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Abstract 

 

Cable Suspended Parallel Robots (CSPR) are a type of cable driven parallel 

manipulators (CDPR) that has recently become popular for large workspace 

operations. They possess many advantages over common parallel robot architectures. 

They also possess the disadvantage of limited dynamics in motion due to the inability 

to exert compression and the constant limited downward force, gravity. Further, the 

redundancy in actuation in planar and spatial robots of certain footprints makes it 

challenging to determine the cable tensions and suitable dynamics for trajectories. 

This thesis introduces an analytical model to circumvent the cable tension 

determination problem using a concept termed as ‘Feasible Acceleration Diagram’. It 

then designs a novel methodology to generate time optimized point  to  point straight 

line trajectories with smooth dynamics for redundantly actuated 2DOF and 3DOF 

point-mass cable suspended parallel robots while ensuring positive cable tensions. 

The procedure of determination of kinematics for the trajectory is explained in detail 

with a test case for the 3DOF 4 cable scenario. Finally, the results obtained are verified 

by a simulation followed by a numerical method. 
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1. INTRODUCTION 

 

A Cable suspended parallel robot (CSPRs) is a type of cable driven parallel 

manipulator (CDPRs) that has recently become popular for large workspace 

operations. CDPRs generally consist of two fixed bases, one on top of the workspace 

and the other on its bottom (See Figure 1.1) making the dual base CDPRs (DBCDPR). 

A CSPR only has a single fixed base on top of the workspace (See figure 1.2). This 

enables CSPRs to maneuver in extended workspaces, where motions of DBCDPR are 

hindered by cables attached to its bottom platform. However, in contrast to 

DBCDPRs, CSPRs generally use gravity to maintain the cables in tension. Similar to 

DBCDPRs, CSPRs also use a mobile platform (referred to as the End-Effector, EE in 

this thesis) connected in parallel to the base through flexible cables and motorized 

winches. The cables are extended or retracted by means of the winches to control the 

motion of EE. The advantages of CDPRs (both DBCDPRs and CSPRs) over common 

parallel robot architectures are;  

(i.) The heavy components (Base platform, winches) of a CDPR lies stationary 

which results in low inertial properties, high payload to weight ratios, and 

fast motions. 

(ii.) Possibility to work in very large workspaces as cables can be unwound 

over great lengths.  

(iii.) Easy transportability and re-configurability.  

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Dual Base CDPR 

Source: www.researchgate.net 
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Although CSPRs possess extended workspace capabilities over DBCDPRs, they also 

possess the disadvantage of limited dynamics in motion due to combination of two 

factors, namely: 

(i.) Inability of the cables to work  in compression (cables can only pull, and 

cannot push)  

(ii.) Unlike in DBCDPRs the maximum force feasible in downward direction 

is the constant force of gravity.  

1.1 Literature review  

Limitation of dynamics works as a considerable challenge in designing feasible 

trajectories for CSPRs. Indeterminable cable tensions work as an additional hindrance 

in designing feasible trajectories particularly for redundantly actuated CSPRs 

(described in section 1.2 of this thesis). Consequently, in most cases found in literature 

or implemented in practice CSPRs are assumed to work in static or quasi-static 

Figure 1.2: Cable Suspended Parallel Robot: 3-DoF: 4Cable Configuration  
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conditions. Most of the work reported in the literature does not address the dynamics 

of cable-suspended robots and uses techniques based on static equilibrium to solve 

control and design problems. For example, under the quasi-static assumption, the 

workspace of a cable-suspended robot is limited to configurations (poses) for which 

static equilibrium can be reached while maintaining all cables under tension [1] . 

Dynamic trajectory planning is addressed in several research papers for fully actuated 

(Non-redundant) CSPRs for, 

(i.) 2 Degrees of Freedom (DOF) Planer ( [1]) 

(ii.) 3DOF planar (Motion in vertical plane considered with moments) ( [2], 

[10], [13]), and  

(iii.) 3DOF (spatial - Point mass EEs) ( [3], [4], [5])  

Several research papers have addressed the issue of determining cable tensions in 

redundant CSPRs by introducing certain techniques ([6], [7], [11], [8], [12]). 

However, all these makes certain assumptions while determining the cable tensions. 

For examples [6] assumes the variance between cable tensions to be a minimum. [7], 

[11], [12] assume static/quasi-static equilibrium. This issue, together with 

disadvantages of CSPRs discussed above acts as a hindrance to find suitable dynamic 

trajectories for CSPRs. This demands development of techniques that by-passes the 

cable tension determination while ensuring positive tension in cables throughout the 

trajectory.  

 

1.2 Existing system and problem statement 

 

Accurate determination of many factors affects the precise calculation of cable 

tensions. In practice, cables with low to very low elastic properties are used for the 

operations. Due to this even a small error in determining the cable lengths can greatly 

affect the calculation of cable tensions. Among other factors that lead to errors in 

determination of cable tensions sagging of cables during low payload ([15]) is 

significant and due to this the cable system will have time delays while attaining their 

equilibrium strains in dynamic operations.    
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In fully actuated 3DOF point mass - spatial robots, EE is controlled by three winches 

located in three points in space, generally at the same height. In this case, the footprint 

of workspace of EE is limited to the horizontal plane projected to ground by the 

triangle connecting three winches. In practice, most spatial operations such as picking 

and placing objects (For examples in warehouses, fuel-yards, etc.) demand a 

rectangular footprint. In this case, when the 4th actuator is added a point mass EE will 

be redundantly actuated. Consider the schematic of a 3DOF (spatial) 4-cable 

configuration in figure 1.2. The workspace is bounded by the vertical projection of 

the rectangle A1A2A3A4  on a horizontal plane vertically down to its rectangular 

footprint on another horizontal plane at a distance of zmax. EE (at variable position B) 

is controlled by extracting and retracting cables BA1,  BA2, BA3 and BA4 by winches, 

each at A1, A2, A3, and A4. Lengths of the cable are l1 , l2 , l3 and l4 and vectors from 

EE to winches are L1, L2, L3 and L4 respectively. Position vector of EE with reference 

to fixed origin is (x, y, z)T where x, y  and z are the distances from origin to EE in 

respective directions X, Y and Z. If the magnitudes of tensions in cables are T1, T2, 

T3 andT4, equation of motion (F=ma) of EE can be written as: 

∑
𝐿𝑖

𝑙𝑖
𝑇𝑖

4
𝑖=1 − 𝑔 = 𝑚(𝑥

..
𝑦
..

𝑧
..
)𝑇where (𝑥

..
𝑦
..

𝑧
..
)𝑇  is the acceleration of EE. 

(

−𝑥
−𝑦

𝑧𝑚𝑎𝑥 − 𝑧
)

𝑇1

𝑙1
+ (

𝑥𝑚𝑎𝑥 − 𝑥
−𝑦

𝑧𝑚𝑎𝑥 − 𝑧
)

𝑇2

𝑙2
+ (

𝑥𝑚𝑎𝑥 − 𝑥
𝑦𝑚𝑎𝑥 − 𝑦
𝑧𝑚𝑎𝑥 − 𝑧

)
𝑇3

𝑙3
+ (

−𝑥
𝑦𝑚𝑎𝑥 − 𝑦
𝑧𝑚𝑎𝑥 − 𝑧

)
𝑇4

𝑙4
− 𝑔 = 𝑚 (

𝑥
..

𝑦
..

𝑧
..
)       

 (1) 

Where, 𝑙1 =
1

√(−𝑥)2+(−𝑦)2+(𝑧𝑚𝑎𝑥−𝑧)2
; 

              𝑙2 =
1

√(𝑥𝑚𝑎𝑥−𝑥)2+(−𝑦)2+(𝑧𝑚𝑎𝑥−𝑧)2
; 

              𝑙3 =
1

√(𝑥𝑚𝑎𝑥−𝑥)2+(𝑦𝑚𝑎𝑥−𝑦)2+(𝑧𝑚𝑎𝑥−𝑧)2
, and 

             𝑙4 =
1

√(−𝑥)2+(𝑦𝑚𝑎𝑥−𝑦)2+(𝑧𝑚𝑎𝑥−𝑧)2
. 

Three equations can be obtained by separating out the vector elements of equation (1) 

into their respective directions. Yet, there are four unknown magnitudes of cable 
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tensions. This makes the tensions of cables indeterminate although all the 

accelerations and positions are known. This  makes the design of feasible dynamics 

for the motion a challenge.   

  

1.3 Objective 

 

Objective of this research thesis is to introduce and analyze an analytical model to 

circumvent the cable tension determination problem using a concept termed as 

‘Feasible Acceleration Diagram’ and design a time optimized point – to –point 

straight line trajectory with smooth dynamics for redundantly actuated 2DOF (planer) 

and 3DOF (spatial) CSPRs while ensuring positive cable tensions.  

 

Organization of the remaining chapters of this thesis are as follows.  

 

Chapter-2: The concept of Feasible Acceleration Diagrams (FAD) will be introduced. 

Conditions will be developed for feasible accelerations. 

 

Chapter-3: A suitable model will be developed for point – to – point, straight line 

trajectory with smooth dynamics. This model will be applied in conditions developed 

in Chapter-2.  

 

Chapter-4: An experiment will be carried out to verify the theories developed and the 

results will be simulated. A numerical method will be used to verify the validity of 

optimal duration time. 

 

Chapter-5: Discusses and summarizes the results. Areas of future works are discussed.  
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2. FEASIBLE ACCELERATIONS DIAGRAM (FAD) 

In this section first, the concept of Feasible Acceleration Diagrams (FAD) will be 

introduced using a 2DOF, 2-Cable configuration. This section will then illustrate the 

FAD model with respect to 2 DOF – 3 cable and 3DOF (spatial) – 4 cable 

configurations. 

2.1 Feasible acceleration diagram for 2 DOF (planar), 2-Cable configuration 

  

Figure 2.1: 2DOF (Planar), 2Cable configuration 

 

A2 (xmax,zmax)   A1 (0,zmax) 

 

T2 T1 

mg 

a 

X 

Z 

B(x, z) 

O (0,0,0) 

g 

a 

amax,1 

amax,2  

 

 

 
 

 

Figure 2.2: 2DOF, 2Cable Feasible Acceleration Diagram 
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A theory comparable to below described has been used in [9], [14] while constructing 

Wrench feasible Workspaces. Consider the 2 DOF - 2 Cable configuration shown in 

Figure 2.1. This shows a point mass load (EE) controlled by two cables actuated by 

two spools fixed to a stationary base in a horizontal line. The position of EE with 

reference to the fixed reference frame X-Z shown is (x, z). Positions of spools: A1 and 

A2 from where the cables 1 and 2 are extending, are given by (0, zmax) and (xmax, zmax) 

respectively. Horizontal line A1A2 and vertical line A1O are two adjacent sides of the 

rectangular workspace of EE, whereas OA2 is its diagonal. Mass of the load (EE) is 

m, and the gravitational force is mg. At time = t, tensions of cables attached to EE are 

T1 and T2 as shown. EE is experiencing an acceleration, ‘a’ in the direction shown due 

to the forces. Note that any force (F) acting on EE contributes a vector 
𝐹

𝑚
 to build up 

the resultant acceleration vector a. Thus, the vectors 
𝑇1

𝑚
 , 

𝑇2

𝑚
 and g (=

𝑚𝑔

𝑚
) are the 

components in acceleration of EE contributed by two cable forces and the 

gravitational force respectively. 

 

Figure 2.2 shows the corresponding vector diagram of these acceleration vectors, in 

thick colored lines. The diagram also shows the maximum allowable acceleration 

vectors 
𝑇1,𝑚𝑎𝑥

𝑚
 and 

𝑇2,𝑚𝑎𝑥

𝑚
 the cables are capable of providing due to limitations in safe 

cable tensions and/or torque limits of the motors. It should be noted that 
𝑇1

𝑚
 and 

𝑇2

𝑚
 shall 

essentially lie within 
𝑇1,𝑚𝑎𝑥

𝑚
 and 

𝑇2,𝑚𝑎𝑥

𝑚
 respectively. g is fixed. It should be noted that 

the boundary of set of feasible accelerations are the edges of the parallelogram 

generated by 
𝑇1,𝑚𝑎𝑥

𝑚
 and 

𝑇2,𝑚𝑎𝑥

𝑚
. In other words, if the acceleration vector lies inside this 

parallelogram, there exists a combination of feasible cable tensions that provides this 

acceleration. The position vector of any point inside the diagram relative to point (0, 

0) shows a feasible resultant acceleration. Two sample maximum accelerations are 

shown in the diagram as amax,1 and amax,2 to illustrate this. Diagram in figure 2.2 will 

here in after be referred to as Feasible Accelerations Diagram (FAD). Since the 

position of EE is identified in relation to the fixed X-Z reference, geometry of FAD 

can be known with respect to x, y, xmax, zmax, and magnitudes of  
𝑇1,𝑚𝑎𝑥

𝑚
 and  

𝑇2,𝑚𝑎𝑥

𝑚
 . 
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Generally, the magnitudes of both T1,max and T2,max can be taken as a single value Tmax 

since the allowable tensions in cables do not change from cable to cable. In Cartesian 

coordinates, each point in the plane of the diagram refers to a specific (
𝑑2𝑥

𝑑𝑡2, 
𝑑2𝑧

𝑑𝑡2). This 

will herein after be designated as (�̈�, �̈�). Thus, all the boundary lines limiting the 

feasible accelerations can be defined as a linear relationship between �̈� 𝑎𝑛𝑑 �̈� 

provided the values of x, y, xmax, zmax and magnitudes of  
𝑇1,𝑚𝑎𝑥

𝑚
 and 

𝑇2,𝑚𝑎𝑥

𝑚
. Throughout 

any feasible trajectory, all the (�̈�, �̈�) points corresponding to accelerations should lie 

inside the FAD. Provided the EE will not move vertically beyond the horizontal line 

connecting the spools, this is the necessary and adequate condition for a feasible 

trajectory. A sample feasible curve of (�̈�, �̈�).  is also shown in figure 2.2.  

 

General inequality corresponding to boundary lines 1D and 2D  is given below. 

Deduction of these inequalities are shown in Appendix A. 

�̈� =  
(𝑧𝑚𝑎𝑥−𝑧)

(𝑝𝑖−𝑥)
�̈� − 𝑔        (2) 

where p1 = 0; p2 = xmax; and i indicates the direction of each line in FAD which 

corresponds to directions of cables.  

Allowable tensions in cables can be designed in very high values, such that the values 

of  
𝑇1,𝑚𝑎𝑥

𝑚
 and 

𝑇2,𝑚𝑎𝑥

𝑚
. are very large compared to gravitational acceleration, g. 

Therefore, the lower tension limits will dominate the feasibility of trajectories. Due to 

this, and since the scope of this thesis is limited to ensuring ‘positive cable tensions’ 

throughout the trajectories, equations of lines corresponding to boundaries 1U and 2U 

will not be analyzed herein. 

 

2.2 Feasible accelerations diagram for 2DOF (planar), 3-Cable configuration 

 

When a redundant 3rd cable is added into the 2-DoF (planar) cable system as (see 

figure 2.3) it will modify the FAD as shown in figure 2.4. The configuration is similar 

to that in section 2.1 except the addition of another cable to EE from a controlling 

spool which lies between A1 and A2.  



9 
 

 

 

 

 

 

 

 

 

 

 

` 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this case, the FAD becomes a hexagon of three parallel couples of edges on 

opposite sides. It should be noted that if the acceleration vector lies inside the upper 

angle generated by 
𝑇1,𝑚𝑎𝑥

𝑚
 and 

𝑇3,𝑚𝑎𝑥

𝑚
 at all times during a trajectory, there exists a 

combination of non-negative cable tensions which can provide this acceleration. Thus, 

the accelerations are feasible, assuming the upper tension limits are significantly high. 

In case the acceleration is completely inside the angle {i.e. (�̈�, �̈�) is inside the angle 

and does not lie on its edges} there are infinite number of such combinations. 

Figure 2.3: 2DOF, 3-Cable Configuration 
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Figure 2.4: 2DOF, 3 Cable Feasible Acceleration Diagram 
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Conversely, if (�̈�, �̈�).  lies outside the angle such accelerations are not feasible. 

Therefore, (�̈�, �̈�). being inside the edges of this angle is the necessary and sufficient 

condition for feasible accelerations. Inequalities corresponding to these limits have 

the same form as (1), where p1 = 0, p2 = x’ and p3 = xmax. Note that, in this setting it 

is suffice to maintain only the inequalities imposed by lines 1D and 3D at all times. 

 

2.3 Feasible acceleration diagram for 3-DOF (spatial), 3-Cable configuration 

 

 

Figure 2.5: 3DOF (Spatial), 3-Cable configuration 
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Figure 2.6: 3DOF, 3-Cable Feasible Acceleration Diagram 
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Consider the 3 DOF (Spatial), 3Cable configuration shown in Figure 2.5. This figure 

shows a point mass load (EE) at variable point B controlled by three cables actuated 

by three spools each fixed at corners A1, A2 and A3 of a stationary triangular base. 

This base lies on a horizontal plane. The workspace is limited to the trapezium 

generated by projecting triangle A1A2A3 vertically down to its triangular footprint on 

another horizontal plane at a distance zmax. Origin of the fixed reference frame is on 

this plane vertically below A1. X axis is parallel to A1A2. Z-axis is along OA1. Position 

of EE with reference to the fixed reference frame is (x. y, z). Positions of A1, A2 and 

A3 are given by (0, 0, zmax), (xmax, 0, zmax) and (x’, ymax, zmax) respectively. Mass of 

the load (EE) is m. Gravitational force is mg. At time = t, tensions of cables attached 

to EE are T1, T2 and T3 as shown. EE is experiencing an acceleration, a in the direction 

shown due to the forces.  

FAD of above configuration is a parallelepiped, which is a three-dimensional 

figure.  This is shown in figure 2.6. Maximum acceleration components the cables are 

capable of providing are shown in dotted lines. Respective acceleration component 

vectors are shown in thick colored lines. In this case, the boundary of set of feasible 

accelerations, are the faces of the parallelepiped generated by 
𝑇1,𝑚𝑎𝑥

𝑚
 ,

𝑇2,𝑚𝑎𝑥

𝑚
 and 

𝑇3,𝑚𝑎𝑥

𝑚
 vectors. Position vector of any point inside the parallelepiped relative to point 

(0, 0, 0) shows a feasible resultant acceleration. As the position of EE is identified in 

relation to the fixed X-Y-Z reference frame, geometry FAD will be known with 

respect to x, y, z, xmax, ymax, zmax and the magnitudes of 
𝑇1,𝑚𝑎𝑥

𝑚
 ,

𝑇2,𝑚𝑎𝑥

𝑚
 and 

𝑇3,𝑚𝑎𝑥

𝑚
 . Each 

point in the diagram refers to a specific (
𝑑2𝑥

𝑑𝑡2,
𝑑2𝑦

𝑑𝑡2 ,
𝑑2𝑧

𝑑𝑡2), which will herein after be 

referred to as (�̈�, �̈�, �̈�). Thus, all the boundary lines limiting the feasible accelerations 

can be defined as a linear relationship between �̈�, �̈� and  �̈� provided the values of x, 

y, u, v, and magnitudes of 
𝑇1,𝑚𝑎𝑥

𝑚
 ,

𝑇2,𝑚𝑎𝑥

𝑚
 and 

𝑇3,𝑚𝑎𝑥

𝑚
. Inequalities for this 3-DOF - 3 

cable configuration will not be developed since the purpose of this thesis is to analyze 

4-cable scenario for 3DOF spatial scenario, which will be discussed next. 
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2.4 Feasible acceleration diagram for 3-DOF (spatial), 4-Cable configuration 

Consider the 3 DOF (Spatial), 4Cable configuration shown in Figure 2.7. This shows 

a point mass load (EE) in variable point B controlled by four cables actuated by four 

spools each fixed at corners A1, A2, A3 and A4 of a stationary rectangular base in a 

horizontal plane.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

g 
 

 

 
 

 

 

 

Figure 2.8: 3DOF, 4-Cable Feasible Acceleration Diagram 

Figure 2.7: 3DOF (Spatial), 3Cable configuration 

 

T2 

A2(xmax, 0, zmax) 

T1 

mg 

a 

B (x, y, z) 
Z 

T3 

Y 

A3(xmax, ymax, zmax) A4 (0, ymax, zmax) 

A1 (0, 0, zmax) 

T4 
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The workspace is limited to the cuboid generated by projecting A1A2A3A4 vertically 

down to its rectangular footprint on another horizontal plane at a distance zmax. Origin 

of the fixed reference frame lies on this plane vertically below A1. X-axis is parallel 

to A1A2, Z-axis is along OA1. The position of EE with reference to the fixed reference 

frame is given by (x. y, z). Positions of are A1, A2, A3 and A4 are given by (0, 0, zmax), 

(xmax, 0, zmax), (xmax, ymax, zmax) and (0, ymax, zmax) respectively. Mass of the load (EE) 

is m, and the gravitational force is mg. At time = t, tensions of cables attached to EE 

are T1, T2 , T3 and T4. EE is experiencing an acceleration a in the direction shown due 

to the forces.  

The FAD in this configuration is given in figure 2.8. This figure shall be constructed 

by adding 8 additional edges in FAD of 3DoF, 3-cable case (see Figure 2.6) starting 

from each of its vertices. The resulting solid is a polyhedron with 12 faces. This figure 

is called a dodecahedron. Each face of this polyhedron is a parallelogram. The number 

of surfaces can be obtained by calculating the permutation: 

𝑝2
(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟𝑠)

. Lower bounds of this FAD resemble an inverted pyramid 

having edges 
𝑇1,𝑚𝑎𝑥

𝑚
 ,

𝑇2,𝑚𝑎𝑥

𝑚
,

𝑇3,𝑚𝑎𝑥

𝑚
  and 

𝑇4,𝑚𝑎𝑥

𝑚
. 

In this case, If the acceleration vector lies inside the said inverted pyramid (whose 

edges may extend indefinitely), there exists a combination of non-negative cable 

tensions that can provide this acceleration. Further, if the acceleration vector is 

completely inside the inverted pyramid {i.e. (𝑥
..
, 𝑦

..
, 𝑧

..
) lie within the surfaces but not on 

any surface, there are infinite number of such combinations. Conversely, if the 

acceleration vector breaches these boundary limits at least one tension shall become 

negative to provide that acceleration. Therefore, (𝑥
..
, 𝑦

..
, 𝑧

..
) being inside the edges of the 

said inverted pyramid at all times during the trajectory is the necessary and sufficient 

condition for feasible accelerations. 

Inequalities corresponding to the required conditions are given below. Deduction of 

corresponding equations are given in Part-2 of Appendix A. 

𝑧
..

≥ (
𝑧𝑚𝑎𝑥−𝑧

−𝑦
)𝑦

..
− 𝑔       (3)  
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𝑧
..

≥ (
𝑧𝑚𝑎𝑥−𝑧

𝑥𝑚𝑎𝑥−𝑥
)𝑥

..
− 𝑔       (4) 

𝑧
..

≥ (
𝑧𝑚𝑎𝑥−𝑧

𝑦𝑚𝑎𝑥−𝑦
)𝑦

..
− 𝑔       (5) 

𝑧
..

≥ (
𝑧𝑚𝑎𝑥−𝑧

−𝑥
)𝑥

..
− 𝑔       (6) 

Note that, in order to remain within the lower bounds of FAD (inside the ‘inverted 

pyramid’), all inequalities imposed in (3) – (6) shall be satisfied at all times.  
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3. FORMATION OF A MODEL FOR POINT TO POINT 

STRAIGHT LINE TRAJECTORY WITH SMOOTH 

DYNAMICS 

In this section, a suitable kinematical model will be developed for point – to – point, 

straight line trajectory with smooth dynamics. This will then be applied in the 

inequalities developed in section 2 to use as a basis for time optimization. 

3.1 Basic requirements  

It shall be noted that a point to point straight line trajectory used for pick and place 

type of operations shall have following characteristics 

1. Dynamics of the trajectory shall be smooth. In other words, the 3rd derivative 

of displacement (jerk) shall have a finite value at all times. For this, the 

acceleration of EE as well as the cables shall be continuous.  

2. Both at the start and the end of the traverse, accelerations and velocities shall 

be zero. Therefore, 

𝑋
..

(0) = 0 ; 𝑋
.

(0) = 0 ; 𝑋
..

(𝑇) = 0 ; 𝑋
.

(𝑇) = 0 , where X(t) is the position 

vector (𝑥, 𝑦, 𝑧)𝑇 of EE at time = t. 

3. In order to remain in a straight-line, magnitudes of velocity components 

parallel to each reference axis X, Y and Z should be same at any given time. 

Thus, �̇�(𝑡) = �̇�(𝑡) = �̇�(𝑡) 

 

3.2 Formation of kinematics 

To satisfy above basic requirements and to have a provision to optimize the duration 

of trajectory a scenario where EE is traversing in a straight line from point B0 to point 

B1 is now discussed. In order to satisfy these conditions stipulated, the kinematics of 

motion is modelled as; 

 𝑋(𝑡) = 𝑋0 + (𝑋1 − 𝑋0)𝑠(𝑡)         (7) 

where 𝑠(𝑡)̈  is given by table 3.1, for 0 ≤ 𝑡 ≤ 𝑇and 

for 2DoF (Planar) case: 

𝑋0: Position vector of the initial position of EE, B0: [𝑥0 𝑧0]𝑇 
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𝑋1: Position vector of the final position of EE, B1: [𝑥1 𝑧1]𝑇, and  

for 3DoF (Spatial) case: 

𝑋0: Position vector of the initial position of EE, B0: [𝑥0 𝑦0 𝑧0]𝑇 

𝑋1: Position vector of the final position of EE, B1: [𝑥1 𝑦1 𝑧1]𝑇, and 

 

Table 3.1: 𝑠
..
(𝑡) Values of Displacement function 

Range of time 0 ≤ 𝑡 <
𝑝

2
 

𝑝

2
≤ 𝑡 < 𝑝 𝑝 ≤ 𝑡 <

𝑇 + 𝑝

2
 

𝑝 ≤ 𝑡 < 𝑇 

𝒔
..
(𝒕) 8𝑡

𝑝2𝑇
 

8(𝑝 − 𝑡)

𝑝2𝑇
 −

8(𝑡 − 𝑝)

𝑇(𝑇 − 𝑝)2
 −

8(𝑇 − 𝑡)

𝑇(𝑇 − 𝑝)2
 

 

Variable p is introduced to fine tune the optimization. The use of this variable will be 

justified while optimizing the duration in chapter 4.  Graph in figure 3.1 shows the 

behavior of 𝑠
..
(𝑡). Values on table 3.1 have been calculated using this graph. Maximum 

acceleration, has been set to value 
4

𝑝𝑇
 by reverse calculating it to ensure s(T) = 1.  This 

model will be referred to as the S-Model hereafter.  

 

 

 

By differentiating (7), 

Figure 3.1: Behavior modelled for )(
..

ts  



17 
 

𝑋
.

(𝑡) = (𝑋1 − 𝑋0)𝑠
.
(𝑡), and       (8) 

𝑋
..

(𝑡) = (𝑋1 − 𝑋0)𝑠
..
(𝑡)       (9) 

MATLAB MuPAD is used to calculate the functions: 𝑠
.
(𝑡) and𝑠 (𝑡). These functions, 

as well as Functions obtained for �̈�(𝑡), 𝑠
.
(𝑡), and 𝑠(𝑡) are given in table 3.2. 

 

Table 3.2: Behavior of 𝑠
..
(𝑡), 𝑠

.
(𝑡), and 𝑠(𝑡) 

 𝒔
..
(𝒕) 𝒔

.
(𝒕) 𝒔(𝒕) 

 

0 ≤ 𝑡 <
𝑝

2
 

   

𝑝

2
≤ 𝑡 < 𝑝 

 
  

𝑝 ≤ 𝑡 <
𝑇 + 𝑝

2
 

   

𝑝 ≤ 𝑡 < 𝑇 

   

 

Values of 𝑠
..
(𝑡), 𝑠

.
(𝑡) and 𝑠(𝑡) for changing points of acceleration gradient are given in  

Table 3.3. 

 

Table 3.3: Values of 𝑠
..
(𝑡), 𝑠

.
(𝑡) and 𝑠(𝑡) at changing points of acceleration gradient 

 𝒔
..
(𝒕) 𝒔

.
(𝒕) 𝒔(𝒕) 

𝑡 = 0 0 0 0 

𝑡 =
𝑝

2
 

   

𝑡 = 𝑝 0 

  

𝑡 =
𝑇 + 𝑝

2
 

   

𝑡 = 𝑇 0 0 
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Behavior of 𝑠
..
(𝑡), 𝑠

.
(𝑡) and 𝑠(𝑡) for p = 2.5, and T = 10 are given in figures 3.2 (a), 3.2 

(b) and 3.2 (c) respectively. 

 

 

Figure 3.2 (a): Behavior of 𝑠
..
(𝑡) at sample values 

 

 

Figure 3.2 (b.) :Behavior of 𝑠
.
(𝑡) at sample values 

 

Figure 3.2 (c.): Behavior of acceleration 𝑠(𝑡) at sample values  

)(
.

ts  

)(
..

ts  

)(ts  
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Figure 3.3: Illustration of P-points 

3.3 Formation of time optimization strategy 

The sample of s(t) curve obtained above in figure 3.3 will be used to illustrate the 

following: 

Consider the tangents of the function 𝑠(𝑡) drawn at points: R1, R3, R5, R7 and R9 for 

any 𝑠(𝑡) vs. t curve. These points shall be so selected such that the tangents to curve  

Table 3.4: Values of t and )(ts at changing points of acceleration gradient  

(Odd ‘R’-points) 

Point t s 

R1 0 𝑝

6𝑇
 

R3 4

𝑇𝑝
 

𝑝

6𝑇
 

R5 𝑝 𝑝

𝑇
 

R7 𝑇 + 𝑝

2
 

𝑝

6𝑇
+

5

6
 

R9 T 1 

 

R1 

R2 
R3 

R4 

R5

R6
R7

R8 R9S(t) 
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toward either direction (t+ or t-) from these points are either continuously increasing 

up to the next point, or continuously decreasing. Since the turning points of 𝑠
..
(𝑡) are 

ideal points satisfying this requirement, they have been selected as these points. 

Therefore, R2, R4, R6, and R8 are the points where each above tangent intersects the 

subsequent tangent. Since 𝑠(𝑡) curve is continuous, and tangents are selected in the 

manner described above, it is clear that curve s(t) always lies inside the triangles (R1, 

R2, R3), (R3, R4, R5), (R5, R6, R7) and (R7, R8, R9). Since all 𝑠(𝑡) values and the 

respective gradients of tangents {𝑠
.
(𝑡)} of corresponding points R1, R3, R5, R7, R9 are 

already known, points R2, R4, R6, R8 can be found. Since ti (i=1..9) are now known, 

corresponding values of 𝑠
..
(𝑡) (i=1..9) can also be calculated.  

 

Table 3.5: Q-points 

 

i 

 

t 

 

𝒔(𝒕) 

 

𝒔
..
(𝒕) 

1 0 0 

 

0 

2 𝑝

3
 0 8

3𝑇𝑝
 

3 𝑝

2
 

𝑝

6𝑇
 

4

𝑇𝑝
 

4 2𝑝

3
 

𝑝

3𝑇
 

8

3𝑇𝑝
 

5 𝑝 𝑝

𝑇
 0 

6 𝑇 + 2𝑝

3
 

2𝑇 + 𝑝

3𝑇
 −

8

3𝑇(𝑇 − 𝑝)
 

7 𝑇 + 𝑝

2
 

𝑝

6𝑇
+

5

6
 −

4

𝑇(𝑇 − 𝑝)
 

8 2𝑇 + 𝑝

3
 

1 
−

8

3𝑇(𝑇 − 𝑝)
 

9 𝑇 1 0 

 



21 
 

It can be proven that since 𝑠
..
(𝑡) is piecewise linear in t between odd points Ri (i = 1, 

3, 5, 7, 9) the curve drawn 𝑠
..
(𝑡) vs. 𝑠(𝑡) shall also lie inside the respective triangles 

(Q1, Q2, Q3), (Q3, Q4, Q5), (Q5, Q6, Q7) and (Q7, Q8, Q9) at all times, where Qi = 

{𝑠 (𝑡),𝑠
..
(𝑡)}, i=1..9. Proof of this is given in Appendix B. Values of all Q points, 

together with corresponding ti values are given in table 3.5.  

 

Figure 3.4 shows the plot of 𝑠
..
(𝑡) vs. 𝑠(𝑡) plot together with relevant triangles for  

p=2.5; T=10. This figure will be referred to illustrate the following:

 

 

 

With regard to the values of the points, following gradients could be found: 

(i.) Gradient between Q3 and Q4 is −
24

5𝑝2, whereas gradient between Q3 

and Q5 is−
4

𝑝2. Therefore |gradient (Q3 and Q5)| ≤ |gradient (Q3 and 

Q4)|, and both gradients are negative.  

(ii.) Gradient between Q5 and Q6 is −
4

(𝑇−𝑝)2
, whereas gradient between 

Q5 and Q7 is −
24

5(𝑇−𝑝)2. Therefore |gradient (Q3 and Q5)| ≤ |gradient 

(Q3 and Q4)|, and both gradients are negative. 

Q1 

Q2 

Q3 

Q4 

Q5 

Q6 

Q7 Q8

 

Q9

 

Figure 3.4: Illustration of Q-points 

 

)(
..

ts  



22 
 

(iii.) Gradient between Q1 and Q5 = 0, whereas gradient between Q1 and 

Q7 is −
24

5(5𝑇+𝑝)(𝑇−𝑃)
. 

(iv.) Gradient between Q5 and Q9 =−
24

(6𝑇−𝑝)𝑃
, whereas gradient 

between Q5 and Q9 is 0.  

Therefore, in case the curve 𝑠
..
(𝑡) vs.𝑠 (𝑡) shall be conditioned (tuned by varying p and 

T values) such that, it shall not lie outside a given straight line on the above diagram, 

points Q4, Q5 and Q 6 can be ignored.  

Following characteristics should also be noted with respect to a plot between𝑠
..
(𝑡) 

vs.𝑠 (𝑡),  

(i.) Corresponding values of s-axis of the graph cannot be extended or 

retracted as whole, since the initial and final points are fixed at s = 0 and s 

= 1 respectively. However, by means of adjusting p and T, s-axis values 

can be moved within the range of 0 and 1.  

(ii.) Area covered by the top part of a 𝑠
..
(𝑡) vs.𝑠 (𝑡) graph is equal to :  

∫ 𝑠
..
𝑑𝑠

(𝑝 𝑇)⁄

0
= ∫

𝑑𝑣

𝑑𝑡
(𝑣. 𝑑𝑡)

(2 𝑇)⁄

0
= ∫ 𝑣𝑑𝑣

(2 𝑇)⁄

0
= 2 𝑇2⁄    (10) 

Where 𝑣 =
𝑑𝑠

𝑑𝑡
.  

Value found in (10) is equal to half of the square of velocity gained during 

acceleration. Note that since velocity gained during acceleration is exactly equal to 

velocity seized during deceleration, area covered by the bottom part of the graph is 

equal to the negative value of the area covered by the top part of the graph. In figure 

3.4, area of the  polygon Q1Q2Q3Q5 is equal to 
40

18𝑇2
; which is an approximation of 

actual value 
2

𝑇2. Area of polygon Q5Q7Q8Q9 is also equal to 
40

18𝑇2 with a negative sign. 

Note that, the value 
40

18𝑇2 is a variable in T (and T only) regardless of any other 

characteristic of the graph. Higher this value, lesser the value of T, which is the total 

duration. Therefore, optimizing (minimizing) the total duration will require 

maximizing the area Q1Q2Q3Q5. Any constraint imposed on increasing this area 

should be considered during this maximization. Since area Q5Q7Q8Q9 is also 

increasing during such a maximization any constraint(s) imposed on maximizing area 
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Q5Q7Q8Q9 should also be considered simultaneously during such a maximization.  

 

3.4 Application of S-Model in FAD and obtaining results 

It was emphasized in chapter 2, that the kinematics of EE {𝑋
..

(𝑡) vs. 𝑋(𝑡)} shall be 

limited by all the lower bounds of FAD in order to maintain positive tension in cables 

at all times. To find these limitations with respect to the behavior of EE developed S-

Model will now be applied in Equations of lower bounds of respective FADs for 2-

DOF (Planar), 3-Cable and 3-DOF (Planar), 4-Cable configurations. 

3.4.1 Application of S-Model in 3-DOF (spatial), 4-Cable configuration 

First, the model will be applied on spatial – 4 cable case. 

Substituting (7) and (9) in (3) to (6), following equations can be obtained: 

(𝑧1 − 𝑧0)𝑠
..

≥
𝑧𝑚𝑎𝑥−{𝑧0+(𝑧1−𝑧0)𝑠}

−{𝑦0+(𝑦1−𝑦0)𝑠}
(𝑦1 − 𝑦0)𝑠

..
− 𝑔    (11) 

(𝑧1 − 𝑧0)𝑠
..

≥
𝑧𝑚𝑎𝑥−{𝑧0+(𝑧1−𝑧0)𝑠}

𝑥𝑚𝑎𝑥−{𝑥0+(𝑥1−𝑥0)𝑠}
(𝑥1 − 𝑥0)𝑠

..
− 𝑔    (12) 

(𝑧1 − 𝑧0)𝑠
..

≥
𝑧𝑚𝑎𝑥−{𝑧0+(𝑧1−𝑧0)𝑠}

𝑦𝑚𝑎𝑥−{𝑦0+(𝑦1−𝑦0)𝑠}
(𝑦1 − 𝑦0)𝑠

..
− 𝑔    (13) 

(𝑧1 − 𝑧0)𝑠
..

≥
𝑧𝑚𝑎𝑥−{𝑧0+(𝑧1−𝑧0)𝑠}

−{𝑥0+(𝑥1−𝑦0)𝑠}
(𝑥1 − 𝑥0)𝑠

..
− 𝑔    (14) 

Note that, values −{𝑦0 + (𝑦1 − 𝑦0)𝑠}and −{𝑥0 + (𝑥1 − 𝑥0)𝑠}are always negative, 

whereas values 𝑥𝑚𝑎𝑥 − {𝑥0 + (𝑥1 − 𝑥0)𝑠}and 𝑦𝑚𝑎𝑥 − {𝑦0 + (𝑦1 − 𝑦0)𝑠}are always 

positive since the EE is inside the footprint of robot. Considering this, following 

inequalities can be obtained.  

𝑠(𝑡)
..

≤ 𝑔
(𝑦1−𝑦0)

𝐾1
𝑠(𝑡) + 𝑔

𝑦0

𝐾1
for K1 >0, and      (15) 

𝑠(𝑡)
..

≥ 𝑔
(𝑦1−𝑦0)

𝐾1
𝑠(𝑡) + 𝑔

𝑦0

𝐾1
for K1 <0 

where 𝐾1 = [(𝑧1 − 𝑧0)(−𝑦0) − (𝑧𝑚𝑎𝑥 − 𝑧0)(𝑦1 − 𝑦0)] 

 

𝑠(𝑡)
..

≥ 𝑔
(𝑥1−𝑥0)

𝐾2
𝑠(𝑡) − 𝑔

(𝑥𝑚𝑎𝑥−𝑥0)

𝐾2
for K2 >0, and     (16) 
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𝑠(𝑡)
..

≤ 𝑔
(𝑥1−𝑥0)

𝐾2
𝑠(𝑡) − 𝑔

(𝑥𝑚𝑎𝑥−𝑥0)

𝐾2
for K2 <0 

where𝐾2 = [(𝑧1 − 𝑧0)(𝑥𝑚𝑎𝑥 − 𝑥0) − (𝑧𝑚𝑎𝑥 − 𝑧0)(𝑥1 − 𝑥0)] 

 

𝑠(𝑡)
..

≥ 𝑔
(𝑦1−𝑦0)

𝐾3
𝑠(𝑡) − 𝑔

(𝑦𝑚𝑎𝑥−𝑦0)

𝐾3
for K3 >0, and     (17) 

𝑠(𝑡)
..

≤ 𝑔
(𝑦1−𝑦0)

𝐾3
𝑠(𝑡) − 𝑔

(𝑦𝑚𝑎𝑥−𝑦0)

𝐾3
for K3 <0 

where𝐾3 = [(𝑧1 − 𝑧0)(𝑦𝑚𝑎𝑥 − 𝑦0) − (𝑧𝑚𝑎𝑥 − 𝑧0)(𝑦1 − 𝑦0)] 

 

𝑠(𝑡)
..

≤ 𝑔
(𝑥1−𝑥0)

𝐾4
𝑠(𝑡) + 𝑔

𝑥0

𝐾4
for K4 >0, and      (18) 

𝑠(𝑡)
..

≥ 𝑔
(𝑥1−𝑥0)

𝐾4
𝑠(𝑡) + 𝑔

𝑥0

𝐾4
for K4 <0 

where𝐾4 = [(𝑧1 − 𝑧0)(−𝑥0) − (𝑧𝑚𝑎𝑥 − 𝑧0)(𝑥1 − 𝑥0)] 

 

3.4.2 Application of S-Model in 2-DOF (Planar), 3-Cable configuration 

Substituting (7) and (9) in (2) following equation could be obtained.  

(𝑧1 − 𝑧0)𝑠
..

≥
𝑤−{𝑧0−(𝑧1−𝑧0)𝑠}

𝑝𝑖−{𝑥0−(𝑥1−𝑥0)𝑠}
(𝑥1 − 𝑥0)𝑠

..
− 𝑔    (19) 

where i refers to the cables’ directions and p1 = 0, p2 = u1, p3 = u2. Note that, the value 

of 𝑝𝑖 − {𝑥0 − (𝑥1 − 𝑥0)𝑠} is always negative for p1 = 0; whereas, the value of it is always 

positive for p2 = u1, p3 = u2. Further, according to the configuration (figure 2.5), and 

corresponding FAD (figure 2.6), it is sufficient to satisfy only the inequalities for i = 

1 and i = 3.  

This yields to development of two inequalities:- 

𝑠(𝑡)
..

≤ 𝑔
(𝑥1−𝑥0)

𝐾1
𝑠(𝑡) + 𝑔

𝑥0

𝐾1
for K1>0, and     (20) 

𝑠(𝑡)
..

≥ 𝑔
(𝑥1−𝑥0)

𝐾1
𝑠(𝑡) + 𝑔

𝑥0

𝐾1
 for K1<0 

where, 𝐾𝑖 = [(𝑧1 − 𝑧0)(−𝑥0) − (𝑧𝑚𝑎𝑥 − 𝑧0)(𝑥1 − 𝑥0)] 

and 

𝑠(𝑡)
..

≥ 𝑔
(𝑥1−𝑥0)

𝐾3
𝑠(𝑡) − 𝑔

(𝑥𝑚𝑎𝑥−𝑥0)

𝐾3
 for K1>0, and    (21) 
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𝑠(𝑡)
..

≤ 𝑔
(𝑥1−𝑥0)

𝐾3
𝑠(𝑡) − 𝑔

(𝑥𝑚𝑎𝑥−𝑥0)

𝐾3
 for K3<0 

where, 𝐾3 = [(𝑧1 − 𝑧0)(𝑥𝑚𝑎𝑥 − 𝑥0) − (𝑤 − 𝑧0)(𝑥1 − 𝑥0)] 

 

This shows that several inequalities can be developed for any given 2DOF 3-cable or 

3DOF 4-cable system. When these inequalities are plotted as �̈�(𝑡) vs. 𝑠(𝑡), they will 

represent straight-line boundaries. Further to these boundaries, additional boundaries 

can be introduced by considering safe acceleration and deceleration values for entire 

trajectory. All these boundaries shall be considered during maximization of area 

Q1Q2Q3Q5 discussed in section 3.4.1. This procedure will be discussed in detail during 

the experiment in Section-4. 
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4. EXPERIMENTAL SETUP 

This section illustrates the experiment carried out for 3DOF scenario by applying the 

theory developed in chapter 3. Results will be verified by simulations.  

 

Test Case: Generation of Time optimized smooth trajectory for EE from point B0 to 

point B1 in following 3DOF case.   

With reference to figure 1.2 and section 3.2, Coordinates of the four corners of the top 

base of the robot are: 

 𝐴1 ≡ (0, 0, 𝑧𝑚𝑎𝑥) ≡ (0,0,30), 

 𝐴2 ≡ (𝑥𝑚𝑎𝑥, 0, 𝑧𝑚𝑎𝑥) ≡ (45,0,30),  

 𝐴3 ≡ (𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥 , 𝑧𝑚𝑎𝑥) ≡ (45,30,30),  

 𝐴3 ≡ (0, 𝑦𝑚𝑎𝑥 , 𝑧𝑚𝑎𝑥) ≡ (0,30,30), 

Initial position of EE: 𝐵0 ≡ (𝑥0, 𝑦0, 𝑧0) ≡ (1,20,7) 

Final position of EE: 𝐵1 ≡ (𝑥1, 𝑦1, 𝑧1) ≡ (15,28,3),  

Maximum acceleration/deceleration (along the straight-line trajectory) allowed to 

avoid unsafe operations: 10 ms-2 

All dimensions are in standard SI units. Gravitational acceleration is 9.81 ms-2. 

 

4.1. Application of the theory developed and obtaining the parameters of the 

trajectory 

Four inequalities calculated by substituting values of test case-1 in inequalities (15) 

to (18) are given below: 

𝑠
..

≥ −0.755𝑠 − 1.887      (22) 

𝑠
..

≤ −0.276𝑠 + 0.867      (23) 

𝑠
..

≤ −0.350𝑠 + 0.438      (24) 

𝑠
..

≥ −0.432𝑠 − 0.031      (25) 

Total distance (d) of the trajectory calculated using coordinates of  𝐵0 and 𝐵1 = 16.613 

By equation (9), magnitude of acceleration can be calculated as below: 

|𝑋
..

(𝑡)| = |(𝑋1 − 𝑋0)𝑠
..
(𝑡)| ≤ 10 

√{(𝑥1 − 𝑥0)𝑠
..
(𝑡)}2 + {(𝑦1 − 𝑦0)𝑠

..
(𝑡)}2 + {(𝑧1 − 𝑧0)𝑠

..
(𝑡)}2  ≤ 10 
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By substituting coordinate values; 

𝑠
..
(𝑡) ≤ 0.602         (26) 

𝑠
..
(𝑡) ≥ −0.602        (27) 

Figure 4.1 shows the plot of inequalities (22) to (27) in �̈�(𝑡) vs. 𝑠(𝑡).   

 

 

Figure 4.1: plot of inequalities (22) to (27) in �̈�(𝑡) vs. 𝑠(𝑡) 

 

Area within boundaries of (24) and (25) satisfy all inequalities. Recalling the Q-points 

discussed in section-3. As mentioned in sections  3.41 and 3.4.2, in order to optimize 

T, area of polygon Q1Q2Q3Q5 (see figure 3.4) shall be maximized. Since boundary of 

(24) is limiting this maximization it shall be considered as the constraint on increasing 

the area Q1Q2Q3Q5. While doing this, Q5Q7Q8Q9 will also increase. Therefore, the 

boundary of (25) shall be considered parallelly as the constraint on increasing the area 

Q5Q7Q8Q9. T shall be noted that area Q1Q2Q3Q5 can be enlarged in both positive 

direction of s as well as 𝑠
..
. Consider increasing the area in positive direction of 𝑠

..
. Since 

the gradient of boundary of (24) is negative, the only Q-point, which can ‘touch’ the 

boundary of (24) is Q3 = (
𝑝

6𝑇
, 

4

𝑇𝑝
). Substituting these variables in the boundary of (24): 
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Therefore,  
4

𝑇𝑝
= −

0.350(𝑝)

(6𝑇)
+ 0.438      (28) 

Consider increasing the area Q1Q2Q3Q5 in the positive direction of s. In case the 

gradient of boundary of (24) was positive, moving point Q3 along this limit towards 

the positive direction of s will increase the area Q1Q2Q3Q5 indefinitely until any 

constraint imposed on bottom part of the graph limits the area Q5Q7Q8Q9. Boundary 

of (25) limits the area Q5Q7Q8Q9. Since the gradient of (25) is negative the only Q 

point that can ‘touch’ the boundary of (25) is Q7 = (
𝑝

6𝑇
+

5

6
,−

4

𝑇(𝑇−𝑝)
). Substituting these 

variables in the boundary of (25): 

 

−
4

𝑇(𝑇−𝑝)
= −0.432(

𝑝

6𝑇
+

5

6
) − 0.031      (29) 

 

Thus, when both: point Q3 lies on the boundary of (24) and Q7 lies on the boundary of 

(25) simultaneously both areas Q1Q2Q3Q5 and Q5Q7Q8Q9 reaches their maximum 

values. Thus, T is optimal. T and p values can be found by solving equations (28) and 

(29). Say the s value of Q3 calculated by substituting the T and p found is 𝑠𝑡𝑜𝑝 _ 𝑜𝑝𝑡1. 

In the test case a secondary issue has to be considered since the gradient of boundary 

(24) is negative. Due to this, area Q1Q2Q3Q5 may not increase indefinitely until Q7 

touches (25) while moving Q3 along the positive direction of s. Since the gradient of 

boundary of (24) is negative, there is a possibility that the maximum of Q1Q2Q3Q5 be 

reached before Q7 touches the boundary of (25). i.e. a different s value prior to 

reaching 𝑠𝑡𝑜𝑝 _ 𝑜𝑝𝑡1. Say the s value of Q3 at this point is 𝑠𝑡𝑜𝑝 _ 𝑜𝑝𝑡2. To find the correct 

optimal T, first both 𝑠𝑡𝑜𝑝 _ 𝑜𝑝𝑡1 and 𝑠𝑡𝑜𝑝 _ 𝑜𝑝𝑡2 shall be calculated.  Then T value 

corresponding to lesser s (out of 𝑠𝑡𝑜𝑝 _ 𝑜𝑝𝑡1 𝑎𝑛𝑑 𝑠𝑡𝑜𝑝 _ 𝑜𝑝𝑡) should be considered as the 

correct optimal T. Therefore, for the test case the values of p and T corresponding to 

point 𝑠𝑡𝑜𝑝 _ 𝑜𝑝𝑡1 will be found first. These values will be labelled as p1 and T1. Table 

4.1 shows the values were obtained for p1 and T1 by solving (28) and (29) 

simultaneously. 
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Table 4.1: P1 and T1 values of case-1 

 T1 P1 

Solution 1 -0.138i -7.774i 

Solution 2 +0.138i +7.774i 

Solution 3 - 4.377 -2.240 

Solution 4 +4.377 +2.240 

 

The valid solution is p1 = +2.240, and T1 = +4.377.  

Calculated 𝑠𝑡𝑜𝑝 _ 𝑜𝑝𝑡1 = 0.085 

Now, p and T values corresponding to 𝑠𝑡𝑜𝑝 _ 𝑜𝑝𝑡2 will be found. These are labelled as 

p2 and T2.  

 From (28),  

(
1

𝑇2
2) = −0.01458(

𝑝2

𝑇2
)2 + 0.1095(

𝑝2

𝑇2
)     (30) 

This is a 𝑦 = −𝑎𝑥2 + 𝑏𝑥 type of an expression with maximum value of y (=

1

𝑇2
2 ) 𝑖𝑠 reached at 𝑥 =

𝑏

2𝑎
. Substituting this in (24), the value obtained for (

𝑝2

𝑇2
) = 3.755.  

Calculated 𝑠𝑡𝑜𝑝 _ 𝑜𝑝𝑡2 = 0.626.  

Since 𝑠𝑡𝑜𝑝 _ 𝑜𝑝𝑡1< 𝑠𝑡𝑜𝑝 _ 𝑜𝑝𝑡2 T = 4.377 (s) and p = 2.24 (s) corresponds to an optimum 

time duration. 

Behavior of �̈�(𝑡) calculated using table 3.2 are given in table 4.2. 

Table 4.2: Behavior of �̈�(𝑡) 𝑖𝑛 test case 

t (seconds) �̈�(𝒕) 

0 ≤ 𝑡 < 1.120 0.364t 

1.120 ≤ 𝑡 < 2.240 0.816 – 0.364t  

2.240 ≤ 𝑡 < 3.308 0.896 – 0.400t  

3.308 ≤ 𝑡 ≤ 4.377 0.400t – 1.752  

 

4.2 Simulation of results 

Trajectory has been simulated for 0 ≤ 𝑡 ≤ 𝑇 based on parameters obtained for 

test case in section 4.1 to obtain following profiles: 
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1. Displacement vs. Time in directions parallel to three axis and overall 

displacement for  

2. Acceleration vs. Time in directions parallel to three axis and Resultant 

acceleration  

3. Verification of inequalities (3) to (6)  

4. Magnitude of tension couples   

Then a numerical method has been used to verify if the duration, T found is in 

fact the optimal duration. 

 

4.2.1 Displacement vs. Time 

Behavior functions of 𝑠(𝑡) can be found by substituting the optimal T and p values 

found in section 4.1 in table 3.2. Displacement in each direction X, Y and Z can be 

found by substituting these functions in equation (7). Profile of displacement of EE in 

directions X, Y and Z from their respective initial values and along the straight line it 

traversed are plotted in figure 4.2. The total distance traversed is 16.61 m. Average 

velocity during the traverse is 3.79 ms-1. 

 

Figure 4.2: Profile of the displacement of EE 
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4.2.2 Acceleration vs. Time 

Behavior of acceleration of EE in directions X, Y and Z can be found by substituting 

functions found in table 4.2 in equation (9). Profile of acceleration of EE in directions 

X, Y and Z and along the straight line it traversed are plotted in figure 4.3. This plot 

shows that first, the resultant acceleration increases from zero to its maximum value 

6.78 ms-2, and then decreases back to zero. From there the deceleration increases up 

to 7.10 ms-2 and reduces back to zero.  

4.2.3 Verification of feasibility of acceleration 

As mentioned in section 2.4, if the acceleration vector lies inside the inverted pyramid 

shape developed in FAD there exists a combination of non-negative cable tensions 

that can provide that acceleration. Conversely, if the acceleration vector breaches 

these boundary limits at least one tension shall be negative in order to provide that 

acceleration. Therefore, (𝑥
..
, 𝑦

..
, 𝑧

..
) being inside the edges of the said inverted pyramid 

at all times during the trajectory is the necessary and sufficient condition for feasible 

accelerations. In order to verify if this condition is satisfied or not inequalities (3) to 

(6) were deducted. For feasible trajectories, Left hand side (LHS) value in each 

inequality shall be larger or equal to the right hand side (RHS) value. These conditions 

are verified in figures 4.4 (a), 4.4 (b), 4.4 (c) and 4.4 (d). 
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      Figure 4.3: Profile of the acceleration of EE 

 

 

      Figure 4.4 (a): Verification of Inequality (3) 
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      Figure 4.4 (b): Verification of Inequality (4) 

 

 

      Figure 4.4 (c): Verification of Inequality (5) 
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      Figure 4.4 (d): Verification of Inequality (6) 

 

figures 18(a) to 18(d) show that all inequalities are satisfied. Further, recall from 

section 4.1, the two inequalities applicable to restrain the motion were (24) and (25) 

deducted from (5) and (6) respectively. Therefore, as it should be the case, it can be 

clearly seen that LHS and RHS values of graphs in figures 4.4 (c) and 4.4 (d) 

corresponding to (5) and (6) close at two different point of time, at 1.120 s and at 

3.308 s respectively.    

 

4.2.4 Magnitudes of tension couples 
 

As mentioned in section 1.2, the tensions of the cables in 3DoF (spatial) – 4 cable case 

are indeterministic. However, the summation of tension components of each 

sequential couple of cables (Eg:- summation of tension components of cables 1 and 2 

in in X-Z plane) can be found by applying motion equations. These values, which will 

hereafter be termed as ‘tension couples’ are given in equations (30) to (33). The 

deduction of these equations are given in Appendix C.  

Tension couple 1 : 𝑇1,2 = 𝑚
(𝑧

..
+𝑔)(𝑦𝑚𝑎𝑥−𝑦)−𝑦

..
(𝑧𝑚𝑎𝑥−𝑧)

𝑦𝑚𝑎𝑥(𝑧𝑚𝑎𝑥−𝑧)
√𝑦2 + (𝑧𝑚𝑎𝑥 − 𝑧)2  (30) 
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Tension couple 2 : 𝑇2,3 = 𝑚
(𝑧

..
+𝑔)𝑥+𝑥

..
(𝑧𝑚𝑎𝑥−𝑧)

𝑦𝑚𝑎𝑥(𝑧𝑚𝑎𝑥−𝑧)
√(𝑥𝑚𝑎𝑥 − 𝑥)2 + (𝑧𝑚𝑎𝑥 − 𝑧)2  (31) 

Tension couple 3 : 𝑇3,4 = 𝑚
(𝑧

..
+𝑔)𝑦+𝑦

..
(𝑧𝑚𝑎𝑥−𝑧)

𝑦𝑚𝑎𝑥(𝑧𝑚𝑎𝑥−𝑧)
√(𝑦𝑚𝑎𝑥 − 𝑦)2 + (𝑧𝑚𝑎𝑥 − 𝑧)2  (32) 

Tension couple 4 : 𝑇4, 1 = 𝑚
(𝑧

..
+𝑔)(𝑥𝑚𝑎𝑥−𝑥)−𝑥

..
(𝑧𝑚𝑎𝑥−𝑧)

𝑥𝑚𝑎𝑥(𝑧𝑚𝑎𝑥−𝑧)
√𝑥2 + (𝑧𝑚𝑎𝑥 − 𝑧)2    (33) 

Values of these tension couples for case-1 were calculated and plotted for a mass of 

EE = 10 kg, and the same are given in figures 4.5 (a) to 4.5 (d). The forces are in 

Newtons and the time is in seconds. 

 

 

      Figure 4.5 (a): Magnitude of Tension Couple 1,2 

 

Graphs plotted shown in figures 4.5 (a) to 4.5 (d) illustrate that in each case, tension 

couples are non-negative. All the tensions lie within zero and 130 N.  
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      Figure 4.5 (b): Magnitude of Tension Couple 2,3 

 

 

      Figure 4.5 (c): Magnitude of Tension Couple 3,4 
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      Figure 4.5 (d): Magnitude of Tension Couple 4,1 

 

4.2.5 Verification of optimum duration 

 

In order to verify if the duration found in test case is the optimum, following procedure 

is used. 

For the test case following values were calculated in the increments of 0.05 (s) for p 

and T.  

(a.) Maxa : Maximum of{𝑓𝑡𝑟𝑎𝑗(𝑠) − 𝑓+(𝑠)} for each p and T  

where 0 < T < (Optimum found in section-4) and 0 < p < T. 

(b.) Maxb : Maximum of {𝑓−(𝑠) − 𝑓𝑡𝑟𝑎𝑗(𝑠)} for each p and T  

where 0 < T < (Optimum found in secion-4) and 0 < p < T. where, 𝑓𝑡𝑟𝑎𝑗(𝑠) is the value 

obtained for 𝑠
..
 from s-model for a particular set of T, p and s. Upper limit of T for 

which the values are calculated in this exercise is the optimum T value found for each 

case in section-4, since the purpose is to check if there is a lesser T value. 

𝑓+(𝑠) is the value obtained for 𝑠
..
from acceleration side bound for each s, and 𝑓−(𝑠) is 

the value obtained for 𝑠
..
from deceleration side bound for each s. It shall be noted that, 
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feasible dynamics exist for any set of T and p values for which both Maxa and maxb 

are negative. The objective is to find the minimum T value and corresponding p value 

which satisfies this condition.  

 

Numerical results for case-1 yielded a minimum T value and a corresponding p value 

at T= 4.35 and p = 2.25 whereas, the solution found in section-3 is T = 4.377,  

p = 2.24. 

 

Table 4.3 (a) and Table 4.3 (b) show the variation of Maxa and Maxb at the close 

vicinity of the values found in test case (2.90 < T < 4.40 and 1.80 < p < 2.75). In each 

table, negative values are highlighted and trend of negative values can be seen. From 

these tables, minimum T value and corresponding p value for which both Maxa and 

Maxb values are negative, can be easily selected. 

 

 

Table 4.3 (a) : Test Case Numerical results of Maxa  

for 2.90 < T < 4.40 and 1.80 < p < 2.75 

1.8 1.85 1.9 1.95 2 2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4 2.45 2.5 2.55 2.6 2.65 2.7 2.75

2.9 0.3646 0.3449 0.3263 0.3087 0.2920 0.2762 0.2611 0.2469 0.2333 0.2204 0.2081 0.1963 0.1851 0.1744 0.1641 0.1543 0.1449 0.1359 0.1273 0.1190

2.95 0.3510 0.3316 0.3133 0.2960 0.2796 0.2641 0.2493 0.2353 0.2219 0.2092 0.1971 0.1856 0.1745 0.1640 0.1539 0.1443 0.1350 0.1262 0.1177 0.1096

3 0.3378 0.3188 0.3008 0.2838 0.2676 0.2524 0.2378 0.2241 0.2109 0.1984 0.1865 0.1752 0.1643 0.1540 0.1440 0.1346 0.1255 0.1168 0.1084 0.1004

3.05 0.3251 0.3064 0.2887 0.2719 0.2561 0.2410 0.2268 0.2132 0.2003 0.1880 0.1763 0.1651 0.1544 0.1443 0.1345 0.1252 0.1162 0.1077 0.0995 0.0916

3.1 0.3128 0.2944 0.2770 0.2605 0.2449 0.2301 0.2160 0.2027 0.1900 0.1779 0.1664 0.1554 0.1449 0.1349 0.1253 0.1161 0.1073 0.0989 0.0908 0.0831

3.15 0.3009 0.2827 0.2656 0.2494 0.2340 0.2195 0.2057 0.1925 0.1800 0.1681 0.1568 0.1460 0.1356 0.1258 0.1163 0.1073 0.0986 0.0904 0.0824 0.0748

3.2 0.2893 0.2715 0.2546 0.2387 0.2235 0.2092 0.1956 0.1827 0.1704 0.1587 0.1475 0.1368 0.1267 0.1170 0.1077 0.0988 0.0903 0.0821 0.0743 0.0668

3.25 0.2782 0.2606 0.2440 0.2282 0.2134 0.1993 0.1859 0.1731 0.1610 0.1495 0.1385 0.1280 0.1180 0.1084 0.0993 0.0905 0.0821 0.0741 0.0664 0.0590

3.3 0.2673 0.2500 0.2336 0.2182 0.2035 0.1896 0.1764 0.1639 0.1519 0.1406 0.1298 0.1194 0.1096 0.1001 0.0911 0.0825 0.0743 0.0663 0.0588 0.0515

3.35 0.2568 0.2397 0.2236 0.2084 0.1939 0.1802 0.1672 0.1549 0.1431 0.1319 0.1213 0.1111 0.1014 0.0921 0.0832 0.0747 0.0666 0.0588 0.0513 0.0442

3.4 0.2466 0.2298 0.2139 0.1989 0.1846 0.1711 0.1583 0.1462 0.1346 0.1236 0.1131 0.1030 0.0935 0.0843 0.0756 0.0672 0.0592 0.0515 0.0442 0.0371

3.45 0.2366 0.2201 0.2044 0.1896 0.1756 0.1623 0.1497 0.1377 0.1263 0.1154 0.1051 0.0952 0.0858 0.0768 0.0681 0.0599 0.0520 0.0444 0.0372 0.0302

3.5 0.2270 0.2107 0.1953 0.1807 0.1668 0.1537 0.1413 0.1295 0.1182 0.1075 0.0973 0.0876 0.0783 0.0694 0.0609 0.0528 0.0450 0.0375 0.0304 0.0235

3.55 0.2176 0.2015 0.1863 0.1720 0.1583 0.1454 0.1331 0.1215 0.1104 0.0998 0.0898 0.0802 0.0710 0.0623 0.0539 0.0459 0.0382 0.0308 0.0238 0.0170

3.6 0.2085 0.1927 0.1777 0.1635 0.1500 0.1373 0.1252 0.1137 0.1028 0.0924 0.0824 0.0730 0.0639 0.0553 0.0470 0.0391 0.0316 0.0243 0.0174 0.0107

3.65 0.1997 0.1840 0.1692 0.1552 0.1420 0.1294 0.1175 0.1062 0.0954 0.0851 0.0753 0.0660 0.0571 0.0485 0.0404 0.0326 0.0251 0.0180 0.0111 0.0046

3.7 0.1911 0.1756 0.1610 0.1472 0.1342 0.1218 0.1100 0.0988 0.0882 0.0780 0.0684 0.0592 0.0504 0.0420 0.0339 0.0262 0.0189 0.0118 0.0051 -0.0014

3.75 0.1827 0.1674 0.1530 0.1394 0.1265 0.1143 0.1027 0.0917 0.0812 0.0712 0.0616 0.0525 0.0439 0.0356 0.0276 0.0201 0.0128 0.0058 -0.0008 -0.0072

3.8 0.1745 0.1595 0.1453 0.1318 0.1191 0.1070 0.0956 0.0847 0.0743 0.0645 0.0551 0.0461 0.0375 0.0293 0.0215 0.0140 0.0069 0.0000 -0.0066 -0.0129

3.85 0.1666 0.1517 0.1377 0.1244 0.1119 0.1000 0.0886 0.0779 0.0677 0.0579 0.0487 0.0398 0.0314 0.0233 0.0156 0.0082 0.0011 -0.0057 -0.0122 -0.0184

3.9 0.1588 0.1441 0.1303 0.1172 0.1048 0.0931 0.0819 0.0713 0.0612 0.0516 0.0424 0.0337 0.0253 0.0174 0.0097 0.0024 -0.0045 -0.0112 -0.0177 -0.0238

3.95 0.1512 0.1368 0.1231 0.1102 0.0979 0.0863 0.0753 0.0648 0.0549 0.0454 0.0363 0.0277 0.0195 0.0116 0.0041 -0.0031 -0.0100 -0.0166 -0.0230 -0.0291

4 0.1439 0.1296 0.1161 0.1033 0.0912 0.0798 0.0689 0.0586 0.0487 0.0393 0.0304 0.0219 0.0138 0.0060 -0.0015 -0.0086 -0.0154 -0.0219 -0.0282 -0.0342

4.05 0.1367 0.1226 0.1093 0.0967 0.0847 0.0734 0.0626 0.0524 0.0427 0.0334 0.0246 0.0162 0.0082 0.0005 -0.0068 -0.0139 -0.0206 -0.0270 -0.0332 -0.0392

4.1 0.1297 0.1158 0.1026 0.0901 0.0783 0.0672 0.0565 0.0464 0.0368 0.0277 0.0190 0.0107 0.0027 -0.0048 -0.0121 -0.0190 -0.0257 -0.0321 -0.0382 -0.0440

4.15 0.1229 0.1091 0.0961 0.0838 0.0721 0.0611 0.0506 0.0406 0.0311 0.0221 0.0135 0.0053 -0.0026 -0.0101 -0.0172 -0.0241 -0.0307 -0.0369 -0.0430 -0.0488

4.2 0.1162 0.1026 0.0897 0.0776 0.0660 0.0551 0.0448 0.0349 0.0255 0.0166 0.0081 0.0000 -0.0078 -0.0152 -0.0222 -0.0290 -0.0355 -0.0417 -0.0477 -0.0534

4.25 0.1097 0.0962 0.0835 0.0715 0.0601 0.0493 0.0391 0.0293 0.0201 0.0113 0.0029 -0.0052 -0.0128 -0.0201 -0.0271 -0.0338 -0.0402 -0.0464 -0.0523 -0.0579

4.3 0.1033 0.0900 0.0774 0.0656 0.0543 0.0437 0.0335 0.0239 0.0148 0.0060 -0.0023 -0.0102 -0.0178 -0.0250 -0.0319 -0.0385 -0.0449 -0.0509 -0.0568 -0.0623

4.35 0.0971 0.0839 0.0715 0.0598 0.0487 0.0381 0.0281 0.0186 0.0096 0.0009 -0.0073 -0.0151 -0.0226 -0.0297 -0.0366 -0.0431 -0.0494 -0.0554 -0.0611 -0.0667

4.4 0.0910 0.0780 0.0657 0.0541 0.0431 0.0327 0.0228 0.0134 0.0045 -0.0040 -0.0122 -0.0199 -0.0273 -0.0344 -0.0411 -0.0476 -0.0538 -0.0597 -0.0654 -0.0709

p value(s)

T 
va

lu
e 

(s
)
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Table 4.3 (b) : Test Case Numerical results of Maxb 

for 2.90 < T < 4.40 and 1.80 < p < 2.75 

 

Findings in this section reveal that the method discussed has indeed optimized the 

time while setting the cable tensions at the minimum values possible.  

1.8 1.85 1.9 1.95 2 2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4 2.45 2.5 2.55 2.6 2.65 2.7 2.75

2.9 0.81848 0.87695 0.94139 1.01275 1.09217 1.18108 1.28125 1.39496 1.52508 1.67541 1.851 2.05875 2.30829 2.61356 2.99546 3.48683 4.14241 5.06071 6.43878 8.73639

2.95 0.74439 0.79677 0.85424 0.91759 0.98774 1.06581 1.15321 1.2517 1.36347 1.49139 1.63917 1.81179 2.01601 2.26132 2.56142 2.93685 3.41989 4.06435 4.96709 6.3218

3 0.67716 0.72427 0.77577 0.83229 0.89459 0.96356 1.04034 1.12628 1.22312 1.33303 1.45882 1.60414 1.77388 1.9747 2.21592 2.51102 2.88019 3.35518 3.9889 4.87659

3.05 0.61594 0.65848 0.70481 0.75547 0.81106 0.87234 0.94018 1.0157 1.10023 1.19548 1.30359 1.42732 1.57025 1.73721 1.93474 2.17201 2.46227 2.82539 3.29259 3.91592

3.1 0.56 0.59854 0.64039 0.68598 0.73582 0.79052 0.8508 0.91755 0.99185 1.07502 1.16874 1.27511 1.39683 1.53746 1.70173 1.89607 2.12952 2.41509 2.77235 3.23202

3.15 0.50873 0.54377 0.5817 0.62288 0.66775 0.7168 0.77063 0.82995 0.89564 0.96876 1.05061 1.14284 1.24752 1.36731 1.50572 1.66737 1.85863 2.08837 2.36941 2.721

3.2 0.46161 0.49355 0.52804 0.56538 0.60592 0.65008 0.69837 0.75136 0.80975 0.87442 0.94639 1.02697 1.11776 1.2208 1.33872 1.47496 1.63409 1.82236 2.04851 2.32516

3.25 0.41818 0.44739 0.47884 0.5128 0.54956 0.58948 0.63296 0.6805 0.73268 0.79018 0.85385 0.92471 1.00405 1.09344 1.1949 1.31101 1.44515 1.60183 1.7872 2.00987

3.3 0.37806 0.40483 0.4336 0.46457 0.49802 0.53422 0.57354 0.61636 0.66318 0.71456 0.77119 0.8339 0.90369 0.98183 1.06986 1.16978 1.28413 1.41624 1.57055 1.75311

3.35 0.34091 0.36551 0.39189 0.42022 0.45073 0.48368 0.51934 0.55807 0.60026 0.64638 0.69699 0.75278 0.81455 0.8833 0.96027 1.04699 1.14542 1.25806 1.3882 1.5402

3.4 0.30643 0.32909 0.35333 0.37932 0.40724 0.4373 0.46976 0.5049 0.54306 0.58462 0.63007 0.67994 0.7349 0.79576 0.8635 0.93934 1.02479 1.12177 1.23275 1.36098

3.45 0.27436 0.29528 0.31761 0.3415 0.36711 0.39463 0.42426 0.45625 0.49088 0.52848 0.56945 0.61423 0.66338 0.71754 0.77752 0.84428 0.91902 1.00323 1.0988 1.20818

3.5 0.24449 0.26383 0.28445 0.30646 0.33001 0.35526 0.38238 0.41159 0.44312 0.47725 0.51432 0.5547 0.59884 0.64729 0.70068 0.75981 0.82561 0.89928 0.98228 1.07649

3.55 0.21661 0.23453 0.2536 0.27393 0.29563 0.31885 0.34374 0.37048 0.39927 0.43036 0.46401 0.50056 0.54037 0.58389 0.63166 0.6843 0.74259 0.80747 0.8801 0.96193

3.6 0.19053 0.20717 0.22485 0.24365 0.2637 0.2851 0.30799 0.33254 0.3589 0.3873 0.41795 0.45114 0.48718 0.52644 0.56936 0.61646 0.66837 0.72585 0.78982 0.86145

3.65 0.16612 0.18159 0.19799 0.21543 0.23398 0.25375 0.27485 0.29744 0.32164 0.34765 0.37565 0.40589 0.43862 0.47417 0.51289 0.55522 0.60167 0.65287 0.70956 0.77266

3.7 0.14321 0.15762 0.17288 0.18907 0.20626 0.22456 0.24406 0.26489 0.28716 0.31104 0.3367 0.36432 0.39415 0.42644 0.46151 0.4997 0.54146 0.58729 0.6378 0.69372

3.75 0.1217 0.13513 0.14935 0.1644 0.18038 0.19734 0.2154 0.23464 0.25518 0.27716 0.30073 0.32604 0.3533 0.38273 0.41459 0.44918 0.48687 0.52807 0.57329 0.62312

3.8 0.10146 0.11401 0.12727 0.14129 0.15615 0.17191 0.18866 0.20647 0.22546 0.24574 0.26743 0.29068 0.31566 0.34256 0.3716 0.40304 0.43718 0.47438 0.51503 0.55966

3.85 0.0824 0.09413 0.10652 0.11961 0.13345 0.14811 0.16367 0.1802 0.19778 0.21653 0.23654 0.25795 0.28089 0.30555 0.3321 0.36077 0.3918 0.4255 0.46221 0.50234

3.9 0.06442 0.07541 0.08699 0.09922 0.11214 0.12581 0.14028 0.15564 0.17195 0.18931 0.20782 0.22757 0.24871 0.27136 0.2957 0.32191 0.35021 0.38084 0.41411 0.45035

3.95 0.04744 0.05775 0.0686 0.08004 0.09211 0.10486 0.11836 0.13265 0.14781 0.16392 0.18106 0.19933 0.21883 0.2397 0.26207 0.2861 0.31198 0.33992 0.37017 0.40301

4 0.0314 0.04107 0.05124 0.06196 0.07325 0.08517 0.09777 0.11109 0.12521 0.14018 0.15609 0.17301 0.19105 0.21031 0.23092 0.25301 0.27674 0.30229 0.32988 0.35975

4.05 0.01621 0.02529 0.03485 0.0449 0.05548 0.06663 0.07841 0.09085 0.10401 0.11795 0.13274 0.14845 0.16516 0.18298 0.202 0.22236 0.24417 0.26761 0.29285 0.3201

4.1 0.00182 0.01037 0.01934 0.02878 0.0387 0.04916 0.06018 0.07181 0.0841 0.0971 0.11087 0.12548 0.14099 0.15751 0.17511 0.1939 0.214 0.23555 0.2587 0.28364

4.15 -0.0118 -0.0038 0.00467 0.01354 0.02286 0.03266 0.04299 0.05388 0.06537 0.07751 0.09035 0.10396 0.11839 0.13372 0.15003 0.16742 0.18599 0.20585 0.22714 0.25001

4.2 -0.0248 -0.0172 -0.0092 -0.0009 0.00787 0.01708 0.02677 0.03697 0.04773 0.05908 0.07108 0.08377 0.09721 0.11147 0.12662 0.14274 0.15992 0.17826 0.19789 0.21893

4.25 -0.0371 -0.0299 -0.0224 -0.0146 -0.0063 0.00233 0.01143 0.02101 0.03109 0.04172 0.05294 0.0648 0.07734 0.09062 0.10471 0.11969 0.13562 0.15259 0.17072 0.19012

4.3 -0.0488 -0.042 -0.035 -0.0276 -0.0198 -0.0116 -0.0031 0.00592 0.01538 0.02535 0.03586 0.04695 0.05866 0.07106 0.08419 0.09812 0.11291 0.12866 0.14544 0.16336

4.35 -0.0599 -0.0536 -0.0469 -0.0399 -0.0326 -0.0249 -0.0168 -0.0084 0.00053 0.00989 0.01974 0.03013 0.04109 0.05267 0.06492 0.0779 0.09167 0.1063 0.12186 0.13845

4.4 -0.0706 -0.0645 -0.0582 -0.0516 -0.0447 -0.0374 -0.0299 -0.0219 -0.0135 -0.0047 0.00452 0.01426 0.02452 0.03536 0.04681 0.05893 0.07176 0.08537 0.09983 0.11522

p value(s)

T 
va

lu
e 

(s
)
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5. CONCLUSION  

This report presented a simple, yet an effective analytical method to circumvent the 

cable tension determination problem and design a time optimized point – to –point 

straight line trajectory with smooth dynamics for redundantly actuated 2DoF (planer) 

and 3DoF (spatial) CSPRs while ensuring positive cable tensions. The FAD model 

which enables to perceive the feasibility of motion of CSPR as a relationship between 

potential accelerations and the position is the key to develop this new methodology. 

Major concepts exclusively developed in this research are the FAD diagrams and the 

S-model. Since this is an analytical method highly accurate results can be obtained 

while determining of the motion parameters, which has been confirmed during the 

simulation of results.  

 

The method developed is simple and does not include any numerical method or an 

exhaustive search algorithm to obtain results. Thus, will use very low resources of a 

controller which may be programmed to determine the motion parameters. Since in 

this method, all the motion parameters will be calculated prior to initializing the 

motion, controller can be programmed to first calculate the motion parameters and 

then use its resources to control the motion using a standard control technique such as 

PID. Which leads to better management of controller resources.    

 

This research can be extended into several areas. In case of avoiding obstacles, a single 

straight-line trajectory can be slightly modified to have series of straight lines. The 

method developed in this thesis can still be used to develop series of time optimized 

straight lines to move from initial position to final position. However, the optimization 

can further be enhanced by allowing non-zero accelerations at intermediate points 

between straight lines. The research has considered a straight-line trajectory as its 

path, and a kinematic model of continuous increase of velocity followed by a 

continuous decrease of the same. Variations of the path as well as the model can be 

tested to fine tune the optimizations.  
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APPENDIX A: DEDUCTION OF INEQUALITIES FOR 

FEASIBLE TRAJECTORIES 

 

PART 1: Deduction of Lower Boundary Lines of FAD in 2DOF, 2 Cable 

Configuration. 

Refer figure 2.1 and figure 2.2. 

Case 1: Equation of the line 1.D. 

Say the vector 
𝑇1

𝑚
along the cable 1 contributing to the resultant acceleration is𝜆

𝑇1,𝑚𝑎𝑥

𝑚
, 

where 𝜆a constant is. Considering the relevant vectors of diagram: 

[𝑥
..

𝑧
..
]

𝑇
= −𝑔 +

𝑇1

𝑚
= [0 −𝑔]𝑇 + 𝜆

𝑇1,𝑚𝑎𝑥

𝑚
[−𝑥 (𝑧𝑚𝑎𝑥 − 𝑧)]𝑇 

Therefore, 

𝑥
..

= 𝜆(−𝑥) ; 𝑧
..

= 𝜆(𝑧𝑚𝑎𝑥 − 𝑧) − 𝑔 

Eliminating 𝜆
𝑇1,𝑚𝑎𝑥

𝑚
 from above, the Equation of Line 1.D: 

 =
..

z
(𝑧𝑚𝑎𝑥−𝑧)

−𝑥
𝑥
..

− 𝑔         

  

 

Case 2: Equation of the line 2.D.  

Say the vector 
𝑇2

𝑚
along the cable 2 contributing to the resultant acceleration is 

𝛾
𝑇2,𝑚𝑎𝑥

𝑚
, where varying values of 𝛾 gives different points in line. Considering the 

relevant vectors of diagram: 

[𝑥
..

𝑧
..
]

𝑇
= −𝑔 +

𝑇2

𝑚
= [0 −𝑔]𝑇 + 𝛾

𝑇2,𝑚𝑎𝑥

𝑚
[(𝑥𝑚𝑎𝑥 − 𝑥) (𝑧𝑚𝑎𝑥 − 𝑧)]𝑇 

Therefore, 

𝑥
..

= 𝛾(𝑥𝑚𝑎𝑥 − 𝑥) ; 𝑧
..

= 𝛾
𝑇2,𝑚𝑎𝑥

𝑚
(𝑧𝑚𝑎𝑥 − 𝑧) − 𝑔 

Eliminating 𝛾 from above, the equation of line 2.D: 

 
(𝑧𝑚𝑎𝑥−𝑧)

(𝑥𝑚𝑎𝑥−𝑥)
𝑥
..

− 𝑔   

  

=
..

z
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PART 2: Deduction of Boundary planes of FAD in 3-DOF, 4-Cable Configuration. 

Consider the configuration of any two cables in a 3DoF configuration given in figure 

A.1: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Say the vector along the cable 1 contributing to the resultant acceleration is 

𝜆
𝑇1,𝑚𝑎𝑥

𝑚
, and vector 

𝑇2

𝑚
 along the cable 2 contributing to the resultant acceleration is 

𝛾
𝑇2,𝑚𝑎𝑥

𝑚
where varying values of 𝜆and𝛾gives different points in plane generated by 

vectors 
𝑇1,𝑚𝑎𝑥

𝑚
and 

𝑇2,𝑚𝑎𝑥

𝑚
. Considering the relevant vectors of diagram: 

 

m

T1

T

m

TT

m

TT

T

gzzyyxxgzzyyxxg

zyx

)]()()([)]()()([]00[

][

222111

......

max,2max,1
+−−−++−−−+−

=



Figure A.1: General configuration of any two cables in a 3DoF case. 

 

Spool 1 (x1, y1, z1) 

X 

Z 

Y 

Spool 2 (x2, y2, z2) 

a 

Figure A.2: Portion of FAD corresponding to cable directions in figure A.1 
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Therefore, 

𝑥
..

= 𝜆
𝑇1,𝑚𝑎𝑥

𝑚
(𝑥1 − 𝑥) + 𝛾

𝑇2,𝑚𝑎𝑥

𝑚
(𝑥2 − 𝑥) ;  

𝑦
..

= 𝜆
𝑇1,𝑚𝑎𝑥

𝑚
(𝑦1 − 𝑦) + 𝛾

𝑇2,𝑚𝑎𝑥

𝑚
(𝑦2 − 𝑦) ;  

𝑧
..

= −𝑔 + 𝜆
𝑇1,𝑚𝑎𝑥

𝑚
(𝑧1 − 𝑥) + 𝛾

𝑇2,𝑚𝑎𝑥

𝑚
(𝑧2 − 𝑥) ;  

Eliminating 𝜆
𝑇1,𝑚𝑎𝑥

𝑚
 and 𝛾

𝑇2,𝑚𝑎𝑥

𝑚
 from above, and substituting z1 = z2 following 

equation of the plane can be obtained: 

𝑧
..

=
𝑥
..
(𝑦2 − 𝑦1)(𝑧1 − 𝑧) − 𝑦

..
(𝑥2 − 𝑥1)(𝑧1 − 𝑧)

{𝑦2(𝑥1 − 𝑥) − 𝑦1(𝑥2 − 𝑥) + 𝑦 (𝑥2 − 𝑥1)}
− 𝑔 

 

Refer figure 2.7 for the remaining section of this part.  

Case-1: Equation of the plane generated by T1 and T2 vectors 

Substituting values for x1 = 0, y1 = 0, z1 = 𝑧𝑚𝑎𝑥, x2 = 𝑥𝑚𝑎𝑥, y2 = 0, z2 = 𝑧𝑚𝑎𝑥; following 

equation of the plane can be obtained: 

𝑧
..

= (
𝑧𝑚𝑎𝑥−𝑧

−𝑦
)𝑦

..
− 𝑔           

Case-2: Equation of the plane generated by T2 and T3 vectors 

Substituting values for x1 = 𝑥𝑚𝑎𝑥, y1 = 0, z1 = 𝑧𝑚𝑎𝑥, x2 = 𝑥𝑚𝑎𝑥, y2 = 𝑦𝑚𝑎𝑥, z2 = 𝑧𝑚𝑎𝑥; 

following equation of the plane can be obtained: 

𝑧
..

= (
𝑧𝑚𝑎𝑥 − 𝑧

𝑥𝑚𝑎𝑥 − 𝑥
)𝑥

..
− 𝑔 

Case-3: Equation of the plane generated by T3 and T4 vectors 

Substituting values for x1 = 𝑥𝑚𝑎𝑥, y1 = 𝑦𝑚𝑎𝑥, z1 = 𝑧𝑚𝑎𝑥, x2 = 0, y2 = 𝑦𝑚𝑎𝑥, z2 = 𝑧𝑚𝑎𝑥; 

following equation of the plane can be obtained: 

𝑧
..

= (
𝑧𝑚𝑎𝑥 − 𝑧

𝑦𝑚𝑎𝑥 − 𝑦
)𝑦

..
− 𝑔 

Case-4: Equation of the plane generated by T3 and T4 vectors 

Substituting values for x1 = 𝑥𝑚𝑎𝑥, y1 = 𝑦𝑚𝑎𝑥, z1 = 𝑧𝑚𝑎𝑥, x2 = 0, y2 = 𝑦𝑚𝑎𝑥, z2 = 𝑧𝑚𝑎𝑥; 

following equation of the plane can be obtained: 

𝑧
..

= (
𝑧𝑚𝑎𝑥−𝑧

−𝑥
)𝑥

..
− 𝑔  



46 
 

APPENDIX B: PROOF SUPPORTING THE DETERMINATION 

OF Q POINTS 

This annexure contains the proof of expression “since 𝑠
..
(𝑡) is piecewise linear in t 

between odd points Ri (I = 1, 3, 5, 7, 9) above, a curve drawn: 𝑠
..
(𝑡) vs.𝑠 (𝑡) also lies 

inside the respective triangles (Q1, Q2, Q3), (Q3, Q4, Q5), (Q5, Q6, Q7) and (Q7, Q8, Q9) 

at all times, where qi = { )(ts , �̈�(𝑡), i=1..9} given in chapter 3. 

Proof : 

Say Qi, Qj and Qk are set of three points in corners of a one of four triangles in above. 

Figure B.1 is an illustration of these on an s(t) and an 𝑠
..
 (t) graph. 

 

 

Figure B.1: Illustration of Qi, Qj and Qk  points 
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Refer the points given in figure B.1. Thick blue line refers to the actual function of 

s(t). Green lines are the tangents to s(t) at Qi and Qk . Note that both tangent parts Qi 

– Qj and Qj – Qk are linear and thus have linear relationships with relevant parts of 

𝑠
..
(𝑡) curve. Similarly the line Qi – Qk is also having a linear relationship with𝑠

..
(𝑡). 

Suppose these relationships are 𝑠
..

= 𝑓1(𝑠), 𝑠
..

= 𝑓2(𝑠), 𝑠
..

= 𝑓3(𝑠) respectively, and the 

actual relationship between 𝑠 and 𝑠
..
 is 𝑠

..
= 𝑓(𝑠) 

 

Refer to any actual s(t) value at time t.  

Note that a3 < a < a2.  

However, a3 = 𝑓3(𝑠), a = 𝑓 (𝑠) and a = 𝑓2(𝑠). 

Therefore, for any t, 𝑓3(𝑠) < 𝑓 (𝑠) < 𝑓2(𝑠). 

 

Similarly it can be proven that, 𝑓3(𝑠) < 𝑓 (𝑠) < 𝑓1(𝑠) 

This proves that any point in 𝑠
..

= 𝑓(𝑠) are bound by functions 𝑓1(𝑠), 𝑓2(𝑠), 𝑓3(𝑠). 

which are essentially defined by points,(𝑠𝑖, 𝑠
..

𝑖),(𝑠𝑗 , 𝑠
..

𝑗) and(𝑠𝑘, 𝑠
..

𝑘). This can similarly 

be proven for a curve of reducing gradient.           
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APPENDIX C: CALCULATION OF ‘TENSION COUPLES’ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider the Y-Z component of resultant tension of cables connecting points (0, 𝑦𝑚𝑎𝑥, 

𝑧𝑚𝑎𝑥) with (x, y, z) and (𝑥𝑚𝑎𝑥, 𝑦𝑚𝑎𝑥, 𝑧𝑚𝑎𝑥) with (x, y, z) respectively. This 

component is labelled as T3,4. Consider the Y-Z component of resultant tension of 

cables connecting  points (0, 0, 𝑧𝑚𝑎𝑥) with (x, y, z) and (𝑥𝑚𝑎𝑥, 0, 𝑧𝑚𝑎𝑥) with (x, y, z) 

respectively. This component is labelled as T1,2. These components will be referred to 

as ‘Tension couples’.  

 

For the acceleration in Y direction : 

−𝑇1,2.
𝑦

√𝑦2+(𝑧𝑚𝑎𝑥−𝑧)2
+ 𝑇3,4.

𝑦

√(𝑦𝑚𝑎𝑥−𝑦)2+(𝑧𝑚𝑎𝑥−𝑧)2
= 𝑚𝑦

..
  

For the acceleration in Z direction : 

𝑇1,2.
(𝑧𝑚𝑎𝑥 − 𝑧)

√𝑦2 + (𝑧𝑚𝑎𝑥 − 𝑧)2
+ 𝑇3,4.

(𝑧𝑚𝑎𝑥 − 𝑧)

√(𝑦𝑚𝑎𝑥 − 𝑦)2 + (𝑧𝑚𝑎𝑥 − 𝑧)2
− 𝑚𝑔 = 𝑚𝑧

..
 

Solving above equations yield the values: 

(u, 0, 0) 
Figure C.1 : Illustration of Tension couples 

X 
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Z 

mg 
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(0, ymax, zmax) 

(x, y, z) 

(0, 0, zmax) 

(xmax, 0, zmax) 
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𝑇1,2. =
[−𝑦

..

(𝑧𝑚𝑎𝑥 − 𝑧) + (𝑧
..

+ 𝑔)(𝑦𝑚𝑎𝑥 − 𝑦)]√𝑦2 + (𝑧𝑚𝑎𝑥 − 𝑧)2

𝑦𝑚𝑎𝑥(𝑧𝑚𝑎𝑥 − 𝑧)
 

𝑇3,4. =
[𝑦

..

(𝑧𝑚𝑎𝑥 − 𝑧) + (𝑧
..

+ 𝑔)(𝑦𝑚𝑎𝑥 − 𝑦)]√(𝑦𝑚𝑎𝑥 − 𝑦)2 + (𝑧𝑚𝑎𝑥 − 𝑧)2

𝑦𝑚𝑎𝑥(𝑧𝑚𝑎𝑥 − 𝑧)
 

   

Similarly, T2,3 and T4,1 were found as: 

𝑇2,3. =
[𝑥

..

(𝑧𝑚𝑎𝑥 − 𝑧) + (𝑧
..

+ 𝑔)(𝑥𝑚𝑎𝑥 − 𝑥)]√(𝑥𝑚𝑎𝑥 − 𝑥)2 + (𝑧𝑚𝑎𝑥 − 𝑧)2

𝑢(𝑤 − 𝑧)
 

𝑇4,1. =
[−𝑥

..

(𝑧𝑚𝑎𝑥 − 𝑧) + (𝑧
..

+ 𝑔)(𝑥𝑚𝑎𝑥 − 𝑥)]√(𝑥𝑚𝑎𝑥 − 𝑥)2 + (𝑧𝑚𝑎𝑥 − 𝑧)2

𝑥𝑚𝑎𝑥(𝑤 − 𝑧)
 

 


