SYNTHESIS AND CHARACTERIZATION OF REDUCED GRAPHENE OXIDE FOR SUPERCAPACITORS

Pitiyage Sagith Dulanjala Perera

159490 R

Degree of Master of Science

Department of Materials Science and Engineering

University of Moratuwa.

Sri Lanka.

June 2020

SYNTHESIS AND CHARACTERIZATION OF REDUCED GRAPHENE OXIDE FOR SUPERCAPACITORS

Pitiyage Sagith Dulanjala Perera

159490 R

This Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Material Science.

Department of Materials Science and Engineering

University of Moratuwa

Sri Lanka

June 2020

DECLARATION

"I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a degree or Diploma in any other University or Institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in text"

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium, I retain the right to use this content in whole or part in future works (such as articles or books).

Name: Pitiyage Sagith Dulanjala Perera(159490R)

Date: 23/06/2020

The above candidate has carried out research for the partial fulfilment of the requirements for the Degree of Master of Science in Material Science under my supervision.

Project Supervisor: Prof.S. U. Adikary

Date: 23/06/2020

Abstract

The main focus of this investigation was to add value to high purity Sri Lankan graphite. Reduced graphene oxide(rGO) was synthesized using locally available graphite from Kahatagaha mines and purity was recorded as 99%. Modified Hummers method was used to synthesize rGO. Synthesized rGO was characterized using Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM) and X-ray Diffraction Spectroscopy(XRD). The specific capacitance was recorded as 0.45Fg⁻¹ in rGO. The specific capacitance of the capacitor was calculated using cyclic voltammetry testing at 10mVs⁻¹. SEM analysis shows the rGO surface character, larger surface area and warped morphology of rGO.

In this research, we were able to develop rGO material from locally available graphite for capacitor applications without surface activation. Numerous research projects are ongoing in this field with ultrapure (99.99%) graphite materials but the purity of locally sourced graphite recorded as 90% to 99% without value addition. Therefore, the usability of local graphite to develop rGO seen prospective for its super capacitance performance, however, future improvement is needed.

Key words: Graphene, Supercapacitors, reduced graphene oxide.

ACKNOWLEDGMENTS

I wish to sincerely thank my supervisor Prof.S.U.Adikary for providing me the research idea and supervision of my work continuously. He provided me necessary guidance, various levels of requirements and encouragement to fulfill my objective.

I would like to give my special gratitude Dr.Chinthaka De Silva and Dr.Iresha Kottagodage from Industrial Technology Institute for their contribution during my research working period.

I would also like to thank Dr Shantha Amarasinghe who coordinate my MSc Research work and provided valuable feedback.

I am also grateful to Mr.Sivahar and Dr.Asha the course coordinators, and provided valuable feedback at various levels of the project.

I would like to extend my thanks to all the academic staff of the University of Moratuwa for the great work they did for us during study.

No student can survive in a university without the help of their fellow students to discuss ideas, share opinions, and to make time spent in the lab and all round enjoyable experience.

I must also be grateful to my parents, brother and sister Miss Tharushi Perera for the encouragement they provided to follow the M.Sc.

TABLE OF CONTENTS

DECLARATION	i	
ABSTRACT	ii	
ACKNOWLEDGMENTS		
TABLE OF CONTENTS		
LIST OF FIGURES	vi	
LIST OF ABBREVIATIONS	viii	
Chapter 1 Introduction	1	
1.1 Sri Lankan graphite	1	
1.2 Graphene, Graphene oxide and reduced Graphene oxide(rGO)	4	
1.3 Graphene and Graphene composites	6	
1.4 Capacitors and supercapacitor	7	
1.5 Research Justification	10	
1.6 Objectives	10	
Chapter 2.LITERATURE REVIEW	11	
2.1 Carbon and carbon based materials for capacitor/super capacitor applications	11	
2.2 Graphene as carbon material		
2.3 Graphene based materials for supercapacitors/EDLC	15	
2.4 Graphene based materials for pseudo-capacitor	16	
2.5 Effect of surface area and capacitance performance	16	
2.6 Graphene-metal oxide/hydroxide composites for capacitors/supercapacitors	17	
2.7 Supercapacitors and their energy storage mechanism	18	
Chapter 3.RESEARCH METHODOLOGY	19	
3.1 Synthesis of reduced graphene oxide	20	
3.2 Construction of capacitor	20	
3.3 Material Characterization	24	
Chapter 4.RESULTS AND DISCUSSION	25	
Chapter 5. CONCLUSIONS AND RECOMMENDATION	39	
Chapter 6. REFERENCES	40	

LIST OF FIGURES

Figure 1.1. Distribution of graphite deposit in Sri Lanka	2	
Figure 1.2. Graphite mines in early days		
Figure 1.3. Carbon structure of graphite layers		
Figure 1.4.1 The schematic diagram of Supercapacitors	8	
Figure 1.4.2 Schematic representation of Capacitor type	9	
Figure 2.2.1 Schematic representation of Graphene, fullerene and Carbon nano tube	13	
Figure 3.1.1 Photograph of synthesis procedure	20	
Figure 3.2.1 Schematic representation of capacitor component	21	
Figure 3.2.2 Applying adhesive solution on the stainless-steel plate	21	
Figure 3.2.3 Applying rGO on the adhesive surface	22	
Figure 3.2.4 Insert Porous separator in between two electrons	23	
Figure 3.2.5 Inject electrolyte solution on the porous separator		
Figure 3.2.6 Construction of super capacitor		
Figure 4.1. FTIR diagram of rGO, GO and Graphite		
Figure 4.2 - SEM Micrograph of graphite	27	
Fig 4.3. The rGO nanosheet	28	
Figure 4.4. SEM image of GO	29	
Figure 4.A and 4.B. Stacked layers of rGO	30	
Figure. 4.5. XRD patterns of the GO	31	

Page

Figure. 4.6. XRD patterns of the rGO	
Figure 4.7 - Discharge curves of rGO relative to 0.45, 0.5, 0.55 and 0.6 mA constant	
current rates	32
Figure. 4.8. Charge/ discharge curves of rGO capacitor	32
Figure 4.9 Cyclic voltametry of rGO capacitor	34
Figure 4.10 Repeated cycles of cyclic voltammetry	
Figure 4.11 Impedance spectroscopy (blue clour) and curve	
fit (red colour) of rGO capacitor	36
Figure 4.12 Impedance spectroscopy Circle fit of rGO capacitor	
Figure 4.13 Impedance spectroscopy of linear regression of rGO capacitor	

LIST OF ABBREVIATIONS

EDLC	Electrically Double Layer Capacitor
rGO	reduced Graphene Oxide
GO	Graphene oxide
CMG	Chemically modified graphene
FTIR	Fourier transform infrared
SEM	Scanning Electron Microscope
XRD	X-Ray diffraction
CV	Cycle voltammetry