Synthesis and characterization of novel alkyd resins based on Karawila seed oil

LIBRARY
UNIVERSITY OF RRORATUWA, SI LANKA
moratuwa

This thesis was submitted to the Department of Chemical and Process Engineering of the University of Moratuwa in partial fulfillment of the requirements for the Degree of PhD.

University of Moratuwa, Sri Lanka. Electronic Theses \& Dissertations www.lilMuAtBqれashantha

$$
\begin{aligned}
& G: " \\
& G(i)(i)
\end{aligned}
$$

$$
91135
$$

Department of Chemical and Process Engineering University of Moratuwa
Sri Lanka
December 2007
"I certify that this thesis does not incorporate without acknowledgement any material previously submitted for any degree or diploma in any university and to the best of my knowledge and belief it does not contain any material previously published, written or orally communicated by another person except where due reference is made the text."

UOM Verified Signature

Signature of the candidate (M.A.B.Prashantha) University of Moratuwa, Sri Lanka. Electronic Theses \& Dissertations www.lib.mrt.ac.lk

"To the best of my knowledge, the above particulars are correct."

Supervisor

UOM Verified Signature
Dr. B.A.J.K.Premachandra

[^0]
Abstract

This research project mainly focused on developing air drying alkyds with 65% oil length which offer superior film properties using locally available a suitable fatty oil and also developing a mathematical model to predict the gel point acid value in manufacturing alkyd resins.

Analysis of seed oil of 'Karawila' MC43 indicated that it was a fatty oil rich in conjugated trienoic acids with moderate amount of saturated fatty acids. The oil content of seed of MC 43 was about 24% and the weights of dried seeds were in the range $2.98-7.93 \mathrm{~g}$ with weight ratio of kernel to seed in dry basis of about 0.6 . Acid value of the oil was $2.73 \mathrm{mg} \mathrm{g}^{-1}$, saponification value was $190.70 \mathrm{mg} \mathrm{g}^{-1}$ and iodine value was $115.96 \mathrm{cg} \mathrm{g}^{-1}$. The seed oil of MC43 showed better drying properties compared to common drying oils. A simple mathematical model was developed to predict the iodine value of fatty oils based on the total number of pi-bonds in the fatty acid profile (π) as Iodine value equals $0.8683 \times \pi$.

Since (the Uacid lezaluenfof Tseed eqik of issCA3atiwass comparatively low, monoglyceride process /was selected ic hanufacturing alkyd resins. The optimum heating rate, mixing speed and the volume ratio were first established for the laboratory reactor used in the experiment. Better film properties could be obtained when a mixture of glycerol and pentaerythritol was used as polyols with excess OH . Film properties were compared by gradually increasing the pentaerythritol content while keeping oil length at 65% until the industrial specifications for film properties were obtained. Excellent film properties were obtained when the minimum ratio of pentaerythritol/glycerol was 0.33 and the $\mathrm{OH} / \mathrm{COOH}$ ratio was in the range of 1.23 to 1.4. Satisfactory film properties were obtained when $\mathrm{OH} / \mathrm{COOH}$ ratio was in between 1.23 to 1.48 with pentaerythritol / glycerol ratio within 0.23 to 0.33 . When pentaerythritol / glycerol ratio was lower than 0.2 , hardness was not acceptable.

The results of kinetic studies on polyesterification of monoglyceride mixture based on seed oil of MC43 with pthalic anhydride suggested that the way of assigning order to the reaction based on correlation coefficient was unsatisfactory. This was
mainly due to the simultaneous occurrence of several reaction mechanisms associated with steric hindrance of reacting molecules.

A new mathematical model was developed to predict the acid value at gel point based on the statistical approach of proposing the growth pattern of alkyd molecules during the polyesterification reaction. Proposed model was compared with the existing models using the actual data recorded in literature. The predicted acid values from the proposed model gave minimum deviation from actual data compared to existing models. However, the predicted acid values of alkyd resins based on MC43 seed oil deviated significantly from the experimental data due to the presence of conjugated trienoic acids in the fatty oil of MC43. Hence, a modification was introduced to incorporate the effects of dimerization reactions and the predicted results were then closely agreed with the actual data.

Acknowledgement

I express my thanks to post graduate division of University of Moratuwa for selecting me to follow MPhil degree and extending it to PhD degree. Thanks are due to the financial support by ADB (Asian development bank) without which I could not be able to successfully complete this research work.

I am indebted to my main supervisor Dr.Jagath Premachandra, for proposing my name to the scheme of Postgraduate Scholarship in University of Moratuwa and for spending his valuable time to help me to complete this research project. He introduced me to resourceful institutes and also gave me numerous suggestions and advises throughout this research project.

I am thankful and grateful to my supervisor Dr.Shantha Amarasinhe who spent much of his valuable time to read and correct several drafts of this thesis. He critically reviewed by giving valuable suggestions, advices and thus introducing me to the fascinating art of scientific writing.

I also thank to Dr.Radika Samrasinhe, for her valuable directions in my literature survey of this research project I acknowledge my thanks to ITI who gave me facility to conduct the Giginalysis and semepfsther fexperimental works. I also thankful to Robialak paintrcompanytand ldhief chemist Mr.Sunil Fenando for giving me facility to conduct testing of film properties of alkyd resins.

I also thank to my colleagues Mr. Buddika de Silva and Mr.Kapila Perera. Specially, Mr.Buddika designed metallic structural unit for my experimental setup and Mr.Kapila contributed his time and helped me to solve the complicated differential equation in mathematical model.

I wish to thank Mrs.Thushari Senevirathna (assistant librarian of university of moratuwa) who promptly responded to my request for literatures which were not available in local sources. In addition to that I also thank to Mr. N.A.C Narangoda (System Analyst, Department of Chemical and Process Engineering) who contributed for making the soft copy of my thesis.

Furthermore, I thank to Mr.N.L.Chandrasiry (technical officer) and in Department of Chemical and Process Engineering, Mr.Harsha Widyasekara (staff technical officer) in Department of Earth Resource Engineering of University of Moratuwa and Mr S.S.P.Sagar (technical officer) Department of Chemistry University of Sri Jayawardanapura. They gave their help for my lab works whenever I required.

Although, I have played major role of this research project, the success of the project is not due to the efforts of a single person. It is really a product of knowledge of large number of individuals and social activities of Sri Lankan society. Therefore finally I convey my thanks to all of my teachers, friends and all others who directly or indirectly contributed me to develop myself.

Content

Abstract i
Acknowledgement iii
Content v
List of tables ix
List of figures xi
Chapter 1
Introduction
1.1 Introduction 1
1.2 Synthesis and evaluation of film properties of alkyd resins 3
1.3 Objectives and justification 3
1.4 Outline of the thesis 4
Chapter 2 University of Moratuwa, Sri Lanka
Chemical analysis of Momodicachanantis secdoidsertations
2.1 Economical diversitybficomodica charantia 6
2.2 Current production of Karawila in Sri Lanka 15
2.3 Experimental works 17
2.3.1 Characterization of physical properties of seeds of MC43 17
2.3.2 Characterization of seed oil of MC43 18
2.4 Results and discussion 20
2.4.1. Physical properties of seed of MC43 20
2.4.2. Chemical properties of seed of MC43 22
2.4.3 Drying property of seed oil of MC43 31
2.5 A new mathematical model to predict the iodine value 31
2.6 Conclusion 35
2.7 References 37
Chapter 3
Synthesis of alkyd resins based on Karawila seed oil
3.1 Historical development of alkyd resins 41
3.2 Preparative methods of oil modified Alkyd resins 47
3.2.1 Fatty acid process 47
3.2.2 Monoglyceride process 48
3.2.3 Acidolysis process 54
3.2.4 Fatty acid/ oil process 54
3.3 Classification of alkyd resins 55
3.4 Chemical nature of raw materials 57
3.4.1 Polyols 57
3.4.2 Polybasic acid 58
3.4.3 Fatty oils 59
3.5 Modified forms of alkyd resins 64
3.5.1 Chlorinated rubber modification 64
3.5.2 Nitrocellulose modification 64
3.5.3 Amino resins modification 65
3.5.4 Urethane modification. 65
3.5.5 Silicone-modification 66
3.5.6 Modification of alkyd resins with vinyl compounds 66
3.5.7 Thixotropic alkyds 66
3.5.8 Other modifications 67
3.6 Drying process of air drying alkyd resins 67
3.6.1 Reaction mechanism for the formation of hydroperoxide by monoenoic and non-conjugated diene system of fatty acid moieties 71
3.6.2 Reaction mechanism for the formation of diperoxyradicals by conjugated diene systems of fatty acid moieties 73
3.6.3 Catalytic activity of driers 75
3.7 Locally available fatty oils for air drying alkyds 76
3.8 Methodology 80
3.8.1 Work plan and experimental set-up 80
3.8.2 Calculation procedure of the raw materials for the karawila seed oil based alkyd resins 82
3.8.3 Testing of film properties 89
3.9 Results and discussion. 91
3.9.1 Optimum conditions for achieving high monoglyceride content by using designated experimental set-up 91
3.9.2 Synthesis of alkyd resins based on Karawila seed oil, glycerol and pthalic anhydride 92
3.9.3 Synthesis of alkyd resins based on Karawila seed oil, glycerol, pentaerythritol and pthalic anhydride - excess OH from glycerol 94
3.9.4 Synthesis of alkyd resins based on Karawila seed oil, glycerol, pentaerythritol and pthalic anhydride - excess OH from pentaerythritol 98
3.10 Conclusion 100
3.11 References 103
Chapter 4
New mathematical model to predict the gel point of alkyd manufacturing process
4.1 Introduction 105
4.2 Gellation in polyesterification of alkyd resins 106
4.3 Mathematical models of gel point on condensation polymerization 109
4.4 New mathematical model to predict the gel point acid value of alkyd recipe for the monoglyceride process Moratuwa, Sri Lanka. 116
4.4.1 Introduction of symbels and assumptions Dissertations 116
4.4.2 Proposed model/ww.lib. mrt.ac. 1k 119
4.4.3 Calculating of $A V_{\text {max }}$ and $F_{\text {avMax }}$ 121
4.5 Comparison of the proposed model with existing models 128
4.6 Applicability of proposed model to the polyesterification stage of alkyd resins from Karawila seed oil 132
4.7 Conclusion 138
4.8 References 138
Chapter 5
Studying of chemical kinetics on polyesterification of resultant monoglycerids of karawila seed oil.
5.1 Kinetic study on polyesterification reaction in making alkyd resins. 140
5.2 Rate equations of the polyesterification reaction. 147
5.3 Kinetic studies on polymerization stage of manufacture of alkyd resins from Karawila seed oil 148
5.4 Discussion 153
5.5 Conclusion 155
5.6 References 155
Chapter 6
Conclusion and future works
6.1 Conclusion 156
6.2 Future work 159
Appendix
Appendix 1 161
Appendix 2 173
Appendix 3 177
Appendix4 178

List of tables

Table number	Topic	Page
Chapter 2		
Table 2.1	Major uses of different part of the karawila plant	6
Table 2.2	General analytical results of leaves, fruits and seed	7
Table 2.3	Volatile compounds in fruits and vine	9
Table 2.4	Triterpenes, glycoprotenes, acylglycosylsterol and toxic substance in leaves, seeds and fruits of Karawila plant.	10
Table 2.5	Application of karawila plant in indigenous medicine of some countries	12
Table 2.6	Annual production densities of Karawila in different areas	15
Table 2.7	Oil content and refractive index of dried seed of MC43	22
Table 2.8	Chemical properties of seed oil of MC43	23
Table 2.9	Retention times of methyl esters of standard fatty acids solution Jniversity of Moratuwa, Sri Lanka.	24
Table 2.10	Relative amounts of fattu acidssin seed eit samples of MC 43.	25
Table 2.11	Band assignimenboft the fuTiR spectra.	29
Table 2.12	Fatty acids composition and iodine values of hypothetical triglycerides	32
Table 2.13	Comparison of calculated iodine values with experimental values.	34
Chapter 3		
Table 3.1	Order of catalytic activity of catalysts	51
Table 3.2	Sub divisions of drying and non-drying alkyds	56
Table 3.3	Unsaturated fatty acids in fatty oil	60
Table 3.4	Chemical and physical constant of some fatty oil	61
Table 3.5	Fatty acid composition of some fatty oils	62
Table 3.6	Custom statistics of alkyd resins imported to Sri Lanka	76
Table 3.7	Local sources of fatty oils and their analytical constants	78
Table 3.8	Symbols used in calculation procedures	83
Table 3.9	Result of optimising the conditions for the designated experimental set-up	91

Table 3.10	Results of polyesterification experiments from EN8 to EN11	92
Table 3.11	Film properties of resultant alkyd from EN8 to EN11	93
Table 3.12	Results of polyesterification experiments from EN12 to EN24	95
Table 3.13	Film properties of resultant alkyd from EN12 to EN15.	95
Table 3.14	Film properties resultant alkyds from EN16 to EN20	97
Table 3.15	Film properties from resultant alkyds from EN16 to EN23	98
Table 3.16	Basic parameters of polyesterification systems from EN25 to EN32	99
Table 3.17	Film properties of alkyd from EN25 toEN32	100
Table 3.18	Alkyds resins with best film properties	101
Table 3.19	Alkyds with satisfactory film properties	102
Table 3.20	Alkyds with poor scratch hardness even after 48 hours of application.	102
Chapter 4		
Table 4.1	Some useful 3-D network polymeric materials	106
Table 4.2,	Functiqnality of monomers in polyesterification mixture for alkyd synthesismic Theses \& Dissertations	109
Table 4.3	Symbols used in mathernatical model.	116
Table 4.4	Published final acid vales and calculated gel point acid values.	129
Table 4.5	Average and standard deviation of absolute variations for the existing models and proposed model	131
Table 4.6	Predicted and experimentally observed gel point acid values	133
Table 4.7	Validity of the equation 4.30 for the linseed oil based alkyd resins	136
Table 4.8	Comparison of experimental acid values with calculated gel point acid value using selected models for alkyd resins from Karawila seed oil.	137
Table 4.10	Standard deviation and average of absolute variance	137
Chapter 5		
Table 5.1	Esterification and polyesterificatio systems used by Flory	141
Table 5.2	Order of polyesterification respect to HO and COOH	145
Table 5.3	Integrated forms of equation 5.7	148

Table 5.4	Correlation coefficients and extent of polymerizations	152
Table 5.5	Orders with respect to COOH and OH based on highest correlation coefficient for repeated experiments.	153
Appendix		177
Table A3	Molar ratio of components in used recipes	178 to 181
Table A4.1 to A4.26	Variation of acid values and extend of reaction with time in polyesterification of experiments EN6 to EN32	

List of figure

Figure number	Topic	Page
Chapter 2		
Figure2.1	Production of young fruits to local market	16
Figure 2.2	Extent of cultivated area of Karawila, Sri Lanka.	16
Figure 2.3	Production density ef [young fruhits ofkarawilans	16
Figure 2.4	Moisture contenitoflseeds@with weight of dried seeds per fruit	21
Figure 2.5	UV Spectrum of seed oil of MC43	28
Figure 2.6	FTIR spectrum of seed oil of MC43	29
Figure 2.7	FTIR Spectrum of seed oil of MC43 with acid value 8mgg ${ }^{\text {I- }}$	30
Figure 2.8	Relationship between total number of double bonds from fatty cid profile and calculated iodine value based on the Structure of triglyceride molecule.	33
Figure 2.9	The variation of predicted iodine values, established iodine values in literature and $\%$ of fatty acids having 18 carbon atoms with total number of double bonds.	35
Chapter 3		
Figure 3.1.	Variation of gel point acid value for a given recipe	43
Figure 3.2a	Part of oil Glycerylpthalate molecule	45
Figure 3.2b	Part of oil modified linear alkyd	45
Figure 3.2c	Part of oil modified branched alkyd molecule	46
Figure 3.3	Primary and secondary hydroxyl groups of glycerol	47

Figure 3.4	a) Reaction between fatty oil and glycerol b) Reaction between fatty oil and pentaerythritol	48
Figure 3.5	Reaction to form α-monoglyceride and β-monoglyceride	49
Figure 3.6	Stoichiometric reaction between periodic acid and α monoglyceride	50
Figure 3.7	Variation of different components in alcoholysis mixture with time by using chromatographic analysis.	50
Figure 3.8	Etherification of polyols	52
Figure 3.9	Stoichiometric reaction between isopthalic acid and triglyceride.	54
Figure 3.10	Structures of trimethylolethane and trimethylolpropane	58
Figure 3.11	Structures of polybasic acids.	58
Figure 3.12	Formation of cyclic acetal structure in alkyd backbone	67
Figure 3.13a	Reaction mechanism of β-scission	70
Figure 3.13b	Russell terminationty of Moratuwa, Sri Lanka. (3) Electronic Theses \& Dissertations	71
Figure 3.14	Schementhydroperoxideformation of oleic acid	72
Figure 3.15	Isomers of hydroperoxide of linoleic acid	73
Figure 3.16	Mechanism of formation of diradicals	74
Figure 3.17	Catalytic mechanism of cobalt drying agent.	76
Figure 3.18	Cost per metric tone of imported alkyd resin	77
Figure 3.19	Forming of water by reaction between monoglycerides and pthalic anhydrides	83
Chapter 4		
Figure 4.1	General picture of the part of branched alkyd molecule	107
Figure 4.1a.	Stoichiometric reaction between glycerol and triglyceride	108
Figure 4.2b	Stoichiometric reaction between triglyceride and pentaerythritol.	108
Figure 4.3	A part of an alkyd molecule having free OH groups in polymer backbone.	109
Figure 4.4	Physical interpretation probability terms of Flory model on gellation	112

Figure 4.5	Variation of φ with acid value in polyesterification stage of monoglyceride mixture.	119
Figure 4.6	Free glycerol becomes a segment of polymer backbone	122
Figure 4.7	Distribution of calculated gel point acid values with experimental final acid values reported in literature.	131
Figure 4.8.	Dimerization of triglyceride molecules through Pi-bonds system of trienoic fatty acid moieties.	134
Figure 4.8a.	Reaction between glycerol and dimeric form of triglyceride,	134
Figure 4.8b	Dimerization of monoglycerides of trienoic acids.	134
Chapter 5		
Figure 5.1	For the EN6, Acid value and temperature with time	149
Figure 5.2a	$\frac{1}{(A-B)} \ln \left[\frac{A-X}{B-X}\right]$ with time (equation 5.8) for the second order	150
Figure 5.2b	$\left(\ln \left[\frac{A-X}{B-X}\right]-\frac{A-B}{A-X}\right)$ with time (equation 5.9) for the third order	150
Figure 5.2c	(a)	150
Figure 5.2d	$\left[\frac{B-X}{A-X}\right]$ Whithime (equation 5.11) for the second order when $a=1.5$ and $b=0.5$.	151
Figure 5.2e	$\left[\frac{4}{B-A}\left[\frac{A-X}{B-X}\right]^{1 / 2}-\frac{2}{[(A-X) \times(B-X)]^{1 / 2}}\right]$ with time (equation 5.13) for the	151
Figure 5.3	Representative form of activated complex between two OH and one COOH	154
Appendix		
Figure Al	GC chromatograms and CG-MS spectrums of methyl esters of seed oil of MC43	$\begin{array}{\|l\|} \hline 161 \\ \text { to } \\ 172 \end{array}$

[^0]: Senior Lecturer
 Department of Chemical and Process Engineering University of Moratuwa.
 December 2007

