CRITICAL EVALUATION ON WATERPROOFING PRACTICES IN THE INDUSTRY

I. K. A. Bandara

148605 K

Degree of Master of Science

Department of Mechanical Engineering

University of Moratuwa

Sri Lanka

May 2020

CRITICAL EVALUATION ON WATERPROOFING PRACTICES IN THE INDUSTRY

I. K. A. Bandara

148605 K

Thesis/Dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science in Building Services Engineering

Department of Mechanical Engineering

University of Moratuwa

Moratuwa

Sri Lanka

May 2020

Declaration

"I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of our knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books)."

.....

I. K. A. Bandara

Date

"The above candidate has carried out the research for the partial fulfillment of the requirement for the degree of MSc in Building Services Engineering under my supervision."

.....

Dr. L. L. Ekanayake

Date

Abstract

Waterproofing is the process of rendering an object or surface resistant to water. Importance of waterproofing in construction cannot be overstated. It is essential for durability, hygiene and also for a pleasant appearance. Water tanks, reservoirs, ponds, planter boxes, sewerage plants, water treatment plants, swimming pools, basements, roofs, bathrooms, kitchens, floors, balconies, tunnels, silos, parking decks, bridge decks, ducts, parapet walls and foundations all require waterproofing to last longer and to secure its aesthetic appearance.

Also, there are several factors to be taken into consideration when selecting the most suitable waterproofing system for the required structure. The selected waterproofing system should be non-toxic, economical, permanent, easily applied, highly resistant to water, stable at a range of temperatures, compatible, resistant to bacterial & other growth and also provide a good texture.

There is a proper procedure to be followed before applying any waterproofing system on the surface. First of all, inspect the area and get accurate information about the site. Then measure the right area and calculate the correct material requirements. Next prepare the substrate effectively. Weak areas such as cracks, honeycombs and joints, etc. have to be repaired. Then seal around the pipes/protrusions. Lay a sloping screed (if required) and fillets at right angled edges. Now apply the waterproofing system strictly conforming to the manufacturer's specifications. Cure the waterproofing system as specified.

Various reasons may lead to failures in waterproofing. Some of them are application of an unsuitable waterproofing system, using incorrect application tools, incorrect mixing proportions, poor storage of waterproofing materials, poor substrate or surface preparation, bad maintenance practices, application under direct sunlight or during rain and failure to protect application from other sources.

(Keywords - waterproofing, consultants, applicators)

Acknowledgement

My research supervisor, Dr. L. L. Ekanayake of the Department of Civil Engineering and Dr. (Mrs.) M. M. I. D. Manthilake of Department of Mechanical Engineering at University of Moratuwa are to be thanked immensely for providing guidance and advice throughout this research project.

I would also like to thank Eng. A. D. Jeshuran of Walkers Piling (Pvt) Ltd, Eng. A. Padeniya of Central Engineering Consultancy Bureau, Eng. D. P. Witharana, Eng. G. S. S. Jayaweera, Eng. (Mrs.) K. S. Gamage, Eng. S. Ranathunga, Eng. W. P. S. Samankumara and Eng. J. M. D. Gerard of Resource Development Consultants, Eng. D. R. A. Godamunna of the Ministry of Sports, Eng. H. M. R. Bandara of the Department of Buildings, Eng. M. B. M. Vistash of China State Engineering Corporation, Eng. M. H. Abeygunawardhana of Engineering Consultants (Pvt) Ltd, Eng. M. M. M. Rifaadh of the Metro Colombo Urban Development Project, Eng. M. Panapitiya of Richfield Lanka (Pvt) Ltd, Eng. P. K. C. Jayaweera of Sanken Construction (Pvt) Ltd, Eng. R. A. Gunapala of University of Visual & Performing Arts, Eng. S. Diyunuge of University of Ruhuna, Eng. S. L. H. Gamage of the Ministry of Higher Education, Eng. S. M. Seelaratne of the Rajarata University of Sri Lanka, Eng. W. M. L. M. K. Wijesundara of Sabaragamuwa University of Sri Lanka, Archt. Rehan Thilakarathna of Arch - Triad Consultants (Pvt) Ltd, Mr. G. D. D. Perera of the University Grants Commission, Eng. A. De Silva, Eng. E. A. J. Edirisinghe, Eng. M. S. A. Shakoor, Eng. R. W. S. M. S. Godamunna, Archt. (Mrs.) S. Seimon, Mr. S. S. Seneviratne, Mr. B. A. Jayathilake, Ram Developers, Mr. A. Ranasinghe, Mr. A. Gunawardana, Mr. B. Fernando, Mr. D. P. D. Pushpakumara, Mr. D. Rajapakshe, Mr. D. Fonseka, Mr. G. Madhushan, Mr. L. Priyadarshana, Mr. L. Kularathna, Mr. M. A. Pragharatna, Mr. M. H. M. Hamaz, Mr. M. Dissanayake, Mr. N. Jayasundara, Mr. N. Wewage, Mr. Nishanthan, Mr. N. Rathnapala, Mr. P. R. C. Hashan, Mr. P. S. Karunasena, Mr. P. Sudasinghe, Mr. P. Wickramasinghe, Mr. P. Chathuranga, Mr. P. Jayawardana, Mr. P. Jothirathne, Mr. R. Attanayaka, Mr. S. R. R. Amarasinghe, Mr. S. Fernando, Mr. T. Kumara, Mr. U. G. T. S. Wijesiri, Mr. W. D. S. Wattegedara, Mr. W. T. S. Wijesiri, Mr. Y. A. U. Chathuranga and Mr. Y. P. H. Peiris for providing their valuable support in conducting the survey.

Finally, I am grateful to all the staff members involved in providing us with this opportunity to gain an MSc in Building Services Engineering which is an immense benefit to our career.

Table of Contents

Declaration	nii
Abstract	
Acknowled	gementiv
Table of Fig	guresx
Table of Ta	blesxiv
1	Introduction1
1.1	Background1
1.2	Problem Identification1
1.3	Aim & Objectives2
1.3.1	Aim2
1.3.2	Objectives2
1.4	Methodology2
1.5	Key Findings3
1.6	Structure of the Thesis
2	Literature Review4
2.1	History of Waterproofing4
2.2	Introduction to Waterproofing5
2.3	Waterproofing Principles9
2.3.1	The 90%1/11% Principle9
2.3.2	The 919% Principle9
2.4	Benefits of Waterproofing10
2.5	Structural Components that require Waterproofing10
2.6	Physical Factors to be considered when selecting the Waterproofing System11
2.7	Types of Waterproofing Products Available in the Market12
2.8	Different Selective Factors Considered according to the Target Market14
2.9	Procedure of Selecting the Most Suitable Waterproofing System14
2.10	Deterioration of Concrete15
2.11	Types of Waterproofing22
2.11.1	Below-grade Waterproofing22
2.11.1.1	Ceme1ntitious Sys1tems
2.11.1.1.1	Metallic Systems25

2.11.1.1.2	Crystalline / Capillary Systems	25
2.11.1.1.3	Chemi1cal Add1itive Syst1ems	26
2.11.1.1.4	Acr1ylic Mod1ified Sys1tems	26
2.11.1.2	Fluid-applied Systems	26
2.11.1.2.1	Uretha1ne	27
2.11.1.2.2	Rubber Derivatives	28
2.11.1.2.3	Poly1meric Asp1halt	28
2.11.1.2.4	Coal Tar or Asphalt Modified Urethane	28
2.11.1.2.5	Polyvinyl Chloride	28
2.11.1.2.6	Hot-applied Fluid Systems	28
2.11.1.3	Clay Systems	29
2.11.1.3.1	Bu1lk Bent1onite	30
2.11.1.3.2	Bentonite Sheets	30
2.11.1.3.3	Bentonite Mats	31
2.11.1.4	Summary of Below Grade Waterproofing Systems	31
2.11.2	Above-grade Waterproofing	32
2.11.2.1	Vertical Applications	34
2.11.2.1.1	Clear Sealers	34
2.11.2.1.2	Elastometric Coatings	42
2.11.2.1.3	Cementitious Coatings	46
2.11.2.2	Horizontal Applications	50
2.11.2.2.1	Surface Coatings	50
2.11.2.2.1.	1 Clear Siloxane Types	50
2.11.2.2.1.2	2 Solid Coatings of Urethane or Epoxy	50
2.11.2.3	Above-grade Exposure Problems	50
2.11.2.4	Application of Water Repellents	51
2.11.3	Waterproofing of Civil Structures	53
2.11.4	Interior Waterproofing Applications	54
2.11.5	Residential Waterproofing	55
2.12	Procedure of Waterproofing	58
2.12.1	Material Selection	59
2.12.2	Specification	60

2.12.3	Installation	61
2.13	Technical Drawings of Waterproofing of Selected Surfaces	62
2.13.1	Rooftop	62
2.13.2	Sealant Details of Walls and Floors	63
2.13.3	Waterproofing of Bathrooms and Toilets	64
2.13.3.1	Single Layer System	64
2.13.3.2	Double Layer System	65
2.13.4	Waterproofing of Exposed Driveways and Ramp Slabs	65
2.13.5	Waterproofing of Basements, Underground Sumps, Swimming Pools, Lifts, Tank Reservoirs	66
2.13.5.1	External	66
2.13.5.2	Internal	67
2.13.6	Sealing of Expansion Joints	68
3	Methodology	69
3.1	Literature Survey	69
3.2	Field Study	69
3.3	Field Survey	69
4	Data Analysis	71
4.1	Field Study	71
4.1.1	Case Study I	83
4.1.2	Case Study II	86
4.1.3	Case Study III	90
4.1.4	Case Study IV	97
4.1.5	Case Study V	.105
4.1.6	Case Study VI	.113
4.2	Questionnaire Survey	.116
5	Conclusion & Recommendations	.133
5.1	Conclusion	133
5.2	Recommendations	.135
5.4	Future Works	.138
5.5	Summary	.138
References	5	.140

Table of Figures

Figure 2-1: Types of Waterproofing Products Available in the Market	12
Figure 2-2 : Rooftop Waterproofing	62
Figure 2-3: Sealant Details of Walls and Floors	63
Figure 2-4: Waterproofing of Bathrooms and Toilets (Single Layer System)	64
Figure 2-5: Waterproofing of Bathrooms and Toilets (Double Layer System)	65
Figure 2-6: Waterproofing of Exposed Driveways and Ramp Slabs	65
Figure 2-7: External Waterproofing of Basements, Underground Sumps, Swimming Poo	ols, Lifts,
Tanks and Reservoirs	66
Figure 2-8: Internal Waterproofing of Basements, Underground Sumps, Swimming Poo	ls, Lifts,
Tanks and Reservoirs	67
Figure 2-9: Sealing of Expansion Joints	68
Figure 4-1: Deteriorated surface of the rooftop of the Mechanical Engineering Departn	nent new
building - 1	71
Figure 4-2: Deteriorated surface of the rooftop of the Mechanical Engineering Departn	nent new
building - 2	72
Figure 4-3: Deteriorated surface of Goda Canteen rooftop - 1	72
Figure 4-4: Deteriorated surface of Goda canteen rooftop - 2	73
Figure 4-5: Deteriorated surface of Goda canteen rooftop - 3	73
Figure 4-6: Deteriorated surface of Goda canteen rooftop - 4	74
Figure 4-7: Deteriorated surface of Goda canteen rooftop - 5	74
Figure 4-8: Remedial action taken on Goda Canteen rooftop - 1	75
Figure 4-9: Remedial action taken on Goda Canteen rooftop - 2	75
Figure 4-10: Remedial action taken to prevent water leakage	76
Figure 4-11: Deteriorated surface of the new building of the Textile Engineering depart	ment - 1
	77
Figure 4-12: Deteriorated surface of the new building of the Textile Engineering depart	ment - 2
	77
Figure 4-13: Deteriorated surface of the new building of the Textile Engineering depart	ment - 3
	78
Figure 4-14: Deteriorated surface of the new building of the Textile Engineering depart	ment - 4
	78
Figure 4-15: Deteriorated surface of the new building of the Textile Engineering depart	ment - 5
	79
Figure 4-16: Deteriorated surface of the new building of the Textile Engineering depart	ment - 6
	79
Figure 4-17: Deteriorated surface of the new building of the Textile Engineering depart	ment - 7
	80
Figure 4-18: Deteriorated surface of the new building of the Textile Engineering depart	ment - 8
	80
Figure 4-19: Deteriorated surface of the rooftop of the IT faculty old building - 1	81

Figure 4-20: Deteriorated surface of the rooftop of the IT faculty old building - 2	81
Figure 4-21: Deteriorated surface of the rooftop of the IT faculty old building - 3	82
Figure 4-22: Initial surface with the deteriorated plaster chipped off and catch up plaster	
applied	84
Figure 4-23: After surface preparation for waterproofing	85
Figure 4-24: After application of waterproofing	85
Figure 4-25: After application of cover plaster - 1	86
Figure 4-26: After application of cover plaster - 2	86
Figure 4-27: Open slab area in the IT faculty building of University of Moratuwa considered	for
case study II	87
Figure 4-28: Open slab area prone to collection of rainwater	87
Figure 4-29: Another problematic inaccessible narrow strip of slab area	88
Figure 4-30: No proper means of access to the area	88
Figure 4-31: Labs onto which water leaks from the considered area	89
Figure 4-32: The area poses a health issue by being a breeding ground for mosquitoes	89
Figure 4-33: Flooding of the basement in the Civil Engineering Department building includin	ıg
the staircase - 1	90
Figure 4-34: Flooding of the basement in the Civil Engineering Department building includin	ıg
the staircase - 2	91
Figure 4-35: Flooding of the basement in the Civil Engineering Department building includin	ıg
the staircase - 3	92
Figure 4-36: Flooding of the basement in the Civil Engineering Department building includin	ıg
the staircase - 4	93
Figure 4-37: The basement of the Civil Engineering Department building prone to flooding	93
Figure 4-38: Non-return nozzles fixed to inside walls for the injection process - 1	94
Figure 4-39: Non-return nozzles fixed to inside walls for the injection process - 2	94
Figure 4-40: Injection Process - 1	95
Figure 4-41: Injection Process - 2	95
Figure 4-42: Injection Process - 3	96
Figure 4-43: Injection Process - 4	96
Figure 4-44: Injection Process - 5	96
Figure 4-45: Construction joint line in floor level of 7 th floor	97
Figure 4-46: Water seepage from construction joint line at slab level of 7 th floor - 1	97
Figure 4-47: Water seepage from construction joint line at slab level of 7 th floor - 2	98
Figure 4-48: Water seepage from construction joint at floor level of 7 th floor	98
Figure 4-49: Water seepage along the wall of the ground floor	99
Figure 4-50: Water seepage along the walls from the duct line in the ground floor	99
Figure 4-51: Rooftop deteriorated tile skirting expelled	100
Figure 4-52: Rooftop location of water meters prone to collection of water	100
Figure 4-53: Rooftop location prone to collection of water - 1	101
Figure 4-54: Rooftop location prone to collection of water - 2	101

Figure 4-55: Passive waterproofing mechanism on rooftop drains into which water gets drai	ned
beneath the tile surface - 1	102
Figure 4-56: Rooftop drains into which water gets drained beneath the tile surface - 2	102
Figure 4-57: Remedial action taken to prevent collection of water at rooftop level using pass	sive
waterproofing design	103
Figure 4-58: Rooftop surface to be finished	103
Figure 4-59: Post application of waterproofing solution at rooftop level	104
Figure 4-60: Finished surface and unfinished construction joint line of rooftop	104
Figure 4-61: Rooftop drainpipes to facilitate proper drainage	105
Figure 4-62: Sluice gates located at the far left were affected by waterproofing issues	106
Figure 4-63: Affected surfaces were injected with waterproofing solutions - 1	107
Figure 4-64: Affected surfaces were injected with waterproofing solutions - 2	108
Figure 4-65: Top surface of the underground control room from which water leaks in	109
Figure 4-66: Bottom surface through which water leaks in	109
Figure 4-67: Water seeping in from puddle collar - 1	110
Figure 4-68: Water seeping in from puddle collar - 2	110
Figure 4-69: Surface injected with waterproofing solutions - 1	111
Figure 4-70: Surface injected with waterproofing solutions - 2	111
Figure 4-71: Surface injected with waterproofing solution from top level - 1	112
Figure 4-72: Surface injected with waterproofing solution from top level - 2	112
Figure 4-73: Water leaks to be injected with waterproofing solutions	113
Figure 4-74: Water leaks in the front wall of the Galle Town Hall	113
Figure 4-75: Water leaks - 2	114
Figure 4-76: Water leaks - 3	114
Figure 4-77: Structural deterioration of ground floor slab level due to lack of waterproofing	- 1
	115
Figure 4-78: Structural deterioration of ground floor slab level due to lack of waterproofing	- 2
	115
Figure 4-79: Structural deterioration of ground floor slab level due to lack of waterproofing	- 3
	116
Figure 4-80: Structural deterioration of ground floor slab level due to lack of waterproofing	-4
	116
Figure 4-81: Most Important Factor to Consider when Selecting a Waterproofing System	117
Figure 4-82: Factor Combination Frequencies for importance of factors	118
Figure 4-83: Willingness to Consider an Applicator's Suggestion of a New Product	120
Figure 4-84: Necessity of Specialized Waterproofing Consultants	121
Figure 4-85: Industry Experience of Applicators in Specialized Areas	123
Figure 4-86: Existence of a Preferred Brand of Waterproofing	124
Figure 4-87: Applicators Experience in More than one Brand of Products	125
Figure 4-88: Selection of Specific Products for Each Area	126
Figure 4-89: Process of Selecting a Specific Product to Apply	127
Figure 4-90: Availability of Warranty for Application	128

Figure 4-91: Years of Warranty Provided by Applicators	129
Figure 4-92: Percentage of Rework Done Free of Charge due to Application Failure during	
Warranty Period	130

Table of Tables

Table 2-1 : Analysis of physical factor of two locations	11
Table 2-2: Selective Factors considered by different groups of the market	14
Table 2-3: Advantages and Disadvantages of Negative & Positive Systems	23
Table 2-4: Advantages and Disadvantages of Waterproofing Systems that are Cementitious	25
Table 2-5: Advantages and Disadvantages of Fluid Appli1ed Systems	27
Table 2-6: Advantages and Disadvantages of Clay Systems	30
Table 2-7: Summary of below-grade waterproofing systems	31
Table 2-8: Differences between above-grade and below-grade waterproofing	33
Table 2-9: Clear Sealant Types	34
Table 2-10 : Advantages and Disadvantages of Acrylics	38
Table 2-11: Advantages and Disadvantages of Silicones	39
Table 2-12: Advantages and disadvantages of Urethanes	39
Table 2-13: Advantages and Disadvantages of Silanes	40
Table 2-14: Advantages and Disadvantages of Siloxanes	41
Table 2-15: Advantages and Disadvantages of Silicone Rubbers	42
Table 2-16: Advan1tages and disadv1antages of Elastometric Coatings	44
Table 2-17: Advantages and Disadvantages of Cementitious Coatings	48
Table 3-1: Justification of class size	70
Table 4-1: Most Common Combination for Importance of Factors to be considered for selec	ting
a Waterproofing System	119