THROUGH HOLE SOLDERING SYSTEM WITH AUTOMATIC OPTICAL INSPECTION

Colamba Liyanage Sameera Chathuranga Fonseka

(138016V)

Degree of Master of Philosophy

Department of Electronic and Telecommunication Engineering

University of Moratuwa

Sri Lanka

May 2019

THROUGH HOLE SOLDERING SYSTEM WITH AUTOMATIC OPTICAL INSPECTION

Colamba Liyanage Sameera Chathuranga Fonseka

(138016V)

Thesis submitted in partial fulfilment of the requirements for the degree Master of Philosophy

Department of Electronic and Telecommunication Engineering

University of Moratuwa

Sri Lanka

May 2019

Declaration

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate has carried out research for the Masters/MPhil/PhD thesis/ Dissertation under my supervision.

Signature of the supervisor:

Date

Abstract

Machine vision has been widely deployed in many applications in various sectors like industrial, medical, manufacturing, agricultural, surveillance etc. Such applications consist of numerous algorithms to fulfil the ultimate requirement of the end product. The role of automatic vision for classifying the quality of solder joints in the Electronics Manufacturing Services (EMS) industry has become significant because the increasing cost of labour, skill dependency, attitudes, time variance of human operators have narrowed down the quality of their service. Several major companies develop stand-alone Automatic Optical Inspection (AOI) systems with proprietary algorithms that contains multiple cameras operating inside a specific lighting environment for the inspection of Surface Mount Devices (SMD) and Through-Hole Technology (THT) components. However, the accuracy and maturity level for the automatic inspection of the quality of solder joints have yet to reach its ultimate goal due to the complex appearance of solder joint surface. Even though, many AOI systems are available, no vision system has been developed to integrate with a soldering robotic system to provide quality classification of solder joints in real time without prior teaching of individual joints and enclosed chambers with specific lighting to operate.

In this research, a THT soldering system with an AOI and Computer Aided Design (CAD) tool has been developed to classify the quality of THT solder joints without prior teaching and specific lighting requirements. The design consists of three main stages:

- AOI system for quality classification of THT solder joints (Major Research)
- CAD tool for extracting physical parameters of each component (Minor Research)
- THT Soldering system to perform automatic soldering (Minor Research)

The AOI system mainly operates in three stages. The first stage involves with precise alignment of the Printed Circuit Board (PCB) to the origin of the THT soldering system using feature extraction and template matching techniques. This approach provide a reliable and robust PCB verification and alignment capability compared to Hough transform based alignment method proposed by Nang Seng Siri Mar. Furthermore, this methodology rendered a better outcome even in distinguishing between vias, pads and test-points in addition to conventional fiducial markings. The identification of the solder pad and the verification of the component availability is performed prior to soldering in the second stage. The automatic identification of solder pad regardless of its plated colour and surrounding solder mask colour made a significant improvement over the methodology proposed by T. Y. Ong, Z. Samad and M. M. Ratnam, based on prior teaching of individual pads using artificial neural networks. In addition to that, the implemented methodology provides online positioning accuracy calibration which is not available in any commercial soldering robotic systems. The component availability is assured by precisely segmenting the component lead top from the identified solder pad. The developed algorithms could render a better outcome even for component leads which possess a minimum colour dissimilarity with their surrounding drill-hole region. No commercial soldering robotic system is capable of verifying component availability prior to soldering. Further, the segmented lead is used to establish a relationship between prior and post soldering stages of the solder pad in order to provide a robust solder quality classification capability. The classification of the soldering quality for short circuit (solder bridging), voids inside the drill-hole, voids on solder pad and excess solder, is carried out after soldering during the third stage. The implemented algorithms could render an improved recognition rate even with applied flux, illuminated pad regions, uneven illumination distribution and shadows on the solder joint surface. Such a widely distributed quality inspection capability is

not covered in any of the reported studies. Neither commercial AOI systems nor soldering robotic systems perform real time inspection of soldering quality just after the soldering of THT components. Moreover, the precise localization of defective areas inside the solder joint, enables the robotic system to perform automatic reworking on defective solder joints adhering to IPC regulations with minimum user interaction. Such automatic reworking capability is not available with any commercial soldering robotic system in the market today.

The CAD system extracts the geometrical information of components and their pads such as the component location, its orientation, size of the solder pad and drill hole, height of nearby components, the width of the connected PCB track to the solder pad from the respective CAD file and visualize the 2D view of the PCB to the user in a Graphical User Interface (GUI). This information enhances the intelligence and the situational awareness of both robotic system and AOI.

The THT soldering system is a four-axis robotic platform that performs soldering on selected solder pads through the CAD system GUI. Its operation is mainly controlled by the vision system and the information acquired from the CAD system. The implemented THT soldering system together with integrated AOI and CAD tool provides a new concept in the EMS industry by replacing the manual inspection of THT solder joints with automatic inspection and providing automatic rework capability on defective solder joints within a single platform.

The performance of the complete system was evaluated under different illumination levels, flux residues, different types of component leads, colour combinations of solder pads and solder mask colours, wide variety of solder pad neighbourhoods and a range of solder pad sizes. Each stage of the AOI was able to provide a significant improvement over the reported studies and commercial systems. The automatic identification of solder pad and the verification of component availability could provide nearly a 98% of recognition rate for both cases. However, the existence of highly illuminated pad regions and overheated solder joints surfaces degrades the performance of the classification of not soldered regions by 2% and excess solder detection by 5% respectively (subjected to a sample size of 200 solder joints). Even though, a slight performance reduction is there due to such extreme conditions, the proposed approach provides an automated solution for soldering and quality assurance within a single platform while solving several problems in the reported studies and commercial systems effectively.

Keywords:

Automatic Optical Inspection, Solder Quality Classification, Localization of Component Lead inside a THT Solder Joint for Solder Defects Classification, Fiducial Verification

To my parents, wife and sister

Acknowledgement

Even though, it is a single name that is attributed as the author of this work, there are many people without whom it could never been completed. Firstly, I am immensely grateful to my family members who encouraged me throughout the period of this immense work.

I would be obliged to my supervisor, Prof. J.A.K.S Jayasinghe for providing me the correct guidance to achieve all the milestones in this research. I am honoured to say that this work could not be successfully completed, without the insights and guidance from him.

I would like to take this opportunity to provide my gratitude to National Science Foundation (NSF) for providing me the initial funding for the implementation of the robotic system architecture. My special thanks goes to Mr. J.G. Shanthasiri, Principle Scientific Officer-NSF for his kind support throughout the period of this research.

Finally, I am very thankful to Variosystems (Pvt) Ltd for providing me the funding and creating the opportunity to fabricate and implement the entire robotic system that helped to test the implemented vision system in a real time environment. My special thanks go to Mr. Chandana Dissanayake – Managing Director (Variosystems (Pvt) Ltd) for believing in this project and providing immense support to make this project a success.

Table of Contents

De	claration	I
Ab	ostract	. II
De	edication	IV
Ac	knowledgement	. V
Ta	ble of Content	VI
Lis	st of Figures	. X
Lis	st of TablesX	ΊX
Lis	st of AbbreviationsX	XII
Lis	st of Appendices XX	ΊV
1.	Introduction	1
	1.1 Overview of Automatic Optical Inspection Systems	2
	1.2 Overview of Soldering Robotic Systems	3
	1.3 Recent Works	4
	1.4 Original Contribution of the Research in Knowledge Gap and Industry	7
	1.5 Automatic Optical Inspection System Architecture	. 10
	1.6 THT Soldering System Architecture	. 12
2.	Implementation of Automatic PCB Fiducial Alignment Process	. 14
	2.1 PCB Fiducials and Importance of Localizing Them	. 14
	2.2 The Distinctive Behaviour of the Proposed Fiducial Verification Process in the	•
	Automatic Optical Inspection System	. 16
	2.3 Algorithms for Fiducial Verification	. 17
	2.3.1 Scale Invariant Feature Transform	. 19
	2.3.2 Speed-Up Robust Feature	. 25
	2.3.3 Features from Accelerated Segment Test	. 34
	2.4 Performance Evaluation of Feature Extraction Algorithms	. 36
	2.5 Performance Evaluation of Template Matching Algorithms	.45

3.	Identification and Localization of Bare Solder Pad from PCB Surface	49
	3.1 Overview on Colour Models	49
	3.2 Performance Analysis of Colour Models for Solder Pad Identification	55
	3.3 Image Type Verification for Image Segmentation	61
	3.4 Solder Pad Segmentation	63
4.	Identification and Localization of THT Component Lead	73
	4.1 Importance of Identification and Localization of THT Component Lead Top	
	inside a Solder Joint	73
	4.2 Segmentation of THT Component Lead Top from Solder Pad Region	76
	4.2.1 Automatic Computation of Drill-hole Region	77
	4.2.2 Segmentation of Component Lead Top	84
	4.3 Localization of THT Component Lead inside Solder Joint	89
5.	Classification of the Quality of THT Solder Joints	96
	5.1 Types of Soldering Defects on THT Solder Joints	96
	5.2 Identification the Defect of Solder Bridging	98
	5.3 Identification of Not Soldered Areas inside the Drill-Hole Region of a Solder	r
	Joint	99
	5.4 Identification of Not Soldered Areas Across the Solder Pad Region of a Sold	ler
	Joint	113
	5.5 Computation of Solder Coverage on the Pad	118
	5.6 Identification of Over Soldered Situation Applied on a Solder Joint	119
6.	Computer Aided Design Tool	129
	6.1 CAD System Implementation	129
	6.2 Generating a Programme for a New PCB	134
7.	Implementation of 4-Axis THT Soldering System	139
	7.1 Electronics System Operation of THT Soldering System	139
	7.1.1 System Main Controlling Unit	140
	7.1.2 Vertical Direction Controlling Unit	142
	7.1.3 Angular Direction Controlling Unit	144

	7.1.4	Servo Driver Interface Module145
	7.2 Implei	mentation of Robotic System145
	7.2.1	XY Positioning System
	7.2	2.1.1 Real Time Calibration of Positioning Accuracy147
	7.2	2.1.2 Computation of Optimum Travelling Path147
	7.2.2	Implementation of Soldering Arm150
8.	Results an	nd Discussions154
	8.1 Discus	ssion: Implementation of Automatic PCB Fiducial Alignment Process 154
	8.1.1	Minimizing the effect of similarity between the defined fiducial points
		in different PCB types155
	8.1.2	Minimizing the effect of multiple appearances of the same fiducial point
		in different PCBs
	8.2 Discus	ssion: Implementation of Solder Pad and Component Lead Segmentation
	Proces	ss
	8.2.1	The Accuracy of Localizing the Actual Pad to be Soldered by the
		Vision System as Defined in the Respective Programme for Soldering 159
	8.2.2	The accuracy of localizing the drill-hole region of the solder pad 162
	8.2.3	The accuracy of segmentation of the component lead from the solder
		pad
	8.3 Discus	ssion: The accuracy of solder quality classification of the solder joint 166
	8.3.1	The classification of voids inside the drill-hole
	8.3.2	The classification of voids on the solder pad
	8.3.3	The classification of excess solder
	8.4 Disc	ussion: The stability of the THT soldering system hardware 170
	8.4.1	The stability of the soldering wire feeder
	8.4.2	The stability of the soldering iron171
9.	Conclusio	on
Re	ference Lis	t

List of Figures

Figure 1.1	AOI system architecture11
Figure 1.2	Robotic system architecture
Figure 2.1	Fiducial points defined by the PCB layout designer
Figure 2.2	Distinct objects on the PCB in addition to fiducial markings provided by
	layout designer16
Figure 2.3	Best matching points detected by various template matching
	algorithms
Figure 2.4	Feature matched images using feature extraction algorithms
Figure 2.5	Few samples of scale space
Figure 2.6	Generation of scale space structure in SIFT
Figure 2.7	Detected key points on different objects using SIFT feature detector
Figure 2.8	Computation of integral image based on the pixel intensity values of a given I
Figure 2.9	Generation of $(i+1)^{th}$ level of box filter using i^{th} level of box filter inside
	o th octave level in both y and xy directions respectively
Figure 2.10	Graphical representation of box filter size for three octaves
Figure 2.11	Detected key points on solder pads, vias and test pads on different colour PCBs
Figure 2.12	Selection of neighbouring pixels lie at candidate pixel P (Yellow Square) in
	FAST
Figure 2.13	Detected key points on solder pads, vias and test pads on different colour PCBs
	at $I_t = 30$ with non-maximum suppression using FAST corner detector. Here I_t
	is a user defined threshold value
Figure 2.14	Feature matching between images using SIFT together with distance
	measurement algorithms

Figure 2.15	Feature matching between images using SURF together with distance
	measurement algorithms
Figure 2.16	Feature matching between images using FAST together with distance
	measurement algorithms
Figure 2.17	Falsely detected areas of the model image inside the input image using
	homography matrix
Figure 2.18	Model image localization inside given input image using template matching
	algorithms
Figure 2.19	Results obtained from template matching algorithm over 2% scaled down
	images
Figure 2.20	Process flow chart of the proposed fiducial verification process
Figure 3.1	RGB colour model
Figure 3.2	HSV colour model
Figure 3.3	HSL colour model
Figure 3.4	Selected regions of a solder joint foreground and background regions55
Figure 3.5	Visual comparison between colour transformed images using modified $I_1I_2I_3$
	colour model
Figure 3.6	Colour space transformation of a gold-plated solder joint on green PCB 58
Figure 3.7	Colour space transformation of a gold-plated solder joint on blue PCB
Figure 3.8	Colour space transformation of a tin-plated solder joint on green PCB
Figure 3.9	Colour space transformation of a tin-plated solder pad on red PCB60
Figure 3.10	Colour space transformation of a tin-plated solder pad on black PCB61
Figure 3.11	Channels of YIQ colour model
Figure 3.12	Structure for Image Segmentation Process
Figure 3.13	Noise filtered colour transformed images using median filter
Figure 3.14	Selection of centroid on a given data set in K-means clustering
Figure 3.15	Clustered data set in K-means clustering
Figure 3.16	Colour clustered images using k-means colour clustering algorithm
Figure 3.17	Thresholding of colour clustered images for solder pad segmentation

Figure 3.18	Segmented solder pads on different pad and PCB surface colours
Figure 3.19	Effect of offset issue on green colour PCBs with gold plated solder pads 69
Figure 3.20	Result of offset area removing algorithm70
Figure 3.21	False detection of solder pad areas due to light colour PCB tracks on gold-plated
	solder pads on blue colour PCBs70
Figure 3.22	Mapped colours of light colour PCB tracks during colour transformation and
	colour quantization processes for gold plated solder pads on blue colour PCBs
Figure 3.23	Accurate detection of solder pads after removing the effect of PCB tracks on
	blue colour PCBs with gold-plated solder pads71
Figure 4.1	The implemented methodology to detect and localize lead top of a component
Figure 4.2	Importance of localizing the component lead top inside the solder joint75
Figure 4.3	Impact of colour similarity between solder pad and component lead on
	segmentation accuracy76
Figure 4.4	The offset between the computed size (based on CAD data) and the
	actual size of the drill-hole77
Figure 4.5	Structure of the drill-hole segmentation algorithm79
Figure 4.6	Results from colour transformation using several colour models over a
	segmented bare solder pad 80
Figure 4.7	Generation of a binary image to compute area covered by drill-hole81
Figure 4.8	Automatic computation of the drill-hole
Figure 4.9	Results from a graph-cut based image segmentation algorithm
Figure 4.10	Resulted images from colour clustering algorithms for lead detection 86
Figure 4.11	Detected component lead top inside the drill-hole region of the solder pad
Figure 4.12	Application of feature extraction algorithms for lead top localization90
Figure 4.13	Localized THT component lead top with higher colour dissimilarity to solder
	paste on several solder joints using SQDIFF template matching algorithm91

Figure 4.14	Localized THT component lead top with lower colour dissimilarity to solder
	paste on several solder joints using SQDIFF template matching algorithm92
Figure 4.15	Localized lead top using SQDIFF algorithm over several colour models93
Figure 4.16	Detected THT component lead top on several HSL colour transformed solder
	joints using SQDIFF template matching algorithm94
Figure 5.1	Different types of soldering defects
Figure 5.2	Identification of Solder bridging among different solder pads99
Figure 5.3	Image size reduction for solder void detection inside drill-hole 100
Figure 5.4	Structure of the graph-cut image segmentation algorithm
Figure 5.5	Results from graph-cut based image segmentation over two solder joint types
Figure 5.6	Detected faults inside the drill-hole region for three solder joints types 106
Figure 5.7	Adjoining solder pad regions (blue colour) corresponding to detected voids
	inside drill -hole (red colour)
Figure 5.8	Intersection of line segments L_1 and L_2 (blue lines) with outer boundary of
	solder pad (red dash circle) and outer boundary of drill-hole (green dash circle)
Figure 5.9	Extracting adjoining solder pad region corresponding to detected voids inside
	the drill-hole region
Figure 5.10	Resulted images from colour clustering algorithms for adjoining solder pad
	verification111
Figure 5.11	Detected voids inside the drill-hole region of a solder joint using the proposed
	algorithm
Figure 5.12	Image size reduction for solder void detection on solder pad113
Figure 5.13	Imperfections on solder pad regions marked in red boundary. (a) Uneven
	illumination114
Figure 5.14	Image segmentation using graph-cut algorithm (Blue highlighted regions
	represents the segmented regions)

Figure 5.15	Step wise illustration of proposed algorithm for void detection on solder pads
Figure 5.16	Detection of voids on tin and gold plated solder pad regions118
Figure 5.17	Evaluation on the solder coverage for the solder joints with detected voids on
	the solder pads
Figure 5.18	Colour transformation from RGB to HSL and RGB to HSV colour models for
	the classification of excess solder
Figure 5.19	Boundary detection of segmented illuminated regions of a good (a) and excess
	soldered (b) solder joints
Figure 5.20	Selection of boundary pixels within the offset angle $Ø_R$ marked by red dash
	lines. Pink and green dots show the inner and outer boundary pixels inside ϕ_R
	respectively124
Figure 5.21	Comparison of the size of the connected region inside the resulted binary image
	with respect to shape of the solder joint for excess solder detection124
Figure 5.22	Connected regions and outer boundary pixels for excess solder detection 126
Figure 5.23	Performance of the AOI system for solder quality classification
Figure 6.1	Structure of the implemented CAD tool
Figure 6.2	GUI of the implemented CAD tool
Figure 6.3	The formatted geometrical information related to the pins of a particular
	component
Figure 6.4	Drawn PCB layout on the CAD system GUI based on the information acquired
	from the respective CAD file
Figure 6.5	Multiple orientations of the PCB layouts
Figure 6.6	Separate layers of the drawn PCB
Figure 6.7	User confirmation windows that accepts the user inputs to define PCB surface
	colour, solder pad colour and PCB access side
Figure 6.8	Defined fiducial point from the via layer
Figure 6.9	Illustration of selected components on the GUI of CAD tool
Figure 6.10	Generated programme for soldering

Figure 7.1	Robotic system operational block diagram	140
Figure 7.2	PCB layout of the main controlling unit	141
Figure 7.3	Operational block diagram of the main controlling unit	142
Figure 7.4	Speed control profile for servo drivers	142
Figure 7.5	Operational block diagram of the vertical direction controller	143
Figure 7.6	Speed loop for stepper motor control	144
Figure 7.7	PCB layout of vertical direction controlling unit	144
Figure 7.8	PCB layout of angular direction controlling unit	145
Figure 7.9	Operational block diagram of the angular direction controller	145
Figure 7.10	PCB layout of servo driver interface module	146
Figure 7.11	THT Soldering System	147
Figure 7.12	XY Positioning system	147
Figure 7.13	Real time correction of positioning offsets	148
Figure 7.14	Reorganized component pads according to the computed optimum travelli	ing
	path	150
Figure 7.15	Implemented soldering arm	151
Figure 7.16	Kinematic diagram of soldering arm	150
Figure 7.17	Forward projection of coordinate frames between real world and image	
	coordinate systems	153
Figure 7.18	Projection of an image inside camera at a focal length, f	153
Figure 7.19	Deformations occurred on solder joints due to the wrong angle between	
	soldering iron and vertical plane	154
Figure 7.20	The angle which the soldering iron and wire feeder points to particular sol	lder
	pad	155
Figure 7.21	Solder joints performed by the THT soldering system	155
Figure 7.22	Structure of the soldering arm	156
Figure 8.1	Fiducial verification process carried using the implemented AOI	157
Figure 8.2	The impact of slight PCB layout changes over the robustness of the fiduci	al
	verification process	158

Figure 8.3	Definition of subsequent images in different shapes and sizes
Figure 8.4	Definition of multiple subsequent images for a fiducial point
Figure 8.5	Verification of the existence of fiducial point using background subtraction
	method
Figure 8.6	Existence of the objects with similar dimensions inside the camera FOV 162
Figure 8.7	Executing diagnostic programme for solder pads to perform a precise real time
	calibration process
Figure 8.8	Identified objects inside the camera FOV163
Figure 8.9	Defined solder pad by the user during the operation of diagnostic process 164
Figure 8.10	Selected candidate objects (highlighted in brown colour) and defined solder pad
	(highlighted in purple colour)164
Figure 8.11	The erroneous computation of drill-hole region
Figure 8.12	The computation of drill-hole and identification of component lead167
Figure 8.13	Different shapes of component leads
Figure 8.14	User confirmation for the pads with distributed shapes168
Figure 8.15	The impact of illuminated areas on the solder pad for the stability of classifying
	voids inside the drill-hole
Figure 8.16	The removal of illuminated regions on the adjoining solder pad corresponding to
	a detected void inside the drill-hole
Figure 8.17	The soldering defects classification of voids inside the drill-hole, with the
	integration of the removal of illuminated pad regions
Figure 8.18	Effect of illuminated region removal on voids detection on the solder pad 172
Figure 8.19	Impact of longer pre-heat time required for pads connected to large copper
	planes on the accuracy of voids detection on solder pad172
Figure 8.20	Impact of longer pre-heat time required by the solder pad on the distribution of
	light on the solder joint surface

List of Tables

	Page
Table 2.1	Average percentage of keypoints detected in foreground region and
	repeatability of detection using SIFT, SURF and FAST feature
	detectors
Table 2.2	Percentage of erroneous matching between given model images and
	located images at (250-750) lux
Table 2.3	Percentage of erroneous matching between given model images and
	located images at (75-200) lux
Table 2.4	Percentage of erroneous matching between given model images and
	located images at (1000-1500) lux
Table 2.5	Percentage of successful matching between given model images and
	located images at (250-750) lux
Table 2.6	Percentage of successful matching between given model images and
	located images at (75-200) lux
Table 2.7	Percentage of successful matching between given model images and
	located images at (1000-1500) lux
Table 2.8	Successful detection rate of template matching algorithms over the
	feature matched located images46
Table 2.9	Successful detection rate of template matching algorithms over the
	scaled down located images by a percentage of 2%
Table 3.1	Data Analysis for Different Combinations of Solder Mask and Solder
	Pad Colours
Table 3.2	Acquired results for average and standard deviation for separate
	channels of gray scale images and for a colour image of solder pads on
	green PCB gold-plated62
Table 2.2	Successful detection rate of colour image commentation process on selected
1 0010 3.3	Successful detection rate of colour image segmentation process on selected
	colour models over different PCB types at different controlled conditions 68

Table 3.4	Experimentally obtained colour vector distances for quantized colours on
	the detected object area 69
Table 3.5	Successful detection rate after removing the effect of pad offsets and
	tracks72
Table 4.1	Successful detection of drill-hole region of a solder pad
Table 4.2	Average euclidean distance of clustered colours inside lead top and
	drill-hole region for gold-plated component leads with reference to the
	origin of RGB colour cube85
Table 4.3	Successful and erroneous detection rate of lead top inside the solder
	joint using template matching algorithms with respective average
	computation time
Table 4.4	Successful detection rate of lead top inside the solder joint using
	template matching algorithms over different colour models
Table 5.1	Mean (μ) and standard deviation (σ) of the vector distance between the
	foreground and background of the soldered joint for nine different
	colour models and four different solder mask colours
Table 5.2	Performance evaluation of clustering algorithms for solder void
	confirmation on adjoining solder pad to a detected void in drill-hole
	region110
Table 5.3	Successful and Erroneous detection rate of void detection algorithm
	inside drill-hole region of the solder joint
Table 5.4	Successful and erroneous detection rate in identifying voids inside the
	solder pad region of a solder joint over gold-plated and tin-plated
	solder pads117
Table 5.5	Successful and erroneous detection rate of proposed algorithm for the
	detection of excess solder on a solder joint
Table 7.1	DH Parameters for Soldering Arm152
Table 7.2	DH Parameters for Camera152

Table 8.1	Performance evaluation of the fiducial verification process along with
	the background verification methodology161
Table 8.2	Performance evaluation of the size comparison method and the
	background learning methodology for identifying the exact solder pad
	to be soldered165
Table 8.3	Performance evaluation of automatic drill-hole computation algorithm
	during the operation of the THT soldering system166
Table 8.4	Performance evaluation of the algorithm for classifying voids inside
	the drill-hole region of the solder joint

List of Abbreviations

AOI	Automatic Optical Inspection
BRIEF	Binary Robust Independent Elementary Features
CAD	Computer Aided Design
CCOEFF	Correlation Coefficient
CIE	Commission Internationale de l'Elcairage
CV	Connection Validation
DCT	Discrete Cosine Transform
DMA	Direct Memory Access
DoG	Difference of Gaussian
DWT	Discrete Wavelet Transform
EDA	Electronic Design Automation
EMS	Electronics Manufacturing Services
FAST	Feature Accelerated Segment Test
FCM	Fuzzy C-Means
FLANN	Fast Library for Approximate Nearest Neighbour
FOV	Field of View
GPU	Graphical Processing Unit
GUI	Graphical User Interface
ICA	Independent Component Analysis
IPC	Institute for Interconnecting and Packaging Electronics
	Circuits
LoG	Laplacian of Gaussian
MCU	Module Control Unit
MST	Minimum Spanning Tree
NPI	New Product Industrialization
OCP	Over Current Protection
PC	Principle Curvatures

PCA	Principle Component Analysis
PCB	Printed Circuit Board
PUS	PCB Under Solder
ROI	Region of Interest
SD	Standard Deviation
SIFT	Surface Invariant Feature Transform
SMD	Surface Mount Devices
SMT	Surface Mount Technology
SPI	Serial Peripheral Interface
SQDIFF	Squared Difference
SURF	Speed-Up Robust Features
THT	Through Hole Technology