DESIGNING A ROBUST CONTROLLER TO DAMP SUB-SYNCHRONOUS OSCILLATIONS IN POWER SYSTEMS

Chamali Mahawala Gamage

(168660P)

Degree of Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

July 2020

DESIGNING A ROBUST CONTROLLER TO DAMP SUB-SYNCHRONOUS OSCILLATIONS IN POWER SYSTEMS

Chamali Mahawala Gamage

(168660P)

Thesis/Dissertation submitted in partial fulfillment of the requirements for the degree Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

July 2020

DECLARATION

I declare that this is my own work and this thesis/dissertation2 does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

.....

C.M. Gamage

The above candidate has carried out research for the Masters thesis/ dissertation under my supervision.

Signature of the supervisor:

Date:

Dr. W. D. Prasad

ABSTRACT

In the power transmission systems, the power transferring capability is limited due to the inductive reactance of the transmission lines. In order to mitigate the inductive effect, some compensation techniques are applied to the transmission lines. One such technique is the series compensation using capacitor banks. Series compensation method is used to improve the system voltage with capacitor banks are connected in series with the power transmission line and it expands the power transferring capability of the line. Although the increase of series compensation improves the power transfer capability and the steady-state and transient stability limit of the power transmission line, it can lead to the generation of some natural frequencies due to the combination of inductor and capacitor (L-C). These frequencies are called as sub-synchronous frequencies which are below the power frequency of the power systems. They can arise sub-synchronous resonance (SSR).

The SSR can cause physical damages to the power system equipment unless it is detected and mitigated punctually. Several number of mitigation techniques for different types of power system oscillations have been proposed in literature. But existing mechanisms are not completely damp these oscillations or the mechanisms used to damp these oscillations might be source for any other control situations. Therefore, this is a phenomenon which should understand well and damped these oscillations properly. The intension of the work presented in this thesis is to properly mitigate the undamped power system oscillations which are in the range of sub-synchronous frequencies.

This research proposed a robust controller which can damp dominant sub-synchronous resonance. Further, the implemented controller performs well in different operating points. IEEE First Benchmark Model (FBM) is used as the test system and the dynamic phasor representation of the system is used to model the small signal model. The operating points of the test system were generated by changing the series capacitor compensation level of the power transmission line. Finally, this research introduced a robust controller with PID controlling to damp out dominant sub-synchronous oscillations which can perform well under different operating points of the selected power system.

ACKNOWLEDGEMENT

First, my sincere thanks must go to my advisor, Dr. W. D. Prasad for his continuous advice, guidance, encouragement and patience throughout the course of this work. It has been a privilege to work under his guidance. I am also thankful to the course coordinator, Dr. Buddhika Jayasekara and the staff of the Department of Electrical Engineering, University of Moratuwa for their continuous encouragement.

Further, I am thankful to my father and late mother for believed that I can always do better than I believed in myself. A special thank goes to my husband for encouraged me to reach for a successful end.

C.M. Gamage July 2020 University of Moratuwa.

TABLE OF CONTENT

DECLAI	RATION	i
ABSTRA	ACT	ii
ACKNO	DWLEDGEMENT	iii
TABLE	OF CONTENT	iv
LIST OF	F FIGURES	vi
LIST OF	F TABLES	vii
LIST OF	F ABBREVIATIONS	viii
1. INTRO	ODUCTION	1
1.1.	Power System Oscillations	1
1.1.1	.1. Electromechanical Local Mode of Oscillations	2
1.1.2	.2. Electromechanical Inter-area Mode of Oscillations	2
1.1.3	.3. Electromechanical Torsional Mode of Oscillations	3
1.1.4	.4. Electromechanical Control Mode of Oscillations	4
1.2.	Problems with Power System Oscillations	4
1.3.	Motivation for the Research	5
1.4.	Thesis Outline	6
2. SUB	B-SYNCHRONOUS OSCILLATIONS IN THE POWER SYSTEMS	8
2.1.	SSR in Series Capacitor Compensated Transmission Line	8
2.2.	Types of Sub-Synchronous Oscillations in Series Capacitor Compensate 13	d lines
2.2.1	1. Induction generator effect	13
2.2.2	2. Torsional interaction	14
2.2.3	.3. Transient torques	14
2.3.	Proposed Techniques to mitigate sub-synchronous oscillations	15
2.3.1	1. Conventional solutions to problems with SSR	15
2.3.2	2. Solutions from FACTS Devices	17
2.3.2	2.1. Static VAr Compensator (SVC)	17
2.3.2.2. Static Synchronous Series Compensator (SSSC) 1		18
2.3.2.3. Static Synchronous Compensator (STATCOM) 18		
2.3.2	.2.4. Thyristor-Controlled Series Compensator (TCSC)	19
2.4.	Defects of the existing systems	20
2.5.	Objectives of the research	21

3.	MI	ETHO	DOLOGY	. 22
	3.1.	Dev	elop a linearized state space representation of the selected test system	. 22
	3.2.	Vali	idate the linearized model	. 23
	3.3.	Des	igning the controller	. 23
4.	MO	ODEL	LING THE SYSTEM	. 24
	4.1.	Test	t system	. 24
	4.1	.1.	Conventional generator model	. 30
	4.1	.2.	Generator model including stator transients	. 35
	4.1	.3.	Network model	. 39
	4.1	.4.	Generator and network model	. 45
	4.1	.5.	Multi-mass turbine model	. 47
	4.2.	Ince	eptive conditions of the state variables of the selected power system	. 51
	4.3.	Eige	envalue analysis for the test system	. 52
5.	DE	SIGN	ING THE CONTROLLER	. 56
	5.1.	Zieg	gler Nichols (Z-N) method	. 56
	5.2.	Sim	ulated Annealing Method	. 57
	5.2	.1.	Objective function	. 58
	5.3.	Sim	ulation results	. 60
6.	CO	NCL	USION	. 73
PU	JBLI	CATI	ONS	. 74
RI	EFER	ENC	ES	. 75

LIST OF FIGURES

Figure 2.1: RLC series connected branch	8
Figure 4.1: IEEE first benchmark model	9
Figure 4.2: rotor model of the IEEE FBM	25
Figure 4.3: PSCAD model of IEEE FBM with 70% series compensation level	27
Figure 4.4: Results of IEEE FBM simulation with series compensation	28
Figure 4.5: Results of IEEE FBM simulation without series compensation	29
Figure 4.6: Equivalent circuit of the synchronous generator	31
Figure 4.7: Series compensated transmission line	40
Figure 4.8: transformation from common reference frame to machine d-q frame	41
Figure 4.9: The multi mass turbine model	47
Figure 4.10: Speed variation of linear and nonlinear models	48
Figure 4.11: FFT for non-linear model	49
Figure 5.1: Eigenvalues of the test system with the designed PID controller, SSSC control	oller
and TCSC controller with 40% series compensation	58
Figure 5.2: Nonlinear PSCAD model with designed PID controller	59
Figure 5.3: Generator speed variation without and with the controller at 30% series	
compensation	60
Figure 5.4: Generator speed variation without and with the controller at 40% series	
compensation	60
Figure 5.5: Generator speed variation without and with the controller at 50% series	
compensation	61
Figure 5.6: Generator speed variation without and with the controller at 60% series	~ ~ ~
compensation	61
Figure 5.7: Generator speed variation without and with the controller at 70% series	6.0
compensation	62
Figure 5.8: Generator speed variation without and with the controller at 80% series	\sim
compensation	02

LIST OF TABLES

Table 4.1: Per unit values of the network impedance on the base of 892.4 MVA	21
Table 4.2: Data of the IEEE FBM rotor model	9
Table 4.3: Ssynchronous generator machine parameters with 892.4 MVA base	25
Table 4.4: Values of state variables at steady state condition	46
Table 4.5: Eigenvalues of the system under 80 % of series capacitor compensation	47
Table 4.6: Frequency Comparison of the Linear and Non-linear Models	49
Table 5.1: Setting of P, I, and D gains with the controller type	50
Table 5.2: Ku and Tu values and initial P, I and D gains	51
Table 5.3: Optimization parameters	53
Table 5.4: Initial values and optimized values of the controller gains	54
Table 5.5: Eigenvalues, oscillation frequency and damping factor of the overall controlled	
system with different operating points	55
Table 5.6: Eigenvalues of the test system with the designed PID controller, SSSC control	ler
and TCSC controller with 40% series compensation	57

LIST OF ABBREVIATIONS

AC	Alternating Current
SSR	Sub-Synchronous Resonance
PSS	Power System Stabilizer
AVR	Automatic Voltage Regulator
FACTS	Flexible AC Transmission Systems
HVDC	High-Voltage Direct Current
SVC	Static Var Compensators
STATCOM	Static Synchronous Compensator
SSDC	Sub-Synchronous Damping Controller
TCSC	Thyristor Controlled Series Compensation
IEEE	Institute of Electrical and Electronics Engineers
FBM	First Benchmark Model
SSSC	Static Synchronous Series Compensator
FLC	Fuzzy Logic Control
FFT	Fast Fourier Transform
HP	High Pressure
IP	Intermediate Pressure
LPA	Low Pressure A
LPB	Low Pressure B
SA	Simulated Annealing
VSC	Voltage Sourced Converter