered models for additional enhancements.

4.2 TextGAN model

Initially, we utilized the TextGAN [57] for the generation of MWPs. It took days for the

training but still could not produce meaningful MWPs. This might be due to the fact that

our datasets were comparatively small and normally GANs require large datasets to learn

properly. Therefore, we understood that proceeding with GANs is not suitable for our

research due to the limitations in terms of datasets.

28

4.3 Vanilla MLE Model

The character level LSTMwas utilized to train all the English, Sinhala and Tamil datasets.

Per each dataset, the input-output pairs are encoded as integers. Afterwards, recognized

input-output mappings are reshaped, normalized, and are one hot encoded. One hot encod-

ing [79] is a process by which categorical variables are converted into a form that could

be provided to ML algorithms. The considered character level LSTM model works as

a sequential model. It incorporates two regularization techniques, the Dropout technique,

which arbitrarily chooses activations and sets them to zero and the DropConnect technique,

which arbitrarily chooses weights in hidden layers and sets them to zero. According to the

weight improvements, the training of the model will be done within 15-20 epochs.

The generation stage initiates by arbitrarily choosing a seed text from the dataset. The

seed text is of a length of 20 - 30 characters (Example: ‘Ann made cookies and she’),

which is equivalent to the previously chosen sequence length of the patterns. The model

generates the rest of the characters that are required to form the problem starting from the

endmost character in the seed sentence. The model can produce multiple word problems

at an instance, based on the span of characters specified in the code.

Within NLG stage, a naive procedure makes use of greedy sampling, which is a tech-

nique that every time selects the most probable character from the softmax output of the

model. However, it can destroy the creativity and freshness of the generated strings, since

a greedy approach tends to produce repetitive and predictable text sequences. Thus, there

is a vital requirement to incorporate randomness in the sampling procedure of the prob-

ability distribution for the succeeding character. This approach is known as Stochastic

Sampling [80]. But, excessive randomness or entropy can generate characters which do

not build meaningful sentences. Hence, to adjust the randomness of the text generation

process, our methodology utilizes a concept known as the softmax temperature [68], which

is capable of characterizing the entropy of the probability distribution utilized for sampling.

When a particular temperature value is provided, a novel probability distribution is estab-

lished from the initial distribution by re-weighting it. Thus, by incorporating temperature

parameter concept, our model can generate creative yet realistic text sequences.

Generation of unique and fresh problems is facilitated by randomly selecting the seed

29

text and applying temperature tuning. Once a higher value is chosen as the temperature

tuning parameter, a unique MWP will be generated. Moreover, the randomness of the

outputs is facilitated by the Dropout regularization applied in the LSTM which reduces

the over-fitting issue. With all these techniques, our model accomplishes the generation

of innovative and fresh MWPs, when compared with the available template-oriented tech-

niques.

As stated in section 1.2, several MWPs possess numerical constraints. For instance,

examine the MWP ‘Bill has 19 pens and Charlie has 16 less pens than Bill, how many

pens does Charlie have?’. In this question, the first numerical figure should be higher than

the second numerical figure. Several MWPs like the one shown below have breached the

constraints related to numerical values.

• Ann made buns and she used 3 kg of sugar and 10 kg of flour, howmuch more sugar

than flour did Ann use

In this aforementioned MWP, an issue regarding quantities exists. Although the MWP

mentions ‘more sugar than flour’, the amount of sugar is less than the amount of flour.

4.4 Improvement with POS-tag based Post Processing Mechanism

Recent research [81], [82], have shown that the accuracy of NLG performed by neural

networks can be further enhanced by input features like POS tags.

Hence, to recognize and satisfy constraints found in MWPs, our approach uses a lexi-

cal categorization based POS filtering technique to correct the mistakes found in English

MWPs. The post-processing POS mechanism shown in Algorithm 1 is used to identify

the numeric values, units, and adjectives such as ‘more’or ‘less’, which are accompanied

by the preposition ‘than’. Then our algorithm compares the numeric figures with one an-

other, in terms of the adjective and preposition composition. The contradictions identified

in the generated MWPs are fixed using the algorithm. Consider the example, ‘Ann made

cookies and she used 3 kg of sugar and 10 L of flour, how much more sugar than flour

did Ann use? ’. Here, the units used are unsuitable (L represents the amount of flour). To

correct those problems, our algorithm considers successive noun pairs that appear behind

30

the number tags and identifies whether they are equivalent with one another. POS tag

filtering was not used to fix constraints identified in Sinhala or Tamil MWPs since they

require language-specific rules.

Data: Generated question
Result: Constrained satisfied question
initialization;
tokens = word_tokenize(Data)
nltk.pos_tag(tokens)
if POS_tag_sequence.contains(2CDANDJJR) then

if JJR = ‘more’ then
while f irst_CD_value second_CD_value do

f irst_CD_value++
end
if units_dictionary.contains(NN_Bigrams) then

Output(Data);
else

modify(NN_Bigrams);
Output(Data);

end
end

end
Algorithm 1: The Algorithm to solve constraints identified in problems

Once the Algorithm 1 is applied on the generated MWPS, constraints related to units

and numerical quantities were fully satisfied in the generated questions. Consider the

following instance for a MWP prior to applying constraint satisfaction:

• Ann made cookies and she used 3 kg of sugar and 10 L of flour, how much more

sugar than flour did Ann use?

The corrected MWP once constraint satisfaction is applied,

• Ann made cookies and she used 11 kg of sugar and 10 kg of flour, how much more

sugar than flour did Ann use?

With this system, we had to identify all the specific constraints and manually define

the rules required to resolve the identified constraints. Every time a new constraint was

found, we had to change the rules and check for the results. The constraints found in the

datasets are language dependent (refer Section 1.2 for the identified constraints) as well.

Consider the following example for POS tagged sentences in different languages,

31

• If| IN Saran| NNP buys| VBD 16kg| CD of| IN rice| NN and| CC gives| VBZ 6kg| CD

of| IN it| PRP to| TO his| PRP brother| NN, how| WRBmuch| JJ rice| NN does| VBZ

he| PRP have| VB ?

• සරǦ| NNP සහɢ| NNC 16kg| NUM ú| RP ȽලǏ| VNF ෙගන| VNF ,| PUNC එɐǦ|

PRP 6kg| NUMú| RP මɢɤට| NNC ǐǦෙǦ| VPනȼ| POST ,| PUNC ඔʑ| PRP සƱව|

VNF ඉƯɜ| JJ සහɢ| NNC ෙකʣපමණද| VP ?| PUNC

(Saran sahal 16kg k miladī gena, eyin 6kg k mallītạ dunnē nam, ohu satuva itiri

sahal kopamanạda?)

• சர}| NN 16kg| QC அ¾சி| NN ேவz�| VM அதி�| PRP 6kg| QC த�ப�t�|

PRP ெகா�{தா�| VM ,| SYM அவன�ட�| PRP ம�த«�ள| JJ அ¾சி| NN

எ�வளº| RB ?| SYM

(Caran 16kg arici vēnṭị atil 6kg tampikku kotụttāl, avanitạm mītamulḷạ arici ev-

valạvu?)

The POS tag sequences representing the material type, its quantity, and unit combi-

nation are VBD+CD+IN+NN for English MWP, NNC+NUM+RP for Sinhala MWP, and

QC+NN for Tamil MWP. Therefore, it can be seen that even the same MWP translated in

different languages, does have different structures, thereby making the POS tag mappings

language-specific. Therefore, it is required to separately define post-processing POS tag

algorithms in a language-specific manner. This approach is represented in Figure 4.1.

Figure 4.1: Architecture diagram of our first approach

32

4.5 End to End MLE Model with Attention and Different Embeddings

To eliminate the aforementioned limitations in our previous rule-based POS tag mecha-

nism, we introduced a fully automated neural model for MWP generation in this research.

In our novel approach, we have incorporated different forms of embeddings such as char-

acter, word, and POS as input features to the LSTM model that is responsible for generat-

ing MWPs. Moreover, the attention mechanism is applied to the LSTM model to resolve

constraints related to units and numerical values.

4.5.1 Different forms of Embeddings

Recently embeddings play a vital role in the domain of deep learning. Since machine

learning models cannot understand the text, they have to be converted to numbers. These

numerical representations are known as “Embeddings”. In our research, a combination

of POS tags embeddings, word embeddings, and character embeddings was used as the

summation of input features (I) as shown in the equation 4.1:

I =
M

∑
j=1

∥WjPk(
N

∑
i=1

∥Ci) (4.1)

where ∥ is the vector concatenation. Wj and Pk are the word embedding and POS tag

embedding of each word respectively. Ci is the character embedding of each character in

a particular word. i, j, and k represent the sum of characters in every word, the number of

words in every sentence, and the number of POS tag embeddings defined for the dataset

respectively. All these embeddings are thoroughly explained in the subsections 4.5.1.1,

4.5.1.2 and 4.5.1.3.

4.5.1.1 Character Embeddings

Since the introduction of character CNN by Xiang and Yann [3], the application of char-

acter embeddings has proved to be a prominent task in NLP. Figure4.2 demonstrates the

general architecture of how CNN is used to create character embeddings.

As the first step in assigning character embeddings to a dataset, a list of characters

should be defined. For instance, if we consider a dataset in English, there will be 52

33

Figure 4.2: Capture from Text Understanding from Scratch [3]

English characters (including capital and simple letters), 10 numbers (0-9), 20 special

characters, and one unknown character (UNK), forming a total of 83 characters. Then

these characters will be transferred as one-hot encoding and a sequence of vectors will be

obtained. Then a one-dimensional convolutional layer is applied to these sequences of en-

coded characters. The convolutional layer can be considered as a process in which several

scanners are sliding through a word, character by character. These scanners are capable

of focusing on multiple characters at a time. The scanners slide through the sequences of

characters and extract information from focused characters. Likewise, information from

several scanners is combined to form the overall representation of a word. Then a max-

pooling layer is used to obtain a fixed-dimensional representation of each word. Finally,

there are fully connected layers to regularize the model with techniques such as DropOut

and DropConnect.

4.5.1.2 Word Embeddings

Word embeddings are assigning real-valued vector representations for words in a dataset.

Words that are utilized in similar contexts receive similar representations because the dis-

tributional representations are learned based on the usage of words. There are twomethods

in creating embeddings, either we can freshly define embeddings to a dataset that is avail-

able for a specific task or we can use pre-trained word embeddings. The most popular

pre-trained embeddings are Word2vec [83] and GloVe [84].

We used one hot encoding as well as word embeddings in our research. Although uti-

lizing pre-trained embeddings is a time saving and easy approach, their application to a

34

specific task may not yield high results. In our research also we initially used Word2vec

pre-trained embedding for our English datasets and since the results were low, we decided

to freshly define embeddings for our datasets. For this task, we utilized the Keras em-

bedding layer to our LSTM network which is responsible for MWP generation. Before

feeding the dataset to the embedding layer, data had to be encoded and for this, we used

the Tokenizer API in Keras to create one-hot encoding. Here, each embedding is formed

by a set of zeros, in which 1 is assigned to the corresponding dimension. A simple one-hot

word embedding for a small vocabulary of five words is shown in Figure 4.3.

Figure 4.3: One hot encoding example

These one hot encoded-words are fed to the embedding layer and the layer defines

random weights for words initially, which are modified later during training. Once the

embedding layer finishes learning weights for words, the training model can be saved for

later use or directly fed to the next layer in the network. Since the output of the Embed-

ding layer is two-dimensional, before connecting it directly to the next layer in the LSTM

network, we had to flatten the output layer to a one-dimensional layer using the Flatten

layer.

4.5.1.3 POS Embeddings

POS tagging is a technique by which tokens in a dataset are marked in relation to a pre-

defined POS tag set, based on the context and meaning of the tokens. POS tags include

nouns, verbs, adjectives, pronouns, and their sub-categories. POS tags have been used as

input features in some research done for NeuralMachine Translation [81], text-based ques-

tion generation [8], and answer generation for MWPs [85]. Rajpirathap and Ranathunga

[85] have used a POS tag-based feature extraction mechanism to identify whether the first

35

numerical value is larger than the second value. This further highlights that POS is a suit-

able mechanism to resolve constraints related to numerical quantities.

The POS tag mechanism defined with lexical categorization [86] was used to apply

POS tags for the English MWP datasets. The POS tag set and the POS tagger introduced

by Fernando et al. [87] was used to tag Sinhala language datasets while the POS tagset

used by Thayaparan et al.[88] was used to tag the Tamil datasets. The POS tags are fed to

the Bi-LSTM network via the embedding layer.

4.5.2 Attention Mechanism

Attention is a mechanism that is capable of allowing the decoding function to focus on spe-

cific areas in the input depending on the decoding requirement. Vaswani et al. [89] have

stated attention as an integral part of sequence modeling because attention facilitates mod-

eling of dependencies irrespective of the distance between input or output sequences. The

application of attention for neural text generation has been popular [90]. In our research,

we incorporated attention to improving our model by enabling the attention mechanism

on numerical values and units of MWPs. Consider the MWP, ‘Ann baked bread and she

used 0.625kg flour and 1.25kg salt. How much less flour than salt did Ann use?’.

Here, our approach applies the attention of the two numerical values (0.625 & 1.25)

and their associated units (kg).

We used the attention layer defined in Keras to apply attention to the MWPs. First,

we calculated a set of attention weights for our model. Then, those weights are multiplied

by output vectors of the encoder to create a weighted combination. Therefore, the result

contains information about the required specific part of the input sequence (i.e. units and

numerical values), and this supports the decoder to select the right output words. The

attention that was applied on our model can be visualized in the Figure 4.4. As depicted in

the Figure 4.4, the units focus on the type of material used and the types of materials focus

on the product produced. Moreover, the word sequence ‘more flour than sugar ’ focuses

on the numerical values.

36

Figure 4.4: Heat map regarding the applied attention mechanism

4.5.3 Additional Improvements

4.5.3.1 Temperature Tuning

Further, we applied Temperature tuning as a mechanism to vary the creativity and novelty

of the MWPs produced. Softmax temperature [68] is a hyper-parameter that is used in

neural models to control the entropy of the probability distribution. As provided in Chapter

5, if the temperature parameter is set to a higher value, the self BLEU score is a low value,

which means the outputs differ from the input dataset. Therefore, the creativity of the

generated MWPs will be high.

4.5.4 Architecture Diagram

Overall architecture diagram our approach is presented in Figure 4.5.

37

Figure 4.5: Architecture diagram of our current approach

38

Chapter 5

EVALUATION AND RESULTS

5.1 Introduction

Our model was evaluated by humans as well as using the BLEU score metric. Using hu-

man evaluation basically, the efficiency of the model was evaluated. We could generate

100 fresh problems for 1000 questions that were fed to the model. Then the accuracy, cre-

ativity, and efficiency were assessed in terms of the aforementioned evaluation methods.

We determined that our system can generate MWPs more effectively when compared with

the manual creation of MWPs. The two types of BLEU scores self vs test BLEU scores

were calculated to check the novelty and accuracy of the generated problems respectively.

5.2 Dataset

As shown in Table 5.1, we used MWPs belonging to three languages, namely, English,

Sinhala, and Tamil. All the questions belong to the elementary level, where each question

requires simple one or two mathematical operations such as addition, subtraction, multi-

plication, or division. 1,878 questions of the algebraic datasets were extracted from the

SigmaDolphin dataset [91]. The rest of the 472 questions, as well as Sinhala and Tamil

questions, were created with the help of some undergraduate students. They have referred

GCE ordinary level past papers to find similar questions and have altered them appropri-

ately.

5.3 Human Evaluation

A group of five tutors was used to measure the improvement of our model in terms of

efficiency when compared with the manual generation of Mathematical Word Problems

(MWPs). We asked the tutors to correct any mistakes found in theMWPs generated by our

model and measure the time taken. For each language, each tutor was asked to generate

ten MWPs. Then the same tutors were asked to manually generate ten similar MWPs

39

Language Question No. of single Examples

type questions multi-
sentenced

English Simple 1350 Single
Mary has 20 rupees and Rosy has 7
less rupees than Mary, how many ru-
pees does Rosy have?

English Simple 1350 Multi
Eve ran 10 miles and walked 6 miles.
How much farther did Eve run than
walk?

English Algebraic 2350 Single

Find two consecutive odd integers
such that three times the smaller one
exceeds two times the larger one by
7.

English Algebraic 2350 Multi

The sum of two numbers is 91. The
larger number is 1 more than 4 times
the smaller number. Find the num-
bers.

Sinhala Simple 1000 Single

ɪමɢට වයස අɬɞǐ 25 ú වන අතර
ඔʑෙĘ ȽƱරාට ඔʑට වඩා අɬɞǐ 2
ú අƍෙවǦ වයස ඇත, ȽƱරාට වයස
ෙකʣපමණද ?

Sinhala Simple 1000 Multi

රɪ ɥƟ ෙගƋ ûෙලʤ 9ú ෙගනාෙɩය.
සගයා ɥƟ ûෙලʤ 4 ෙගනාවාය.
තාƮතා ɥƟ ûෙලʤ 9ú ෙගනාෙɩය.
ȿɥ ɥƟ ûෙලʤ ගණන üයද?

Tamil Simple 1000 Single

நிமலாவ�ட� 34 ைபக�
உ�ளன, கமலாவ�ட�
நிமலாைவ வ�ட 9 ைபக�
�ைறவாகº� உ�ளன,
கமலாவ�ட� எ{தைன ைபக�
உ�ளன?

Tamil Simple 1000 Multi

கவ�ய�} வய¢ சம}
ம§வ�} வய¢.ம¢வ�}
வய¢ சம} ற�யாவ�}
வய¢. கவ�ய�} வய¢ 25
என�� ற�யாவ�} வய¢
யா¢?

Table 5.1: Datasets created

and measure the time taken. This way we could compare the average times taken for

manual generation of MWPs in each language and the times taken for the correction of

automatically generated MWPs. The results are provided in Table 5.2. According to the

40

average times marked in the table, when compared with the manual generation, the MWP

generation of our system had improvements of efficiencies by 87.98%, 88.66%, 91.07%,

and 86.75% regarding the generation of simple English MWPs, complex English MWPs,

simple Sinhala MWPs, and simple Tamil MWPs, respectively.

TTG
10

TTE
10

TTG
10

TTE
10

TTG
10

TTE
10

TTG
10

TTE
10

SE
MWPs

SE
MWPs

CE
MWPs

CE
MWPs

SS
MWPs

SS
MWPs

ST
MWPs

ST
MWPs

Tutor 1 18 2 23 2 15 2.5 20 3.5
Tutor 2 20 2.2 27 3 25 3 19 4
Tutor 3 15 1 28.5 3.5 17.5 1.5 25 3
Tutor 4 15 2.5 22 2.4 28 1 23 2.5
Tutor 5 21 3 23 3.1 26.5 2 30 2.5
Average 17.8 2.14 24.7 2.8 22.4 2 23.4 3.1

Table 5.2: Human evaluation results in terms of TTG (Time To Generate) 10 fresh MWPs
VS TTE (Time To Edit) 10 MWPs that are generated by our model
SE: Simple English, CE: Complex English, SS: Simple Sinhala, ST: Simple Tamil

5.4 Machine-based Evaluation

To evaluate the accuracy of the generatedMWPs we used BLEU.We calculated the BLEU

scores at each stage of our model regarding all the datasets. The results are depicted in

Table 5.3, Table 5.4, Table 5.5 and Table 5.6 for simple English, complex English, simple

Sinhala and simple Tamil datasets, respectively.

Model BLEU BLEU BLEU BLEU BLEU
2 3 4 5 Avg

Baseline 27.04 21.62 13.21 7.33 17.30
WP 26.98 25.02 12.91 5.87 17.70
WPC 29.37 28.22 13.76 9.41 20.19
WPC A 32.93 28.01 16.23 14.71 22.97

Table 5.3: BLEU Scores Generated By Various Models Concerning the Creation of simple
English MWPs. WP: Word + POS embeddings, WPC: Word + POS + Character embed-
dings, A: Attention

With the help of the temperature sweepmechanism, we evaluated the generatedMWPs

concerning the quality versus diversity trade-off using test BLEU score and self BLEU

41

Model BLEU BLEU BLEU BLEU BLEU
2 3 4 5 Avg

Baseline 37.04 23.89 18.75 17.20 24.22
WP 43.23 25.31 9.72 9.33 21.90
WPC 45.43 31.93 26.23 19.11 30.68
WPC A 47.84 37.03 29.42 19.83 33.53

Table 5.4: BLEU Scores Generated By Various Models Concerning the Creation of Com-
plex English MWPs

Model BLEU BLEU BLEU BLEU BLEU
2 3 4 5 Avg

Baseline 29.83 19.20 16.72 8.74 18.62
WP 35.73 23.42 16.88 11.73 21.94
WPC 35.23 23.56 17.72 10.02 21.63
WPC A 39.21 25.51 21.30 11.95 24.49

Table 5.5: BLEU Scores Generated By Various Models Concerning the Creation of simple
Sinhala MWPs

Model BLEU BLEU BLEU BLEU BLEU
2 3 4 5 Avg

Baseline 22.91 12.13 7.97 0.02 10.76
WP 25.32 17.48 13.12 5.31 15.31
WPC 24.12 18.59 17.28 4.93 16.23
WPC A 29.15 22.43 18.25 13.12 20.74

Table 5.6: BLEU Scores Generated By Various Models Concerning the Creation of simple
Tamil MWPs

score respectively. We could discover temperatures for each dataset, which optimized the

test versus self BLEU score trade-off values. The graphs depicting the Negative Test-

BLEU VS Self-BLEU graph for simple English, complex English, simple Sinhala and

simple Tamil datasets are provide in Figure 5.1, Figure 5.2, Figure 5.3 and Figure 5.4,

respectively.

5.5 Discussion

With the results we obtained, it is clear that our system is capable of generating the MWPs

with an efficiency of more than 86% in all the three languages. With respect to the accu-

42

Figure 5.1: Negative Test-BLEU VS Self-BLEU graph for simple MWPs in English

Figure 5.2: Negative Test-BLEU VS Self-BLEU graph for complex MWPs in English

racy of the generated simple English MWPs, there is an improvement of accuracy of 2.3

% in terms of the average BLEU-score when we used word embeddings and POS tag em-

43

Figure 5.3: Negative Test-BLEU VS Self-BLEU graph for simple MWPs in Sinhala

Figure 5.4: Negative Test-BLEU VS Self-BLEU graph for simple MWPs in Tamil

beddings. The average results were further improved when the character embeddings were

introduced by 14.1%, than the accuracy that was gained for word embeddings. Finally the

44

attention on units and numerical values could improve the average results by 13.8% accu-

racy, when compared with the accuracy at the character embeddings level. Therefore, it

is visible that the introduction of character embeddings and attention have facilitated the

improvement of results by a higher proportion.

Surprisingly there was a decrease of accuracy by 9.6%when the word embeddings and

POS tag embeddings were incorporated on top of the baseline model regarding the English

algebraic dataset. But the introduction of character embeddings has allowed the model to

increase its accuracy by 40.1%. Then the introduction of attention has further improved

the results by 9.3%. Therefore, it can be seen that the accuracy of the generated complex

English MWPs was highly influenced by the introduction of character embeddings. It can

be seen that the introduction of word and POS tag embeddings has reduced the results. This

might be due to the reason that we used the NLTK POS tagging scheme and the complex

MWP dataset contains many variables and values when compared with the contents in

other datasets.

The introduction of word and POS tag embeddings could improve the results of the

generated Sinhala MWPs by 17.8%, because word & POS embeddings helps the model to

learn structures in MWPs. Then the incorporation of character embeddings has reduced

the accuracy by just 1.4%. This might be due to the reason that Sinhala language contains

many letters that are attached and when these needed to be separated to define character

embeddings, the model can undergo issues. Finally the application of attention has im-

proved the results by 13.2%. Therefore, it can be seen that the incorporation of POS and

character embeddings has paved way for a large improvement in accuracy.

Concerning the Tamil dataset there is an improvement in accuracy by 42.3% when

POS and Word embeddings are introduced. This huge improvement has occurred as a

result of structural mapping that is provided by word & POS embeddings. Then the intro-

duction of character embeddings has further improved the results by 6%, since character

level mapping has supported the character level generation of MWPs. Finally with the

incorporation of attention the results have further improved by 27.8%. This is because at-

tention mechanism is responsible for improving accuracy in terms of units and numerical

quantities.

Different datasets show different levels of improvements when the same new fature

45

is incorporated to the model. For an example, the introduction of word and POS embed-

dings have influenced on the datasets by increase of 2.3 %, decrease of 9.6 %, increase

of 17.8% and increase of 42.3% for simple English, English Algebraic, Sinhala and Tamil

datasets. Therefore, it can be seen that the accuracies have been increased with a large

proportion for Sinhala and Tamil datasets. This might be due to the fact that Sinhala Tamil

are morphologically rich languages, thus letting word embeddings play vital roles in the

generation processes to capture the words. Likewise, various languages show different

levels of accuracy improvements due to their inherent syntactic and semantic structures.

46

Chapter 6

CONCLUSION AND FUTUREWORK

Existing systems for the generation of Mathematical Word Problems (MWPs) are either

fully or semi template based approaches. The generated MWPs are bereft of novelty

and creativity, since they are restricted within a certain template. Moreover the template

based nature prevents the existing models in becoming multi-lingual platforms to generate

MWPs. On the other hand, none of the previous research has used advances in Natural

Language Generation (NLG) for the automatic generation of MWPs.

In our research we have developed a language independent NLG basedmodel to gener-

ate MWPs. We created several datasets in three languages to train the model. We analyzed

latest NLG approaches such as Maximum Likelihood Estimation (MLE) approaches and

Generative Adversarial Networks (GAN) and tested the MWPs generated by each model

using the datasets we created. We chose the Long Short Term Memory Network (LSTM)

as the baseline of our research, since it could produce more accurate results when compare

with the other models.

MWPs are different to other types of text generation approaches since they contain

lots of constraints. Therefore, the generation of MWPs should be capable of resolving the

constraints found in MWPs. To resolve the constraints and to enhance the correctness of

the MWPs that were produced, we used input features such as word embeddings, POS

embedings, character embeddings as well as attention on units and numerical vlaues. The

word embeddings and the character embeddings were defined by us for our datasets. By

analysing the results, we could deduce that character embeddings contribute the model

to generate MWPs, more than the word embeddings. This is due to the reasons such as

word embeddings suffer from OOV issues and when the vocabulary is too large there are

infrequent words, chances of training such words are minimized. But on the other hand,

character embeddings are capable of identifying character n grams even within infrequent

words. Attention was provided on numerical values and units. Attention was capable of

improving constraint satisfaction, because attention mechanism focuses on the numerical

47

and unit-wise accuracy of each MWP. The aforementioned pre-processing steps facilitated

the model to improve its results by satisfying the specific constraints found in MWPs.

MWPs contain several keywords such as ‘many’, ‘more’, ‘less’and ‘than’, that build up

relationships between different variables in terms of quantities. These keywords belong to

several POS tag classes. Therefore, we hope to integrate attention mechanism on different

POS tag classes and inspect for the variations in accuracy level in our future work. And

also we hope to utilize the latest advancements found in Reinforcement Learning based

mechanisms for the generation of MWPs.

48

[1] Andy Thomas. How to easily build a powerful deep learning language model, 2019.

https://adventuresinmachinelearning.com/keras-lstm-tutorial.

[2] Massimo Caccia, Lucas Caccia, William Fedus, Hugo Larochelle, Joelle Pineau, and

Laurent Charlin. Language gans falling short. arXiv preprint arXiv:1811.02549,

2018.

[3] Xiang Zhang and Yann LeCun. Text understanding from scratch. arXiv preprint

arXiv:1502.01710, 2015.

[4] J.C. Moyer, L. Sowder, J. Threadgill-Sowder, and M.B. Moyer. Story problem for-

mats: Drawn versus verbal versus telegraphic. Journal for Research in Mathematics

Education, pages 342–351, 1984.

[5] TH. Wen, M. Gasic, N. Mrksic, PH. Su, D. Vandyke, and S. Young. Semantically

conditioned lstm-based natural language generation for spoken dialogue systems.

arXiv preprint arXiv:1508.01745, 2015.

[6] M. Roemmele. Writing stories with help from recurrent neural networks. In Thirtieth

AAAI Conference on Artificial Intelligence, 2016.

[7] P. Potash, A. Romanov, and A. Rumshisky. Ghostwriter: Using an lstm for automatic

rap lyric generation. In Proceedings of the 2015 Conference on Empirical Methods

in Natural Language Processing, pages 1919–1924, 2015.

[8] Q. Zhou, N. Yang, F. Wei, C. Tan, H. Bao, and M. Zhou. Neural question generation

from text: A preliminary study. In National CCF Conference on Natural Language

Processing and Chinese Computing, pages 662–671. Springer, 2017.

[9] L. Leppanen, M. Munezero, M. Granroth-Wilding, and H. Toivonen. Data-driven

news generation for automated journalism. In Proceedings of the 10th International

Conference on Natural Language Generation, pages 188–197, 2017.

[10] Oleksandr Polozov, Eleanor O’Rourke, Adam M Smith, Luke Zettlemoyer, Sumit

Gulwani, and Zoran Popović. Personalized mathematical word problem generation.

In Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015.

49

https://adventuresinmachinelearning.com/keras-lstm-tutorial

[11] Rohit Singh, Sumit Gulwani, and Sriram Rajamani. Automatically generating alge-

bra problems. In Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012.

[12] Rik Koncel-Kedziorski, Ioannis Konstas, Luke Zettlemoyer, and Hannaneh Ha-

jishirzi. A theme-rewriting approach for generating algebra word problems. arXiv

preprint arXiv:1610.06210, 2016.

[13] K.Wang and Z. Su. Dimensionally guided synthesis of mathematical word problems.

In IJCAI, pages 2661–2668, 2016.

[14] S.Williams. Generatingmathematical word problems. In 2011 AAAI Fall symposium

series, 2011.

[15] Paul Deane and Kathleen Sheehan. Automatic item generation via frame semantics:

Natural language generation of math word problems. 2003.

[16] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning represen-

tations by back-propagating errors. nature, 323(6088):533–536, 1986.

[17] Robert Hecht-Nielsen. Theory of the backpropagation neural network. In Neural

networks for perception, pages 65–93. Elsevier, 1992.

[18] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-

putation, 9(8):1735–1780, 1997.

[19] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Contin-

ual prediction with lstm. 1999.

[20] Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning,

volume 2. MIT press Cambridge, 1998.

[21] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach.

Malaysia; Pearson Education Limited„ 2016.

[22] Geoffrey E Hinton, Terrence Joseph Sejnowski, Tomaso A Poggio, et al. Unsuper-

vised learning: foundations of neural computation. MIT press, 1999.

50

[23] Shai Fine, Yoram Singer, and Naftali Tishby. The hierarchical hidden markov model:

Analysis and applications. Machine learning, 32(1):41–62, 1998.

[24] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In

Advances in neural information processing systems, pages 2672–2680, 2014.

[25] Tong Che, Yanran Li, Athul Paul Jacob, Yoshua Bengio, and Wenjie Li. Mode reg-

ularized generative adversarial networks. arXiv preprint arXiv:1612.02136, 2016.

[26] Ehud Reiter and Robert Dale. Building applied natural language generation systems.

Natural Language Engineering, 3(1):57–87, 1997.

[27] Ibrahim Adeyanju. Generating weather forecast texts with case based reasoning.

arXiv preprint arXiv:1509.01023, 2015.

[28] Joy Mahapatra, Sudip Kumar Naskar, and Sivaji Bandyopadhyay. Statistical nat-

ural language generation from tabular non-textual data. In Proceedings of the 9th

International Natural Language Generation conference, pages 143–152, 2016.

[29] Ehud Reiter, Somayajulu G Sripada, and Roma Robertson. Acquiring correct knowl-

edge for natural language generation. Journal of Artificial Intelligence Research,

18:491–516, 2003.

[30] Ehud Reiter, Somayajulu Sripada, JimHunter, Jin Yu, and Ian Davy. Choosing words

in computer-generated weather forecasts. Artificial Intelligence, 167(1-2):137–169,

2005.

[31] Eli Goldberg, Norbert Driedger, and Richard I Kittredge. Using natural-language

processing to produce weather forecasts. IEEE Expert, 9(2):45–53, 1994.

[32] Kathleen McKeown, Karen Kukich, and James Shaw. Practical issues in automatic

documentation generation. In Proceedings of the fourth conference on Applied nat-

ural language processing, pages 7–14. Association for Computational Linguistics,

1994.

51

[33] Irene Langkilde and Kevin Knight. Generation that exploits corpus-based statisti-

cal knowledge. In Proceedings of the 17th international conference on Computa-

tional linguistics-Volume 1, pages 704–710. Association for Computational Linguis-

tics, 1998.

[34] Kevin Knight and Vasileios Hatzivassiloglou. Two-level, many-paths generation. In

Proceedings of the 33rd annual meeting on Association for Computational Linguis-

tics, pages 252–260. Association for Computational Linguistics, 1995.

[35] John SWhite. EnvisioningMachine Translation in the Information Future: 4th Con-

ference of the Association for Machine Translation in the Americas, AMTA 2000,

Cuernavaca, Mexico, October 10-14, 2000 Proceedings. Springer Science & Busi-

ness Media, 2000.

[36] Alice Oh and Alexander Rudnicky. Stochastic language generation for spoken dia-

logue systems. In ANLP-NAACL 2000 Workshop: Conversational Systems, 2000.

[37] Ilya Sutskever, James Martens, and Geoffrey E Hinton. Generating text with re-

current neural networks. In Proceedings of the 28th international conference on

machine learning (ICML-11), pages 1017–1024, 2011.

[38] Shimei Pan and James Shaw. Segue: A hybrid case-based surface natural language

generator. In International Conference on Natural Language Generation, pages

130–140. Springer, 2004.

[39] John G Kemeny and J Laurie Snell. Markov chains. Springer-Verlag, New York,

1976.

[40] Jules Gagnon-Marchand, Hamed Sadeghi, Md Akmal Haidar, and Mehdi Reza-

gholizadeh. Salsa-text: self attentive latent space based adversarial text generation.

In Canadian Conference on Artificial Intelligence, pages 119–131. Springer, 2019.

[41] Sidi Lu, Yaoming Zhu, Weinan Zhang, Jun Wang, and Yong Yu. Neural text gener-

ation: past, present and beyond. arXiv preprint arXiv:1803.07133, 2018.

52

[42] Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint

arXiv:1308.0850, 2013.

[43] Hongyu Guo. Generating text with deep reinforcement learning. arXiv preprint

arXiv:1510.09202, 2015.

[44] Wei Xu and Alex Rudnicky. Can artificial neural networks learn language models?

In Sixth international conference on spoken language processing, 2000.

[45] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural

probabilistic language model. Journal of machine learning research, 3(Feb):1137–

1155, 2003.

[46] Stephen Merity, Nitish Shirish Keskar, and Richard Socher. An analysis of neural

language modeling at multiple scales. arXiv preprint arXiv:1803.08240, 2018.

[47] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Regulariza-

tion of neural networks using dropconnect. In International conference on machine

learning, pages 1058–1066, 2013.

[48] Léon Bottou. Stochastic gradient learning in neural networks. Proceedings of Neuro-

Nımes, 91(8):12, 1991.

[49] Oliver Lemon. Adaptive natural language generation in dialogue using reinforcement

learning. Proc. SEM-dial, pages 141–148, 2008.

[50] Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy

Lillicrap, Jonathan Hunt, Timothy Mann, Theophane Weber, Thomas Degris, and

Ben Coppin. Deep reinforcement learning in large discrete action spaces. arXiv

preprint arXiv:1512.07679, 2015.

[51] Liqun Chen, Shuyang Dai, Chenyang Tao, Haichao Zhang, Zhe Gan, Dinghan Shen,

Yizhe Zhang, Guoyin Wang, Ruiyi Zhang, and Lawrence Carin. Adversarial text

generation via feature-mover’s distance. In Advances in Neural Information Pro-

cessing Systems, pages 4666–4677, 2018.

53

[52] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative

adversarial nets with policy gradient. In Thirty-First AAAI Conference on Artificial

Intelligence, 2017.

[53] Tong Che, Yanran Li, Ruixiang Zhang, R Devon Hjelm, Wenjie Li, Yangqiu Song,

and Yoshua Bengio. Maximum-likelihood augmented discrete generative adversarial

networks. arXiv preprint arXiv:1702.07983, 2017.

[54] Kevin Lin, Dianqi Li, Xiaodong He, Zhengyou Zhang, and Ming-Ting Sun. Adver-

sarial ranking for language generation. In Advances in Neural Information Process-

ing Systems, pages 3155–3165, 2017.

[55] Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong Yu, and Jun Wang. Long text

generation via adversarial training with leaked information. In Thirty-Second AAAI

Conference on Artificial Intelligence, 2018.

[56] William Fedus, Ian Goodfellow, and AndrewMDai. Maskgan: better text generation

via filling in the_. arXiv preprint arXiv:1801.07736, 2018.

[57] Yizhe Zhang, Zhe Gan, Kai Fan, Zhi Chen, Ricardo Henao, Dinghan Shen, and

Lawrence Carin. Adversarial feature matching for text generation. In Proceedings

of the 34th International Conference on Machine Learning-Volume 70, pages 4006–

4015. JMLR. org, 2017.

[58] Matt J Kusner and José Miguel Hernández-Lobato. Gans for sequences of discrete

elements with the gumbel-softmax distribution. arXiv preprint arXiv:1611.04051,

2016.

[59] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,

2016.

[60] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-

softmax. arXiv preprint arXiv:1611.01144, 2016.

[61] Brian Langner and Alan Black. Mountain: A translation-based approach to natural

54

language generation for dialog systems. Proc. of IWSDS 2009, Irsee, Germany,

2009.

[62] Anja Belz and Eric Kow. System building cost vs. output quality in data-to-text

generation. In Proceedings of the 12th European Workshop on Natural Language

Generation (ENLG 2009), pages 16–24, 2009.

[63] Philipp Koehn, Franz Josef Och, and Daniel Marcu. Statistical phrase-based trans-

lation. In Proceedings of the 2003 Conference of the North American Chapter of

the Association for Computational Linguistics on Human Language Technology-

Volume 1, pages 48–54. Association for Computational Linguistics, 2003.

[64] Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Fed-

erico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens,

et al. Moses: Open source toolkit for statistical machine translation. In Proceedings

of the 45th annual meeting of the association for computational linguistics compan-

ion volume proceedings of the demo and poster sessions, pages 177–180, 2007.

[65] Anja Belz. Automatic generation of weather forecast texts using comprehensive

probabilistic generation-space models. Natural Language Engineering, 14(4):431–

455, 2008.

[66] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method

for automatic evaluation of machine translation. In Proceedings of the 40th annual

meeting on association for computational linguistics, pages 311–318. Association

for Computational Linguistics, 2002.

[67] Ondřej Cífka, Aliaksei Severyn, Enrique Alfonseca, and Katja Filippova. Eval all,

trust a few, dowrong to none: Comparing sentence generationmodels. arXiv preprint

arXiv:1804.07972, 2018.

[68] M. Buscema. Back propagation neural networks. Substance use & misuse,

33(2):233–270, 1998.

[69] R. Singh, S. Gulwani, and S. Rajamani. Automatically generating algebra problems.

In Twenty-Sixth AAAI Conference on Artificial Intelligence, 2012.

55

[70] Roger C Schank and Robert P Abelson. Scripts, plans, goals, and understanding:

An inquiry into human knowledge structures. Psychology Press, 2013.

[71] Emmon Bach and Robert Harms. Universals in linguistic theory. 1968.

[72] MartinGebser, RolandKaminski, BenjaminKaufmann, and Torsten Schaub. Answer

set solving in practice. Synthesis lectures on artificial intelligence and machine

learning, 6(3):1–238, 2012.

[73] Jacob T Schwartz. Fast probabilistic algorithms for verification of polynomial iden-

tities. Journal of the ACM (JACM), 27(4):701–717, 1980.

[74] Sandra Williams. Generating mathematical word problems. In 2011 AAAI Fall sym-

posium series, 2011.

[75] Marco Ponza, Paolo Ferragina, and Francesco Piccinno. Swat: A system for detect-

ing salient wikipedia entities in texts. Computational Intelligence, 2019.

[76] Ke Wang and Zhendong Su. Dimensionally guided synthesis of mathematical word

problems. In IJCAI, pages 2661–2668, 2016.

[77] Gábor Melis, Chris Dyer, and Phil Blunsom. On the state of the art of evaluation in

neural language models. arXiv preprint arXiv:1707.05589, 2017.

[78] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distri-

bution: A continuous relaxation of discrete random variables. arXiv preprint

arXiv:1611.00712, 2016.

[79] Jason Brownlee. Why One-Hot Encode Data in Machine

Learning, 2020. https://machinelearningmastery.com/

why-one-hot-encode-data-in-machine-learning.

[80] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[81] Rico Sennrich and Barry Haddow. Linguistic input features improve neural machine

translation. InProceedings of the First Conference onMachine Translation: Volume

56

https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning
https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning

1, Research Papers, pages 83–91, Berlin, Germany, August 2016. Association for

Computational Linguistics.

[82] Manex Agirrezabal, Bertol Arrieta, Aitzol Astigarraga, and Mans Hulden. Pos-tag

based poetry generation with wordnet. In Proceedings of the 14th European Work-

shop on Natural Language Generation, pages 162–166, 2013.

[83] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-

tributed representations of words and phrases and their compositionality. In Ad-

vances in neural information processing systems, pages 3111–3119, 2013.

[84] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global

vectors for word representation. In Proceedings of the 2014 conference on empirical

methods in natural language processing (EMNLP), pages 1532–1543, 2014.

[85] S. Rajpirathap and S. Ranathunga. Model answer generation for word-type questions

in elementary mathematics. In International Conference on Applications of Natural

Language to Information Systems, pages 17–28. Springer, 2019.

[86] Edward Loper and Steven Bird. Nltk: the natural language toolkit. arXiv preprint

cs/0205028, 2002.

[87] S. Fernando, S. Ranathunga, S. Jayasena, and G. Dias. Comprehensive part-of-

speech tag set and svm based pos tagger for sinhala. In Proceedings of the 6th Work-

shop on South and Southeast Asian Natural Language Processing (WSSANLP2016),

pages 173–182, 2016.

[88] M. Thayaparan, S. Ranathunga, and U. Thayasivam. Graph based semi-supervised

learning approach for tamil pos tagging. InProceedings of the Eleventh International

Conference on Language Resources and Evaluation (LREC 2018), 2018.

[89] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Łu. Kaiser,

and I. Polosukhin. Attention is all you need. In Advances in neural information

processing systems, pages 5998–6008, 2017.

57

[90] Z. Xie. Neural text generation: A practical guide. arXiv preprint arXiv:1711.09534,

2017.

[91] S. Shi, Y. Wang, C. Lin, X. Liu, and Y. Rui. Automatically solving number word

problems by semantic parsing and reasoning. In Proceedings of the 2015 Conference

on Empirical Methods in Natural Language Processing, pages 1132–1142, 2015.

58

	Declaration of the Candidate & Supervisor
	Ackowledgement
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background
	Problem & Motivation
	Objectives
	Methodology
	Contribution
	Publications
	Organization

	Background
	Overview
	Auto-regressive Models
	Reinforcement Learning
	Generative Adversarial Networks

	Literature Survey
	Natural Language Generation
	Knowledge Intensive Approaches
	Knowledge-light Approaches
	Statistical Machine Translation
	Semi-automatic Approaches

	Evaluation Metrics
	Bi-lingual Evaluation Understudy
	Quality vs Diversity Trade-off of Deep Learning Models

	Mathematical Word Problem Generation
	Summary

	Methodology
	Introduction
	TextGAN model
	Vanilla MLE Model
	Improvement with POS-tag based Post Processing Mechanism
	End to End MLE Model with Attention and Different Embeddings
	Different forms of Embeddings
	Attention Mechanism
	Additional Improvements
	Architecture Diagram

	Evaluation and Results
	Introduction
	Dataset
	Human Evaluation
	Machine-based Evaluation
	Discussion

	Conclusion and Future work
	References

