LB/DON/39/00

6.21 000

600.910.00

911.51

DEVELOPMENT OF SOLAR POWERED PUMPING FOR THE INTEGRATION OF RAINWATER HARVESTED **IN MULTISTORY HOUSES**

THESIS SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING IN FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF Master of Science in Engineering Nizy, in Mechanica

LIBRARY UNIVERSITY OF MOBATUWA, SPI LANKA MORATUWA

> By Sisuru Sendanayake

SUPERVISED BY

Moratuwa Sri Lanka. M.T. R. Jayasinghe partment of Civil Engineering) w.lib.mrt.ac.lk ons

and

Mr. S. Witharana (Department of Mechanical Engineering)

DEPARTMENT OF MECHANICAL ENGINEERING **UNIVERSITY OF MORATUWA SRI LANKA**

JULY 2007

91151

Declaration

I, Sisuru Sendanayake, hereby declare that the work contained in this thesis has not been previously submitted for a degree or diploma at any other higher education institution. To the best of my knowledge and belief, the thesis contains no material previously published or written by another person except where due reference is made.

UOM Verified Signature

Sisuru Sendanayake Versity of Moratuwa, Sri Lanka. Electronic Theses & Dissertations 9th August 2007www.lib.mrt.ac.lk

Main Supervisor: Mr. S. Witharana

Co-Supervisor: Prof. M.T.R. Jayasinghe UOM Verified Signature

Acknowledgements

This thesis is the result of an interdisciplinary research under the Mechanical and Civil Engineering departments of University of Moratuwa, and I thank the respective Heads of Department Dr. A.G.T. Sugathapala, who is also the coordinating supervisor of the research, and Professor (Mrs.) N. Ratnayake for their support and encouragement for me to undertake a research on a subject of national importance.

It is my profound duty to thank Professor M.T.R. Jayasinghe and Mr. S. Witharana, the two supervisors for the research, for their guidance and direction.

A special word of thanks should go to Professor Jayasinghe, for without his insight and encouragement in bringing me back from the industry and commerce to the worthy process of academic research, this thesis would not have seen the light of the day, once again amply demonstrating Professor Jayasinghe's unstinted dedication to his sphere of work, the university and to the nation. Theses & Dissertations www.lib.mrt.ac.lk

I will fail in my duty if I do not mention my wife Chintha, for her ever present support and my daughter Sukhi who has dutifully assisted me in most of the computer work.

Abstract

Rain water Harvesting (RWH) is an ancient civil practice for more than 4000 years, drawing attention among scientists in recent decades in the light of potable water shortages and water based natural disasters such as draughts and flash floods. It is observed that the domestic service water (SW) usage patterns are uniform for a given scenario, where over 30% of drinking quality water being consumed for non potable uses such as WC flushing, for which harvested rain water (RW) could be used. Roof Top Rain Water Harvesting Systems (RTRWHS) suitable for domestic situations are not being widely used due to non-optimizing of the system's highest cost component, the storage facility or the tank. Extensive research has produced a set of generic curves for Water Saving Efficiency (WSE) of a RTRWHS, enabling the selection of an optimum tank size for a given demand. Validation of this for Sri Lanka could provide a valuable design tool. This was undertaken using a prototype where the daily rainfall data was used with selected usages to create a substantial number of data points, which satisfy the generic curves. These data has indicated that the generic curves can be used in Sri Lanka with generally used roof types such as coment fibre and calicut tiles.

In multi-story situations energy is needed for pumping collected rain water to end user points. A strategy should be developed to provide an alternative energy solution to mitigate the strain of extra energy consumption to the national power grid and the resultant Green House Gas (GHG) emissions for RWH to be a true component of sustainable development.

Sri Lanka being a tropical country, solar power option is pursued as the most desirable alternative energy source. Since solar power also has high capital cost, minimization of energy used while relying on gravity systems also have been actively pursued. Identifying the suitability of positive displacement pumps over centrifugal pumps when connected to photo voltaic power source, a viable and cost effective solar pumping system is proposed to be used as an integrated draw-off device for a potential RWH system to be used in domestic situations.

CONTENTS

Statement of Authorship	i
Acknowledgements	ii
Abstract	iii
Key words	iii
Table of Contents	iv
List of Tables	xi
List of Figures	xii
List of Charts	xiv

Chapter 1

1

+

INT	INTRODUCTION	
1.1	General	1
1.2	Objectives University of Moratuwa, Sri Lanka.	4
1.3	Research methodology tronic Theses & Dissertations	5
1.4	Main findings www.lib.mrt.ac.lk	5
1.5	Arrangement of the thesis	7

Chapter 2

EXISTING RAINWATER HARVESTING SYSTEMS		9
2.1	General	9
2.2	Needs of and Benefits from Rain Water Harvesting	13
2.2.1	Needs of RWH	14
2.2.2	Benefits accrued from RWH	15
2.2.3	Globally available RWH systems	16
2.2.3.2 2.2.3.3	South America and the Caribbean Islands Australia Europe Africa and Middle East Asia	16 17 17 19 19

2.3	Rainwater Harvesting Systems	20
2.3.1	Basic types of RTRWH systems	20
	1 Dry systems 2 Wet systems	20 21
2.3.2	RTRWH systems available in Sri Lanka	22
2.3.2.	1 Three barrel system	22
2.3.2.	2 Plastic barrel systems	23
2.3.2.	3 RTRWH system with above ground ferro-cement tank	23
2.3.2.	4 RTRWH system with partial underground tank	24
2.3.2.	5 RTRWH system with below ground brick tank	24
•		
2.3.3	A typical RTRWH system for a multi story house	25
2.3.4	Global RTRWH systems rsity of Moratuwa, Sri Lanka.	26
2.3.5		27
2.3.5.	1 The Total Flow type	27
2.3.5.	2 The Diverter type	28
2.3.5.	3 The Retention and Throttle type	· 28
2.3.5.	4 The Infiltration type	29
2.3.6	International examples of large-scale in-building rainwater re-use	.30
2.3.6.	l Japan	30
2.3.6.2	2 United Kingdom	31
2.3.6	3 Singapore	32
2.3.6.4	4 Germany	32
2.4	Components of a RTRWH System	32
2.4.1	Collector surface (catchment area)	33

v

2.4.2	Conveyance system	33
2.4.3	3 Storage facility	
2.4.4	Filtering devices in RWH systems	34
2.4.4.	1 Mesh Filters	34
2.4.4.	2 First Flush (FF) devices	35
2.4.5	Draw-off devices used in RWH systems	36
2.5	Summary	37
Chap	ter 3	
-	TER USAGE PATTERNS	39
3.1	General	39
3.2	Quality of harvested rainwater	40
3.3		42
3.3 3.4	Data on usage patterns University of Moratuwa, Sri Lanka.	42
	Data collected Electronic Theses & Dissertations	
3.4.1	Selection criteria for siteslib.mrt.ac.lk	43
3.4.1.	Selection of the climatic zone	43
3.4.1.2 Selection of sites		45
3.4.2	Objective of survey	46
3.4.3	Methodology of survey	46
3.4.4	Findings of the survey	47
3.4.5	Limitations of survey	48
3.4.6	Conclusions of survey	49
3.5	Summary	50
Chapt		
TAN	K SIZE OPTIMIZATION	52
4.1	General	52

-

vi

4.2	Rainfall data in Sri Lanka	52
4.3	Tank Capacity Determination	55
4.3.1	General methods of determining the optimum tank capacities of a RWHS	56
4.3.1.1	Demand side Approach	56
4.3.1.2	Supply side Approach	56
4.3.2	Advanced methods of determining tank capacities of RTRWH systems.	57
4.3.2.1	Critical period model	57
4.3.2.2	Moran model	57
4.3.2.3	Behavioral model	58
4.3.3	Investigating the Performance of RTRWHS using Behavioral model	58
4.3.4	Predicting the performance of RTRWH System using behavioral model	61
4.3.5	Generic curves for system performance of a RTRWH System	65
	www.lib.mrt.ac.lk	
4.3.5.1	Important observations with regard to generic curves on WSE.	66
4.3.5.1.	1 Effect of demand pattern	66
4.3.5.1.	2 The effect of roof run-off coefficient (C_{f})	67
4.3.5.1.	3 Variation in rainfall data	68
4.3.6	Validating RTRWH System performance curves for Sri Lankan	
	Conditions with experimental data	69
4.3.7	The prototype	70
4.3.8	Calculation of Roof run-off Coefficient (C _f)	72
4.3.9	Objectives of the exercise	73
4.3.10	Data collected	73
4.3.11	Conclusions arrived at from prototype data	74

-

+

4.3.11 .1 Capture efficiencies		75
4.3.11.2 The demand values used for data		75
4.3.11.3 Creation of additional data		75
4.3.11	.4 Validation of WSE curves for Sri Lanka	75
4.4	Summary	78
Ċhap	ter 5	
ENE	RGY ISSUES	79
5.1	General	79
5.2	Water from storage facility by gravity	80
5.3	Water from storage facility by pumping	81
5.3.1	Pumping options	. 81
5.3.2	Energy consumption of electric pumps in RTRWH Situations	82
5.4 5.5	Energy required to pump rain water & Green House Gas emissions Electronic Theses & Dissertations Pumping collected water from storage facility using an alternative	83
	energy source; Solar powered pumping	89
5.5.1	Solar powered pumping options	95
5.5.1.1	Solar power with centrifugal pumps	96
5.5.1.2	? Solar power with Positive Displacement pump	<i>98</i>
5.5.2	Features of solar pumping (PVPS)	100
5.5.2.1	Mounting of solar array	100
5.5.2.2	Battery use	100
5.5.2.3	Efficiency improvement of PVPS	100
5.5.2.4	Maintenance of a PVPS	101
5.5.2.5	Sizing solar pumps	101
5.5.3	Solar powered pumping for typical RRWH systems in Sri Lanka	102

viii

5.6	Plumbing configurations for typical RRWH systems supplementing	
	mains/ground water	104
5.7	Energy issues and calculations	109
5.7.1	Energy requirement for rainwater pumping	110
5.7.2	Comparison of pumping options in RTRWH systems	110
5.7.3	Cost saving on water	111
5.8	Compensation for additional energy used for pumping rainwater	112
5.8.1	Methodology of survey	113
5.8.2	Findings of energy survey	115
5.9	Integration of RTRWH systems to multi-storey situations	118
5.9.1	Different scenarios of integrating RTRWH systems to service water	
	supply in multi-story houses.	119
5.9.1.	I Scenario I	119
	2 Scenario 2 University of Moratuwa, Sri Lanka.	120
5.9.1.3 Scenario S Electronic Theses & Dissertations		121
5.9.1.	4 Scenario www.lib.mrt.ac.lk	123
5.10	Summary	124
~		
Chapt		
CON	CLUSIONS AND FUTURE WORK	127
6.1	General Conclusion	127
6.1.1	Optimization of the tank size of a RTRWH system	128
6.1.2	Validating the generic curves for WSE for Sri Lanka	
6.1.3	Energy issues associated with RTRWH systems	129
6.1.4	Integration of solar pumping to RTRWH systems	130
6.3	Future Work	130

REFERENCES

. . .

132

ix

APPENDICES

Appendix 1		136
1.1	Form of questionnaire survey on water usage pattern	138
1.2	Data on water usage (July to October 2006)	139
1.3	Findings of water usage survey	143
1.4	Findings of water usage survey (per capita per day)	145
Apper	ndix 2	146
2.1	Data from prototype RTRWHS (yield & rainfall)	148
2.2	Calculations of WSE values from prototype	149

Appen	dix 3	150
3.1	Form of questionnaire survey energy usage pattern	152
3.2	Data on energy usage (November to December 2006)	153

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of Tables

TABLE 3.1	Summary of Roof run-off quality	41
TABLE 3.2	Qualities of water from prototype RTRWHS compared	
	with SLS drinking water standards	42
TABLE 3.3	Site details of water usage patterns	46
TABLE 4.1	Rainfall data in the ICZ (1997 – 2006)	52
TABLE 4.2	Summary of roof run-off coefficient calculations	72
TABLE 5.1	Emission factors for different kinds of fuel	85
TABLE 5.2	Existing thermal power generation plants of Sri Lanka	86
TABLE 5.3	Long term electricity generation plan of Sri Lanka	88
TABLE 5.4	Cost comparisons for different plumbing configurations	108
TABLE 5.5	University of Moratuwa, Sri Lanka. Different plumbing options available in Sri Lanka Electronic Theses & Dissertations	109
TABLE 5.6	Energy cost of pump optionsic.lk	109
TABLE 5.7	Domestic water filtering units	111
TABLE 5.8	Site details for energy audit	113
TABLE 5.9	Monthly energy consumption for households – survey results	113
TABLE 5.10	Findings of the energy audit	116
TABLE 5.11	Summary of integrated RTRWHS for multi-story houses	124

+

xi

List of Figures

Y

L

.

.

FIGURE 2.1	Traditional rain water run-off collection systems	11
FIGURE 2.2	Components of RTRWHS	12
FIGURE 2.3	Gutter guards	12
FIGURE 2.4	First Flush devices	13
FIGURE 2.5	Sediment trap in down pipes	13
FIGURE 2.6a	Dry RTRWHS	21
FIGURE 2.6b	Wet RTRWHS	21
FIGURE 2.7	Three Barrel RWHS	22
FIGURE 2.8	Plastic Barrel RWHS	22
FIGURE 2.9	RTRWHS with above ground ferro-cement tank	23
FIGURE 2.10	Electronic Theses & Dissertations RTRWHS with partially under ground ferro-cement tank	24
FIGURE 2.11	RTRWHS with below ground tank	25
FIGURE 2.12a	Typical RTRWHS for multi-story house	25
FIGURE 2.12b	Typical RTRWHS for multi-story house (Schematic drawing)	26
FIGURE 2.13	The total flow type RTRWHS	27
FIGURE 2.14	The diverter type RTRWHS	28
FIGURE 2.15	The retention and throttle type RTRWHS	29
FIGURE 2.16	The infiltration type RTRWHS	29
FIGURE 2.17	Details of Hand pumping unit	36
FIGURE 4.1	Rainfall data – Climatic zones of Sri Lanka	53
FIGURE 4.2	Generic configuration of a rainwater collection system	59

xii

FIGURE 4.3	Components of a rain water collection sizing model	62
FIGURE 4.4	Prototype RTR WHS	71
FIGURE 5.1a	Steel supporting structures for RTRWHS	80
FIGURE 5.1b	RCC supporting structures for RTRWHS	80
FIGURE 5.2	An advanced positive displacement pump	82
FIGURE 5.3	Hydro and Thermal power generation in Sri Lanka	85
FIGURE 5.4	Global domestic energy consumption	87
FIGURE 5.5	Schematic drawing of solar pumping	91
FIGURE 5.6	Direct and Indirect solar pumping	92
FIGURE 5.7	Plumbing configurations for RTRWHS – scenario (a)	105
FIGURE 5.8	Plumbing configurations for RTRWHS – scenario (b)	105
FIGURE 5.9	University of Moratuwa, Sri Lanka. Plumbing configurations for RTRWHS – scenario (c) Electronic Theses & Dissertations	106
FIGURE 5.10	Plumbing configurations for RTRWHS – scenario (d)	107
FIGURE 5.11	Plumbing configurations for RTRWHS – scenario (e)	108
FIGURE 5.12	Integration of RTRWHS for multi-story situations (Scenario 1).	120
FIGURE 5.13	Integration of RTRWHS for multi-story situations (Scenario 2).	121
FIGURE 5.14	Integration of RTRWHS for multi-story situations (Scenario 3).	122
FIGURE 5.15	Integration of RTRWHS for multi-story situations (Scenario 4).	123

List of Charts

7

-+

۲

-

CHART 3.1	Per capita per day SW usage pattern	48
CHART 3.2	Per capita per day WCFW usage pattern	48
CHART 4.1	Monthly average rainfall in ICZ	53
CHART 4.2	Annual rainfall data –1997-2006	55
CHART 4.3	Generic Curves for Water saving Efficiency (WSE)	·65
CHART 4.4	Sensitivity of WSE to rainfall loss	67
CHART 4.5	WSE curves validated for Sri Lanka	77
CHART 5.1	Hydraulic energy output for pumps	96
CHART 5.2	Characteristics curves for Centrifugal pumps	97
CHART 5.3	Characteristics curves for Positive Displacement pumps	99
CHART 5.4	Energy used for lighting in households as a percentage of total Energy utilized w.110.mrt.ac.lk	114