
NEURAL NETWORK BASED INFLOW FORECASTING

FOR OPTIMUM POND OPERATION OF A RUN-OF-

RIVER TYPE HYDRO PLANT

Miyanakolatanne Hewage Dhammike Wimalaratne

(178534T)

Degree of Master of Science

Department of Electrical Engineering

University of Moratuwa

Sri Lanka

May 2020

NEURAL NETWORK BASED INFLOW FORECASTING

FOR OPTIMUM POND OPERATION OF A RUN-OF-

RIVER TYPE HYDRO PLANT

Miyanakolatanne Hewage Dhammike Wimalaratne

(178534T)

Thesis submitted in partial fulfilment of the requirements for the degree of Master of

Science in Electrical Engineering

Department of Electrical Engineering

University of Moratuwa

Sri Lanka

May 2020

i

DECLARATION

I declare that this is my own work and this thesis does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another

person except where the acknowledgement is made in the text.

I also grant to University of Moratuwa the non-exclusive right to reproduce and

distribute my thesis, in whole or in part in print, electronic or other medium. I retain

the right to use this content in whole or part in future works (such as articles or books).

Signature:

(M.H. Dhammike Wimalaratne)

The above candidate has carried out research for the Masters Thesis under my

supervision.

Signature of the supervisor:

(Dr. Lidula N. Widanagama Arachchige)

The above candidate has carried out research for the Masters Thesis under my

supervision.

Signature of the supervisor:

(Eng. W.J. L. Shavindranath Fernando)

ii

ABSTRACT

The current practise of pond operation of Upper Kotmale Hydropower Station is studied,
where management of the pond is by subjective judgements of the operator. Accurate and
reliable inflow forecast makes up an important basis for optimum pond operation connected
with effective spillway gate operation. This research proposes a novel technique to forecast
inflow to the pond and utilise these forecasts to optimise the operation of the pond.

In the first phase of the research, an artificial neural network based Nonlinear Autoregressive
eXogenous model, which is a dynamic neural network meant for time series forecasting, is
used to develop the real time inflow forecasting system. Cross correlation analysis is used as
feature selection for effective selection of the inputs to the Nonlinear Autoregressive
eXogenous network. In the second phase, real time inflow forecast for next six hours is used
to optimise the pond operation focusing on goals of shorter-term nature, such as maximising
power generation, maximising pond storage and minimising spillway discharge. Multi-
objective global optimisation using MATLAB “fmincon” algorithm and weighted approach
of solving multi-objective problem are utilised to solve the optimisation problem. Trading-off
conflicting objectives by this approach proves very effective. This optimisation approach
enhances the flexibility of the operator in the decision making process resulting in achievement
of efficiency in pond operation.

The results show that the Nonlinear Autoregressive eXogenous modelling is an efficient tool
for inflow forecasting and MATLAB “fmincon” algorithm can be used effectively to carry out
the multi-objective optimisation of run-of-river pond. Simulation studies for the past years
show that there exists an opportunity for optimising run-of river ponds for generation using
inflow forecast and with the use of the proposed methodology, it enhances the hydropower
generation with gains of over 5% which is significant in a plant of this type.

Keywords : Artificial neural network, cross correlation, dynamic neural network, feature
selection, inflow forecast, multi-objective global optimisation, Nonlinear Autoregressive
Exogenous (NARX); pond operation, run-of-river, time series forecasting, ,

iii

DEDICATION

To my wife Anusha Priyadarshani and my children Laksandi, Sithuli and Senuk

Wimalaratne throughout my study. Without their patience dedication this thesis

would not have been completed in this short period of time. To my parents Nita

and Rohana Wimalaratne , who nurtured me and educated me and showed me

the right path and introduced me to the Library in a tender age.

iv

ACKNOWLEDGEMENTS

Foremost, I am pleased to express my sincere gratitude to my supervisor Dr. Lidula N.

Widanagama Arachchige of the Department of Electrical Engineering, University of

Moratuwa for the continuous support for my MSc research, for thought-provoking

discussions, constructive feedback, encouragement and guidance.

I would like to thank my external supervisor, Engineer W.J.L. Shavindranath

Fernando, who gave me the initial thought for this research, who often stimulated

interesting and enlightening discussions during the time at Upper Kotmale Project.

This work would have not been conceivable without the assistance and advice of many

other people. I want to thank the two seniors in our Department of Electrical

Engineering, University of Moratuwa, Professor J.R. Lucas and Professor H.Y.

Ranjith Perera, whose ideas and thoughts had a great impact on my work.

I also would like to thank my colleagues and friends in our MSc batch of the campus,

and those who are in my office at Upper Kotmale Power Station. You made my

working in this research more inspiring.

I also wish to express my sincere respect to the chief priest, Ven. Nindane

Chandawimala thero, at “Methmuni Viharaya”, Warakapola for giving me

accommodation in the temple for me to seriously embark on the research work in a

calm and tranquil surrounding away from home.

v

TABLE OF CONTENT

DECLARATION .. i

ABSTRACT ... ii

DEDICATION .. iii

ACKNOWLEDGEMENTS .. iv

TABLE OF CONTENT ... v

LIST OF FIGURES ... vii

LIST OF TABLES .. ix

LIST OF ABBREVIATIONS .. x

1 INTRODUCTION ... 1

1.1 Background ... 1

1.2 Problem Statement .. 2

1.3 Objectives of the Study ... 3

1.4 Overall Model Development ... 3

1.5 Thesis Outline .. 4

2 LITERATURE REVIEW... 5

2.1 The background ... 5

2.2 Inflow Forecasting Methods .. 6

2.2.1 Types of Models .. 6

2.2.2 Artificial Neural Network (ANN).. 7

2.2.3 ANN Modelling Process .. 8

2.2.4 Data Selection and Preparation .. 8

2.2.5 Feature Selection.. 9

2.2.6 Data Preprocessing .. 10

2.2.7 ANN Architecture .. 12

2.2.8 Training of ANN .. 12

2.2.9 Nonlinear Autoregressive EXogenous Model (NARX) 13

2.2.10 Multistep Time Series forecasting Strategies .. 14

2.2.11 Performance of ANN model .. 16

2.3 Pond Optimisation Methods .. 16

2.3.1 Categories of Optimisation .. 16

vi

2.3.2 Multi-objective Optimisation Problem .. 17

2.3.3 Global Optimisation ... 18

3 INFLOW FORECASTING USING NEURAL NETWORK 20

3.1 Introduction ... 20

3.2 Data Collection and Pre-processing .. 20

3.2.1 Raw Data Selection in the Present Study... 21

3.2.2 Outliers and Missing Data ... 22

3.3 Feature Selection ... 23

3.4 Design of Neural Network Architecture ... 31

3.5 Multistep Ahead Forecasting ... 32

4 POND OPTIMISATION USING INFLOW FORECAST 34

4.1 Introduction ... 34

4.2 Problem Formulation ... 35

5 RESULTS AND ANALYSIS .. 39

5.1 Introduction ... 39

5.2 Results of Feature Selection .. 39

5.3 Performance of Inflow Forecast Model ... 39

5.4 Performance of Pond Optimisation ... 46

5.5 Economic Evaluation of Water Saving ... 52

6 CONCLUSIONS AND RECOMMENDATIONS .. 54

6.1 Conclusion ... 54

6.2 Future Work .. 55

REFERENCES ... 56

APPENDIX-A: MATLAB PROGRAMMES OF IFM ... 58

APPENDIX-B: MATLAB PROGRAMMES OF POM .. 82

vii

LIST OF FIGURES

Figure 1.1: Hydro-Meteorological Observation Network of Upper Kotmale PS [2] 2

Figure 1.2: Overall Methodology 4

Figure 2.1: Different types of models 6

Figure 2.2: Structure of a Neuron 7

Figure 2.3: Extract from MATLAB Documentation of Overfitting 11

Figure 2.4: Simple neural network with one hidden layer 12

Figure 2.5: MATLAB peak function 19

Figure 3.1: Overall Block Diagram of Inflow Forecast Model 20

Figure 3.2: Extract of Collected Raw Data 21

Figure 3.3: Low-Pass Butterworth Filter used for Inflow Discharge to remove noise 22

Figure 3.4: Correlation Matrix of Present Values of Input Data 23

Figure 3.5: Cross Correlation between Present Inflow and Lagged Values of Nuwara Eliya RF 24

Figure 3.6: Cross Correlation between Inflow and Rainfall Values 25

Figure 3.7: Cross-Correlation between Present Inflow and Lagged Values of Calidonia Water

Level 25

Figure 3.8: Cross-correlation between Present Inflow and Nanuoya Water Level 26

Figure 3.9: Partial Autocorrelation of Nanuoya Water Level 26

Figure 3.10: Cross Correlation among Nuwara Eliya Cumulative Rainfall(up to 300 timesteps) and

Present Inflow 27

Figure 3.11: Partial-Autocorrelation of 5.4 days (260 steps) Comulative Nuwara Eliya Rainfall 28

Figure 3.12: Partial autocorrelation of Inflow to the Pond 29

Figure 3.13: MATLAB Open Loop NARX Network used for Modelling 31

Figure 3.14: Multistep ahead forecasting methodology 33

Figure 4.1: Overall Block Diagram of Pond Optimisation Model 34

Figure 4.2: Pond Cross Section and Different Flows 35

Figure 5.1: Progress Window of Training of ANN Model-1 40

Figure 5.2: Model-1 Regression Plots 41

Figure 5.3: Error Histogram for Model-1 41

Figure 5.4: Best Validation Performance for Model-1 42

Figure 5.5: Plot of Error Autocorrelation for Model-1 43

Figure 5.6: Input Error Correlation for Model-1 44

Figure 5.7: Actual Inflow and Forecasted Inflow with Time of 18 July 2019 45

Figure 5.8 : RMSE adn MAD of Forecasting vs Forecasting Period 46

Figure 5.9: Optimisation run for year 2016 47

viii

Figure 5.10: Optimisation Run for the Year 2017 48

Figure 5.11: Optimisation Run for the Year 2018 49

Figure 5.12: Extract of 2016 data from 15 May 2016 50

Figure 5.13: Comparison of Actual and Optimised Generation with Inflow on 15 May 2016 51

Figure 5.14: Comparison of Actual and Optimised Generation for 2016, 2017 and 2018 51

ix

LIST OF TABLES

Table 1.1: Basic Plant Data at UKPS ... 1

Table 3.1: Summery of Gauging Stations and Raw Data Sources 22

Table 3.2: User Defined Inflow Flag ... 29

Table 3.3: Cross-correlation values of cumulative rainfall values and inflow for most

significant lags (most significant lag is shown in brackets) 30

Table 3.4: Characteristics of Selected ANN Model ... 32

Table 4.1: Decision Variables and Other Parameters .. 36

Table 5.1:Summery of Statistics of Model Training for all 12 Models 44

Table 5.2 : Calculation of RMSE and MAD .. 45

Table 5.3: Comparison of Actual and Optimised Generation with Gain for 2016 47

Table 5.4: Comparison of Actual and Optimised Generation with Gain for 2017 48

Table 5.5: Comparison of Actual and Optimised Generation with Gain for 2018 49

Table 5.6: Comparison of Actual and Optimised Spilling in year 2016, 2017, 2018 52

Table 5.7: Economic Water Value for each Month from 2016 to 2018 52

Table 5.8: Summary of Economic Gain for years 2016 -2018 53

x

LIST OF ABBREVIATIONS

ANN : Artificial Neural Network

AOF : Aggregated Objective Function

AW_RF : Ambewela Rainfall

CD_RF : Calidonia Rainfall

CD_WL : Calidonia Water Level

CEB : Ceylon Electricity Board

FF&WS : Flood Forecasting & Warning System

IEEE : Institute of Electrical and Electronic Engineers

IFM : Inflow Forecasting Model

MAD : Mean Absolute Deviation

MSE : Mean Square Error

NARX : Nonlinear Autoregressive eXogenous

NE_RF : Nuwara Eliya Rainfall

NO_WL : Nanuoya Water Level

PACF : Partial Auto Correlation Function

POM : Pond Optimisation Model

PS : Power Station

R : Correlation Coefficient

RMSE : Root Mean Square Error

SCC : System Control Centre

SH_RF : Sandringham Rainfall

TK_RF : Talawakelle Rainfall

TK_WL : Talawakelle Water Level

UKPS : Upper Kotmale Power Station

1

1 INTRODUCTION

1.1 Background

Upper Kotmale Power Station (UKPS), is a run of river hydropower station with no

irrigation requirements as can be seen in other power stations on the Mahaweli river.

Operation of the pond in Talawakelle presents a significant opportunity for the plant

operation engineers to manage the pond in an optimised manner so as to maximise

generation while minimising spilling. Furthermore, Upper Kotmale Power Station is

currently considered to be a semi-dispatchable plant. Even during the peak times, the

opening and closing of spillway gates are decided by the plant operation engineers

although the plant is dispatched by System Control Centre. Table 1.1 show basic plant

data.

Table 1.1: Basic Plant Data at UKPS [1]

Item Value Unit

Plant Capacity 150 MW

Effective Storage of Pond 0.8 MCM
Annual Expected Generation 409 GWh
Catchment Area 317 km2

Annual Rainfall 2000 mm

1000-year flood 2000 m3/s

10000-year flood 3000 m3/s

Optimisation. of Hydropower! Stations can be carried out from three levels namely,

unit Level, plant level, and system level. At system level, it is the unit dispatch based

on lowest incremental cost that achieves optimisation for the whole generating system.

Whereas unit level refers to running the unit at its best efficiency point, which

consumes less discharge thus saving water. Managing the pond skilfully with

minimum release of water while maximising generation is the plant level optimisation.

Accurate and reliable inflow forecast makes up an important basis for optimum pond

operation connected with effective spillway gate operation. Pond operation is a

complex problem which involves numerous requirements including flood control and

2

warning, power optimisation, downstream water users, etc. Often, it becomes more

complex when it comes to a small pond as in Upper Kotmale Power Station. Moreover,

pond operation without a proper mechanism is subjective in nature; consequently,

optimum or near optimum operation is hardly achieved with only human intervention.

1.2 Problem Statement

There are five rainfall measuring stations (Nuwara Eliya, Ambewela, Calidonia,

Sandringham, Talawakelle) and two water level gauging stations (Nanuoya,

Calidonia) in the catchment of Upper Kotmale pond. The overall hydro-meteorological

observation network of Upper Kotmale PS is shown in Figure 1.1. The data is real time

telemetered to a computer in Main Control Room. Both inflow and telemetry data is

available after commissioning since 2012.

Figure 1.1: Hydro-Meteorological Observation Network of Upper Kotmale PS [2]

Present method of inflow forecasting uses hydrological modelling that involves many

parameters which are dynamic in nature. Not only it requires field data such as river

cross sections to be measured to calibrate the system regularly, but also it requires

3

detailed understanding of the underlying physical processes for such calibration. This

exercise is both time consuming and costly. Hence, an alternative modelling technique

is advantageous to model the system to get inflow forecast. At the same time, it will

be possible to update with the data being collected with new model to make the forecast

more accurate.

Reservoir at Upper Kotmale, being a small pond and not having gate operation rules,

plant level optimisation made by the operator based on subjective judgements can

cause unnecessary spilling; thus, wasting energy. Accurate inflow forecast will allow

an effective spillway gate operation, thereby reducing spilling and use water

effectively for power generation.

1.3 Objectives of the Study

The main objective of this study is to design an intelligent inflow forecast algorithm

to improve the efficiency of power generation at Upper Kotmale Power Station by

effective operation of spillway gates

Other specific objectives are as follows:

 To develop a correlation between rainfall forecast from reputed sources such as

reliable websites and rainfall data recorded in the five rainfall gauging stations

 To analyse past operation data and develop a new model to forecast inflow to

reservoir at Upper Kotmale

 To use inflow forecast to develop reservoir operation rules with the aim of

minimising spill while effectively using water for power generation subject to

other issues such as flood control.

1.4 Overall Model Development

In this research, two models were developed: Inflow Forecast Model using MATLAB

Nonlinear Auto Regressive with eXogenous model (NARX) and Pond Optimisation

Model using MATLAB Nonlinear multi-objective multivariable optimisation

techniques. The outcome of the above inflow forecast model was utilised as the main

4

input to the pond optimisation model. The procedure and the methodology applied in

this study is depicted in Figure 3.1.

Figure 1.2: Overall Methodology

1.5 Thesis Outline

Chapter 1 gives the background and problem statement of the research together with

the objectives. It also gives a brief introduction to the overall model development.

Chapter 2 describes the theory on development of Artificial Neural Network Model

for inflow forecasting system and explains how to utilise the inflow forecast for

managing of pond by optimisation. It also explains different feature selection methods

available for input selection for ANN. It also describes different strategies available

for multistep ahead forecasting. Chapter 3 provides the insight into development of

ANN models for inflow forecasting for Upper Kotmale Hydropower Station; thus, the

overall setting up of Inflow Forecasting Model (IFM). Feature selection and design of

the neural network architecture for the models are described. Chapter 4 provides the

mathematical formulation of Pond Optimisation Model (POM) using inflow forecast

from the IFM described in Chapter 3. Chapter 5 presents the results of performance of

MATLAB models of Inflow Forecasting Model and the performance of Pond

Optimisation Model. Chapter 6 summarises the overall work done together with the

energy gain in the study of pond optimisation using inflow forecasting; furthermore, it

gives areas of future work.

5

2 LITERATURE REVIEW

2.1 The background

In a run-of-river hydropower plant like Upper Kotmale Power Station (PS) and Kukule

Ganga1 PS in Sri Lanka, where there are no irrigation requirements as seen in other

power stations in Mahaweli river, the management of reservoir (pond) is done usually

in “the way it is used to do approach” rather than using a scientifically optimised

approach. Several studies suggest that reservoirs are managed using fixed or pre-

defined rules, which are presented by way of tables and graphs. They further claim

that these tables assist the operator in releasing water based on hydro- meteorological

factors, the current level, and the time of the year [3]. However, these curves, which

are designed by experience or trial and error, are not efficient. Furthermore, these rule

curves are meant for long term operation and cannot be used for run-of-river type

ponds where short term optimisation is important. Presence of trade-offs among

hydropower generation, pond storage and downstream releases to maintain waterfall

consistently pose pond management a multi-purpose problem.

A series of recent studies has indicated that short term optimisation of pond operation

can be done with the forecasted information on inflows. To enhance the efficiency of

pond operation, prior research has demonstrated how compelling the online operating

systems are [4]. Accuracy and lead time are used as parameters to assess the quality

of inflow forecasting. The accuracy is usually defined as the difference between

observed and forecasted inflows and the lead time is the time interval after issuing the

forecast to occur the forecasted event [5]. With the inflow forecasting assuming

perfect accuracy forecasts, the benefits in terms of power generation increase with the

extension of forecast lead time [6]. Previous studies have also emphasised that in spite

of error in inflow forecast, it is best to utilise inflow forecasting [7].

1 Kukule Ganga Power Station is another run-of-river hydropower station in Sri Lanka built on a
tributary of the Kalu Ganga.

6

2.2 Inflow Forecasting Methods

2.2.1 Types of Models

A model is a set of software and tools to replicate a real physical system that is used

to help predict its response and behaviour to new inputs.

Figure 2.1: Different types of models

Figure 2.1 shows one simple classification ofidifferentitypes of modelsiusedifor

inflow forecasting in resources of water. A physical model is often a scaled down

version of the original system. A mathematical model refers to models developed with

equations and mathematical logic, that are used to simulate a system, and can be

divided into three types as:iAnalytical,iConceptual andiData;Driven models.

Analyticalimodelidescribes a system by explicit mathematical equations. Application

of analytical model is limited to the extent of the knowledge of mathematics behind

the system and often applied for non-complex systems.

Models prepared using data-driven techniques utilise input/output data to discover

patterns with the intention of generalising them to a larger set of data. Two types of

models under data-driven types are statistical and artificial intelligence models. A

conceptualimodeliis a combinationiof data-driven model and analytical models.

Statistical model is linked to a stochastic process, which includes both random and

deterministic variables. Deterministic part is dealt with mathematical models and

Models

PhysicalMathamatical

AnalyticalConceptualData-Driven

Statistical

Artificial
Intelligent

7

random part is dealt with theory of probability and probabilistic modelling. Artificial

Intelligence models include Fuzzy logic, and Artificial Neural Network that replicate

real world system utilising biological concepts.

2.2.2 Artificial Neural Network (ANN)

Artificial Neural Network are models based on the structure of the human brain and

are used for complicated problems of pattern recognition, clustering, regression etc.

Any complicated nonlinear function can be mapped by them very easily, which is done

intelligently by learning through training. It can be emphasised that ANN has the

ability to learn the exact behaviour between the inputs and outputs from examples

without any kind of the physical knowledge and physical involvement. ANN has been

known as to recognise the fundamental behaviour between the variables although data

is noisy and containing some errors [8].

The basic component of ANN is a neuron, a unit that acts two jobs of joining the inputs

coming towards it (Xi) and comparingithe joined inputsiwith a set thresholdi(α) to

ascertain suitable output.

Figure 2.2 gives the neuron structure. The inputs to a neuron are weighted by a weight

matrix, and it can have an additional bias input, too. The mathematical relation of a

functional neuron is defined as in Equation (2.1) and (2.2).

 𝐼 = 𝑊′ × 𝑋′ + 𝑏′ (2-1)
 𝑌 = ቄ

1, 𝐼 ≥ 𝛼
0, 𝐼 < 𝛼

 (2-2)

1

X1

b

X2
W1

Σ α
W2

wm

xm

Y

Figure 2.2: Structure of a Neuron

8

In the above equations, Xi = ;inputs, Wi = ‘weight matrix, bi = ;bias, Ii= ;sum of the

weighted inputs, α = ;threshold, Yi = ;output

Processing element explained in Figure 2.2 is called a perceptron. Furthermore, a

single neuron is not sufficient for solving numerous practical problems; hence, a

network of perceptrons is commonly used in series or parallel, and it is called a neural

network. The threshold value (α) in Figure 2.2 of the secondihalf’ of theineuron can

be substituted by aimathematicalifunction to generalise the rangeiof ioutputsi which a

neuron can output. It is called a transfer function, which connects an input to an output.

Some of the transfer functions which are commonly in use with the artificial neurons

are Linear, Log Sigmoid and Tangent Sigmoid.

The biases and weights are parameters of a network which shall be initialised before

training ANN using a supervised approach, which will ultimately decide on the

optimum weights and biases. The training in supervised mode of an ANN can be done

using delta rule with backpropagation algorithm. Upon training, the network is ready

to simulatei the outputs for specific inputs associatediutilising final derived biases and

weights.

2.2.3 ANN Modelling Process

A step by step process was introduced to develop neural network (NN) models for

hydrological applications in [9]. They are as follows:

1. Data selection: Collect appropriate and sufficient data

2. Choose appropriate predictors: Determine what to be modelled (inflow discharge)

3. Neural Net selection: Choose appropriate type of network and training algorithm

4. Data pre-processing: Feature selection to identify predictors and treat for missing

data. Scaling the input before being fed.

5. Training the network

6. Use appropriate assessment criteria such as MSE.

2.2.4 Data Selection and Preparation

For the effective development of Neural Net models, adequate data shall be available.

In other words, the data shall be of high quality free from errors and omissions and

9

available in adequate quantity. On the contrary, the presence of too many inputs

types/features could lead to poor generalisation performance. If the data used has

covered a broad range of more than one year, it is not required to eliminate any

seasonal components from the data set and if the data selected periods are adjacent, it

is not necessary to remove any long term trends or cycles. Some abnormal noise in the

data can be filtered out by using an appropriate filter such as moving average filter or

Butterworth filter. The Butterworth filter is more popular in ANN environment.

Suitable tuning of cut off frequency (fc) and sampling frequency (fs) can be done by

looking at the output using trial and error approach in MATLAB environment.

2.2.5 Feature Selection

Feature selection refers to the selection of appropriate inputs for the modelling of

Neural Network model. There are different categories of inputs such as rainfall, water

level, evaporation, their cumulative values and antecedent values of all. Not all inputs

have an impact to the outputs; hence, including them arbitrary to the ANN training

will weaken the generalisation performance of the ANN model. The following are

three common methods for feature selection.

 Cross correlation Analysis

 Stepwise regression

 Use of Genetic Algorithms

In stepwise regression, all possible combinations of inputs are used to train an ANN

network one after the other. Mean square error can be assessed for each combination

and drop the combinations, which have no relation to output that giving very high

MSE. This method never fails, but it consumes a lot of time making it difficult to apply

for a practical case having many variables such as in inflow forecasting. Use of Genetic

Algorithms also can speed up the process. However, it still consumes a lot of time for

evaluation of fitness function. Therefore, cross correlation analysis is a suitable feature

selection technique for most ANN applications. Several studies suggest that cross

correlation techniques can be used to identify suitable antecedent values (lags) of

inputs as well. In [8], cross correlation between water level, rainfall, and the lag time

necessary for the system to respond was evaluated and the lag was identified as the

10

value producing a peakiin the crossicorrelationidiagram. It is required to check the

cross correlation between each input and inflow (output) and partial autocorrelation of

each input. The partialiautocorrelationi function measures the correlation between yt’

and yt’ +’ k afteriadjusting for the linearieffects of yt’ + 1,...,yt’ + k’ – 1. The detailed cross

correlation analysis was performed in this research to identify the suitable inputs and

it is described in Chapter 3.

2.2.6 Data Preprocessing

Once the suitable inputs are selected, next step is to prepare the data before being fed

to the ANN. Two processes frequently applied for data pre-processing are as follows:

 Standardising/Normalising

 Data Division

In standardising, the input values are rescaled to a uniformed scale. It can be [-1 1], [0

1] or [0.1 0.9]. MATLAB automatically does the standardising of inputs and it is not

required to do explicitly. It is mathematically expressed by equation (2-3) [10]

𝑋௡ = 𝑋௡ ௠௜௡ +

(𝑋௢ − 𝑋௢ ௠௜௡)

(𝑋௢ ௠௔௫ − 𝑋௢ ௠௜௡)
 (𝑋௡ ௠௔௫ − 𝑋௡ ௠௜௡) (2-3)

Where 𝑿𝒐 and 𝑿𝒏 denote the original and transformed data, whereas 𝑿𝒐 𝒎𝒂𝒙 and

𝑿𝒐 𝒎𝒊𝒏 denote the maximum and minimum values of original data, respectively.

𝑿𝒏 𝒎𝒊𝒏 and 𝑋௡ ௠௔௫ are the uniform scale defined previously, which in MATLAB is [-

1 1].

Before training ANN, the data is divided into three subsets namely training set,

validation set and test set. The training set is used for computing the gradient and

updating the network weights and biases while validation set is utilised to monitor the

error when the training is in progress. The validation error normally decreases during

the training together with training set error. Conversely, when the network starts to

overfitting, the error on validation data set starts to rise. At this point, the weights and

biases of the network are saved right at the lowest error on the validation data set.

Overfitting of network should be avoided in this way, and it is very important in ANN

modelling. In overfitting, ANN tries to memorise the training samples and not learn

11

the underlying pattern. This technique is also called early stopping in some literature.

Figure 2.3 shows an extract from MATLAB documentation, which describes how

MATLAB avoids overfitting of ANN.

Figure 2.3: Extract from MATLAB Documentation of Overfitting

As shown in Figure 2.3, the error decrease after more iterations (epochs) of training,

but start to increase on the validation data set from 9th epoch, at which time the network

starts overfitting the training data. In the MATLAB setup, the training ceases after six

consecutive increases in validation error, and the best performance is taken from the

9th epoch, which has the lowest validation error [11]. The test set is used to verify the

performance of the model and different models are compared. As in the Figure 2.3, it

is useful to plot the test set error during the training process. If the error on the test set

reaches a minimum at a significantly different iteration number (epoch) than the

validation set error, it might indicate a poor division of the data set. In general, data is

divided as 70%, 15% and 15% for training, validation and test sets, respectively. It can

be 80%, 10% and 10%, too. Data division depends on number of data points available.

Higher the number of data points available, even a small percentage allocated to test

error is a significant number of samples. It is very important that data division is done

12

in a manner that protects the patterns and relationships of time series; hence, random

data division techniques were not be applied for inflow forecasting model in this

research.

2.2.7 ANN Architecture

Figure 2.4 show a simple neural network with one hidden layer. It has the input and

output layers. This network is called a two-layer network as number of layers are

calculated including output layer for a ANN.

Figure 2.4: Simple neural network with one hidden layer

Input layer has three nodes, hidden layer has 4 nodes and output layer has two nodes.

A heuristic approach is used in [12] to set the hiddeninumber of nodesiand to decide

the finalistructureiof theineuralinetwork. According to some literature, the number of

hidden nodes be taken as the half of the input nodes [13]. Often two-layer network is

suitable for most problems except for very complex models, in which more than one

hidden layer is used. If the number of hidden layers is very high, then the network is

said to be deep neural network; however, for the inflow forecasting, shallow neural

network is sufficient. The weights shall not exceed the training samples, and a ratio of

training sample to weight number up to 30 is necessary to obtain good generalisation

[14].

2.2.8 Training of ANN

Neural networks are trained with a selected data set and it is generally assumed that a

network does not have any a prior-knowledge about the problem before it is trained

[15]. At the start of the training, the weights initialisation takes place with a set of

13

random values and then the weights are systematically modified by the learning

algorithm with the aim of minimising, for a given input, the difference between the

actual output and output of ANN. The process is terminated when this difference

becomes smaller than the set values as the learning samples are repeatedly presented

to the network. At this stage, the ANN is supposed to have been trained and the

resulting weight vector of the properly trained network carries its knowledge about the

problem. The three mainitraining methods are :

 Supervised Learning

 Unsupervised Learning

 Reinforcement Learning

For Supervised Learning, both inputs and corresponding outputs are fed to the

networks. In Unsupervised learning, learning is by clustering technique and the

expected output is not known beforehand and Reinforcement learning is a combination

of both unsupervised learning and supervised learning. It has penalty for wrong outputs

and rewards for correct outputs [11]. In many applications supervised learning is

chiefly used.

The most popular method of network training algorithm has been the back-propagation

learning rule [16]. Nevertheless, back-propagation has a few drawbacks including long

duration of training with many iterations. Owing to the drawbacks of back-

propagation, some authors have proposed more efficient rules such as the Levenberg-

Marquardt rule, which is the most powerful method at present and reach to one of the

best solutions in a few iterations [17].

2.2.9 Nonlinear Autoregressive EXogenous Model (NARX)

Prior knowledge of the system to be modeled will determine the choice of the ANN.

In this sense, inflow forecasting being a time series and NARX neural network being

a good predictor of time series, it is suitable for inflow forecasting modelling [18].

NARX could be used to model various kinds of non-linear dynamic systems. They are

used in numerous applications that include time series applications [19]. The NARX

is a recurrent dynamic neural network. Dynamic networks have memory in it, and they

can be trained to learn time-varying or sequential patterns; hence, they are more

14

powerful than the networks of static counterparts. Furthermore, these networks have

feedback connections across multiple network layers. To derive the full potential of

NARX for time series forecast, it is useful to use its memory capability using the

antecedent of true or predicted time series. There are two distinct architectures for the

NARX model, open loop (series parallel) and closed loop (parallel architecture). Their

equations are as shown in (2-4) and (2-5) respectively.

𝑌෠(𝑡 + 1) = 𝐹 ൝ቊ

𝑦(𝑡), 𝑦(𝑡 − 1), … . 𝑦൫𝑡 − 𝑛௬൯, 𝑥(𝑡 + 1),

𝑥(𝑡), 𝑥(𝑡 − 1), … 𝑥(𝑡 − 𝑛௫)
ቋ

(2-4)

𝑌෠(𝑡 + 1) = 𝐹 ൝ቊ
𝑦ො(𝑡), 𝑦ෝ (𝑡 − 1), … . 𝑦ො൫𝑡 − 𝑛௬൯, 𝑥(𝑡 + 1),

𝑥(𝑡), 𝑥(𝑡 − 1), … 𝑥(𝑡 − 𝑛௫)
ቋ

(2-5)

Where function F’ is the network mapping function, 𝒀෡(𝒕 + 𝟏) is the NARX output at

the’ time t’ for the time t’+1 (i.e. predicted’value’of Y’for the time’t+1).

𝒚ෝ(𝒕), 𝒚ෝ (𝒕 − 𝟏), … . 𝒚ෝ൫𝒕 − 𝒏𝒚൯ are the past outputs of the NARX. 𝒚(𝒕), 𝒚(𝒕 −

𝟏), … . 𝒚൫𝒕 − 𝒏𝒚൯ are the true past values of the time series, called also the desired

output values. 𝒙(𝒕), 𝒙(𝒕 − 𝟏), … 𝒙(𝒕 − 𝒏𝒙) are the’inputs’of’ the’‘NARX. 𝑛௫ is the

number’of’input’ delays’ and 𝒏𝒚 is the number’of output’delays. If only series’parallel

architecture is used, it can forecast one-step ahead time series forecasting and for

multi-step ahead forecast, different strategy shall be used.

2.2.10 Multistep Time Series forecasting Strategies

In time series prediction, forecasting the next time step is generally common, and it is

called a one-step forecast. In the case of multiple time steps to be forecasted, it is called

multi-step forecasting. The four common methods for multi-step forecasting [20].

1. Direct Multistep Forecasting

2. Recursive Multistep Forecasting

3. Direct Recursive Hybrid Multistep Forecasting

4. Multiple Output Forecasting

Direct Multistep forecasting requires to develop a separate model for every time step.

In case of forecasting inflow for the next six hours, for 30 minute time steps, it is

15

required to develop 12 models. Equation (2-6) and (2-7) underlines the relationship of

this strategy.

 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 (𝑡 + 1) = 𝑚𝑜𝑑𝑒𝑙1(𝑜𝑏𝑠(𝑡 − 1), 𝑜𝑏𝑠(𝑡 − 2), . . 𝑜𝑏𝑠(𝑡 − 𝑛))

(2-6)

 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 (𝑡 + 2) = 𝑚𝑜𝑑𝑒𝑙2(𝑜𝑏𝑠(𝑡 − 2), 𝑜𝑏𝑠(𝑡 − 3), . . 𝑜𝑏𝑠(𝑡 − 𝑛))

(2-7)

To have one model for every time step is an additional burden in view of computation

and maintenance, particularly, as the timesteps to be forecasted increases.

Recursive Multistep Forecasting involves using a one’step ahead modelimultiple

times where the forecast for the prior time step is used as an input for making forecast

on the following’time step. Equation (2-7) and (2-9) underlines the relationship of this

strategy.

 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 (𝑡 + 1) = 𝑚𝑜𝑑𝑒𝑙(𝑜𝑏𝑠(𝑡 − 1), 𝑜𝑏𝑠(𝑡 − 2), . . 𝑜𝑏𝑠(𝑡 − 𝑛))

(2-8)

 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 (𝑡 + 2) = 𝑚𝑜𝑑𝑒𝑙(𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑡 + 1), 𝑜𝑏𝑠(𝑡 − 1), . . 𝑜𝑏𝑠(𝑡 − 𝑛))

(2-9)

In this case, in place of observations, forecasts are used. The recursive strategy let

forecast errors to accumulate so that performance quickly degrades as the forecast time

horison increases.

In Direct Recursive Hybrid Multistep Forecasting, direct and recursive strategies

are combined to offer benefits of both methods. iA separate’model is constructedifor

each timestep to be forecasted, but each model use the forecasts made by models at

prior’time steps as input values. Equation (2-10) and (2-11) explains the relationship

of this strategy.

 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 (𝑡 + 1) = 𝑚𝑜𝑑𝑒𝑙1(𝑜𝑏𝑠(𝑡 − 1), 𝑜𝑏𝑠(𝑡 − 2), . . 𝑜𝑏𝑠(𝑡 − 𝑛))

(2-10)

 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 (𝑡 + 2) = 𝑚𝑜𝑑𝑒𝑙2(𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑡 + 1), 𝑜𝑏𝑠(𝑡 − 1), . . 𝑜𝑏𝑠(𝑡 − 𝑛)) (2-11)

Combining the recursive and direct strategies can help overcome the limitations of

each.

Multiple Output Forecasting involves developing one model that is capable of

forecasting the entire forecast sequence in a one-shot manner. Equation (2-12) depicts

the relationship of this strategy.

 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 (𝑡 + 1), 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 (𝑡 + 2) = 𝑚𝑜𝑑𝑒𝑙(𝑜𝑏𝑠(𝑡 − 1), 𝑜𝑏𝑠(𝑡 − 2), . . 𝑜𝑏𝑠(𝑡 − 𝑛)) (2-12)

16

Multiple output models can learn the dependence structure between inputs and outputs

as well as between outputs; hence, these models are more complex. Which strategy is

better for model is to be decided based on trial and error or by judgement.

2.2.11 Performance of ANN model

The performance of ANN model can be evaluated using statistical comparisons of

predicted and observed outputs. One common such statistic is Mean Square Error

(MSE). It is defined as in equation 2-13.

𝑀𝑆𝐸 =

∑ ((𝑜𝑏𝑠௜ − 𝑓𝑜𝑟௜)
ଶ)௡

௜

𝑛

(2-13)

Where 𝑜𝑏𝑠௜ is ith observed data and 𝒇𝒐𝒓𝒊 is the ith forecast data and 𝒏 is the number of

observed values. Root Mean Square (RMSE) is the square root of MSE.

2.3 Pond Optimisation Methods

Mathematical Optimisation refers to a process of maximising or minimising objectives

without violating design constraints, and regulating a set of decision variables that

affect both the objectives and the design constraints [21].

2.3.1 Categories of Optimisation

There exists a considerable body of literature on the categories of optimisation. They

can be classified as follows:

1. Nonlinear vs Linear

2. Unconstrained vs Constrained

3. Continuous vs Discrete

4. Multobjective vs Single

5. Multiple vs Single Minima

6. Non-deterministic vs

Deterministic

7. Simple vs Complex

If the objective function or any of the constraints is a nonlinear function of the design

variables, then the problem is called a nonlinear optimisation problem. If the

optimisation problem has constraints, then it is called a constrained optimisation

problem. If any design variable is discrete, it is called discrete optimisation, and if this

discrete variable can have only one or zero then the problem is binary optimisation

problem whereas design variables can have any integer, then it is an integer

programming problem. Optimisation problem having several optima is referred to as

17

global optimisation problem. If the design variables are nondeterministic, then the

problem is nondeterministic optimisation, and if the optimisation problem can be

solved easily as it may be nonlinear and deterministic etc., then the problem is simple

optimisation problem.

2.3.2 Multi-objective Optimisation Problem

In general, most practical problems involves trade-offs among competing objectives.

Maximising power generation while maximising end pond storage together with

minimising spilling is a Multi objectiveioptimisation problem.

Several objectives are optimized simultaneously in ‘Multiobjective optimization. The

objectivesiareiofteniiniconflict with each other and are measured by different units.

Therefore, the most importanticomponentiof multiple objectiveiproblem solving is

how to evaluate solutions or parameter sets, when there are two or moreiperformance

measures [22].

The structure of multi objective optimisation problem can be defined referring to two

objective case (n=2) as given by (2-14) - (2-16).

 𝑚𝑖𝑛௫ [𝜇ଵ(𝑥) 𝜇ଶ(𝑥)]
 Subject to

𝑔(𝑥) ≤ 0
ℎ(𝑥) = 0

𝑥௟ ≤ 𝑥 ≤ 𝑥௨

(2-14)

(2-15)

(2-16)

𝒙𝒊 is the designivariable vector, 𝒈(𝒙) representsithe vectoriofiinequalityiconstraintsi

and 𝒉(𝒙) isitheivectoriof equalityiconstraints.

The solution to the Multi-objective problem can be found from two different ways:

Using Aggregated Objective Function (AOF) Method and Pareto Domination

Approach. The AOF method combines different objectives into a single objective

using weightages. Pareto approach is based on whether one solution is dominated by

other and not on a single comparative value. Trade off among differentiobjectives is

presentediby theiset of Paretoioptimalisolutions. For each solution in this pareto

solutioniset, aniimprovementiin one objectiveicannot be achieved without

compromising others.

18

In this research, weighted approach is used for optimisation of the pond. Maximising

power generation while maximising end-pond storage at the end of period are

conflicting objectives. The aggregate objective function for the two objective case can

be written as in (2-17).

 𝐽(𝑥) = 𝑤1 × 𝜇ଵ(𝑥) + 𝑤2 × 𝜇ଶ(𝑥) (2-17)
Where 𝑤1 + 𝑤2 = 1.

MATLAB fmincon command can be used to find the solution to this multi-objective

optimisation problem after converting to single objective optimisation problem with

weighted approach. MATLAB fmincon command is as in (2-18) [11]:

 𝑚𝑖𝑛௫ [𝑓(𝑥)]
 Subject to

𝑐(𝑥) ≤ 0
𝑐𝑒𝑞(𝑥) = 0

𝐴𝑥 ≤ 𝑏
𝐴𝑒𝑞 𝑥 = 𝑏𝑒𝑞

𝐿𝐵 ≤ 𝑥 ≤ 𝑈𝐵

(2-18)

Firstitwoiconstraints areinonlinear constraints and next twoiconstraints are for linear

constraints. Final constraint defines the upper and lower bounds. The syntax for

fmincon is as follows [11].

 [𝑥𝑜𝑝𝑡, 𝑓𝑜𝑝𝑡] = 𝑓𝑚𝑖𝑛𝑐𝑜𝑛(‘𝑓𝑢𝑛’, 𝑥0, 𝐴, 𝑏, 𝐴𝑒𝑞, 𝑏𝑒𝑞, 𝐿𝐵, 𝑈𝐵, ‘𝑛𝑜𝑛𝑙𝑐𝑜𝑛’) (2-19)

Wherei x0, A, b, Aeq, beq, LB, and UB are theiinput variables which needito be

defined beforeicalling ‘fmincon’ function. ‘fun’ is the name of the function file

containing the definition of f(x), and ‘nonlcon’ is the name of the function file

containing nonlineariconstraints if any. The variables xopt and fopt are the outputs of

fmincon, where xopt is the optimumivector of variables [x1, x2] and fopt is the

minimumivalue of objective function f. To maximise a function, it is required to

simply perform operation of minimisation of -f(x).

2.3.3 Global Optimisation

Pond optimisation may have global minima and local minima; hence, it is called a

multi-modal optimisation problem. The global optimisation is to find the global

optima. Most of the algorithms in optimisation do not guarantee finding global minima

as optimisation can easily converge to a local minima based on the starting point used.

19

GlobalSearch and MultiStart algorithms of MATLAB have similar approaches to

finding global or multiple minima. Both algorithms start a local solver (such as

fmincon) from multiple start points. GlobalSearch uses the scatter search algorithm to

generate a set of trial points. GlobalSearch generates trial points within any finite

bounds set within LB and UB [11]. Several authors have recognised MATLAB

GlobalSearch to find the global minimum. However, in all the cases, global minimum

is not guaranteed but somewhat closer. Figure 2.5 shows MATLAB peaks function

which demonstrates the both local and global minimum.

Figure 2.5: MATLAB peak function

20

3 INFLOW FORECASTING USING NEURAL NETWORK

3.1 Introduction

Figure 3.1 shows the overall diagram of Inflow Forecasting Model. First, raw data was

screened through a process called Feature Selection through which the final inputs to

the model were derived. Using the derived inputs and the output of inflow MATLAB

NARX network was trained using supervised learning approach. Finally, trained

network was used to forecast the inflow one step ahead. One step ahead means 0.5

hours ahead. Several of similar models trained utilised in a Direct Recursive Strategy

to forecast the inflow for the multiple time steps ahead. The whole procedure of the

setting up of the inflow forecast model is discussed next.

Figure 3.1: Overall Block Diagram of Inflow Forecast Model

3.2 Data Collection and Pre-processing

Routine rainfall and water level observations are made by UKPS as a part of Flood

Forecasting & Warning System (FF&WS) established in the Power Station. The Power

Station was commissioned in year 2012, but FF&WS was established much later in

year 2014. UKPS operates a hydro-meteorological network of seven meteorological

stations where rainfall and water level data are transmitted real time to the Main

Control Room of the Power Station at every 10 minutes interval. Various calibration

and model setups had been taken place prior to 2016 before taking over the system

21

from the contractor. Hence, analysis and assessment indicate that the data before 2016

are not of good quality.

3.2.1 Raw Data Selection in the Present Study

It is important to select adequate; data which are specific; for the modelling task. On

the contrary, limited data shall be selected as much as feasible to minimize the training,

time and potential for overfitting of the model. Rainfall, water level and actual

recorded inflow time series data from year 2016 to 2019 were collected at 30-minute

interval. Figure 3.2 shows an extract of collected raw data from the Upper Kotmale

Power Station.

Figure 3.2: Extract of Collected Raw Data

Gauging stations, from which data was collected as in Figure 3.2, are further

summarised in Table 3.1.

22

Table 3.1: Summery of Gauging Stations and Raw Data Sources

Station Code Description Unit
NE_RF Nuwara Eliya Rainfall mm
AW_RF Ambewela Rainfall mm
SH_RF Sandringham Rainfall mm
CD_RF Calidonia Rainfall mm
TK_RF Talawakelle Rainfall mm
Basin_RF Basin Average Rainfall mm
NO_WL Nanuoya Water Level masl
CD_WL Calidonia Water Level masl
TK_WL Talawakelle Water Level masl
Q Inflow Discharge to Pond m3/s

Basin_RF, as referred in Table 3.1, is the total average rainfall of the Upper Kotmale

Catchment calculated based on Theisen polygon average, and it is readily available.

3.2.2 Outliers and Missing Data

Data was plotted on a MATLAB time-plot that contains missing values and outliers,

then gaps appeared on the plot where missing data existed, and outliers were easily

recognisable. Furthermore, most the missing data and outliers of input raw data were

treated manually with the author’s engineering judgement. The inflow discharge was

also applied a Butterworth filter (fc = 10Hz, fs = 100Hz, Step 2) to compensate noise

errors in the inflow values particularly when low inflow discharges were calculated.

Figure 3.3: Low-Pass Butterworth Filter used for Inflow Discharge to remove noise

23

Figure 3.3 shows an extract from the result of inflow discharge vs time before and after

applying low-pass Butterworth Filter in MATLAB.

3.3 Feature Selection

This part of the study could be considered as one of the most important and challenging

process. As described in the Chapter 2: Literature Review, feature selection refers to

the selection of appropriate inputs for the modelling of Neural Network based Inflow

Forecast Model. The candidate data were present rainfall values of five rainfall

gauging stations (Pt), their Antecedent Rainfall Values (Pt-1, Pt-2,..), Present Water

Levels of three water Level gauging stations (Lt), their Antecedent values (Lt-1, Lt-

2,..), Present Inflow discharge (Qt) and its Antecedent values (Qt-1, Qt-2,..).

The steps given next were followed in the feature selection process.

Step 1: Correlation Coefficient between each combination of the present values of

input variables were calculated using MATLAB correlation matrix. Figure 3.4 shows

the results of correlation coefficients (R) between each. Present value of rainfall means

that rainfall in mm recorded between now and half hour before.

Figure 3.4: Correlation Matrix of Present Values of Input Data

The correlation matrix above suggests that there is no significant correlation between

the present values of selected inputs. Moreover, the first column of this matrix gives

the correlation of present rainfall of the rainfall gauging stations and the present inflow

to the pond. It is also clear that inflow to the pond at any given time is not due to the

24

rainfall at that time but the rainfall that had received before that time. With the

conclusion that present values of rainfall have no bearing on the present inflow; hence,

present values of rainfall were not considered as inputs to the Neural Network model.

Similarly, present values of Water Levels at Calidonia and Nanuoya also have no effect

on present values of inflow; therefore, they, too, were not considered as inputs.

Step 2: Next step was to see if any correlation between antecedent values of rainfall

and present inflow. In here, antecedent values refer to the point rainfall values recorded

in the past. For example: rainfall before 0.5 h (t-1), 1.0 h (t-2), 1.5 h (t-3), etc.

MATLAB programme was written to calculate 200 lags (1 lag = 0.5 hours) and to see

any cross-correlation between the present inflow against each rainfall input. The cross

correlation of present inflow and lagged values of Nuwara Eliya Rainfall is shown in

Figure 3.5. The cross correlation of inflow and lagged rainfall values for each of the

other rainfall gauging station are shown in Figure 3.6. One lagged rainfall means that

rainfall recorded between half an hour before and one hour before. It is clear from the

Figure 3.5 & 3.6 that even point values of lagged values of rainfall have no bearing

with the present inflow as there is no significant cross-correlation in any of the graph

in Figure 3.5 & 3.6.

Figure 3.5: Cross Correlation between Present Inflow and Lagged Values of Nuwara Eliya RF

25

Figure 3.6: Cross Correlation between Inflow and Rainfall Values

Hence, it was concluded not to consider as inputs to the neural network model even

the point lagged values of rainfall.

Step 3: Next step was to see if any correlation between antecedent values of water

levels at Nanuoya and Calidonia with present inflow. Figure 3.7 shows the cross-

correlation between present inflow and up to two days lagged values of Calidonia

water level while Figure 3.8 shows the cross-correlation between present inflow and

up to 10 hours lagged values of Nanuoya water level. It can be seen a significant

correlation between lagged point values of Nanuoya water level and present Inflow.

The lag time of the river in Upper Kotmale varies between 4 to 6 hours.

Figure 3.7: Cross-Correlation between Present Inflow and Lagged Values of Calidonia Water Level

26

Figure 3.8: Cross-correlation between Present Inflow and Nanuoya Water Level

In order to ascertain, how many lagged values of Nanu Oya water level have the

significant information, partial autocorrelation of Nanuoya water level was analysed

using MATLAB as shown in Figure 3.9. Up to two lags need to be considered from

Nanuoya water level.

Figure 3.9: Partial Autocorrelation of Nanuoya Water Level

Step 4: With regard to rainfall, failing to spot correlation for present values of rainfall

or lagged values of point rainfall with present inflow, next step was to see if any cross-

correlation available between present inflow and cumulative values of rainfall of each

27

station. Figure 3.10 shows the cross-correlation matrix among present inflow and

cumulative rainfall values. The values in first column gives the cross-correlation

between present inflow and cumulative rainfall of Nuwara Eliya for different

cumulative time steps.

Figure 3.10: Cross Correlation among Nuwara Eliya Cumulative Rainfall(up to 300
timesteps) and Present Inflow

The highest correlation value, as in Figure 3.9, is 0.6938, and it belongs to the

cumulative Nuwara Eliya rainfall for last 260 timesteps (130 hours). This means, the

present inflow is highly correlated with the cumulative Nuwara Eliya rainfall for the

last 5.4 days. Hence, it is taken as an input to the Neural Network model. Furthermore,

similar observations were done for the other rainfall gauging values. In addition to

each individual cumulative rainfall values, effect of cumulative basin average was also

analysed in a similar way. Accordingly, the following rainfall variables were selected

for the modelling.

- 5.4 days cumulative Nuwara Eliya rainfall

- 7.6 days cumulative Ambewela rainfall

- 7.9 days cumulative Sandringham rainfall

- 8.3 days cumulative Calidonia rainfall

- 5.0 days cumulative Talawakelle rainfall

- 5.4 days cumulative Basin average rainfall

28

It is clear that not the point rainfall, or lagged values of point rainfall that has an effect

on inflow but the cumulative values of rainfall.

Moreover, partial autocorrelation of each of the above rainfall inputs were considered

to identify the effect of antecedent cumulative rainfall values on the present cumulative

values. Figure 3.11 shows the partial autocorrelation of 5.4 days cumulative Nuwara

Eliya rainfall.

Figure 3.11: Partial-Autocorrelation of 5.4 days (260 steps) Comulative Nuwara Eliya Rainfall

Two antecedent values of this variable carry significant information content as seen in

Figure 3.11. Similar analysis done for the other cumulative rainfall variables selected

in this step. Furthermore, NARX model in MATLAB does not permit configuring

different antecedent values for different input variables; by analysing all other graphs

of other 11 models, a common 5 antecedent values were selected for all cumulative

rainfall variables. In other words, if V is equal to “5.4 days cumulative Nuwara Eliya

rainfall”, Vt-1, Vt-2, Vt-3, Vt-4, Vt-5 were also considered as inputs.

Step 5: Next, the analysis was done to identify the effect of present inflow with its

antecedent values and up to how many antecedent values were to be considered. For

this, partial autocorrelation was carried out as shown in Figure 3.12.

29

Figure 3.12: Partial autocorrelation of Inflow to the Pond

Figure 3.12 indicates that present inflow is correlated to the past inflows. Hence, at

least, two antecedent values of inflows need to be considered as inputs to the model.

Step 6: Another user defined variable was created as flag to indicate the range of

present inflow to the model. Table 3.2 shows values of the user defined inflow flag

variable.

Table 3.2: User Defined Inflow Flag

Step 7: In addition to the variables selected in the previous steps, 6-hour and 24-hour

cumulative rainfall of each gauging station and whole basin were considered as inputs

after analysing their cross-correlation significance to the present inflows. The total

cross-correlation results among variables selected together with their significant lags

are further summarised in Table 3.3.

Inflow, Q (m3/s) flag
Q < 10 1

10 ≤ Q < 20 2
20 ≤ Q < 30 3
30 ≤ Q < 40 4
40 ≤ Q < 50 5
50 ≤ Q < 60 6
60 ≤ Q < 70 7
70 ≤ Q < 80 8
80 ≤ Q < 90 9

 90 ≤ Q < 100 10
100 ≤ Q 11

30

Table 3.3: Cross-correlation values of cumulative rainfall values and inflow for most
significant lags (most significant lag is shown in brackets)

Variable 6 hr
Cumulative

24 hr
Cumulative

X days Cumulative

Nuwara Eliya Rainfall 0.429 (lag= 4) 0.584 (lag= 1) 0.697 (lag= 0), (X= 5.4)
Ambewela Rainfall 0.407 (lag= 5) 0.668 (lag= 0) 0.670 (lag= 0), (X= 7.6)
Calidonia Rainfall 0.399 (lag= 3) 0.549 (lag= 1) 0.550 (lag= 0), (X= 8.3)
Sandringham Rainfall 0.446 (lag= 5) 0.595 (lag= 1) 0.637 (lag= 0), (X= 7.9)
Talawakelle Rainfall 0.424 (lag= 3) 0.574 (lag= 0) 0.675 (lag= 0), (X= 5.0)
Basin Rainfall 0.500 (lag= 5) 0.650 (lag= 1) 0.697 (lag= 0), (X= 5.4)

As can be seen in Table 3.3, lag-5 is the highest lag available as significant input of a

variable. Hence, the input delay to the neural network model was selected as 5 for all

input variables.

The list of inputs selected for the Neural network model is as follows.

1. Cumulative Rainfall in the last 6 hours of each Rainfall Gauging Station (5 inputs)

2. Cumulative Rainfall in the last 6 hours of the whole basin (1 input)

3. Cumulative Rainfall in the last 24 hours of each Rainfall Gauging Station

(5 inputs)

4. Cumulative Rainfall in the last 24 hours of the whole basin (1 input)

5. Cumulative Rainfall in the last 5.4 days of Nuwara Eliya Rainfall Gauging Station

(1 input)

6. Cumulative Rainfall in the last 7.4 days of Ambewela Rainfall Gauging Station

(1 input)

7. Cumulative Rainfall in the last 7.9 days of Sandringham Rainfall Gauging Station

(1 input)

8. Cumulative Rainfall in the last 8.3 days of Calidonia Rainfall Gauging Station

(1 input)

9. Cumulative Rainfall in the last 5 days of Talawakelle Rainfall Gauging Station

(1 input)

31

10. Cumulative Rainfall in the last 5.4 days of Whole Basin (1 input)

11. Water Level at Nanuoya Gauging Station (1 input)

12. Water Level at Calidonia Gauging Station (1 input)

13. Flag Variable to represent inflow value (1 input)

14. Significant Lag Values of above variables between 1 to 5

15. Past Natural Inflow to Reservoir (10 input)

A MATLAB programme was written to create these variables real time when their raw

values are available real time. Appendix-A describes the programme.

3.4 Design of Neural Network Architecture

For half-hourly simulations and model setup, three years rainfall, water level and

inflow recorded at 30-minute interval from 2016 to 2018 were used. Whole dataset

was divided preserving the sequential relationships using MATLAB dividerint

command into three sets: 80% training set, 10% validation set and 10% testing set. The

raw input and output values were set to normalised to [-1, 1] in the NARX programme.

The MATLAB programme for NARX modelling is attached as Appendix-A. Figure

3.13 shows the Open Loop NARX model used for modelling the inflow forecasting.

Figure 3.13: MATLAB Open Loop NARX Network used for Modelling

A heuristic approach (trial and error) was used; to decide on the layer numbers, types

of transfer functions used for each layer, number of hidden; nodes and the

32

finalistructure of the neural network model. Mean Square Error (MSE) was used as the

performance function, and same was used in the above trial and error approach.

Finally, selected architecture has two layers (1 input layer, 1 hidden layer), and 11

hidden nodes and one output node. A rule of thumb of deciding number of hidden

nodes, as discussed in the Chapter 2, for any neural network is to get the half of the

input nodes.

Input Nodes = 21  Half of Input Nodes = 10.5  Hence, Hidden Nodes = 11

Basic characteristics of ANN model selected is summarised in Table 3.4.

Table 3.4: Characteristics of Selected ANN Model

Characteristic Value/Description
Number of Layers 2
Hidden Layer Neurons 11
Input Delay 5
Feedback Delay 10
Activation function of Input Layer Tansig
Activation function of Hidden Layer Linear
Training Algorithm Levenberg Marquardt
Maximum Epochs 1000
Error Performance Function MSE

Based on the feature selection, as significant lag values of input is 5, input delay for

NARX network is set to 5. Similarity, feedback delay, antecedent values of inflow,

was set to 10.

3.5 Multistep Ahead Forecasting

The ANN model discussed in section 3.4 is used to forecast inflow one step ahead i.e.

inflow for next half an hour. To forecast multi step ahead, direct recursive hybrid

strategy was used. Figure 3.14 shows the method of forecasting multistep ahead.

33

Figure 3.14: Multistep ahead forecasting methodology

There are 12 models for 12 timesteps ahead forecasting. The difference in each model

is in the output with which the model was trained. As shown in the Figure 3.14, Model-

2 was trained with output of inflow two step ahead inflow recorded in the past. The

equations (3.1) and (3.2) show the case of two-step ahead forecast. Output of Equation

(3.1) is fed to input of Equation (3.2).

𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑡 + 1) = 𝑀𝑜𝑑𝑒𝑙1൫𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝑡) + 𝑜𝑏𝑠(𝑡 − 1) + ⋯ . . 𝑜𝑏𝑠(𝑡 − 𝑛)൯

(3-1)

𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑡 + 2) = 𝑀𝑜𝑑𝑒𝑙2൫𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑡 + 1) + 𝑜𝑏𝑠(𝑡) + ⋯ … . . 𝑜𝑏𝑠(𝑡 − 𝑛)൯

 (3-2)

Arrows and numbers in Figure 3.14 show the sequence in carrying out the multi-step

ahead forecasting.

34

4 POND OPTIMISATION USING INFLOW FORECAST

4.1 Introduction

Using inflow forecast from inflow forecast model described in Chapter 3 was utilised

to optimise the pond operation. Main objective in this pond optimisation is to maximise

generation while minimising spilling all the time. This model was developed in total

independence from the inflow forecast model so that any inflow forecast received from

any other source could well be input to this model for optimisation. The overall block

diagram of this model is shown in Figure 4.1.

Figure 4.1: Overall Block Diagram of Pond Optimisation Model

It is expected the programme to run automatically without human intervention.

Forecasted inflow for next 24 hours from Inflow Forecast models and initial water

level at the start of optimisation are input to this model. Constraints such as pond

capacity, environmental releases (St Claire release 2) and Plant turbine capacity

constraints are accounted in the MATLAB optimisation programme. When the

programme is run, it presents optimised loading pattern for next 24 hours. Based on

the results presented in the Chapter 5 for Inflow forecast models, the accuracy of the

2 St. Claire is a waterfall on the downstream of Upper Kotmale pond in Talawakelle. It is required to
release 1.33 m3/s of water from 5am to 3pm every day from Upper Kotmale pond to the St. Claire
waterfall downstream.

35

inflow forecast diminishes after four to five hours, the average lag time of this river.

Therefore, the optimisation model was also set to run in every 4 hours. Even if the

optimisation could be run for less than 4-hour intervals, sufficient time was allowed

for the periodical training of ANN models in Inflow Forecast models to take place.

4.2 Problem Formulation

Cross section of the pond and various parameters concerned are shown in Figure 4.2.

It is noted here that the optimisation period in this study is in hours and period concern

is very short term; hence, the effect of variables, such as the rate; of evaporation,

infiltration, Evapo-transpiration are not considered.

The objective functions: in this optimisation are:

 Maximise Turbine flow

 Minimise Spilling flow

 Maximise Pond storage

This is a multi-objective optimisation problem for which a method of Aggregate

Objective Function (AOF) was used to convert multi-objective problem into single-

objective problem for optimisation using MATLAB FMINCON optimisation

command. FMINCON function in MATLAB is used for both non-linear and linear

optimisation problems.

Figure 4.2: Pond Cross Section and Different Flows

36

The decision variables and other parameters of the problem are summarised in the
Table 4.1.

Table 4.1: Decision Variables and Other Parameters

The AOF was expressed as in Equation (4-1).

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐽 = 𝑤ଵ × 𝐷 − 𝑤ଷ × 𝑆𝑃 + 𝑤ଶ × 𝑃𝑆

(4-1)

Where,

w1, w2, w3 are non-negative weight between 0 to 1 to each objective. In Equation (4-

1), t refers to the period of optimisation. D is total Turbine discharge during

optimisation period, SP is the total spilling required during the optimisation period,

and PS is the amount of water stored in the pond during the optimisation period of 24

hours.

Appropriate values w1, w2, w3 were set using trial and error by looking at the results.

The optimum values for w1, w2, w3 could also have been obtained using the Pareto

Frontier for the three objectives. The Pareto solution using pareto frontier is explained

in Chapter 3 : Literature Review.

Other variables in the objective function defined in Equation (4-1) can be expressed as

follows in Equation (4-2), (4-3), (4-4).

𝐷 = ෍ 𝑋(𝑖)

ଶସ

௜ୀଵ

 (4-2)

𝑆𝑃 = ෍ 𝑋(𝑖)

ସ଼

௜ୀଶହ

(4-3)

𝑃𝑆 = ෍ 𝑋(𝑖)

଻ଶ

௜ୀସଽ

(4-4)

Item Unit t=1h t=2h ……………… t=23h t=24h

Initial Storage m3 S0 X(49) X(70) X(71)
Inflow m3 I(1) I(2) ……………… I(23) I(24)
Turbine Flow m3 X(1) X(2) ……………… X(23) X(24)
Spilling m3 X(25) X(26) ……………….. X(47) X(48)
Final Storage m3 X(49) X(50) ……………….. X(71) X(72)

37

The decision vector was expressed in vector form as shown in Equation (4-5).

𝑋 =

⎝

⎜
⎜
⎛

𝑋(1)

𝑋(2)
. .
. .

𝑋(71)

𝑋(72)⎠

⎟
⎟
⎞

(4-5)

The remaining equations to fully describe the problem are the constraints. First, the

boundary constraints for the decision variables are as following:

As plant has a minimum discharge (one unit minimum discharge) and a maximum

discharge (both units in full load), the constraint (4.6) can be written. For all practical

concerns, spilling can be assumed to have no upper limit. So, constraint (4-7) was

written for spilling.

 𝑇𝑢𝑟𝑏𝑖𝑛𝑒 𝑀𝑖𝑛 ≤ 𝑋(1), 𝑋(2), … … . . 𝑋(24) ≤ 𝑇𝑢𝑟𝑏𝑖𝑛𝑒 𝑀𝑎𝑥

(4-6)

 0 ≤ 𝑋(25), 𝑋(26), … … . . 𝑋(48) (4-7)

The storage of reservoir, in this case the effective storage was considered, has

minimum 0 and maximum SM corresponding to MOL of 1190 masl and Spill Level of

1194 masl respectively. SM for Upper Kotmale is 822470 m3. Hence, the constraint 4-

8 can be written as follows.

 0 ≤ 𝑋(49), 𝑋(50), … … . . 𝑋(72) ≤ 𝑆ெ (4-8)

Water for St Clair (Et) is released as follows:

𝐸(𝑡) = ቐ

0 𝑚ଷ 𝑠⁄ , 0000 < 𝑡 ≤ 0500

1.13 𝑚ଷ 𝑠⁄ , 0500 < 𝑡 ≤ 1500

 0 𝑚ଷ 𝑠⁄ , 1500 < 𝑡 ≤ 2400

(4-9)

Other constraints that govern the model is Pond water balance equation for each

period. The inflow to the pond is used to change the reservoir volume, spilling, turbine

discharge etc. There are 24 constraints for the total period of 24 hours. The set of

equations are as shown in (4-10).

38

Period 1 𝑆଴ + 𝐼(1) − 𝑋(1) − 𝑋(25) = 𝑋(49)

(4-10)

Period 2 𝑋(49) + 𝐼(2) − 𝑋(2) − 𝑋(26) = 𝑋(50)
Period 3 𝑋(50) + 𝐼(3) − 𝑋(3) − 𝑋(27) = 𝑋(51)
Period … ………………………………………
Period 24 𝑋(71) + 𝐼(24) − 𝑋(24) − 𝑋(48) = 𝑋(72)

The MATLAB fmincon command requires all constraints to be defined as AX < b ,

and boundary constraints as lb ≤ X < ub. The programme written in MATLAB is

attached as Appendix-A and MATLAB fmincon command explained in the Chapter

2: Literature Review.

39

5 RESULTS AND ANALYSIS

5.1 Introduction

This section presents results of the feature selection, results and analysis of the Inflow

Forecast Model (IFM) described in Chapter 3 and Pond Optimisation Model (POM)

described in Chapter 4. As the IFM was trained using plant data from 2016 to 2018,

the model performance was assessed using 2019 data. The POM was run with

historical data between 2018 to 2019 assuming perfect knowledge of then future inflow

for every next four hours.

5.2 Results of Feature Selection

It can be seen from feature selection that neither the point values of rainfall nor the

antecedent values of point rainfall values have an impact to the inflow. It is the

cumulative values of rainfall that have the influence on the future inflow. Antecedent

values of cumulative rainfall have also got a significant effect on the future inflow.

5.3 Performance of Inflow Forecast Model

As there are twelve models trained for forecasting for next six hours, the performances

of all the models are described in this section with various standard MATLAB plots.

The progress of training the Model-1 Artificial Neural Network (ANN) is shown in

Figure 5.1 and Figure 5.2 shows the regression plots of Model-1 which display the

network outputs with respect to targets for training, validation, and test sets. As the

data falls along a 45 degree line, where network outputs are equal to the targets, and

as the fit is reasonably good for all data sets (training, validation and test) with

correlation Coefficient (R value) of above 0.99, the Model-1 is a good fit for

forecasting inflow for next 0.5 hours. To get additional verification of the models,

error histogram was also plotted using MATLAB for all 12 models. Figure 5.3 shows

the error histogram for Model-1. In this diagram, the blue bars represent training data,

the green bars represent validation data, and the red bars represent testing data and it

40

Figure 5.1: Progress Window of Training of ANN Model-1

41

Figure 5.2: Model-1 Regression Plots

Figure 5.3: Error Histogram for Model-1

42

gives an indication of outliers, which are data points where the fit is significantly worse

than most data. In this case, most errors fall between -1 and 1. Furthermore, the

datapoints used for training the models can be deemed good as no significant outliers

in any of the Models. During the training, all models were set to stop training if

validation error increases to prevent models overfitting.

Figure 5.4: Best Validation Performance for Model-1

Figure 5.4 shows a plot of the training errors, validation errors, and test errors against

each iteration as the training of the Model-1 progressed. The final Mean Square Error

(MSE) is 0.0117 at iteration 16 (RMSE = 0.108 m3/s), and it is very small. Also, it can

be noted that the test error and validation error have similar characteristics. Hence, the

result of model training was quite satisfactory.

43

Figure 5.5: Plot of Error Autocorrelation for Model-1

Figure 5.5 shows the plot of error autocorrelation for Model-1, which explains how

the error predictions are related in time. There should only be one nonzero value of the

autocorrelation function for a perfect prediction model. Moreover, it should appear at

zero lag. (This is the mean square error). As there is no significant correlation in the

prediction errors, it could no longer be possible to improve the prediction by increasing

the number of delays in the tapped delay lines. In this case, the correlations, except for

the one at zero lag, fall approximately within the 95% confidence limits around zero,

so the Model-1 seems to be adequate. The final plot used to validate performance was

shown in Figure 5.6, which shows the plot of input-error correlation. This input-error

cross-correlation plot illustrates how the errors are correlated with the input sequence

and for a perfect prediction model, all the correlations should be zero. If the input is

correlated with the error, then it should be possible to improve the prediction, perhaps

by increasing the number of delays in the tapped delay lines. In the case of Model-1,

all of the correlations fall within the confidence bounds around zero.

44

Figure 5.6: Input Error Correlation for Model-1

The results of training performance of all twelve models are summarised in Table 5.1.

Table 5.1:Summery of Statistics of Model Training for all 12 Models

ANN

Model

Forecasting

Period

(hours)

No. of

Iterations

(Epoch)

RMSE

(m3/s)

R-

Training

R-

Validation

R-

Testing

Model-1 0.5 16 0.1082 0.99994 0.99993 0.99992

Model-2 1.0 87 0.1106 0.99993 0.99993 0.99992

Model-3 1.5 11 0.1125 0.99993 0.99992 0.99992

Model-4 2.0 189 0.1130 0.99993 0.99992 0.99992

Model-5 2.5 17 0.1142 0.99993 0.99992 0.99992

Model-6 3.0 61 0.1154 0.99993 0.99992 0.99991

Model-7 3.5 263 0.1156 0.99993 0.99992 0.99992

Model-8 4.0 10 0.1160 0.99993 0.99992 0.99992

Model-9 4.5 117 0.1170 0.99993 0.99992 0.99991

Model-10 5.0 116 0.1183 0.99993 0.99992 0.99992

Model-11 5.5 76 0.1187 0.99993 0.99991 0.99992

Model-12 6.0 57 0.1207 0.99993 0.99991 0.99993

A few cases of 2019 data used to verify the forecasting accuracy of the Inflow

Forecasting Model. It should be noted here, as this system is to be applied in real time

45

system where new data is gathered real time, it was programmed to retrain the network

with new data being gathered in every 4 hours. This period could be changed in the

programme as the system is in use. Table 5.7 shows the forecasting done by the models

for six hours ahead from 5:00pm on 18 July 2019.

Figure 5.7: Actual Inflow and Forecasted Inflow with Time of 18 July 2019

The calculation of Root Mean Square Error and Mean Absolute Deviation for the case

described in Figure 5.7 is shown in Table 5.2. Furthermore, a plot of RMSE and MAD

vs time is show in Figure 5.8.

Table 5.2 : Calculation of RMSE and MAD

0

20

40

60

80

100

120

140

160

180

12
:0

0
PM

12
:3

0
PM

1:
00

 P
M

1:
30

 P
M

2:
00

 P
M

2:
30

 P
M

3:
00

 P
M

3:
30

 P
M

4:
00

 P
M

4:
30

 P
M

5:
00

 P
M

5:
30

 P
M

6:
00

 P
M

6:
30

 P
M

7:
00

 P
M

7:
30

 P
M

8:
00

 P
M

8:
30

 P
M

9:
00

 P
M

9:
30

 P
M

10
:0

0
PM

10
:3

0
PM

In
flo

w
 (m

3 /
s)

Time

Actual Inflow and Forecast Inflow Vs Time

Actual Inflow Forecast Inflow

Forecast
Horizon
(hour)

Actual Forecast Error
Absoulute

Value of Error
Square of

Error

Absolute Values of
Errors divded by

Atual Values

number
of

periods
t At Ft At-Ft |At-Ft| (At-Ft)2 |(At-Ft)/At| n
0.5 158 156 2.20 2.20 4.827 0.01 1 2.20 2.20
1.0 160 157 3.33 3.33 11.103 0.02 2 2.82 2.76
1.5 156 155 0.52 0.52 0.272 0.00 3 2.32 2.02
2.0 149 150 -1.00 1.00 1.007 0.01 4 2.07 1.76
2.5 143 143 0.38 0.38 0.142 0.00 5 1.86 1.49
3.0 139 134 5.21 5.21 27.151 0.04 6 2.72 2.11
3.5 136 129 7.34 7.34 53.934 0.05 7 3.75 2.86
4.0 135 125 9.57 9.57 91.657 0.07 8 4.87 3.69
4.5 134 120 13.89 13.89 192.829 0.10 9 6.52 4.83
5.0 134 98 36.16 36.16 1307.419 0.27 10 13.00 7.96
5.5 135 63 71.74 71.74 5146.338 0.53 11 24.93 13.76
6.0 134 29 104.83 104.83 10989.137 0.78 12 38.54 21.35

RMSE MAD

46

It can be seen from Figure 5.7, 5.8 and Table 5.2 that the forecasting error increases

beyond 4 to 4.5 hours. This is typical lag time of the Upper Kotmale river.

Figure 5.8 : RMSE adn MAD of Forecasting vs Forecasting Period

The result of the Inflow Forecasting model explained so far reveals that it can forecast

to a reasonable accuracy for the next 4 to 4.5 hours.

5.4 Performance of Pond Optimisation

Any optimisation programme written in MATLAB can be written in three files

namely, “Main”, “ObjFunc” and “ConFun” as a practice. “Main” file has the initial

conditions and boundary conditions, “ObjFun” has the objective function and

“ConFun” has any non-linear constraints if any. The MATLAB programme written

for the Pond Optimisation is given in Appendix-A.

Using trial and error, it was found that optimum weightages that meet the multi-

objectives defined are w1 = 0.51, w2 = 0.49, w3 =0. w1, w2, & w3, as explained in

Chapter 4, are the weightages of aggregate objective function referring to Generation,

Pond Storage and Spilling. It is clear from the optimum weightings found, that

maximising generation, and end storage automatically minimise spilling. Hence, one

can consider the optimisation as two objective problem of maximising generation and

end storage. For simulation, hourly inflow records of 2017, 2018, and 2019 were used

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

RM
SE

 a
nd

 M
AD

 (m
3 /

s)

Forecasting Period (hours)

RMSE

MAD

47

and optimisation was run every four hours for each year assuming perfect knowledge

of the future inflow.

Figure 5.9 is the optimisation run for year 2016, which shows for every hour, average

plant loading in MW and average spilling required in m3/s and the resulting Average

Level in the pond in masl for optimum operation of the pond for year 2016.

Figure 5.9: Optimisation run for year 2016

The optimised generation given by the programme and actual generation for each

month in 2016 was compared and the results are shown in Table 5.4. The gain in

generation in GWh and as a percentage is shown in this table.

It was observed that gain in generation of about 8% could be achieved for year 2016.

Table 5.3: Comparison of Actual and Optimised Generation with Gain for 2016

Month Actual

Generation

(GWh)

Optimised

Generation

(GWh)

Gain in

Generation

(GWh)

Percentage

Generation

Gain

(%)

January 24.62 26.95 2.33 9.5

February 10.65 11.80 1.15 10.8

March 8.76 9.49 0.73 8.3

April 10.00 10.81 0.81 8.1

May 45.54 49.19 3.65 8.0

June 32.03 34.81 2.78 8.7

July 25.63 27.27 1.64 6.4

48

August 22.06 23.67 1.61 7.3

September 18.96 19.75 0.79 4.2

October 11.28 13.03 1.75 15.5

November 17.77 18.37 0.6 3.4

December 7.01 8.36 1.35 19.3

Total 243.3 253.5 19.19 8.2

Furthermore, same analysis done for year 2017 and 2018. Figure 5.10 shows the results

of optimisation run for the year 2017.

Figure 5.10: Optimisation Run for the Year 2017

The generation comparison for year 2017 is shown in Table 5.4.

Table 5.4: Comparison of Actual and Optimised Generation with Gain for 2017

Month Actual

Generation

(GWh)

Optimised

Generation

(GWh)

Gain

(GWh)

Percentage Gain

(%)

January 7.17 8.23 1.06 14.8

February 3.95 4.11 0.16 4.1

March 18.41 20.09 1.68 9.1

April 8.85 9.70 0.85 9.6

May 19.01 19.17 0.16 0.8

June 26.08 28.02 1.94 7.4

July 12.29 13.22 0.93 7.6

August 31.41 32.79 1.38 4.4

49

September 35.44 37.41 1.97 5.6

October 46.00 47.99 1.99 4.3

November 42.32 44.31 1.99 4.7

December 51.48 54.23 2.75 5.3

Total 302.41 319.27 16.86 5.6

It can be seen from Table 5.4 that about 6% gain in generation can be achieved for

year 2017. Figure 5.11 shows the results of optimisation run for the year 2018.

Figure 5.11: Optimisation Run for the Year 2018

The generation comparison for year 2018 is shown in Table 5.5.

Table 5.5: Comparison of Actual and Optimised Generation with Gain for 2018

Month Actual

Generation

(GWh)

Optimised

Generation

(GWh)

Gain

(GWh)

Percentage

Gain

(%)

January 18.67 20.37 1.7 9.1

February 11.83 12.66 0.83 7.0

March 12.18 12.97 0.79 6.5

April 23.62 25.84 2.22 9.4

May 57.33 60.49 3.16 5.5

June 67.39 71.72 4.33 6.4

July 53.20 56.22 3.02 5.7

August 79.74 83.07 3.33 4.2

50

September 47.69 49.94 2.25 4.7

October 91.91 96.68 4.77 5.2

November 60.02 63.54 3.52 5.9

December 26.01 27.54 1.53 5.9

Total 549.59 581.04 31.45 5.7

From the analysis of 2018 generation data, 5.7% gain in generation could be achieved

had the pond was operated optimally.

Figure 5.12 shows a zoomed-in extract from Figure 5.9 pertaining to data of the 15

May 2016 for closer viewing. Figure 5.13 shows the comparison of actual and

optimised generation with inflow on 15 May 2016.

Figure 5.12: Extract of 2016 data from 15 May 2016

As can be seen from Figure 5.13, when inflow is forecasted to have a sharp rise, Pond

Optimisation Model (POM), being anticipative and proactive, increases the generation

in anticipation of high inflow coming in; thus, managing the pond effectively. The

operator failed to increase the generation due to not having proper inflow forecast and

being judgemental.

51

Figure 5.13: Comparison of Actual and Optimised Generation with Inflow on 15 May 2016

Figure 5.14 shows the summery of actual generation and optimised generation for

three years of 2016, 2017 and 2018.

Figure 5.14: Comparison of Actual and Optimised Generation for 2016, 2017 and 2018

Next, it was analysed to see the amount of water spilled by the operator and amount of

water that would have spilled if the gates were operated to meet optimum spilling

required for each hour for years 2016, 2017 and 2018. Table 5.6 shows the actual and

optimised spilling for the year 2016, 2017 and 2018.

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

In
flo

w
 (m

3 /
s)

G
en

er
at

io
n

(M
W

)

Hour
Actual Generation (MW) Optimized Generation (MW) Inflow (m3/s)

52

Table 5.6: Comparison of Actual and Optimised Spilling in year 2016, 2017, 2018

Year 2016 2017 2018 Total

Actual Spilling (MCM) 10.39 12.19 63.957 86.54

Optimised Spilling (MCM) 9.48 9.73 59.74 78.95

Saving in Spilling (MCM) 0.91 2.46 4.22 7.59

It can be seen from Table 5.6 that significant amount of water can be saved by

optimally operating the reservoir. The effective storage of the pond is 0.8 MCM, and

water can be saved more than the effective storage for each year. It is, indeed, this

saving of water which causes enhancement of generation in optimal operation cases.

5.5 Economic Evaluation of Water Saving

The gain in energy generation in this study is mainly attributable to water saving as a

result of optimal reservoir operation. Therefore, to ascertain the benefit in economic

terms, water values need to be considered for the reservoir. When contacted the System

Control Centre (SCC) of CEB, it was pointed out that value of water depends on many

factors including current storage, required irrigation releases, price of thermal unit,

availability of thermal power plants, planned plant outages, inflows, etc and that a

software is run every month to estimate these water values. The value of unit of

electricity in Rs/kWh that were derived from water values3 given from the software

for each month from 2016 to 2018 were received from SCC of CEB as shown in the

Table 5.7.

Table 5.7: Economic Water Value for each Month from 2016 to 2018

Month Economic Water Value (Rs / kWh)

2016 2017 2018

January 57.94 24.71 71.35

February 47.19 28.80 58.19

March 49.96 33.97 34.20

April 64.66 32.26 35.55

May 48.12 29.07 32.23

June 20.72 51.64 26.09

3 These water values may not be accurate in case of spilling.

53

July 16.11 18.43 22.98

August 17.13 19.38 24.27

September 16.71 20.13 24.45

October 18.24 20.10 24.64

November 20.26 20.16 26.65

December 21.01 20.13 28.66

The gains in generation for the three years from 2016 to 2018 valued based on above

economic terms are summarised in the Table 5.8

Table 5.8: Summary of Economic Gain for years 2016 -2018

 Year
2016 2017 2018 Total

Economic Gain (Rs. million) 651 439 951 2,041

A total gain in economic terms, which is long term in nature, is around Rs. 2 billion

for the three years of 2016 to 2018.

54

6 CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusion

Historical data of rainfall, water level and inflow for 2016, 2017, 2018 and 2019 at

Upper Kotmale Power Station was collected. Then, an input and output model using

MATLAB NARX was trained using the historical data to develop a model to forecast

pond inflow at Upper Kotmale. After that, second model using MATLAB FMINCON

was developed to utilise inflow forecast from the first model to optimise the pond in

order to maximise the power generation while minimising spilling. Operator is given

the optimum loading and spilling pattern of the power station without any human

intervention. Models were developed such that they can be updated and trained as the

new data is collected.

Using the results of present study, it is possible to characterise the pond optimisation

of run-of-river hydropower plant using accurate inflow forecasting with ANN

modelling and optimising the pond using that inflow forecast. Although the research

done as a solution for Upper Kotmale Power Station, the methodology described could

well be applied in other scenarios of forecasting and optimisation.

Results of the inflow forecasting model show that inflow to Upper Kotmale Pond could

reasonably be forecasted for next 4 to 5 hours, which is approximately the average lag

time of the river. ANN models could well be developed in real time applications like

inflow forecasting, where accuracy and speed is crucial. Among such ANN models,

Nonlinear Autoregressive network with eXogenous inputs (NARX), which is a

recurrent dynamic network with feedback connections, was used in the research for

inflow forecasting, and it was modelled using MATLAB. The Inflow Forecasting

Model (IFM) was setup using data for the period 2016-2018 and tested for 2019 data,

too.

In any ANN modelling, it is very important to select the input data set, which is enough

to determine the neural network. At the same time, too many unnecessary input

features could lead to poor performance. The method of selecting input in this research

was discussed under feature selection mainly using correlation analysis. It was

55

established that cumulative inputs such as cumulative rainfall is more important than

point rainfall.

It was noted that the optimisation of pond is a multi-objective optimisation problem;

hence, MATLAB multi-objective optimisation algorithms used for optimisation of

pond using Aggregate Objective Function (AOF). It was also noted that the appropriate

weightings for the AOF were selected by trial and error. This research reveals that

there exists a room for optimisation to enhance the gain in generation by more than

about 5% with allowance for uncertainty in inflow forecasts.

With successful implementation of these models, operator is presented with optimum

loading pattern of plant and required optimum spilling each hour for next 24 hours.

Furthermore, it can be concluded that this type of modelling and optimisation could be

done for run-of-river hydro plant with small pondages such as in Upper Kotmale PS

and Kukule PS in CEB.

6.2 Future Work

In this study, Direct Recursive Hybrid Strategy was used to multi-step ahead

forecasting for inflow forecasting models. Other methods also can be experimented

with different ANN structures.

Optimisation in this study forecasted only on plant level optimisation, reader could

also incorporate unit level and system level optimisation as well to some extent. It is

also possible to add some weightage on the different time slots so that units loading is

given higher priority in peak time rather than in off peak time. Moreover, the

optimisation in the present study does not have any sense of number of start and stops

of the units, so it can be programmed in future work.

56

REFERENCES

[1] Electric Power Development Company, "Supplementary Report of Final Design
Report of Upper Kotmale Hyusropower Project," JPower., Tokyo, Japan, Nov.
2004.

[2] Ceylon Electricity Board, "Layout Diagram of Telemetry and Warning System
of Upper Kotmale Hydropower Station," Mitsubishi Corporation., Tokyo, Japan,
E02-6255, Jan. 2015.

[3] R. A. Wurbs, "Reservoir System Simulation and Optimization Models," J. Water
Resources Planning and Management., vol. 119, no. 4, pp. 455-472, Jul. 1993.

[4] A. F. Hamlet et al., "Economic Value of Long-Lead Streamflow Forecasts for
Columbia River Hydropower," J. Water Resources Planning and Management.,
vol. 128, no. 2, pp. 91-101, Mar. 2002.

[5] L. W. Mays and Y. K. Tung, Hydrosystems Engineering and Management, 2nd
ed., Colorado: Water Resources Publications, 2002.

[6] X. Dong et al., "Effect of flow forecasting quality on benefits of reservoir
operation - a case study for the Geheyan reservoir (China)," J. Hydrology and
earth system sciences discussions., vol. 3, pp. 3771-3814, 2006.

[7] J. W. Labadie, "Optimal Operation of Multireservoir Systems: State-of-the-Art
Review," J. Water resources planning and Management., vol. 130, no. 2, pp. 93-
111, Mar. 2004.

[8] M. R. Mustafa et al., "Artificial Neural Networks Modelling in Water Resources
Engineering: Infastructure and Applications," J. Civil and Environmental
Engineering., vol. 6, no. 2, pp. 128-134, Jan. 2012.

[9] C. W. Dawson et al., "A comparative study of artificial neural network
techniques for river stage forecasting," Proceedings. 2005 IEEE International
Joint Conference on Neural Networks, 2005., Montreal, Que., 2005, pp. 2666-
2670 vol. 4.

[10] N. Sajikumar and B. Thandaveswara, "A non-linear rainfall-runoff model using
an artificial neural network," J. Hydrology, vol. 21, no. 6, pp. 32-35, Mar. 1999.

[11] Improve Shallow Neural Network Generalization and Avoid Overfitting, [online]
Available:https://in.mathworks.com/help/deeplearning/ug/improve-neural-
network-generalization-and-avoid-overfitting.html.

57

[12] M. Campolo et al., "Artificial neural network approach to flood forecasting in
the River Arno," J. Hydrological Sciences, vol. 48, no. 3, Jun. 2003.

[13] A.W. Minns and M.J. Hall, "Artificial neural networks as rainfall-runoff
models," J. Hydrology, vol. 41, no. 3, pp. 399-417, Jun. 1996.

[14] L. L. Rogers and F. U. Dowla, "Optimization of groundwater remediation using
artificial neural networks with parallel solute transport modelling," J. Water
Resources Resarch, vol. 30, pp. 457-481, 1994.

[15] N. Karunanithi et al., "Neural Networks for River Flow Prediction," J. Computer
Science, vol. 8, no. 2, pp. 201-220, Apr. 1994.

[16] D. E. Rumelhart et al., "Learning representations by back-propagating errors,"
J. Nature, pp. 323, 533-536, Oct. 1986.

[17] P. H. Talaee, "Multilayer perceptron with different training algorithms for
streamflow forecasting," J. Neural Comput & Applic., vol. 5, Mar. 2014.

[18] S. Mohanty et al., "Prediction of global solar radiation using nonlinear auto
regressive network with exogenous inputs (narx)," 2015 39th Nat. Systems Conf.
(NSC), Noida, 2015, pp. 1-6.

[19] E. Cadenas et al., "Wind Speed Prediction Using a Univariate ARIMA Model
and a Multivariate NARX Model," J. Energies , vol. 09, no. 109, Feb. 2016.

[20] B. Jason, Deep Learning for Time Series Forecasting, 1st ed. 2018.

[21] A. Messac, Optimization in Practice with MATLAB, USA: Cambridge
University Press, 2015.

[22] S. Khu and H. Madsen, "Multiobjective calibration with Pareto preference
ordering: an application to rainfall–runoff model calibration," J.Water
Resources, vol. 41, Mar. 2005.

58

APPENDIX-A: MATLAB PROGRAMMES OF IFM

Inflow Forecast Model

tic

LoadData1
myDataInput
OptimizeModels
ForecastAhead

toc

clear;
clc;

% Import data from spreadsheet
% Script for importing data from the following spreadsheet:

% Workbook: F:\2. Results\Final Row Data 15 Nov 2019.xlsx
% Worksheet: 16 & 17

% Auto-generated by MATLAB on 15-Nov-2019 19:51:25

% Setup the Import Options
opts = spreadsheetImportOptions("NumVariables", 10);

% Specify sheet and range
opts.Sheet = "16 to 18";
opts.DataRange = "B3:K52598";

% Specify column names and types
opts.VariableNames = ["Q1", "InF1", "InR1", "InR5", "InR9", "InR13",
"InR17", "InR21", "InL1", "InL2"];
opts.VariableTypes = ["double", "double", "double", "double",
"double", "double", "double", "double", "double", "double"];

% Import the data
tbl = readtable("F:\2. Results\Final Row Data 15 Nov 2019.xlsx",
opts, "UseExcel", false);

% Convert to output type
Q1 = tbl.Q1;
InF1 = tbl.InF1;
InR1 = tbl.InR1;
InR5 = tbl.InR5;
InR9 = tbl.InR9;
InR13 = tbl.InR13;
InR17 = tbl.InR17;

59

InR21 = tbl.InR21;
InL1 = tbl.InL1;
InL2 = tbl.InL2;

% Clear temporary variables
clear opts tbl

%% Import data from spreadsheet
% Script for importing data from the following spreadsheet:
%
% Workbook: F:\2. Results\Final Row Data 15 Nov 2019.xlsx
% Worksheet: 18
%
% Auto-generated by MATLAB on 15-Nov-2019 19:54:36

%% Setup the Import Options
clc;
clear;

opts = spreadsheetImportOptions("NumVariables", 10);

% Specify sheet and range
opts.Sheet = "16 to 9 Apr" ; % "16 to 19 Aug";
%"forecast";
opts.DataRange = "B3:K57334" ; %"B3:K62136"; %"B3:K9540";

% Specify column names and types
opts.VariableNames = ["Qnew1", "InewF1", "InewR1", "InewR5",
"InewR9", "InewR13", "InewR17", "InewR21", "InewL1", "InewL2"];
opts.VariableTypes = ["double", "double", "double", "double",
"double", "double", "double", "double", "double", "double"];

% Import the data
tbl = readtable("F:\2. Results\2019 data forecast.xlsx", opts,
"UseExcel", false);

%% Convert to output type
Qnew1 = tbl.Qnew1;
InewF1 = tbl.InewF1;
InewR1 = tbl.InewR1;
InewR5 = tbl.InewR5;
InewR9 = tbl.InewR9;
InewR13 = tbl.InewR13;
InewR17 = tbl.InewR17;
InewR21 = tbl.InewR21;
InewL1 = tbl.InewL1;
InewL2 = tbl.InewL2;

%% Clear temporary variables
clear opts tbl

%% Import data from spreadsheet
% Script for importing data from the following spreadsheet:

60

%
% Workbook: C:\Users\Dell\Documents\Sixteen_to18 as at 13 Sep
2019.xlsx
% Worksheet: 16_17_18
%
% Auto-generated by MATLAB on 14-Aug-2019 19:32:07

%% Data input from Excel and initial procesing
% Step 1
n =size(Q1,1); % get number of data points

InR2(n)=0; InR3(n)=0; InR4(n)=0;
InR6(n)=0; InR7(n)=0; InR8(n)=0;
InR10(n)=0; InR11(n)=0; InR12(n)=0;
InR14(n)=0; InR15(n)=0; InR16(n)=0;
InR18(n)=0; InR19(n)=0; InR20(n)=0;
InR22(n)=0; InR23(n)=0; InR24(n)=0;
InF1(n)=0;
sum1=0;sum2=0;sum3=0;
sum4=0;sum5=0;sum6=0;
sum7=0;sum8=0;sum9=0;
sum10=0;sum11=0;sum12=0;
sum13=0;sum14=0;sum15=0;
sum16=0;sum17=0;sum18=0;
for j=1:n

 % Nuwara Eliya
 if j<12+1
 sum1=0;
 for i=1:j-1
 sum1=sum1+InR1(i);
 end
 InR2(j)=sum1;
 end

 if j>12
 sum1=0;
 for i=j-12:j-1
 sum1=sum1+InR1(i);
 end
 InR2(j)=sum1;
 end

 if j<48+1 %
 sum2=0;
 for i=1:j-1
 sum2=sum2+InR1(i);
 end
 InR3(j)=sum2; %
 end

 if j>48 %
 sum2=0;
 for i=j-48:j-1 %
 sum2=sum2+InR1(i);
 end
 InR3(j)=sum2; %

61

 end

 if j<259+1 %
 sum3=0;
 for i=1:j-1
 sum3=sum3+InR1(i);
 end
 InR4(j)=sum3; %
 end

 if j>259 %
 sum3=0;
 for i=j-259:j-1 %
 sum3=sum3+InR1(i);
 end
 InR4(j)=sum3; %
 end

 %Ambewela
 if j<12+1
 sum4=0;
 for i=1:j-1
 sum4=sum4+InR5(i);
 end
 InR6(j)=sum4;
 end

 if j>12
 sum4=0;
 for i=j-12:j-1
 sum4=sum4+InR5(i);
 end
 InR6(j)=sum4;
 end

 if j<48+1 %
 sum5=0;
 for i=1:j-1
 sum5=sum5+InR5(i);
 end
 InR7(j)=sum5; %
 end

 if j>48 %
 sum5=0;
 for i=j-48:j-1 %
 sum5=sum5+InR5(i);
 end
 InR7(j)=sum5; %
 end

 if j<363+1 %
 sum6=0;
 for i=1:j-1
 sum6=sum6+InR5(i);
 end
 InR8(j)=sum6; %
 end

62

 if j>363 %
 sum6=0;
 for i=j-363:j-1 %
 sum6=sum6+InR5(i);
 end
 InR8(j)=sum6; %
 end

 %Sandrigham
 if j<12+1
 sum7=0;
 for i=1:j-1
 sum7=sum7+InR9(i);
 end
 InR10(j)=sum7;
 end

 if j>12
 sum7=0;
 for i=j-12:j-1
 sum7=sum7+InR9(i);
 end
 InR10(j)=sum7;
 end

 if j<48+1 %
 sum8=0;
 for i=1:j-1
 sum8=sum8+InR9(i);
 end
 InR11(j)=sum8; %
 end

 if j>48 %
 sum8=0;
 for i=j-48:j-1 %
 sum8=sum8+InR9(i);
 end
 InR11(j)=sum8; %
 end

 if j<380+1 %
 sum9=0;
 for i=1:j-1
 sum9=sum9+InR9(i);
 end
 InR12(j)=sum9; %
 end

 if j>380 %
 sum9=0;
 for i=j-380:j-1 %
 sum9=sum9+InR9(i);
 end
 InR12(j)=sum9; %
 end

63

 sum13=0;
 for i=j-12:j-1
 sum13=sum13+InR17(i);
 end
 InR18(j)=sum13;
 end

 if j<48+1 %
 sum14=0;
 for i=1:j-1
 sum14=sum14+InR17(i);
 end
 InR19(j)=sum14; %
 end

 if j>48 %
 sum14=0;
 for i=j-48:j-1 %
 sum14=sum14+InR17(i);
 end
 InR19(j)=sum14; %
 end

 if j<240+1 %
 sum15=0;
 for i=1:j-1
 sum15=sum15+InR17(i);
 end
 InR20(j)=sum15; %
 end

 if j>240 %
 sum15=0;
 for i=j-240:j-1 %
 sum15=sum15+InR17(i);
 end
 InR20(j)=sum15; %
 end

 %Basin
 if j<12+1
 sum16=0;
 for i=1:j-1
 sum16=sum16+InR21(i);
 end
 InR22(j)=sum16;
 end

 if j>12
 sum16=0;
 for i=j-12:j-1
 sum16=sum16+InR21(i);
 end
 InR22(j)=sum16;
 end

 if j<48+1 %
 sum17=0;

64

 for i=1:j-1
 sum17=sum17+InR21(i);
 end
 InR23(j)=sum17; %
 end

 if j>48 %
 sum17=0;
 for i=j-48:j-1 %
 sum17=sum17+InR21(i);
 end
 InR23(j)=sum17; %
 end

 if j<261+1 %
 sum18=0;
 for i=1:j-1
 sum18=sum18+InR21(i);
 end
 InR24(j)=sum18; %
 end

 if j>261 %
 sum18=0;
 for i=j-261:j-1 %
 sum18=sum18+InR21(i);
 end
 InR24(j)=sum18; %
 end

 if Q1(j)<10
 InF1(j)=1;
 elseif Q1(j)<20
 InF1(j)=2;
 elseif Q1(j)<30
 InF1(j)=3;
 elseif Q1(j)<40
 InF1(j)=4;
 elseif Q1(j)<50
 InF1(j)=5;
 elseif Q1(j)<60
 InF1(j)=6;
 elseif Q1(j)<70
 InF1(j)=7;
 elseif Q1(j)<80
 InF1(j)=8;
 elseif Q1(j)<90
 InF1(j)=9;
 elseif Q1(j)<100
 InF1(j)=10;
 else
 InF1(j)=11;
 end

end

65

if isrow(InR2)==1 InR2=InR2'; end
if isrow(InR3)==1 InR3=InR3'; end
if isrow(InR4)==1 InR4=InR4'; end
if isrow(InR6)==1 InR6=InR6'; end
if isrow(InR7)==1 InR7=InR7'; end
if isrow(InR8)==1 InR8=InR8';end
if isrow(InR10)==1 InR10=InR10'; end
if isrow(InR11)==1 InR11=InR11';end
if isrow(InR12)==1 InR12=InR12'; end
if isrow(InR14)==1 InR14=InR14'; end
if isrow(InR15)==1 InR15=InR15'; end
if isrow(InR16)==1 InR16=InR16'; end
if isrow(InR18)==1 InR18=InR18'; end
if isrow(InR19)==1 InR19=InR19'; end
if isrow(InR20)==1 InR20=InR20'; end
if isrow(InR22)==1 InR22=InR22'; end
if isrow(InR23)==1 InR23=InR23'; end
if isrow(InR24)==1 InR24=InR24'; end
if isrow(InF1)==1 InF1=InF1';end

Q2=lagmatrix(Q1,-1);
Q3=lagmatrix(Q1,-2);
Q4=lagmatrix(Q1,-3);
Q5=lagmatrix(Q1,-4);
Q6=lagmatrix(Q1,-5);
Q7=lagmatrix(Q1,-6);
Q8=lagmatrix(Q1,-7);
Q9=lagmatrix(Q1,-8);
Q10=lagmatrix(Q1,-9);
Q11=lagmatrix(Q1,-10);
Q12=lagmatrix(Q1,-11);

%%
InputData= [InF1';...

InR2';InR4';InR6';InR8';InR10';InR12';InR14';InR16';InR18';InR20';In
R22';InR24';...
 InR3';InR7';InR11';InR15';InR19';InR23';...
 InL1';InL2'];

inputSeries = tonndata(InputData,true,false);
targetSeries{1} = tonndata(Q1',true,false);
targetSeries{2} = tonndata(Q2',true,false);
targetSeries{3} = tonndata(Q3',true,false);
targetSeries{4} = tonndata(Q4',true,false);
targetSeries{5} = tonndata(Q5',true,false);
targetSeries{6} = tonndata(Q6',true,false);
targetSeries{7} = tonndata(Q7',true,false);
targetSeries{8} = tonndata(Q8',true,false);
targetSeries{9} = tonndata(Q9',true,false);
targetSeries{10} = tonndata(Q10',true,false);
targetSeries{11} = tonndata(Q11',true,false);
targetSeries{12} = tonndata(Q12',true,false);

66

trainFcn = 'trainlm'; % Levenberg-Marquardt backpropagation.
%trainFcn = 'trainbr';

% Create a Nonlinear Autoregressive Network with External Input
inputDelays = 1:5; % 1:5 input delay is the best
feedbackDelays = 1:10; % 1:15 is the best
hiddenLayerSize = 11; %11 the best

save
%%

% Data Filtering : final selection
Step 2
fc = 10;
fs = 100;

[b,a] = butter(2,fc/(fs/2));
dataIn = Qnew1;
dataOut = filter(b,a,dataIn);
dataOut=lagmatrix(dataOut,-3);
title('Inflow to Upper Kotmale vs Time')
plot(TimeV,dataIn,'r');
hold on;
plot(TimeV,dataOut);
xlabel('Time')
ylabel('Inflow (m3/s)')
legend({'Before Filtering','After Filtering'})

%%

load MSE;

for m= 1:1 %1:12
 tic
 for i=1:1 % 5
 %net{m} = init(net{m});
 net{m} =
narxnet(inputDelays,feedbackDelays,hiddenLayerSize,'open',trainFcn);
 net{m}.layers{1}.transferFcn = 'tansig';
 net{m}.layers{2}.transferFcn = 'purelin';

 % Prepare the Data for Training and Simulation
 [inputs,inputStates,layerStates,targets] =
preparets(net{m},inputSeries,{},targetSeries{m});

 %net1.divideFcn = 'divideblock';
 net{m}.divideFcn = 'divideint';
 net{m}.divideParam.trainRatio = 80/100;
 net{m}.divideParam.valRatio = 10/100;
 net{m}.divideParam.testRatio = 10/100;

 % Choose a Performance Function

67

 % For a list of all performance functions type: help
nnperformance
 net{m}.performFcn = 'mse'; % Mean Squared Error

 % Choose Plot Functions
 % For a list of all plot functions type: help nnplot
 net{m}.plotFcns = {'plotperform','plottrainstate',
'ploterrhist', ...
 'plotregression', 'plotresponse', 'ploterrcorr',
'plotinerrcorr'};

 % Train the Network
 %net.trainParam.showWindow=false; %hide training window
 [net{m},tr,A,Es] =
train(net{m},inputs,targets,inputStates,layerStates);

 % Test the Network
 outputs = net{m}(inputs,inputStates,layerStates);
 errors = gsubtract(targets,outputs);
 performance = perform(net{m},targets,outputs);

 ts = cell2mat(targets);
 MSE00 = var(ts,1);
 %R2(1) = 1-mse(Es)/MSE00
 % View the Network
 %view(net1);

 % TS = size(targets1,2);
 %
plot(1:TS,cell2mat(targets1),'b',1:TS,cell2mat(outputs1),'r')

 if performance<MSE(m)
 MSE(m)=performance;
 R2(m)=1-mse(Es)/MSE00 ;
 fprintf('m = %d MSE = %d ', m,performance);
 pause(0.5);
 fprintf(' Done. \n');
 MODEL{m}=net{m};
 save MODEL;
 save MSE;
 end
 end
 toc
end

%% Direct-Recursive Hybrid Strategies
%
% prediction(t+1) = model1(obs(t-1), obs(t-2), …, obs(t-n))
% prediction(t+2) = model2(prediction(t+1), obs(t-1), …, obs(t-n))
%
% 1. Use train data to train model1
% 2. Predict t+1 for all train data
% 3. Use predicted t+1 plus train data to train model2

68

%%
load MODEL;

n =size(Qnew1,1); % get number of data points

%InR2 = ComNE last 6hr RF
%InR3 = ComNE last 24hr RF
%InR4 = ComNE last 5.4days RF
InewR2(n)=0; InewR3(n)=0; InewR4(n)=0;
InewR6(n)=0; InewR7(n)=0; InewR8(n)=0;
InewR10(n)=0; InewR11(n)=0; InewR12(n)=0;
InewR14(n)=0; InewR15(n)=0; InewR16(n)=0;
InewR18(n)=0; InewR19(n)=0; InewR20(n)=0;
InewR22(n)=0; InewR23(n)=0; InewR24(n)=0;
InewF1(n)=0;
sum1=0;sum2=0;sum3=0;
sum4=0;sum5=0;sum6=0;
sum7=0;sum8=0;sum9=0;
sum10=0;sum11=0;sum12=0;
sum13=0;sum14=0;sum15=0;
sum16=0;sum17=0;sum18=0;
for j=1:n

 % Nuwara Eliya
 if j<12+1
 sum1=0;
 for i=1:j-1
 sum1=sum1+InewR1(i);
 end
 InewR2(j)=sum1;
 end

 if j>12
 sum1=0;
 for i=j-12:j-1
 sum1=sum1+InewR1(i);
 end
 InewR2(j)=sum1;
 end

 if j<48+1 %
 sum2=0;
 for i=1:j-1
 sum2=sum2+InewR1(i);
 end
 InewR3(j)=sum2; %
 end

 if j>48 %
 sum2=0;
 for i=j-48:j-1 %
 sum2=sum2+InewR1(i);
 end
 InewR3(j)=sum2; %
 end

 if j<259+1 %

69

 sum3=0;
 for i=1:j-1
 sum3=sum3+InewR1(i);
 end
 InewR4(j)=sum3; %
 end

 if j>259 %
 sum3=0;
 for i=j-259:j-1 %
 sum3=sum3+InewR1(i);
 end
 InewR4(j)=sum3; %
 end

 %Ambewela
 if j<12+1
 sum4=0;
 for i=1:j-1
 sum4=sum4+InewR5(i);
 end
 InewR6(j)=sum4;
 end

 if j>12
 sum4=0;
 for i=j-12:j-1
 sum4=sum4+InewR5(i);
 end
 InewR6(j)=sum4;
 end

 if j<48+1 %
 sum5=0;
 for i=1:j-1
 sum5=sum5+InewR5(i);
 end
 InewR7(j)=sum5; %
 end

 if j>48 %
 sum5=0;
 for i=j-48:j-1 %
 sum5=sum5+InewR5(i);
 end
 InewR7(j)=sum5; %
 end

 if j<363+1 %
 sum6=0;
 for i=1:j-1
 sum6=sum6+InewR5(i);
 end
 InewR8(j)=sum6; %
 end

 if j>363 %
 sum6=0;

70

 for i=j-363:j-1 %
 sum6=sum6+InewR5(i);
 end
 InewR8(j)=sum6; %
 end

 %Sandrigham
 if j<12+1
 sum7=0;
 for i=1:j-1
 sum7=sum7+InewR9(i);
 end
 InewR10(j)=sum7;
 end

 if j>12
 sum7=0;
 for i=j-12:j-1
 sum7=sum7+InewR9(i);
 end
 InewR10(j)=sum7;
 end

 if j<48+1 %
 sum8=0;
 for i=1:j-1
 sum8=sum8+InewR9(i);
 end
 InewR11(j)=sum8; %
 end

 if j>48 %
 sum8=0;
 for i=j-48:j-1 %
 sum8=sum8+InewR9(i);
 end
 InewR11(j)=sum8; %
 end

 if j<380+1 %
 sum9=0;
 for i=1:j-1
 sum9=sum9+InewR9(i);
 end
 InewR12(j)=sum9; %
 end

 if j>380 %
 sum9=0;
 for i=j-380:j-1 %
 sum9=sum9+InewR9(i);
 end
 InewR12(j)=sum9; %
 end

 %Calidonia
 if j<12+1
 sum10=0;

71

 for i=1:j-1
 sum10=sum10+InewR13(i);
 end
 InewR14(j)=sum10;
 end

 if j>12
 sum10=0;
 for i=j-12:j-1
 sum10=sum10+InewR13(i);
 end
 InewR14(j)=sum10;
 end

 if j<48+1 %
 sum11=0;
 for i=1:j-1
 sum11=sum11+InewR13(i);
 end
 InewR15(j)=sum11; %
 end

 if j>48 %
 sum11=0;
 for i=j-48:j-1 %
 sum11=sum11+InewR13(i);
 end
 InewR15(j)=sum11; %
 end

 if j<400+1 %
 sum12=0;
 for i=1:j-1
 sum12=sum12+InewR13(i);
 end
 InewR16(j)=sum12; %
 end

 if j>400 %
 sum12=0;
 for i=j-400:j-1 %
 sum12=sum12+InewR13(i);
 end
 InewR16(j)=sum12; %
 end
 %Talawakelle
 if j<12+1
 sum13=0;
 for i=1:j-1
 sum13=sum13+InewR17(i);
 end
 InewR18(j)=sum13;
 end

 if j>12
 sum13=0;
 for i=j-12:j-1
 sum13=sum13+InewR17(i);

72

 end
 InewR18(j)=sum13;
 end

 if j<48+1 %
 sum14=0;
 for i=1:j-1
 sum14=sum14+InewR17(i);
 end
 InewR19(j)=sum14; %
 end

 if j>48 %
 sum14=0;
 for i=j-48:j-1 %
 sum14=sum14+InewR17(i);
 end
 InewR19(j)=sum14; %
 end

 if j<240+1 %
 sum15=0;
 for i=1:j-1
 sum15=sum15+InewR17(i);
 end
 InewR20(j)=sum15; %
 end

 if j>240 %
 sum15=0;
 for i=j-240:j-1 %
 sum15=sum15+InewR17(i);
 end
 InewR20(j)=sum15; %
 end

 %Basin
 if j<12+1
 sum16=0;
 for i=1:j-1
 sum16=sum16+InewR21(i);
 end
 InewR22(j)=sum16;
 end

 if j>12
 sum16=0;
 for i=j-12:j-1
 sum16=sum16+InewR21(i);
 end
 InewR22(j)=sum16;
 end

 if j<48+1 %
 sum17=0;
 for i=1:j-1
 sum17=sum17+InewR21(i);
 end

73

 InewR23(j)=sum17; %
 end

 if j>48 %
 sum17=0;
 for i=j-48:j-1 %
 sum17=sum17+InewR21(i);
 end
 InewR23(j)=sum17; %
 end

 if j<261+1 %
 sum18=0;
 for i=1:j-1
 sum18=sum18+InewR21(i);
 end
 InewR24(j)=sum18; %
 end

 if j>261 %
 sum18=0;
 for i=j-261:j-1 %
 sum18=sum18+InewR21(i);
 end
 InewR24(j)=sum18; %
 end

 if Qnew1(j)<10
 InewF1(j)=1;
 elseif Qnew1(j)<20
 InewF1(j)=2;
 elseif Qnew1(j)<30
 InewF1(j)=3;
 elseif Qnew1(j)<40
 InewF1(j)=4;
 elseif Qnew1(j)<50
 InewF1(j)=5;
 elseif Qnew1(j)<60
 InewF1(j)=6;
 elseif Qnew1(j)<70
 InewF1(j)=7;
 elseif Qnew1(j)<80
 InewF1(j)=8;
 elseif Qnew1(j)<90
 InewF1(j)=9;
 elseif Qnew1(j)<100
 InewF1(j)=10;
 else
 InewF1(j)=11;
 end

end

if isrow(InewR2)==1 InewR2=InewR2'; end
if isrow(InewR3)==1 InewR3=InewR3'; end
if isrow(InewR4)==1 InewR4=InewR4'; end

74

if isrow(InewR6)==1 InewR6=InewR6'; end
if isrow(InewR7)==1 InewR7=InewR7'; end
if isrow(InewR8)==1 InewR8=InewR8';end
if isrow(InewR10)==1 InewR10=InewR10'; end
if isrow(InewR11)==1 InewR11=InewR11';end
if isrow(InewR12)==1 InewR12=InewR12'; end
if isrow(InewR14)==1 InewR14=InewR14'; end
if isrow(InewR15)==1 InewR15=InewR15'; end
if isrow(InewR16)==1 InewR16=InewR16'; end
if isrow(InewR18)==1 InewR18=InewR18'; end
if isrow(InewR19)==1 InewR19=InewR19'; end
if isrow(InewR20)==1 InewR20=InewR20'; end
if isrow(InewR22)==1 InewR22=InewR22'; end
if isrow(InewR23)==1 InewR23=InewR23'; end
if isrow(InewR24)==1 InewR24=InewR24'; end
if isrow(InewF1)==1 InewF1=InewF1';end

Qnew2=lagmatrix(Qnew1,-1);
Qnew3=lagmatrix(Qnew1,-2);
Qnew4=lagmatrix(Qnew1,-3);
Qnew5=lagmatrix(Qnew1,-4);
Qnew6=lagmatrix(Qnew1,-5);
Qnew7=lagmatrix(Qnew1,-6);
Qnew8=lagmatrix(Qnew1,-7);
Qnew9=lagmatrix(Qnew1,-8);
Qnew10=lagmatrix(Qnew1,-9);
Qnew11=lagmatrix(Qnew1,-10);
Qnew12=lagmatrix(Qnew1,-11);

%%
inputNS = [InewF1';...
 InewR2';InewR3';InewR4';InewR6';InewR7';InewR8';...
 InewR10';InewR11';InewR12';InewR14';InewR15';InewR16';...
 InewR18';InewR19';InewR20';InewR22';InewR23';InewR24';...
 InewL1';InewL2'];

targetNS1 = Qnew1'; targetNS2 = Qnew2'; targetNS3 = Qnew3';
targetNS4 = Qnew4';
targetNS5 = Qnew5'; targetNS6 = Qnew6'; targetNS7 = Qnew7';
targetNS8 = Qnew8';
targetNS9 = Qnew9'; targetNS10 = Qnew10'; targetNS11 = Qnew11';
targetNS12 = Qnew12';

inputNS = tonndata(inputNS,true,false);

targetNS1 = tonndata(targetNS1,true,false); targetNS2 =
tonndata(targetNS2,true,false);
targetNS3 = tonndata(targetNS3,true,false); targetNS4 =
tonndata(targetNS4,true,false);
targetNS5 = tonndata(targetNS5,true,false); targetNS6 =
tonndata(targetNS6,true,false);
targetNS7 = tonndata(targetNS7,true,false); targetNS8 =
tonndata(targetNS8,true,false);
targetNS9 = tonndata(targetNS9,true,false); targetNS10 =
tonndata(targetNS10,true,false);

75

targetNS11 = tonndata(targetNS11,true,false); targetNS12 =
tonndata(targetNS12,true,false);

Forecast(1:12)=0;

%%
numTimesteps = size(inputNS,2);
knownOutputTimesteps = 1:numTimesteps;
x = inputNS(1,knownOutputTimesteps);

%% Forecast 30min ahead
t1 = targetNS1(1,knownOutputTimesteps);
% nets1 = removedelay(MODEL{1});
% adaptFcn = net1.adaptFcn;
% adaptParam = net1.adaptParam;

[Xs1,Xis1,Ais1,ts1] = preparets(MODEL{1},x,{},t1);
%net1=init(MODEL{1});
% net1.trainparam.min_grad=1e-30;

%
%[net1 Ys Es Xf Yf tr] = adapt(net1,Xs1,ts1,Xis1,Ais1);
[net1] = train(MODEL{1},Xs1,ts1,Xis1,Ais1);

nets1 = removedelay(net1);
[Xs1,Xis1,Ais1,ts1] = preparets(nets1,x,{},t1);
Ys1 = nets1(Xs1,Xis1,Ais1);
Forecast(1)=Ys1{end}

%% Forecast 1hour ahead

t2 = targetNS2(1,knownOutputTimesteps);
t2{end}=Forecast(1);
%t2{end}=158;
%
% nets2 = removedelay(MODEL21111NET2);

[Xs2,Xis2,Ais2,ts2] = preparets(MODEL{2},x,{},t2);
% net2=init(MODEL21111NET2);
% net2.trainparam.min_grad=1e-30;

[net2] = train(MODEL{2},Xs2,ts2,Xis2,Ais2);

nets2 = removedelay(net2);
[Xs2,Xis2,Ais2] = preparets(nets2,x,{},t2);
Ys2 = nets2(Xs2,Xis2,Ais2);
Forecast(2)=Ys2{end}
%% Forecast 1.5hour ahead

t3 = targetNS3(1,knownOutputTimesteps);
t3{end}=Forecast(2);
t3{end-1}=Forecast(1);

% nets3 = removedelay(MODEL21111NET3);

[Xs3,Xis3,Ais3,ts3] = preparets(MODEL{3},x,{},t3);

76

%net3=init(MODEL21111NET3);
% net3.trainparam.min_grad=1e-30;

[net3] = train(MODEL{3},Xs3,ts3,Xis3,Ais3);

nets3 = removedelay(net3);
[Xs3,Xis3,Ais3] = preparets(nets3,x,{},t3);
Ys3 = nets3(Xs3,Xis3,Ais3);
Forecast(3)=Ys3{end}

%% Forecast 2.0hour ahead

t4 = targetNS4(1,knownOutputTimesteps);
t4{end}=Forecast(3);
t4{end-1}=Forecast(2);
t4{end-2}=Forecast(1);

%nets4 = removedelay(MODEL21111NET4);
[Xs4,Xis4,Ais4,ts4] = preparets(MODEL{4},x,{},t4);
% net4=init(MODEL21111NET4);
% net4.trainparam.min_grad=1e-30;
[net4] = train(MODEL{4},Xs4,ts4,Xis4,Ais4);

nets4 = removedelay(net4);
[Xs4,Xis4,Ais4] = preparets(nets4,x,{},t4);
Ys4 = nets4(Xs4,Xis4,Ais4);
Forecast(4)=Ys4{end}

%% Forecast 2.5hour ahead

t5 = targetNS5(1,knownOutputTimesteps);
t5{end}=Forecast(4);
t5{end-1}=Forecast(3);
t5{end-2}=Forecast(2);
t5{end-3}=Forecast(1);

%nets5 = removedelay(MODEL21111NET5);
[Xs5,Xis5,Ais5,ts5] = preparets(MODEL{5},x,{},t5);
% net5=init(MODEL21111NET5);
% net5.trainparam.min_grad=1e-30;
[net5] = train(MODEL{5},Xs5,ts5,Xis5,Ais5);

nets5 = removedelay(net5);
[Xs5,Xis5,Ais5] = preparets(nets5,x,{},t5);
Ys5 = nets5(Xs5,Xis5,Ais5);
Forecast(5)=Ys5{end}

%% Forecast 3.0hour ahead

t6 = targetNS6(1,knownOutputTimesteps);
t6{end}=Forecast(5);
t6{end-1}=Forecast(4);
t6{end-2}=Forecast(3);
t6{end-3}=Forecast(2);
t6{end-4}=Forecast(1);

77

%nets6 = removedelay(MODEL21111NET6);
[Xs6,Xis6,Ais6,ts6] = preparets(MODEL{6},x,{},t6);
%net6=init(MODEL21111NET6);
% net6.trainparam.min_grad=1e-30;
[net6] = train(MODEL{6},Xs6,ts6,Xis6,Ais6);

nets6 = removedelay(net6);
[Xs6,Xis6,Ais6] = preparets(nets6,x,{},t6);
Ys6 = nets6(Xs6,Xis6,Ais6);
Forecast(6)=Ys6{end}

%% Forecast 3.5hour ahead

t7 = targetNS7(1,knownOutputTimesteps);
t7{end}=Forecast(6);
t7{end-1}=Forecast(5);
t7{end-2}=Forecast(4);
t7{end-3}=Forecast(3);
t7{end-4}=Forecast(2);
t7{end-5}=Forecast(1);

%nets7 = removedelay(MODEL21111NET7);
[Xs7,Xis7,Ais7,ts7] = preparets(MODEL{7},x,{},t7);
% net7=init(MODEL21111NET7);
% net7.trainparam.min_grad=1e-30;
[net7] = train(MODEL{7},Xs7,ts7,Xis7,Ais7);

nets7 = removedelay(net7);
[Xs7,Xis7,Ais7] = preparets(nets7,x,{},t7);
Ys7 = nets7(Xs7,Xis7,Ais7);
Forecast(7)=Ys7{end}

%% Forecast 4.0hour ahead

t8 = targetNS8(1,knownOutputTimesteps);
t8{end}=Forecast(7);
t8{end-1}=Forecast(6);
t8{end-2}=Forecast(5);
t8{end-3}=Forecast(4);
t8{end-4}=Forecast(3);
t8{end-5}=Forecast(2);
t8{end-6}=Forecast(1);

%nets8 = removedelay(MODEL21111NET8);
[Xs8,Xis8,Ais8,ts8] = preparets(MODEL{8},x,{},t8);
% net8=init(MODEL21111NET8);
% net8.trainparam.min_grad=1e-30;
[net8] = train(MODEL{8},Xs8,ts8,Xis8,Ais8);

nets8 = removedelay(net8);
[Xs8,Xis8,Ais8] = preparets(nets8,x,{},t8);
Ys8 = nets8(Xs8,Xis8,Ais8);
Forecast(8)=Ys8{end}

%% Forecast 4.5hour ahead

t9 = targetNS9(1,knownOutputTimesteps);
t9{end}=Forecast(8);

78

t9{end-1}=Forecast(7);
t9{end-2}=Forecast(6);
t9{end-3}=Forecast(5);
t9{end-4}=Forecast(4);
t9{end-5}=Forecast(3);
t9{end-6}=Forecast(2);
t9{end-7}=Forecast(1);

%nets9 = removedelay(MODEL21111NET9);
[Xs9,Xis9,Ais9,ts9] = preparets(MODEL{9},x,{},t9);
% net9=init(MODEL21111NET9);
% % net9.trainparam.min_grad=1e-30;
[net9] = train(MODEL{9},Xs9,ts9,Xis9,Ais9);

nets9 = removedelay(net9);
[Xs9,Xis9,Ais9] = preparets(nets9,x,{},t9);
Ys9 = nets9(Xs9,Xis9,Ais9);
Forecast(9)=Ys9{end}

%% Forecast 5.0hour ahead

t10 = targetNS10(1,knownOutputTimesteps);
t10{end}=Forecast(9);
t10{end-1}=Forecast(8);
t10{end-2}=Forecast(7);
t10{end-3}=Forecast(6);
t10{end-4}=Forecast(5);
t10{end-5}=Forecast(4);
t10{end-6}=Forecast(3);
t10{end-7}=Forecast(2);
t10{end-8}=Forecast(1);

% %nets10 = removedelay(MODEL21111NET10);
[Xs10,Xis10,Ais10,ts10] = preparets(MODEL{10},x,{},t10);
% net10=init(MODEL21111NET10);
% % net10.trainparam.min_grad=1e-30;
[net10] = train(MODEL{10},Xs10,ts10,Xis10,Ais10);

nets10 = removedelay(net10);
[Xs10,Xis10,Ais10] = preparets(nets10,x,{},t10);
Ys10 = nets10(Xs10,Xis10,Ais10);
Forecast(10)=Ys10{end}

%% Forecast 5.5hour ahead

t11 = targetNS11(1,knownOutputTimesteps);
t11{end}=Forecast(10);
t11{end-1}=Forecast(9);
t11{end-2}=Forecast(8);
t11{end-3}=Forecast(7);
t11{end-4}=Forecast(6);
t11{end-5}=Forecast(5);
t11{end-6}=Forecast(4);
t11{end-7}=Forecast(3);
t11{end-8}=Forecast(2);
t11{end-9}=Forecast(1);

79

% %nets11 = removedelay(MODEL21111NET11);
[Xs11,Xis11,Ais11,ts11] = preparets(MODEL{11},x,{},t11);
% net11=init(MODEL21111NET11);
% % net11.trainparam.min_grad=1e-30;
[net11] = train(MODEL{11},Xs11,ts11,Xis11,Ais11);

nets11 = removedelay(net11);
[Xs11,Xis11,Ais11] = preparets(nets11,x,{},t11);
Ys11 = nets11(Xs11,Xis11,Ais11);
Forecast(11)=Ys11{end}

%% Forecast 6.0hour ahead

t12 = targetNS12(1,knownOutputTimesteps);
t12{end}=Forecast(11);
t12{end-1}=Forecast(10);
t12{end-2}=Forecast(9);
t12{end-3}=Forecast(8);
t12{end-4}=Forecast(7);
t12{end-5}=Forecast(6);
t12{end-6}=Forecast(5);
t12{end-7}=Forecast(4);
t12{end-8}=Forecast(3);
t12{end-9}=Forecast(2);
t12{end-10}=Forecast(1);

% %nets12 = removedelay(MODEL21111NET12);
[Xs12,Xis12,Ais12,ts12] = preparets(MODEL{12},x,{},t12);
% net12=init(MODEL21111NET12);
% % net12.trainparam.min_grad=1e-30;
[net12] = train(MODEL{12},Xs12,ts12,Xis12,Ais12);

nets12 = removedelay(net12);
[Xs12,Xis12,Ais12] = preparets(nets12,x,{},t12);
Ys12 = nets12(Xs12,Xis12,Ais12);
Forecast(12)=Ys12{end}

%%

Forecast(1:12)

function [P] = Discharge_to_Power(q, DamLevel
,TailraceLevel,SyncUnits)
% q : Turbine Discharge (m3/s)
% DamLevel : Prsent Dm Level (masl)
% TailraceLevel : Present TailraceLevel (masl)
% SyncUnits : Number of synchronized Units

A = DamLevel - TailraceLevel;
C = SyncUnits;

if A<490 && C==1;

80

 a11 = 0.00000719; a12 = 0.00000699; b11 = -0.00066977;
b12 = -0.00067913;
 c11 = 0.22347804; c12 = 0.22235891; d11 = 1.48000195;
d12 = 1.48062322;

 %a*x^3 + b*x^2 + c*x + d
 a = (490-A)*a11 + (A-487)*a12;
 b = (490-A)*b11 + (A-487)*b12;
 c = (490-A)*c11 + (A-487)*c12;
 d = (490-A)*d11 + (A-487)*d12 -3.0*q;

 x = roots([a b c d]);
 x(imag(vpa(x))~=0) = [];
 P=x;

elseif A>=490 && C==1;

 a13 = 0.00000675; a12 = 0.00000699; b13 = -0.00068570;
b12 = -0.00067913;
 c13 = 0.22091472; c12 = 0.22235891; d13 = 1.48250266;
d12 = 1.48062322;

 %a*x^3 + b*x^2 + c*x + d
 a = (493.73-A)*a12 + (A-490)*a13;
 b = (493.73-A)*b12 + (A-490)*b13;
 c = (493.73-A)*c12 + (A-490)*c13;
 d = (493.73-A)*d12 + (A-490)*d13 -3.73*q;

 x = roots([a b c d]);
 x(imag(vpa(x))~=0) = [];
 P=x;

elseif A<490 && C==2;

 a21 = 0.00000996; a22 = 0.00000960; b21 = -0.00085761;
b22 = -0.00083571;
 c21 = 0.22692553; c22 = 0.22551339; d21 = 1.47198975;
d22 = 1.47409836;

 %a*x^3 + b*x^2 + c*x + d
 a = (490-A)*a21 + (A-487)*a22;
 b = (490-A)*b21 + (A-487)*b22;
 c = (490-A)*c21 + (A-487)*c22;
 d = (490-A)*d21 + (A-487)*d22 -3.0*q;

 x = roots([a b c d]);
 x(imag(vpa(x))~=0) = [];
 P=x;

else A>=490 && C==2;

 a23 = 0.00000919; a22 = 0.00000960; b23 = -0.00081176;
b22 = -0.00083571;
 c23 = 0.22394178; c22 = 0.22551339; d23 = 1.47548317;
d22 = 1.47409836;

 %a*x^3 + b*x^2 + c*x + d

81

 a = (493.73-A)*a22 + (A-490)*a23;
 b = (493.73-A)*b22 + (A-490)*b23;
 c = (493.73-A)*c22 + (A-490)*c23;
 d = (493.73-A)*d22 + (A-490)*d23 -3.73*q;

 x = roots([a b c d]);
 x(imag(vpa(x))~=0) = [];
 P=x;

end

function [LS] = LevelStorage(flag,LevelStorage)

% flag : if flag =1 then function returns Storage given input as
Level
% if flag =0 then function returns Level given input as
Storage
% Storage is above 1190 level storage

X = LevelStorage;
a = 3.213; b= -72.56; c= 650.4; d= -2958; e=7326; f= -9374; g=17760;
h= 151500;

if flag == 1 ;
 Le = (X-1190);

 f = a*Le^8 + b*Le^7 + c*Le^6 + d*Le^5 + e*Le^4 + f*Le^3 + g*Le^2
+ h*Le;
 LS =f;
else
 % given storage(above 1190) find Level
 % X = a*X^8 + b*X^7 + c*X^6 + d*X^5 + e*X^4 + f*X^3 + g*X^2 +
h*X;

 x = roots([a b c d e f g h -X]);
 B = x(real(x) >= 0 & imag(x) == 0);
 LS=B+1190;

end

82

APPENDIX-B: MATLAB PROGRAMMES OF POM

Pond Optimization Model

clc; clear;

%% Setup the Import Options
opts = spreadsheetImportOptions("NumVariables", 2);

% Specify sheet and range
opts.Sheet = "2018 Vertical";
opts.DataRange = "A2:B8749";

% Specify column names and types
opts.VariableNames = ["Time", "Inflow"];
opts.VariableTypes = ["datetime", "double"];

% Import the data
tbl = readtable("F:\2. Results\Matlab
Files\New\OptimizedResults.xlsx", opts, "UseExcel", false);

% Convert to output type
Time = tbl.Time;
Inflow = tbl.Inflow;

% Clear temporary variables
clear opts tbl

%%

%% Input Inflow data (m3/s)
numInflow = size(Inflow,1);
optimizeperiod = 4;

P(numInflow)=0;
PP(numInflow)=0;
SP(numInflow)=0;
SPSP(numInflow)=0;
S(numInflow)=0;
SS(numInflow)=0;
%%

for k=1:optimizeperiod:numInflow-20

 [a,b1] = getData1(k,Inflow,Time);
 for m=1:24
 inflow(m)=b1(m);
 end

 TimeHour = hour(a(1));

83

 % Input inflow convert to m3
 for j=1:24
 I(j) = inflow(j)*3600;
 end
 %%

 %% Initial values
 InitialLevel= 1192.38;
 s0 = LevelStorage(1,InitialLevel); % Initial Storage (m3)
1193.14 masl
 sm = 822470; % Maximum Storage (m3) 1194.00 masl
 x0 = [26000*ones(24,1);zeros(24,1);s0*ones(24,1)]; % Initial
Values

 %% Linear Parameters
 A=[]; b=[];

 %%
 Aeq = [1 zeros(1,23) 1 zeros(1,23) 1 zeros(1,23)];
 Aeq = [Aeq ; zeros(1,1) 1 zeros(1,22) zeros(1,1) 1 zeros(1,22)
-1 1 zeros(1,22)];
 Aeq = [Aeq ; zeros(1,2) 1 zeros(1,21) zeros(1,2) 1 zeros(1,21)
zeros(1,1) -1 1 zeros(1,21)];
 Aeq = [Aeq ; zeros(1,3) 1 zeros(1,20) zeros(1,3) 1 zeros(1,20)
zeros(1,2) -1 1 zeros(1,20)];
 for jj=5:24
 Aeq = [Aeq ; zeros(1,jj-1) 1 zeros(1,24-jj) zeros(1,jj-1)
1 zeros(1,24-jj) zeros(1,jj-2) -1 1 zeros(1,24-jj)];
 end

 %
 beq = s0 + I(1);
 beq = [beq ; I(2)];
 for mm=3:24
 beq = [beq ; I(mm)];
 end

 %% Boundry Constarints
 LB = [25295*ones(24,1);zeros(48,1)];

 if (TimeHour <= 5)
 LB = [25295*ones(24,1);zeros(5+1-
TimeHour,1);4788*ones(10,1);zeros(10-1+TimeHour-1,1);zeros(24,1)];
% must have positive flow
 elseif (TimeHour >= 15)
 LB = [25295*ones(24,1);zeros(14+5+1-
TimeHour,1);4788*ones(10,1);zeros(TimeHour-15,1);zeros(24,1)]; %
must have positive flow
 elseif (TimeHour >= 6)
 LB = [25295*ones(24,1);4788*ones(10-
TimeHour+5,1);zeros(14,1);4788*ones(TimeHour-5,1);zeros(24,1)];
% must have positive flow
 end

 UB = [128160*ones(24,1);Inf*ones(24,1);822470*ones(24,1)];

84

 %% Weight initialization of AOA of objective function
 % AOA = Aggregrade Objective Function
 %w1 = 0.89; w2 =0.11;
 w1 = .51; w2 =0.49;
 %% FMINCON
 options =
optimset('MaxFunEval',Inf,'MaxIter',3000,'Algorithm','interior-
point','Display','off');

 %[x, fval] = fmincon(@objfun1,x0,A,b,Aeq,beq, LB,
UB,[],options,w1,w2);

 %% if Global Search is used
 % Comment FMINCON line above before run for global search
 f1 = @(x)objfun1(x,w1,w2);
 problem.options = options;
 problem.solver = 'fmincon';
 problem.objective = f1;
 problem.x0 = x0;
 problem.A = A;
 problem.b = b;
 problem.Aeq = Aeq;
 problem.beq = beq;
 problem.lb = LB;
 problem.ub = UB;
 problem.nonlcon =[];

 gs = GlobalSearch;
 [x, fval] = run(gs, problem);

 %%
 for i= 1 :72
 if i<=24
 P(i) = 4.269663*x(i)/3600;
 PP(k-1+i)=P(i);
 elseif i<= 48
 Sp(i-24) = x(i)/3600;
 SpSp(k-1+i-24)=Sp(i-24);
 else
 S(i-48) = LevelStorage(0,x(i));
 SS(k-1+i-48)=S(i-48);
 end
 end

 for q=1:24
 T(k-1+q)=4.249292*X(q)/3600;
 Sp(k-1+q)=Y(q)/3600;
 S(k-1+q)=Z(q);
 DL(k-1+q)=LevelStorage(0,S(k-1+q));
 if k ==1
 AvgLevel(k-1+q)=(InitialLevel+DL(k-1+q))/2;
 else
 AvgLevel(k-1+q)=(DL(k-1+q-1)+DL(k-1+q))/2;
 end
 end

 pause(0.5);

85

 fprintf('Completion : %d', k *100 /numInflow);
 fprintf(' Done. \n');

end
%%
%inflow = [i1;i2;i3;i4];
%plotmine(inflow,Sp,P,S);
plotmine(Inflow,SpSp,PP,SS);
plotbar(Time,Inflow,Sp,T,AvgLevel);

%%

function [f] = objfun1(x,w1,w2)

% TS = x(5)+x(6)+x(7)+x(8); % spilling
D =
x(1)+x(2)+x(3)+x(4)+x(5)+x(6)+x(7)+x(8)+x(9)+x(10)+x(11)+x(12)...

+x(13)+x(14)+x(15)+x(16)+x(17)+x(18)+x(19)+x(20)+x(21)+x(22)+x(23)+x
(24); % generation

SP =
x(25)+x(26)+x(27)+x(28)+x(29)+x(30)+x(31)+x(32)+x(33)+x(34)+x(35)+x(
36)...

+x(37)+x(38)+x(39)+x(40)+x(41)+x(42)+x(43)+x(44)+x(45)+x(46)+x(47)+x
(48); % Spiling

PS =
x(49)+x(50)+x(51)+x(52)+x(53)+x(54)+x(55)+x(56)+x(57)+x(58)+x(59)+x(
60)...

+x(61)+x(62)+x(63)+x(64)+x(65)+x(66)+x(67)+x(68)+x(69)+x(70)+x(71)+x
(72); % storage

f = -w1*D-w2*PS+0*SP; %FINAL

%% Alternative Optimzation programme for main1 programme

clc; clear;

%% Setup the Import Options
opts = spreadsheetImportOptions("NumVariables", 2);

% Specify sheet and range
opts.Sheet = "2017 Vertical";
opts.DataRange = "A2:B8761";

% Specify column names and types
opts.VariableNames = ["Time", "Inflow"];

86

opts.VariableTypes = ["datetime", "double"];

% Import the data
tbl = readtable("F:\2. Results\Matlab
Files\New\OptimizedResults.xlsx", opts, "UseExcel", false);

% Convert to output type
Time = tbl.Time;
Inflow = tbl.Inflow;

% Clear temporary variables
clear opts tbl

%% Input Inflow data (m3/s)
numInflow = size(Inflow,1);
optimizeperiod = 4;

T(numInflow)=0;
Sp(numInflow)=0;
S(numInflow)=0;
DL(numInflow)=0;
AvgLevel(numInflow)=0;

%% Initial values
InitialLevel= 1193.63;
S0 = LevelStorage(1,InitialLevel);
Smax = 822470;
%x0 = [25416*ones(1,1);zeros(1,1);S0*ones(1,1)];
x0 = [zeros(1,1);zeros(1,1);S0*ones(1,1)];
X(1:24)=0; Y(1:24)=0; Z(1:24)=0; I(1:24)=0;
Z0=S0;
%%
for k=1:optimizeperiod:numInflow-20
 if k>1
 Z0=S(k-1);
 end

 [a,b1] = getData1(k,Inflow,Time);
 %%
 for m=1:24
 I(m)=b1(m)*3600;
 end
 TimeHour = hour(a(1));

 %% Linear Parameters
 A=[]; b=[];
 Aeq = [1 1 1];
 %%
 for j=1:24
 %01 Iteration

 if j==1
 beq = Z0+I(1) ; %s0+I1-sm;
 else
 beq = Z(j-1)+I(j);
 end
 %% Boundry Constarints

87

 %LB = [25416*ones(1,1);zeros(1,1);zeros(1,1)]; UB =
[127080*ones(1,1);Inf*ones(1,1);822470*ones(1,1)];
 LB = [zeros(1,1);zeros(1,1);zeros(1,1)]; UB =
[127080*ones(1,1);Inf*ones(1,1);822470*ones(1,1)];
 options =
optimset('MaxFunEval',Inf,'MaxIter',3000,'Algorithm','interior-
point','Display','off');
 [R, fval] = fmincon(@objfun3,x0,A,b,Aeq,beq, LB,
UB,[],options);

 Y(j)= R(2);
 Z(j)= R(3);
 if R(1)<25416 %I(j)<36000
 if TimeHour<18
 Z(j)=Z(j)+R(1);
 X(j)=0;
 elseif TimeHour>21
 Z(j)=Z(j)+R(1);
 X(j)=0;
 else
 X(j)= R(1);
 end

 if R(2)>0
 X(j)= X(j)+R(2) ;
 Y(j)=0;
 end

 else
 X(j)= R(1);
 end

 if (TimeHour+j)<16
 if (TimeHour+j)>5
 if R(2)< 4788
 Y(j)=4788;

 if Z(j)>4788-R(2)
 Z(j)=Z(j)-(4788-R(2));
 end
 end
 end
 end

 end

 for q=1:24
 T(k-1+q)=4.249292*X(q)/3600;
 Sp(k-1+q)=Y(q)/3600;
 S(k-1+q)=Z(q);
 DL(k-1+q)=LevelStorage(0,S(k-1+q));
 if k ==1
 AvgLevel(k-1+q)=(InitialLevel+DL(k-1+q))/2;

88

 else
 AvgLevel(k-1+q)=(DL(k-1+q-1)+DL(k-1+q))/2;
 end
 end

 %%
 pause(0.5);
 fprintf('Completion : %d', k *100 /numInflow);
 fprintf(' Done. \n');
end

%plotmine(Inflow,SpSp,PP,SS);
plotbar(Time,Inflow,Sp,T,AvgLevel);

%%

function [T24,inflow24] = getData1(startIndex,Inflow,Time)

T24 = Time(startIndex:startIndex+23,1);
inflow24 =Inflow(startIndex:startIndex+23,1);

end

function [f] = objfun3(y)

TG = 0.51*y(1)+0.49*y(3); % generation

f=-TG;

function plotbar(Time,Inflow,Sp,P,DL)

%figure;

%% Top plot of Spilling data
ha(1)=subplot(4,1,1);
bar(Time,Inflow,'b');
ylim([0 200]);
grid on
title('Average Hourly Inflow to Pond vs Time');
ylabel('Avg Hourly Inflow (m3/s)');
xlabel('Time (hrs)');
xtickformat('HH:mm');

ha(2)=subplot(4,1,2);
bar(Time,P,'r');

89

ylim([0 150]);
grid on
title('Required Average Hourly Loading on the Plant vs Time');
ylabel('Avg Hourly Loading (MW)');
xlabel('Time (hrs)');
xtickformat('HH:mm');

ha(3)=subplot(4,1,3);
bar(Time,Sp,'g');
grid on
%ylim([0 200]);
title('Minimum Average Hourly Spilling Required vs Time');
ylabel('Optimum Avg Hourly Spilling (m3/s)');
xlabel('Time (hrs)');
xtickformat('HH:mm');

ha(4)=subplot(4,1,4);
bar(Time,DL,'m');
grid on
title('Average Hourly Level Change vs Time');
ylim([1190.00 1194.00]);
ytickformat('%.2f')
ylabel('Avg Hourly Level (masl)');
xlabel('Time (hrs)');
xtickformat('HH:mm');

linkaxes(ha, 'x');

function plotmine(Inflow,Sp,P,DL)
%function plotmine(inflow,AP,OP,AL,OL,OS,AS,Time)

% Create a new figure
figure;

%% Top plot of Spilling data
ha(1)=subplot(3,1,1);
yyaxis right
plot(Inflow);
ylim([0 100]);

ylabel('inflow (m3/s)');
hold on;
yyaxis left
plot(Sp,'-b');
ylim([0 100]);

xlabel('Time (hrs)');

ylabel('Required Spilling (m3/s)');
title('Minimum Spilling of the Upper Kotmale Plant');

%% Top plot of Plant Loading
ha(2)=subplot(3,1,2);

90

%%
plot(P,'-r');
ylim([0 152]);

% Add labels
xlabel('Time (hrs)');

ylabel('Plant Loading (MW)');
title('Optimum Plant Loading of the Upper Kotmale Plant');
% Add legend in upper left (NorthWest) corner
% legend('Turbine flow','Spill flow','Location','NorthWest');

%% Bottom plot of Level Data
ha(3)=subplot(3,1,3);

plot(DL,'-g');
ylim([1190.00 1194.00]);

xlabel('Time (hrs)');

ylabel('Reservoir Level (masl)');
title('Reservoir Level of the Upper Kotmale Plant');

linkaxes(ha, 'x');
% %

		2020-05-25T15:16:44+0530
	Lidula Nilakshi Widanagama Arachchige

		2020-05-25T16:31:54+0530
	Shavindranath Fernando

		2020-05-25T13:44:27+0530
	M.H. Dhammike Wimalaratne

