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COMPUTER VISION BASED AUTOMATED PLAYER

TRACKING IN RUGBY

by

Galkissage Manik Tharaka Fernando

Abstract

Sports related analytics have become a main component of the present profes-
sional sporting domain. Teams continuously rely on the knowledge provided by
analytics systems to gain a competitive edge over the opposing team. One of
the main aspects of sports analytics is automated player tracking which can be
achieved by computer vision based techniques by analyzing video footage of sport-
ing events. Multiple object tracking in itself is a non trivial problem due to the
large number of variables involved. This is further amplified by the high number
of occlusions, trajectory changes that occur in a highly physical sport such as
Rugby. We set out to solve the problem of automated player tracking using a
tracking by detection approach. We make use of an object localisation model
named YOLO and retrain it to suit the specific scenarios in Rugby. In order to
solve the data association problem we compute an appearance based metric using
an identity embedding encoder network. A Kalman filter is used along with the
appearance based metric to establish the associations between tracks and detec-
tions. We conduct several experiments to evaluate the implemented solution and
report the results. We discuss the limitations,further improvements and areas
that present further research opportunities.

Thesis Supervisor: Dr.Amal Shehan Perera
Title: Senior Lecturer
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Chapter 1

INTRODUCTION

1.1 Automated player tracking

Automatic player tracking is an area which has many uses in the modern sports

science and professional and semi professional domains. From a sports scientific

perspective tracking helps identify aspects such as demands on energy expendi-

ture [1]. In the professional sporting domain which has become a multi-million

dollar industry, analytics play a major role in the outcome of a sporting event

[2, 3, 4]. Consequently the performance of the sporting team or franchise may be

significantly affected by the leverage provided by the analytics system employed

from the phase of player drafting, training to on-field real time analytics. Most of

the decisions made traditionally through experience of management and coach-

ing staff are being supplemented by analytics. Data such as player positioning,

meters gained, speed and trajectories can be valuable with regard to analytics

applications. For instance previous season statistics can be used when drafting

and recruiting new players and at the training phase the data can be used to

build a profile of each player, and at game day the real time data can be used

to guide the strategy and the tactics used in the game.There are many technolo-

gies that may be employed to track players in sporting events or in training and

collect the data. These technologies may range from global positioning systems

(GPS), radio frequency tags, magnetic sensor tracking, ultrasound, video analysis

based tracking. The most widely used technologies from the above are GPS and

computer vision based automated video tracking.
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GPS has the advantage of being accurate and the ability to provide data in

near real time. However these approaches require the players to wear a specialised

tracking device. In the case of GPS the device receives signals from a constellation

of earth orbiting satellites, the location can be determined by using data from 3

of the satellites. Computer vision based tracking methods have made significant

progress in recent times. They can provide significant accuracy but are still not

superior to the performance of GPS tracking[1].

1.2 Problem and opportunity for research

With regard to automated player tracking previous studies have been conducted

employing various technologies. However a large number of studies are conducted

on non contact or semi contact sports such as Basketball or Soccer , and we find

only a handful of research on full contact sports such similar to Rugby.

Rugby is a highly physical full contact game which generally requires strength,

stamina, speed and agility. It is a dynamic game which may consist of bouts of

high intensity activity followed by low intensity aerobic activity and rest[5].Individual

rugby players are usually specialized in a certain skill set that is demanded of the

position they play, for example Props need to be strong and sturdy and usually

of heavy physical stature which is in contrast to a player playing wing who needs

to be fast and agile. This characteristic of rugby demands a specialized train-

ing regimen that can accommodate the required fitness capacity of players at an

individual level. From a physiological viewpoint knowledge gained from analyz-

ing player patterns both in training and game time can be used in designing an

enhanced training program.

Furthermore in a game of rugby there are unique playing aspects such as

scrums, rucks and mauls where multiple players may physically engage with each

other. From a technical point of view positional and trajectory data along with

information about the various playing scenarios can be used to gain knowledge

and to plan out the strategy and tactics of the game. Identifying these playing

situations is important for the purpose of analytics and poses a unique challenge
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for computer vision applications due to the multiple occlusions that occur at these

situations.

The study conducted by Edgecomb and Norton[1] Illustrates the difficulties

of applying some of the aforementioned technologies to Australian Football. In

highly physical contact sports such as rugby, and Australian Football, using track-

ing technologies which requires the players to wear specialized devices is not prac-

tical in most situations due to risk of injury. Most of the players who take part in

these sports wear little to no protective gear, therefore the places to safely embed

these devices are minimal. Using a tracking technology which requires players to

wear specialized equipment has the additional disadvantage of not being able to

track the players of the opposition.

Considering the above mentioned factors it is evident that although GPS

and other device based technologies are generally considered superior for the

purpose of automated player tracking, there still are some limitations with regard

to these aproaches and they may not be suitable for every situation. Computer

vision based tracking provide a non invasive approach to tracking eliminating

the need for specialised devices to be worn by players. However due to the

complexity associated with CV based player tracking there are still areas that can

be improved from further research. Thus CV based approaches provide ample

opportunity for further research while at the same time being advanced enough

to permit practical applications. Therefore the focus of this research will be to

develop a computer vision based automated player tracking system which can be

employed in analytics for rugby matches.

1.3 Motivation to automate player tracking for Rugby

The scarcity of research conducted on applying automated player tracking for

rugby and the lack of a specialized system that can identify various playing as-

pects of rugby is the main motivating factor for this study. Furthermore the usage

of computer vision based techniques for player tracking still has challenges that

needs solutions. Solving the interesting problems faced when applying computer

3



vision based player tracking, such as tracking and identifying moving entities can

be applied to other domains such as surveillance or autonomous vehicle navi-

gation. In recent times professional sports has developed into a multi million

dollar industry. With these developments managing bodies of professional teams

are constantly looking out for ways to minimise mistakes and to gain a compet-

itive advantage over their opponents. One area that has caught the attention

of professional sporting teams is data driven decision making. To this end data

science and analytics can provide value additions in a large range of applications

ranging from scouting/drafting of players, team selection to on field decision mak-

ing. This high demand for data analytics and tools that enable data analytics in

professional sports also acts as further motivation for this study.

1.4 Objectives

The purpose of this research is to develop an automated system that can collect

data related to players positioning and trajectories. This research focuses on

computer vision based automated player tracking, which uses computer vision to

extract player positioning data during the timeline of a game from video footage.

The study will be conducted on video footage of Rugby Union matches. The

main objectives can be listed as follows.

1. Detect players on the field

2. Track player movement trajectories and positioning across time
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Chapter 2

LITERATURE REVIEW

Automated player tracking is a domain where a considerable amount of research

has been conducted in recent years. The focus of this chapter is to have a dis-

cussion on literature and past studies that are concerned with computer vision

based tracking.

Object tracking can be defined as estimating the trajectory of an object of

interest as it moves within a scene. This can be achieved by assigning consistent

labels to the object within each frame of a video [6]. Depending on the approach

that is employed we can classify the literature concerning object tracking into

many different classes. One of the most frequently occuring classifications is the

tracking-by-detection paradigm versus tracking-by-estimation paradigm. In the

tracking by detection approach,the problem of object tracking is broken down

to two subproblems of object detection and object tracking [7, 8, 9, 10]. The

object detection component is concerned with continuously detecting the objects

of interest in the input and the tracking component involves estimating and as-

sociating the detected trajectories across the frames.

The techniques and the approach used for the purpose of computer vision

based tracking is reliant on the specific domain that the problem is applied to

[6]. Therefore most of the literature discussed will be related to the area of multi-

target tracking applied to various sports along with studies conducted in generic

domains. First the general literature related to the problem of automated player

tracking will be discussed followed by discussion on player detection and player

tracking.
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2.1 Automated multi target tracking

The comparison done on automated surveillance systems and automated player

tracking systems by Barris and button [11] helps us to put the challenges faced

with automated player tracking into perspective. According to the authors the

technologies used in surveillance have seen some changes during the recent past.

Attempts at capturing human motion has led to articulate 3D models from the

previous 2D models. Tracking of objects has seen a shift towards sampling based

techniques from deterministic linear tracking frameworks. It is emphasized that

The improvements in motion analysis is contributed by the usage of machine

learning approaches and that this has led to systems that can cope with outdoor

scenes and situations where there are multiple occluding people. Authors also

state that these improvements are attributed towards advancements in segmen-

tation technologies while some studies credit the improvements in model based

pose estimation.

The main differences that are seen between surveillance systems and sports

tracking systems is that the targets being tracked in a sporting event may be fast

moving and might exhibit erratic unpredictable movements wheres in a pedestrian

surveillance setting the targets may be slow moving with smoother trajectories.

The review on sports tracking in both indoor and outdoor settings illustrate the

technological trends that are evident since recent times, some of these studies will

be discussed in depth.The authors have observed that scene event analysis using

image processing has become increasingly common. The review also discusses

limitations that are commonly faced by numerous studies. Most of the studies

have conducted the research with stationary cameras due to the added complexity

with the use of a moving camera. Player occlusion seems to be another major

hurdle when applying computer vision based algorithms. When a player blocks

another player visually in the field of view of the camera it is known as a player

occlusion. Situations where two players occlude or where multiple players cluster

around a certain point have yielded low tracking accuracy.
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2.2 Player detection

Some of the research conducted with regard to automated multi target tracking

involves first detecting the object and associating a tracker with the detected

object [7, 8] and others have incorporated an object detection component as part

of the overall tracking mechanism [9, 10]. In this section the various approaches

made with regard to player detection will be discussed.

Within the research literature a varying number of features are used for the

task of object detection. Significant success has been achieved when they are

incorporated with a machine learning approach. The research conducted buy

Dalal and Triggs [12] proposes the usage of Histogram of Oriented Gradients

as the features from an image as input features. The HOG features are used

in a linear SVM in order to detect the pedestrians. The HOG features share

similarities with orientation histograms, SIFT descriptors and shape contexts.

The HOG features are computed on a dense grid of uniformly spaced cells where’s

the others are sparse descriptors. The local object appearance and shape can be

characterized with the distribution of local intensity gradients and edge directions.

The authors make a note to normalize the calculated features before using them

in detection. The detection window is tiled with a dense overlapping grid of

HOG feature descriptors. The HOG representation is good at capturing edges

in the local vicinity as it takes into consideration the gradients in the local cells

and translations and rotations makes little difference if they are smaller than the

local spacial orientation bin size. The experiments were conducted on the MIT

pedestrian database[13] as well as a data set that was compiled by the authors

themselves with 1805 images. the methodology followed involved training a set

of preliminary detectors and searching a set of 1218 negative image samples for

false positives. The training set is supplemented with any false positives found in

the data set and the SVM is retrained. The retraining process helped to increase

the performance by 5%.

The framework proposed by Zhu et al. [7] uses support vector classification

and segmentation of the play field to detect players on the field. In order to
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identify the pixels of the playing field Gaussian Mixture Models (GMM) were

used. Once the general playing field pixels are identified, region growing algorithm

is used to connect the pixels into areas and to refine the edges. In order to identify

the players from other objects in the frame a Support Vector Machine model in

the form of a classifier is used. Training examples were manually extracted from

footage, images of players were selected as positive examples and parts of the

playing field was used as negative examples.The features used in the classification

include a color model that is built from the Hue-Saturation-Value color space

using a histogram.

In a similar study conducted by Liu et al. [8] on broadcast soccer videos apart

from player detection player labeling was also achieved. Initially the dominant

color is identified and the playing field is extracted with the use of dominant color

segmentation, morphological filtering and connect component analysis. The size

of the play field and non-playing field may vary due to changing camera angles

and shots. Therefore a decision tree was used to classify each view into global,

medium, close-up and out of view. In order to identify players, a boosted cascade

of Haar features based on the work by Viola and Jones[14] were used. A set of

player images that capture the different motion variations as much as possible

was used as positive training samples along with the images of various markers

and signs on the playing field as negative examples. The background playing

field was filtered out of the training examples which has made the process faster.

The detector scans over the image at varying sizes, which sometimes resulted in

multiple detection instances around a player. These duplicate detection instances

were merged together to obtain a single detection.The experiments were done

on the 2006 soccer world cup videos. Frames were randomly selected from the

footage with about 50 to 100 frames difference between selected frames and the

ground truth was manually labeled. The videos that were used were from the

2006 soccer world cup from matches between France and Spain and between

Brazil and Japan.The authors were able to achieve significant figures precision

(88.65%,92.38%) and recall (92.19%,88.82%) values as well as high F-score values
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(90.39%,90.57%).

In the widely cited study conducted by Okuma et al.[9] a cascaded Adaboost

process is used for detection of players [14]. A training set of 6000 figures of

hockey players scaled to a standard size of 10 X 24 pixels is used for the purpose

of training the cascaded classifier. There is a considerable difference between

the intensities of the pixels that represent a player and the hockey rink. The

researchers have used this property to device a simple extraction method to ex-

tract player images for training, where small low intensity areas(players) which

are surrounded by high intensity areas(hockey rink) are detected and extracted.

However the authors point out that this approach is not the ideal one for accuracy,

as the trained Adaboost estimator had a number of false positives around the edge

of the rink. The false positives of the spectators can be corrected from the clas-

sification if plausible motions of the hockey players are taken into consideration.

In order to achieve this the Adaboost classifier was incorporated to the proposal

of the mixture of particle filter. In the final mixture model the Adaboost algo-

rithm performed well in detecting players. However there are some weaknesses of

Adaboost such as susceptibility to variations in intensity and occlusion.

2.2.1 Deep learning based object recognition

In recent times a surge in the success rate of deep neural network based object

classification algorithms can be observed. Researchers have been able to achieve

very high accuracy levels in a very short time span. The model named Alexnet

[15] gave the breakthrough results in the 2012 imagenet competition [16]. The

model consisted of five convolutional layers and three fully connected layers. An

interesting contribution from the Alexnet model was that by using ReLu (Rec-

tified Linear unit) activation functions deep CNNs can be trained much faster

with gradient descent, as opposed to the tanh and sigmoid activation functions

that were usually used. The researchers also used dropout in the first two fully

connected layers to reduce overfitting. They were able to achieve a top-5 error

rate of 15.3% at the ILSVRC-2012 competition. The VGG network [17] was
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(a) Number of layers vs error rate (b) Resnet building block

Figure 2-1: (a) Training error (left) and test error (right) on CIFAR-10 with 20-
layer and 56-layer “plain” networks. The deeper network has higher training and
test errors.(b) Residual unit with skip connection provide identity mapping from
the output of the previous layer.Source [18]

among the best performing models in the imagenet competition. The model used

convolutional layers with 3X3 filters as opposed to large receptive fields used in

previous models. The network had two models of 16 layers and 19 layers. Due to

difficulty in training the networks with large depths, the authors trained smaller

models with fewer layers and used these smaller models as an initialisation step

to train the larger models.

The ResNet architecture introduced by He et al. [18] is another revolution-

ary approach. The authors observe that the recent success in image recognition

models can be attributed to the large depth of the networks, which results in a

larger parameter space and more complex functions. However naively increasing

the number of a neural network does not result in better performance. He et al.

illustrate this by plotting the training and test error of a 20 layer neural network

and a 50 layer neural network, where the 50 layer network performs worse than

the shallower 20 layer network. They identify that this hindrance does not occur

due to overfitting either and observe that as the network depth increase the the

accuracy becomes saturated and rapidly degrades. The authors introduce resid-

ual learning comprised of residual blocks to overcome this degradation problem.

These blocks use skip connections to obtain identity mapping from the output of

the previous layer which is added to the output of the next layer.

10



2.2.2 Object localisation and detection

These achievements in object classification paved for further advances in object

detection and localisation tasks where the objective is to identify the location

and bounds of the object of interest. In classical computer vision approaches

object localisation was mainly achieved by sliding window techniques, where a

window encompassing a subset of the image pixels slides across full image. The

pixel information is input to a detector model to identify if the window bounding

box contains an object of interest. This approach is quite cumbersome, which

provided an opportunity for further research. One of the prominent approaches

that set out to solve the problem of object localisation is the Regions with CNN

(R-CNN) by Girshick et al. [19]. The authors use selective search algorithm to

propose approximately 2000 regions of interest. These regions are extracted from

the image.The extracted image patches are warped to the dimensions 227x227

and input to a CNN which outputs a 4096 dimensional feature vector. A set

of class specific SVM models are used to classify whether there is an object

of interest in the selected region and and a regression model is used to refine

the bounding box dimensions. In this approach the CNN acts a s rich feature

extractor and the actual classification was done by the SVM. They were able to

achieve a mean average precision (mAP) of 53.7% on the PASCAL VOC 2010

dataset [20]. Despite its good performance in terms of accuracy R-CNN had

several drawbacks. Object detection at test time was slow, the training process

was a multi stage pipeline with several componentes and the training process

was computationally expensive. In a later study the authors present Fast R-

CNN [21] as an improved approach over R-CNN. In the R-CNN model each

image proposal patch is fed forward through a deep convolutional neural network,

this method results in a performance bottleneck. If there were N proposals,

the CNN feedforwad computation has to occur N times. The new model solves

this problem by first feeding the full image through the CNN and creating a

convolutional feature map. Then for each proposal of interest a layer named RoI

pooling extracts the features and resizes them to a fixed aspect ratio. The Fast
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Figure 2-2: Region proposal done by the Region Proposal Network.Source [22]

R-CNN makes another change in terns of the output ,where R-CNN relied on

class specific SVM estimators and regression models, the Fast R-CNN has two

sibling output layers. One layer outputs a vector of probabilities for the classes

the network is trained on, and the other layer outputs the bounding box regression

offsets. With these improvements the authors were able to obtain speed increase

of 10x to 100x at test time. There performance on the VOC 2007 dataset is

reported at mAP 70% , on VOC 2010 at mAP 68.8% and on VOC 2012 mAP

68.4%.

Another research that continued to make more improvements over the Fast

R-CNN is the aptly named Faster R-CNN [22] model by Ren et al. Despite

having a similar name to the previous discussed methods Faster R-CNN makes

some important changes. Instead of using selective search for region proposals, the

model uses a region proposal network which slides a window over the convolutional

feature map. The sliding windows are mapped to a lower dimensional feature

which in turn becomes the input to the final output layers. At each sliding

window center multiple region proposals named anchors are predicted. Each

region proposal consists of four bounding box coordinate values and two scores

that estimate the probability if the region contains an object 2-2. In this study

3 aspect ratio variations and 3 scale variations amounting to 9 anchor boxes are

predicted by each sliding window. The Faster R-CNN model exhibits improved

performance with 73.2% mAP for the PASCAL VOC 2007 dataset and 70.4%

mAP on the VOC 2012 test set.

The work done by Redmon et al. resulted in an object detection and localisa-
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tion model dubbed You Only Look Once (YOLO) [23]. This model is capable in

handling the end to end object localisation process in a single network, taking in

the full image data as input only once, which is in contrast to the region proposal

and sliding window approaches discussed above. In other words the model looks

at the image only once, which was the inspiration for the YOLO model name.

The model divided the image into a grid of NxN cells. Each grid cell predicts

B bounding boxes, each of which consists the coordinates for the bounding box

and a object confidence score. Each grid cell predicts a set of C class conditional

probabilities as well.Only one set of class probabilities are predicted per grid cell,

irrespective of how many bounding boxes the grid is predicting. The YOLO

model was capable of obtaining a high FPS performance of 45 frames per second

with an NVIDIA TITAN X GPU and a faster model was capable of performing

at 150 FPS.

2.3 Player tracking

As stated by Hue et al. [24] the main challenge of the problem comes down to the

assignment of the measurement observations to the target. Tracking in the sense

of object tracking involves the state estimation of an unknown object/objects.

The problem involves the identification and recursive localisation of an object

from sequential data that is available to the observer [25] . The problem can be

considered as having two aspects, namely the data association and estimation

which needs to be considered together.

2.3.1 Recursive bayesian estimation based player tracking

In the research conducted by Zhu et al.[7] a particle filter which uses Support

Vector Regression is used for the tracking of players which are detected from

the object detector discussed above. Particle filters need a large sample set in

order to be accurate. Since the computational costs increase with the size of the

sample set, the authors have employed the sample re-weighting approach that

was proposed by Vapnik [26] and have developed the Support Vector Regression
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particle filter. This approach strives to minimize the noise of the posterior dis-

tribution by combining support vector regression into Sequential Monte Carlo

algorithm.The experimental data includes broadcast videos from sports such as

soccer,hockey,basketball and American Football. From 4 videos 13 clips were ex-

tracted which summed up to a set of 3599 frames. The accuracy of the test results

were consistently high in the ranges above 80% accuracy for all tests. Some of the

limitations stated by the authors is that when the player pixel area is very small

which could happen due to the camera perspective, players will be dismissed be-

cause of wrongly identifying them as noise. As future work the authors plan on

solving the problems posed by occlusion.

In a similar study conducted by Liu et al. [8] on broadcast soccer videos the

problem of tracking players is formulated as a data association problem. The

players are detected and labeled as mentioned previously, and these results are

used as input to the tracking problem. The graph structure is defined over the

observational data where each node represents single observation and the edges

represent a relationship between neighboring observations. In order to find the

optimal solution Markov Chain Monte Carlo (MCMC) based strategy is used.

As mentioned earlier experiments were conducted on video from the 2006 soccer

world cup matches. From the match between Spain and France 100 consecutive

frames were extracted and manually labeled with the ground truth. The system

was able to accurately detect and track players even under occlusion. But authors

have not mentioned how long the occlusion had occurred. They were able to

obtain a precision of 99.32% precision and 94.43% recall against the ground truth.

In the study conducted by Wu et. al [27] they employ Relative Discrimina-

tive Histogram of Oriented Gradients (RDHOG) based Particle Filter tracker to

vehicles and to resolve situations when partial occlusion occur. The RDHOG de-

scriptor is an extension to the HOG descriptor. The difference between the two

can be seen when considering the blocks of cells. The RDHOG takes into con-

sideration the relationship between the central block and the surrounding blocks.

Background subtraction is performed on the image to identify foreground pix-
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els and RDHOG is used to identify the target objects, in this instance vehicles.

The detected objects are input to the particle filter which initiates the tracking

procedure.

In contrast to the studies discussed above where a separate object detection

mechanism was used in the research done by Okuma et. al [9] uses a cascading

Adaboost algorithm to enhance the particle filter.At a higher level their study

employs a combination of mixture particle filters and Adaboost method which the

authors refer to as Boosted Particle Filter (BPF). Hue-Saturation-Value color his-

tograms are used to develop observational models. The HSV space is is used due

to the lack of susceptibility to variations in illumination in the HSV space. The

Bhattacharya similarity coefficient is calculated in order to measure the distance

between the reference color model and the candidate color model. The distance

is then used to model the likelihood distribution.The authors recall that particle

filters have a tendency to perform poorly when the posteriors are multi modal

(tracking multiple targets).In order to mitigate this issue and handle multiple

targets the mixture model approach is used which is derived from the Mixture

Particle Filter (MPF) developed by Vermak et al [25]. In this approach each

component is modeled by and individual particle filter and the resampling step is

delegated to the individual filters so as to mitigate the effects of sample depletion.

The experimental results show that the model is robust at handling new

objects moving into the frame. When a player enters the scene the Adaboost

mechanism detects the player, and the player is tracked by the BPF after as-

signing particles to it. The Adaboost does not perform very well under situations

where players appear in close quarters and the susceptibility of Adaboost towards

large variations in intensity is also evident in a situation where a camera was

flashed during the game, at which point Adaboost lost detection of several play-

ers.However the BPF handled and tracked the players in these situations making

up for the lack of failures of the Adaboost detector. The authors propose several

improvements, such as incorporating non-uniform backgrounds when training the

Adaboost detector and dynamic value selection for the weighting parameter.
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Although the BPF system by [9] demonstrated a robust hybrid tracking sys-

tem it did not fare well under mutual target occlusions. The study done by Cai

et al. [10] picks up from where [9] left and proposes several improvements to the

system, mainly focused towards improving the limitations in situations of mutual

occlusion.One of the main flaws pointed out by the authors in the previous re-

search is that the MPF used by Okuma et al. [9] has a fixed number of particles

and when a new object enters into the frame the some particles should be shared

between multiple entities leading to lower accuracy. During occlusions the merge

and split of particles in the MPF structure causes the loss of identities of the play-

ers. Therefore the researchers have continued using the boosting particle filter as

the main basic filtering component while incorporating independent particle sets

instead of using MPF. There is difficulty involved with modeling target motion

dynamics due to the motions involved with a non stationary camera. In order

to circumvent this they have mapped the locations of the target players in the

image coordinates to the coordinate domain of the hockey rink which behaves

like a stationary reference frame.Once this is achieved the motion of the hockey

players may be predicted with a constant velocity autoregressive model as the

players follow the physical laws of momentum. However hockey (ice hockey) is

a special case where the playing surface has a very low friction. Therefore ap-

plication of this technique may yield different results in other sporting domains.

Autoregressive models consider historical data to predict the current state of the

value.

xt = Axt−1 +Bxt−2 + CN(0,Σ) (2.1)

The authors formulate the autoregressive model in eq. (2.1) for the motion

dynamics of the target players. here A,B,C are autoregression coefficients and

N(0,Σ) is a Gaussian noise term with mean 0 and standard deviation 1. A

color model similar to [9] is built and where the target is split vertically into two

parts and histograms for which are built separately. The authors have resorted

to embedding the mean-shift algorithm in order to stabilize the tracking results
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with the expectation of improving tracking accuracy and reducing the impact

from background clutter and occlusion.

The RDHOG based particle filter by [27] utilizes the output provided by RD-

HOG detector to initialize trackers. If the frame rate of the video is sufficiently

high a moving vehicle should be detected in subsequent frames and the detected

objects should spatially overlap. The researchers use this premise to assign track-

ers to targets. If a detected object appears in consecutive frames with the targets

overlapping in each frame a particle is assigned to that target.

The Simple Online Realtime Tracking, a research conducted by [28] highlight

the importance of the object detection module in a tracking by detection ap-

proach. They present an online multiple object tracking framework that uses

the afore discussed Faster RCNN[22] as the object detection component with a

Kalman Filter and Hungarian algorithm for the object tracking component. The

authors focus on the problem of pedestrian tracking and do not consider detec-

tions of other classes for the tracking problem. They approximate displacement

of an object between frames with a linear constant velocity model independent

of other object motion and camera motion. The state of each target is modeled

by a vector x, as in eq. (2.2).

x = [u, v, s, r, u̇, v̇, ṡ]T (2.2)

In this state representation u and v represent the center coordinates of the

bounding box in image coordinate space. The variable s represents the area of

the bounding box and r the aspect ratio. In this model aspect ratio is considered

to be constant. The Kalman filter predicts what the next state of the target,

associations are then made with the new set of detections. When a successful

association is made, the detection bounding box coordinates are used to update

the target state. The assignment cost matrix is calculated by using the intersec-

tion over union (IOU) as a distance metric. Once the cost matrix is obtained

the hungarian algorithm is used to solve the assignment problem and make as-

sociations between target tracks and detections. The experiments are evaluated
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on the MOT15 [29] benchmark. The authors were able to obtain a MOTA value

of 33.4 % and MOTP of 72.1% . In comparison there results exhibited a bet-

ter performance than other online tracking approaches that were used for the

comparison. The researchers state that with the use of a state of the art object

detector they were able to achieve good results even with a rudimentary approach

in the tracking component.

2.3.2 Data association

Data association in the context of target tracking is the problem of making cor-

respondence between new detections and track hypothesis. An approach that

has had success in finding associations between targets and observations is the

joint probabilistic data association (JPDA) [30] which calculates a joint proba-

bility score for the association of targets to the observations. In the basic form,

JPDA considers all possible associations between measurements and targets when

calculating a joint probability score[31]. This approach can be quite costly and

computationally hard. Various techniques have been employed in numerous stud-

ies to mitigate the complexity involved in calculating the probability score.

Hamid et al. [31] tries to tackle the problem by an approximate solution.

The JPDA consists calculating a marginalized probability score over the possi-

ble associations of targets and measurements, which may end up with a large

number of terms. The approach taken to mitigate this was to select the m best

probability hypotheses and to approximate the marginal probability as the sum

over these m hypotheses. First the problem was formulated as an integer linear

programming (ILP) problem. Once this is achieved, solution to the ILP gives

the best likelihood for the data association. However the above approximate so-

lution does not fare well under a time-varying number of targets.An extension

named integrated JPDA (IJPDA) has been used in literature, which introduces

extra computational complexity to the model.Instead a set of heuristics were

used. If an observation is not claimed by a target, it is initiated as a new tar-

get and if a the number of consecutive missed detections for a target reaches a
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certain threshold the corresponding track will be terminated. In order to eval-

uate the results optimal sub-pattern assignment for tracks (OSPA-T) as well as

CLEAR MOT [32] was used . A number of experiments were carried out on both

simulated data and real world data. The a single frame and a 3-frame JPDA (3F-

JPDA) proposed by the authors were compared against a Multiple Hypothesis

Tracking model (MHT) and Interacting Multiple Model Joint Probabilistic Data

Association (IMM-JDPA) model in previous studies. Overall the JPDA methods

exhibited good performance than the MHT method due to the handling of long

occlusions. The proposed JPDA model showed accuracy similar to the IMM-

JPDA model with significantly lower time.The 3F-JPDA had better accuracy,

but it took the longest time for the computation.

2.3.3 Neural networks based target tracking

The latest study conducted by Milan et al. [33] takes a very different approach to-

wards the problem of multi target tracking. Although deep learning has achieved

quite a lot of traction in the recent past in various domains including computer

vision [34, 15], applications towards the problem of multi target tracking is scarce

in literature. There study focus on employing Recurrent Neural Networks (RNN)

for the purpose of tracking multiple targets. From a high level perspective it can

be considered that RNNs work in a sequential manner.It is stated that RNNs are

good at predicting the state but faces troubles when handling the data associa-

tion task. In order to handle the data association component authors have used

Long Short Term Memory (LSTM) unit. The input vector at a given time state

is defined as xt ∈ IRN.D where N is the number of targets to be tracked. Each

target is represented by the corresponding bounding box coordinates (x, y, w, h).

A temporal RNN is used for the state prediction and update component. The

RNN learns the dynamic model of targets along with an indicator for particle

death and birth rates. The prediction for each frame is dependent of the state

of the previous frame as well as the state of the hidden layers. A loss function

was developed that is based on the multi object tracking accuracy (MOTA) [32]
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metric. An LSTM network is proposed by the authors for the data association

component. The step by step functionality of the LSTM is used to predict and

assign the target.A softmax layer was applied to the outputs along with normal-

isation.The expected output is a vector consisting of probabilities of each target

for each observation. In order to calculate the loss due to false assignments, a neg-

ative log likelihood function was used. The approach was tested on data from the

MOTChallenge 2015 benchmark.As baseline methods two variations of Kalman

filters and an implementation of JPDA [30] method was used. One variation of

the network based on the hungarian data association and a network that uses

both RNN and LSTM fully were used in the experiments. The Neural models

developed by the authors exhibited a higher recall than other methods at 37.8%

and 37.1%. However the precision values of 75.2% and 73.5% was not enough to

outperform the precision by other methods.

Recent advances in the applications of convolutional neural network has led

researchers to incorporate features from CNN feature maps as object appearance

models. One such research was conducted by Hong et al [35] where they try to

use a discriminative saliency map as an object appearance model . The model

uses CNN that is pre trained for large scale image classification. Another layer

consisting of an online trained SVM is added to the network, this SVM is used to

learn the target appearance at each time step. The features relevant to the target

are identified by the parameters of the SVM and propagated backwards to obtain

a saliency map that highlights the object of interest. The saliency maps of the

positive examples are aggregated to build the target specific saliency map . In

order to perform the tracking the authors employee sequential Bayesian Filtering

by considering the saliency map as an observation. Target appearances in pre-

vious saliency maps are used to learn a generative model and a dense likelihood

map is calculated by convolution between the appearance model and the target-

specific saliency map. Once this is achieved the SVM model and the generative

model are updated. The authors were able to achieve a good performance under

occlusion with this approach. However the tests are focused on a single tracking
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scenarios, but it provides a good approach that needs to be extended towards a

multi target scenarios.

Using a similar approach Wang et al. [36] work on a study to exploit the

convolutional features of a fully convolutional network for online target tracking.

The researches take a CNN pretrained on a large dataset and analyse the feature

maps to find out which features respond best at discriminating a given target.

They select the features maps from conv4-3 and conv5-3 layers of the VGG-16

network for this purpose. The obtained features are reshaped into a d-dimensional

vector. The features are also used to create a mask of the foreground object by

a sparse encoding method. They conduct a series of experiments to identify that

layers higher up and closer to the output, in this case conv5-3 are better at object

localisation as opposed to lower layers such as conv4-3 which are more sensitive

to intra class appearance differences. With these findings the authors create two

networks SNet and GNet which are fed the convolutional features conv4-3 and

conv4-5 respectively. The GNet is tasked with capturing the category information

of the target while the SNet works to discriminate target from similar looking

targets in the background. When a new frame comes into the tracking pipeline

a region of area centered around the previous target location with surrounding

background context is input to the network. The image first goes through the

VGG CNN and output the convolutional features, which then goes throug the

GNet and SNet. At the output layer the GNet and SNet networks outputs a

heatmap for the region activated by the target.Finally the target is determined

by a distracter detection scheme that decides which heat map to be used from

the GNet and SNet outputs.

Looking at these studies it is evident the tendency in the research community

to use already computed CNN features for target object appearance modelling.

On of the biggest appealing aspects of these features is the reduced computational

cost associated with training a full deep neural network. The research work done

by Wojke et al. [37] is also of interest to our research as it strives to develop

tracking by detection model with frame by frame data association. They focus
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on the simple framework used in the SORT by Bewley et al. [28] approach and

try to use those principals to build a robust tracking model. The authors state

that one of the main drawbacks with sort is the high number of identity switches.

The reason for this drawback is because the association metric accurate only

when the state estimation uncertainty is low. The solution the authors provide is

to employee a more robust association metric that takes into consideration both

motion and appearance information. With this approach the authors are able to

build a system that is robust against misses, and occlusions. The model uses a

Kalman filter with an 8 dimensional state space vector (u, v, h, γ, ẋ, ẏ, γ̇) where

(x, y) are the center coordinates of the bounding box, γ the aspect ratio and h

the height of the bounding box. For each track hypotheses an age counter is

maintained which indicates the number of iterations since it was last associated

with a detection. This age value is incremented at each Kalman prediction and

reset to 0 when a detection is associated with the track. If the age exceeds the

maximum age threshold, that track will be removed from the set of hypotheses.

The authors try to solve the data association between the Kalman estimates and

the new detections by incorporating motion and appearance information. The

motion aspect is taken into consideration by calculating the Mahalanobis distance

between the Kalman predictions and the detections. In order to take the target

appearance information into consideration the authors compute an appearance

embedding descriptor for each detection, furthermore a dictionary consisting the

appearance descriptors of previous detections associated with a given track is

also maintained. The cosine distance between the new detection and the track

is calculated as an appearance metric for data association. A CNN is used to

generate the appearance embedding descriptor, which is a 128 dimensional vector.

After each detection the image patch bounded by the detection dimensions is

extracted and fed to the CNN to obtain the appearance descriptor. The authors

combine the two distance metrics to obtain a single cost value for each detection

track pair and use a cascading matching algorithm to prioritise tracks with smaller

ages over tracks that has gone a long time without associations.
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2.4 Evaluation

One of the important studies conducted recently towards building a set of common

metrics for measuring the performance of multiple object trackers is the research

conducted by Bernadin and Stiefelhagen [32]. The authors initially state the

qualities that are expected from a multiple object tracker. At all times the tracker

should be able to find the correct number of actual objects, estimate the location

of each target and it should be able to uniquely keep track of the objects. The

criteria for the evaluation metrics are derived based on these requirements as

follows.

1. The metrics should allow to determine a trackers precision with regard to

estimating a target location.

2. They should exhibit the trackers ability to consistently track object through

time, correctly trace one trajectory for each single object.

given a set of estimated object hypothesis h1, ..., hn and ground truth objects

o1, ..om the procedure is to first determine the best possible correspondence be-

tween hi and oj . Then compute the error for each object position estimation

and accumulate all correspondence errors. If a hypothesis was not output for

an object it will be considered as a missed calculation. Hypothesis to which no

real objects exists will be calculated as false positives. If a detected hypothesis

changed for an object compared to the previous frame, it will be calculated as

a mismatch error. Once this is achieved authors state that the tracking perfor-

mance can be expressed in two values, namely tracking precision and tracking

accuracy.

In this chapter we started our discussion by looking at the main approaches

used in literature for multi target tracking. We focussed our attention to discuss

the main problems of sports player tracking in comparison to pedestrian tracking

and tracking objects in a controlled setting. Emphasis was given to the impor-

tance of breaking down the problem into it’s main components of object detection

and tracking. We looked at classical approaches used for object detection and
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how the recent advances in object recognition and localisation frameworks util-

ising deep learning approaches have shaped the research landscape. With regard

to object tracking, we looked at several scenarios where studies were conducted

on sports specific events and we observe the success of recursive bayesian estima-

tion based techniques in these studies . We briefly discuss the data association

methods used in some of the studies and the recent trend in using deep learning

approaches such as RNNs in tracking scenarios as well. Delving further into the

domain of deep learning we observe the recent approaches of repurposing deep

convolutional features for target appearance modelling. Finally we have a look

at evaluation metrics that are commonly used in literature such as MOTA and

MOTP. In the next chapter the discussion will be focussed on the methodology

we propose to solve the multi target tracking problem. Our aim is to treat the

problem as a tracking by detection problem due to the success this approach has

had in literature. We have an in depth discussion about the details of the object

detection module followed by the tracking module.
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Chapter 3

METHODOLOGY

The problem of multiple player tracking in rugby has some similarities with other

sporting domains that were discussed in the previous chapter such as the un-

predictable and erratic movements of players. At the same time it poses some

unique problems of its own to be solved. A game of rugby may involve two types

of playing situations referred to as set play and open play. Set play is a predefined

playing scenario usually originating from a scrum or a lineout with a static field

position. Open play is when a sequence of playing scenarios occur without the

stoppage of time, or interruption by the referee.

Playing scenarios that can occur during open play are Maul, Ruck and Tackle

which are collectively referred to as breakdowns as they indicate a breakdown of

open play. The general movements of players are similar to the sports discussed.

Main distinguishing factor between an open play and a set play is that set play

is started with the referees whistle whereas open play occurs as a continuous

sequence of uninterrupted events. Due to the dynamic nature involved with open

play scenarios it is vital to keep track of how players position themselves, arrive

at the break downs and how they react to certain events. In contrast set play

does not need in depth analysis as factors such as player positioning and running

angles are predefined and are originating from a static position. Therefore the

study will be mainly focused towards events related to open play events. In the

discussion that follows the term "breakdown" will be used to refer to all open

play events such as rucks,mauls and tackles.

Considering the main approaches discussed in the literature and the success
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it has exhibited in the past it is evident that a player detection and tracking

approach is more suitable for this study in order to discriminate between players

movements and identify breakdown events. Therefore our tracking system will

be consisting of two main subsystems that will be acting in two steps .

In the first step the player detector will detect players and breakdowns in video

frames when they occur. In the second step the object tracker will be making

associations between the newly detected observations and the established track

hypotheses. If a tracked player is not detected for a certain amount of time

the track hypothesis associated to the player will be removed. Similarly when a

previously unknown player enters the frame a new track hypothesis will be added

by the tracker subsystem. In order to obtain the best tracking performance

the data association step makes use of several approaches such as bounding box

intersection over union, Kalman filter motion prediction and object appearance

embedding based distance for track re-identification.

The next sections will be describing in detail the different components of

the full tracking system. We will start with object detection and move on to

the tracking system where the data association and tracking components will be

discussed in detail.

3.1 Player and break down detection

A large amount of research has been conducted in the domain of object recog-

nition and localisation in the recent past. As discussed in the literature review

the recent success of methods such as R-CNN,Fast R-CNN,Faster R-CNN and

YOLO [19, 21, 22, 23] has provided a platform on which to tackle the problems of

object recognition in specialised domains. One such method, YOLO[23] provides

a set of capabilities that are ideal for our research. This approach is primarily

different from other approaches mentioned above, the object detection, classifica-

tion and localisation occur in one single network. Since YOLO employees a grid

based approach to localise objects of interest the need for cumbersome iterative

approaches such as sliding window and computationally expensive approaches
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such as region proposals can be eliminated. The specific YOLO model that we

will be using is called YOLO V3 [38] which has several incremental improvements

over the original version.

Since the final objective of the research is to develop a system that is able to

track rugby players across time we focus our attention mainly on using a trained

model based approach such as YOLO for object detection and focus our efforts

on the holistic system . To this end we do not focus on classical computer vision

based approaches to solve the object detection problem.

3.1.1 Object detection and localisation with YOLO

At a higher level the YOLO model makes use of a fully convolutional neural

network that acts as a feature extractor for an input image. The output layer

predicts the bounding box coordinates for detected objects, the class probabilities

an object confidence score.In the next few subsections we will have an in depth

look at each component of YOLO model.

Feature extraction at multiple scales

The YOLO model makes use of a network architecture dubbed Darknet-53. The

Darknet-53 network is a fully convolutional neural network (FCN) which consists

of 53 convolutional layers (table 3.1) along with residual and upsampling layers.

Since the network does not make use of pooling layers miniscule details of the

input image are preserved relative to the downsampling that occured with the

use of pooling. This network architecture is able to make predictions on features

generated at three different scales. At some predefined layers, the layer output is

routed to the output layer directly with skip connections. These routed output

feature maps have dimensions (13,13), (26,26) and (52,52) corresponding to the

grid sizes they represent. We are able to make detections at three different scales

by this increase in grid cell resolution.
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Table 3.1: Darknet 53

Type Filter Size Output
Convolutional 32 3 x 3 256 x 256
Convolutional 63 3 x 3 / 2 128 x 128

1 x Convolutional 32 1 x 1
Convolutional 64 3 x 3
Residual 128 X 128
Convolutional 128 3 x 3 / 2 64 x 64

2 x Convolutional 64 1 x 1
Convolutional 128 3 x 3
Residual 64 x 64
Convolutional 256 3 x 3 / 2 32 x 32

8 x Convolutional 128 1 x 1
Convolutional 256 3 x 3
Residual 32 x 32
Convolutional 512 3 x 3 / 2 16 x 16

8 x Convolutional 256 1 x 1
Convolutional 512 3 x 3
Residual 16 x 16
Convolutional 1024 3 x 3 / 2 8 x 8

4 x Convolutional 512 1 x 1
Convolutional 1024 3 x 3
Residual 8 x 8
Convolutional 512 3 x 3 / 2 16 x 16
Avgpool Global
Connected 1000
Softmax

Object localisation with anchor boxes and grid

As mentioned in the introduction one of the main advantages of YOLO is that it

goes through the image only once as opposed to other approaches that employee

region proposals or sliding windows that are used to localise the objects of interest.

In order to achieve this the image is divided into a grid of N × N cells. Each

cell is responsible for predicting the bounding box coordinates along with the

confidence score of how confident the cell is about the predicted bounding box

containing and object and class probabilities. This is illustrated in figure (3-1).
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Figure 3-1: Each grid cell is responsible for predicting 3 bounding boxes. Each
predicted bounding box estimation consists of the bounding box coordinates
tx, ty, tw, th, objectness score Po and class probabilities P1, P2, P3, ...Pc

.

Rather than predicting the coordinates of the bounding boxes directly relative

to the global coordinates of the image YOLO uses an interesting technique with

the use of Anchor Boxes . Anchor box dimensions are calculated at the prepro-

cessing time by taking the average dimensions of the ground truth boxes. At pre-

diction time each cell predicts a vector of bounding box coordinates (tx, ty, tw, th)

corresponding to the number of anchor boxes (3 in this case).These predicted

coordinate values needs to be transformed to the image coordinate space in order

to obtain the detection bounding boxes. The x,y coordinates of the detection

bounding box is based on the offset of the corresponding cell from the global

image coordinates and the width and height dimensions are derived from the

anchor box dimensions. If the detected bounding box coordinates are given by

bx, by, bw, bh where (bx, by) is the x, y coordinates of the box and bw, bh are the

width and height of the bounding box, cx, cy are the offset of the cell making the

prediction from the image origin coordinates and pw, ph are the width and height

of the anchor box associated with the prediction. The coordinate transformation

can be formulated as follows.

bx = σ(tx) + cx (3.1)

29



by = σ(ty) + cy (3.2)

bw = pwe
tw (3.3)

bh = phe
th (3.4)

The figure 3-2 helps to illustrate this transformation relationship further. In

this scenario the σ is the sigmoid function.

Figure 3-2: Bounding box prediction with dimension priors and location predic-
tion. The center coordinates of the bounding box are predicted relative to the
cell location with the use of sigmoid function. The width and height are derived
from the anchor box (bounding box prior) dimensions. source: [38]

Therefore if we consider a single cell at the output it would output a tensor of

shape N ×N × [A(4+ 1+C)] , in which N is the number of grid cells , A number

of anchor boxes, C number of classes. We add 4 bounding box dimensions and 1

for objectness score. In our training cycles the values for the above parameters

are as follows. We are training for 5 classes, therefore C = 5, with A = 3 anchor

boxes. The grid size N takes on the values 13,26 and 52 at 3 different scales as

explained in the next section.

Training the network

One of the problems that we try to tackle in this research is the problem of track-

ing under high occlusion. The visual occlusion occurs at different play situations

of the game. For the sake of brevity we shall refer to these situations as breakdown

events. In each of the breakdowns due to the high physical engagement between

the players a large amount of visual occlusion occurs. In these situations rather
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than trying to identify individual players we try to detect and identify what kind

of breakdown event occured. We keep tracking individual players who are in the

open field and not part of the breakdown area, and consider the players engaged

in the breakdown as a single breakdown entity. In order to differentiate between

individual players and breakdown events we aim to train the YOLO model to

classify the five classes one for individual players and other four for breakdown

events ruck,scrum,maul and tackle.

The breakdown events that we are concerned with are as shown in figure

fig. 3-3. A Ruck (fig. 3-3a) is defined when the ball is on the ground and two

or more players are physically engaged over it. A Maul (fig. 3-3b) occurs when

a player carrying the ball is held by one or more opponents and one or more of

the ball carrying players team mates bind on the ball carrier, all players should

be on their feet. The defending team would try to obtain the possession of the

ball by tackling the ball carrier of the attacking team. A Tackle (fig. 3-3c) occurs

when a ball carrier is held and brought to ground by a player from the opposing

team. A scrum (fig. 3-3d) is used to restart play after a minor infringement. In a

scrum eight players from each team physically engage (bind) forming a tunnel in

the middle. The non-offending team will put the ball to into the tunnel to restart

play.

(a) Ruck (b) Maul

(c) Tackle (d) Scrum

Figure 3-3: Different breakdown events occur during a game of Rugby. sources
[39, 40, 41]
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For the purpose of training, broadcast video footage from the public domain

is used. The videos are broken down into individual frames and saved as image

files. These image files were later used to create the annotations. Given the depth

and the large number of parameters in the Darknet network it would be counter

productive to train the network from a randomly initialised state. Therefore we

employ a technique named transfer learning, where a network pretrained on a

large dataset is used to get a head start in the training process. In this research a

Darknet model trained on pascal VOC [42] dataset was used as the base model.

We remove the output layer of the Darknet model and retrofit the final layers

with a customised layer that can accommodate detecting and classifying of the

five classes of interest. We train only the head portion of the network by freezing

the weights of the body portion.

3.2 Player tracking

Once we obtain the detection bounding boxes and classes for each individual

frame it is the task of the tracking module to identify and make associations with

existing tracking hypothesis and the incoming set of detections. There are two

main approaches available to achieve this. First approach is a post processing

approach, in which we feed all the available frames to a detector and obtain the

detections which are then passed into the tracking module which will make the

data associations. This approach can have a higher accuracy but is not suitable

for a real time application. The other approach is to get the detections at each

frame and feed them into the tracker, where all the detection and associations

are done online. This method will be fast but getting a higher tracking accuracy

with traditionally available methods is not an easy feat.

For the purpose of data association between detections and track hypotheses

we use a combination of several approaches that were proven to be effective in

literature, let’s discuss these approaches step by step starting from the least

complex approach.
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3.2.1 Bounding box intersection and euclidean distance based data

association

At the simplest level consider two subsequent frames Fi and Fj with their corre-

sponding detection sets Di = {di1, di2, ..., din} and Dj = {dj1, dj2, ..., djn}. We

calculate a pair of distance metrics for each pair of detections from Di and Dj.

One distance metric is the intersection over union of the two bounding boxes.

The intersection of the two bounding boxes is divided by the union of the two

bounding boxes as defined in eq. (3.5).

IOU(A,B) =
A ∩B
A ∪B

(3.5)

Along with the intersection over union we use the euclidean distance between

center coordinates of the two bounding boxes as the second distance metric. Lets

consider that the center of bounding box A is given by pa = (xa, ya) and the

center of the bounding box B is given by pb = (xb, yb), the euclidean distance can

be calculated by eq. (3.6).

ED(A,B) =
√

(xa − xb)2 + (ya − yb)2 (3.6)

We incorporate this distance measurement for the final data association as-

signment.

3.2.2 Track prediction with Kalman Filters

Kalman filter is a special form of Bayesian filtering that assumes the data is

normally distributed. It has been used in numerous research with varying success.

We use a kalman filter assigned to each track for state estimation as used in [37].

With this approach we are able to take into consideration the motion of the

object of interest at the time of data association. The Kalman filter consists of

two steps, namely prediction step and the update step. In order to represent the

state of objects we use an eight dimensional vector x = (x, y, h, γ, ẋ, ẏ, ḣ, γ̇) where

(x, y) are the center coordinates of the bounding box, γ the aspect ratio and h
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the height of the bounding box.

For each track hypotheses a counter is maintained that would keep track of the

number of iterations since the last detection association. At each prediction step

of the Kalman filter if the last detection association exceeds the threshold Amax

that track hypotheses is considered to have died and will be removed from the

set of tracks. In order to make the association between the predicted track and

existing hypotheses the squared Mahalanobis distance is used. In the eq. (3.7)

we denote the projection of the ith track distribution into measurement space by

(yi, Si) and the j-th bounding box detection by dj. The Mahalanobis distance

checks how many standard deviations away from the mean track location the

detected bounding box is.

d(1)(i, j) = (dj − yi)TS−1i (dj − yi) (3.7)

3.2.3 Object re-identification

One of the main features of the data association step with regard to the tracking

subsystem is the entity re-identification mechanism. In the research conducted in

[37] the Wojke et al. extract the image patch from the bounding box and obtain an

appearance descriptor rj, where ‖rj‖ = 1. The appearance descriptor is obtained

by passing the image patch through a CNN, which outputs the 128 dimensional

re-identification vector. The architecture of the re-identification network which

is based on the work done by Wojke et al. [43] is described in table 3.2. Figure

3-4 illustrates the end to end process from the input of the image to the output

of the detected bounding boxes and the identity embeddings.

Each track keeps a gallery Rk = {r(i)k }
Lk
k=1 of the last Lk = 100 association

descriptors associated with that track. After each detection iteration we look

for the track and detection pair with the smallest cosine distance between the

corresponding identity descriptors in the appearance space eq. (3.8).
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Table 3.2: Deep Cosine network

Type Patch Size/Stride Output
Convolutional 3 x 3/1 32x128x64
Convolutional 3 x 3/1 32x128x64
Max Pool 3 3 x 3/2 32x64x32
Residual 4 3 x 3/1 32x64x32
Residual 5 3 x 3/1 32x64x32
Residual 6 3 x 3/2 64x32x16
Residual 7 3 x 3/1 64x32x16
Residual 8 3 x 3/2 128x16x8
Residual 9 3 x 3/1 128x16x8
Dense 10 128
Batch and l2 normalisation

d(2)(i, j) = min{1− rTj r
(i)
k |r

(i)
k ∈ Rk} (3.8)

Once we the Mahalanobis distance for object locations and the cosine dis-

tance for object appearance is obtained we calculate a weighted sum of the two

distance metrics to determine the final combined distance as in eq. (3.9). The

use of Mahalanobis distance derived from motion information and cosine distance

derived from appearance information provides solutions to two aspects of the as-

sociation problem. The motion information can be helpful in predicting possible

object locations and appearance information can be helpful to recover identities

of tracks after periods of occlusion [37].

ci,j = λd(1)(i, j) + (1− λ)d(2)(i, j) (3.9)

The problem of associating detections to tracks is solved as a series of cas-

cading subproblems instead of considering it as a global problem. The intuition

for this approach as described in [37] is as follows: If an object is occluded for

a long period of time the uncertainty of the Kalman filter increases, the peak

of the observation likelihood decreases. In a situation like this the association

metric should account for the increased uncertainty and increase the distance

between the track and the detection. However given a scenario where two tracks
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Figure 3-4: Visualisation of the end to end process of object detection and object
identity embedding encoding

are competing for a detection the Mahalanobis distance tends to favour the larger

uncertainty, since it effectively reduces the distance in standard deviations of any

detection towards the track mean. This behaviour may lead to unstable tracks

and track fragmentation. Therefore a matching cascade is introduced which pri-

oritises the more frequently observed tracks. The age of the track ai is the number

of iterations it has gone without being associated with a detection. We iterate

through the tracks starting from the tracks that has the lowest age and try to

solve a linear assignment problem between the track and the detections and at

the end update the sets of matched and unmatched detections. If any tracks

have reached the Amax age it without being associated with a new track, it will

be considered to have died out. Finally the IOU metric and euclidean distance

is used to make associations in the set of unmatched tracks with ai = 1 age.This

increases robustness against erroneous initialisation, and helps to account for

sudden appearance changes.

3.3 Evaluation of tracking performance

The data for training and evaluation will be extracted from rugby match videos.

Some of the generic tracking systems have done the evaluation on simulated data.

But due to the specific goal that is being pursued in this research evaluating on

actual footage is of importance. But the primary concern is the lack of data in

the domain of rugby. Therefore footage will be manually tagged and used for
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evaluation.

With the increase in research being conducted with regard to multiple object

tracking several approaches to evaluate the tracking performance has been devel-

oped. Considering these numerous performance measures it is evident that the

measures that may be useful to a certain end application may not be suitable for

a different application. We use one of the most popular measures used in multi

object tracking literature, the CLEAR MOT [32] metrics. Apart from that we

use a another measure named identification F1 score [44] which provides us a

different perspective about the tracking performance.

3.3.1 CLEAR MOT tracking measure

The CLEAR MOT metric was specifically designed to fill the lack of a widely

accepted standard metric for multiple target tracking. The designers of CLEAR

multiple object tracking metric was specifically aiming for two main objectives.

Specifically the ability of the metric to evaluate the tracking algorithm’s precision

in determining object locations, and the ability to show the tracker’s performance

to correctly track object trajectories, creating exactly one track hypothesis for

an object of interest. Based on the above the the authors identify the main

measurements as tracking precision, which measures how well the exact positions

of targets are represented and the tracking accuracy which reflects the number of

mistakes the tracker makes in terms of false positives, false negatives, mismatches

and failure to recover tracks.

The multiple object tracking precision (MOTP) is the concrete manifestation

of the tracking precision measure the authors designed. As a first step towards

evaluating the performance a correspondence mapping is created between the

track hypotheses and ground truth. Since we are using bounding boxes to repre-

sent objects of interest, the intersection over union between the track and ground

truth bounding boxes will be used to establish correspondence. The MOTP met-

ric is calculated as shown in eq. (3.10).
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MOTP =

∑
i,t d

i
t∑

t ct
(3.10)

It is the accumulated error for the position estimation for pairs of matched

hypothesis and target pairs divided by the sum of matches made.It isolates the

ability of the tracker to estimate target positions precisely, independent of other

aspects such as keeping consistent trajectories. The second metric Multiple Ob-

ject Tracking Accuracy (MOTA) expresses how many errors the tracker has made

in terms of misses, false positives, mismatches, failures to recover tracks etc.

Where number of misses, false positives and mismatches are defined as mt, fpt,

and mmet respectively, we can consider the error ratio for misses in the sequence

as eq. (3.11),

m̄ =

∑
tmt∑
t gt

(3.11)

and the ratio of false positives as,

f̄p =

∑
t fpt∑
t gt

(3.12)

and the ratio of mismatches as,

¯mme =

∑
tmmet∑
t gt

(3.13)

and by incorporating the above three error measures eqs. (3.11) to (3.13) the

MOTA can be obtained by eq. (3.14).

MOTA = 1−
∑
t(mt + fpt +mmet)∑

t gt
(3.14)

In this regard the MOTA takes into consideration all object configuration

related errors that the tracker is making.
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3.3.2 Identification F1 score

In event based measures such as the previously discussed MOTA measure the

errors are calculated irrespective to the identity assigned to the track , but are

informative in pinpointing the events where some errors occur. A ground truth

track that switches between two computed tracks over n frames can incur at least

1 penalty and at most n − 1 penalties without identifying the true track associ-

ated with the object. There can be situations where this may not be perfectly

representative of the performance of the tracker. The ID measures [44] focuses on

evaluating how the computed tracks conform to the ground truth tracks. Given

a scenario where two tracks track the same ground truth object at two different

segments of time, it decides which track to associate with the ground truth for

the purpose of the evaluation process. Once this association is made every frame

that the track deviates from the ground truth object is penalised.

In order to obtain the optimal matches between ground truth and computed

tracks a bipartite graph is created by minimising the number of mismatched

detections between one ground truth and one computed track. The bipartite

graph G = (VT , VC , E), where the vertex set VT consists a node τ for each ground

truth value and one false positive node f+
γ for each computed value γ. Similarly

the vertex set VC consists of a node γ for each computed track value and one false

negative node f−γ for each ground truth track τ [44].

At a higher level for a given pair of ground truth nodes τ and γ at time t if

the intersection over union between the two bounding boxes does not exceed a

predefined ∆it is considered a miss, and is represented by eq. (3.15),

m(τ, γ, t,∆) = 1 (3.15)

If there is a match between τ and γ it is defined as m(τ, γ, t,∆) = 0. Further-

more if either f+
γ or f−γ is considered, any other detection in the other trajectory

is considered a miss. The overall cost on an edge between τ in the set Tτ and γ

in the set Tγ is represented by eq. (3.16)
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c(τ, γ,∆) =
∑
t∈Tτ

m(τ, γ, t,∆) +
∑
t∈Tγ

m(τ, γ, t,∆) (3.16)

The first term represents the false negatives and the second term represents

the false positives. A minimum cost solution to this bipartite graph will provide

the best match between the ground truth and computed tracks. Once the best

fit solution is found, false negative IDFN , false positive IDFP and true positive

IDTP can be calculated as eqs. (3.17) to (3.19).

IDFN =
∑
τ∈AT

∑
t∈Tτ

m(τ, γm(τ), t,∆) (3.17)

IDFP =
∑
τ∈AC

∑
t∈Tτ

m(τm(γ), γ, t,∆) (3.18)

IDTP =
∑
τ∈AT

len(τ)− IDFN =
∑
τ∈AC

len(γ)− IDFP (3.19)

Where AT is the set of all ground truth identities and AC is the set of all

computer track ids. The precision IDP, recall IDR and the F1 score IDF1 can be

derived with eqs. (3.20) to (3.22).

IDP =
IDTP

IDTP + IDFP
(3.20)

zIDR =
IDTP

IDTP + IDFN
(3.21)

IDF1 =
2IDTP

2IDTP + IDFP + IDFN
(3.22)

In order to get a wider perspective of the performance of our tracking model

we report the IDF1 score along with the MOTA and MOTP measure that were

discussed above.

This chapter focussed on the methodology that we are using for this study.

We had an in depth look at the YOLO model that we are using for the ob-

ject detection module and the benefits it offers over the other object detection

and localisation modules. The discussion was then focussed on the individual
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components of the tracking module. The discussion touched on incorporating

appearance information and motion information for the data association step. In

order to incorporate motion information we use a Kalman Filter and a object en-

tity embedding encoder is used to calculate an object appearance embedding for

each detection. We looked at the technical details of the two different evaluation

techniques we are using for evaluation of the experiments. In the next chapter

we will discuss the experimental setup used in the study. Then we will observe

and analyse the results we obtained.
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Chapter 4

EXPERIMENTAL SETUP

In this chapter we will continue from where we left off in the methodology section

to cover the implementation aspects of the experimental setup. The discussion

will delve deep into the implementation aspects of the object detector and the

tracking approach we used for this study. With regards to the object detector

we were able obtain a high success rate from the transfer learning approach we

employed. In order to solve the data association problem we conduct several ex-

periments and obtain good results with the re-identification embedding descriptor

approach.

4.1 System architecture

The system consists of two main components as mentioned in previous chapters.

The object detector searches and detects the objects of interest such as individual

players and the object tracker assigns tracklets to detected objects and make

associations between target objects and tracks across the frames. The process

will be executed in a single pass online manner. We use video footage obtained

from the public domain to train the YOLO object detector model. We were

able to get good results with a pre-trained model for the entity descriptor model,

therefore we did not pursue retraining or fine tuning of the person re-identification

model in the tracking module.
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4.2 Training data

The dataset comprises of broadcast footage of rugby matches that were taken from

the public domain. Since these are videos recorded for the purpose of broadcasting

we tend to get a lot of sudden camera movement. Another aspect of the dataset

is that the camera angle keeps interchanging between a wide angle shot and a

close up shot, therefore it was difficult for us to extract a clip with a consistent

camera angle for an extended length of time. The wide angle shots give a better

view of the overall field with visual information about the bounds of the playing

field, while the close up shot gave us more detailed pixel data at the loss of overall

location information. For the purpose of training we resize all the frames to the

dimensions of 640 x 360 pixels. When we resize the wide angle shot video clips

to this dimension we observed a loss of detector accuracy relative to the close up

shot. Therefore the study was focused on clips that were recorded with a close

up angle.

We used two well known image annotation tools, CVAT[45] and VATIC[46],

both of which has the capability to interpolate the bounding boxes over a small

number of frames once the starting and ending frames are defined. The bounding

boxes were annotated with label types Player,Ruck,Maul,Scrum and Tackle. Note

that we consider the referee as a player as well. We used 11 clips for training

consisting of a total of 2157 frames.

The detailed breakdown of the different class instances used for the training

of the object detector can be seen in the table 4.1. It is evident that there is

a class imbalance between player class and the other breakdown classes. This

imbalance is a side effect of breakdown events occurring less frequently relative

to the individual player instances. However we did not observe a significant lack

of performance in discriminating between players and breakdown events.
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Table 4.1: Training Dataset

Clip frames mauls players rucks scrums tackles
clip1 52 0 416 0 0 0
clip2 175 0 350 0 0 0
clip3 79 0 711 0 79 0
clip4 42 0 420 0 0 0
clip5 165 0 2145 0 165 165
clip6 303 0 1818 0 303 0
clip7 162 0 2592 162 0 0
clip8 73 0 657 0 0 0
clip9 189 168 1425 0 0 0
clip10 522 265 3939 152 0 0
clip11 395 0 4887 106 0 189
total 2157 433 19360 420 547 354

4.3 Experiments

To the best of our knowledge this is the first study that has focused on applying

computer vision aided automated tracking to the domain of Rugby Union. Most

of the tracking literature found in recent times focus mainly on pedestrian tracking

and in the domain of self driving cars. Therefore we do not have a suitable

benchmark for a fair comparison. We conduct several experiments, following the

path of followed making improvements to the models incrementally. We believe

this would help to illustrate the performance gains we obtained against a simple

baseline.

As was mentioned in the methodology section the first experiment makes

use of a tracking module that makes associations between track hypotheses and

detections with the intersection over union metric. We refer to this experimental

model as IOU. The second approach named KF uses a Kalman Filter associated

with each track to predict the next state of the track, it also employees the

cascaded association algorithm of [37] to prioritise the latest detections when

making associations. The final approach named Re-ID uses image embedding

feature descriptors along with the methods used in the previous models to make

data associations.
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We primarily use the well known MOTA and MOTP metrics to evaluate the

performance of our models, apart from theses metrics we calculate other measures

such as number of track switches, detection precision and recall, ID F1 score and

the mean frames per second.

4.4 Results

The performance results for the different experiments conducted are as shown in

the table 4.2.The overall results in terms of the multiple object tracking accuracy

measure is above 0.5 on average for the Re-ID model. We can see that only in

clip12 the MOTA value of KF approach has surpassed Re-ID by a very small

margin. However a similar success of the Re-ID model is not exhibited when

considering the multiple object precision measures. Looking at the data we can

observe that in the instances where the MOTP value of the Re-ID model is re-

ported below the other two models, the margins are very low. In order to interpret

this relative lack of performance of Re-ID, it is worth revisiting the definition of

the MOTP metric eq. (3.10). In short MOTP averages the accumulated error in

position estimation between matched pairs of predicted track and ground truth by

the number of total matches made. If we take the instances where Re-ID has un-

der performed in MOTP, clip16, clip18 and clip26 we can observe that Re-ID was

able to perform better in terms of the number of matches table 4.3. The reason

for this maybe that during the track to detection association step Re-ID was able

to successfully associate the tracks with difficult detections which the other two

models were not able to associate at all, in doing so Re-ID has sacrificed in overall

position estimation performance and in turn the tracking precision MOTP. This

can be further established by observing that Re-ID has a better MOTA value

in clips16 ,clip18 and clip26. We can get a more intuitive understanding of the

MOTA results with the figure 4-1a and the results of MOTP with the figure 4-1b.

The table 4.3 shows other key measures calculated from the experiments. One

other important measure that would help us gauge the performance is the number
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(a) MOTA

(b) MOTP

Figure 4-1: Results for MOTA and MOTP measures
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Table 4.2: MOTA and MOTP for each experiment

Clip Frames MOTA MOTP
IOU KF Re-ID IOU KF Re-ID

clip12 132 0.3113 0.6871 0.6840 0.6843 0.5328 0.7756
clip14 558 0.1975 0.5828 0.5996 0.6397 0.6685 0.6803
clip16 42 0.2811 0.7580 0.8185 0.4196 0.3102 0.3155
clip18 186 0.3183 0.7294 0.7575 0.6536 0.8050 0.7230
clip24 185 0.2576 0.6347 0.7483 0.6949 0.7466 0.8019
clip25 60 0.2350 0.6082 0.6865 0.4881 0.6251 0.6999
clip26 133 0.2141 0.5866 0.6418 0.3869 0.3964 0.3952
clip27 239 0.2091 0.5677 0.6455 0.5469 0.7528 0.8029

of track matches and track switches. The track matches measures the number of

successful matches made between detections and tracks, a higher track matches

values exhibit a good performance. The number of switches measure quantifies

the number of tracks that switched the detections, a lower switches value is an

indicator of good track performance. We can get a better visualisation of the

results with the figures 4-2a and 4-2b for switches and matches respectively. It

can be seen that both KF and Re-ID has a better performance than the simpler

IOU approach and Re-ID has a slightly better performance than KF.

The IDF1 score provides us a better picture with how well the the tracker

preserves the identity over the course of the track lifetime. The figure 4-3a exhibits

very well the performance of the Re-ID model over the other two models. This

is a reflection on the gain in tracking performance obtained by employing an

object entity embedding network for object re-identification. If we take into

consideration this figure along with plots for MOTA and MOTP 4-1, we can

make an informed decision on instances where MOTA and MOTP alone does not

help us to determine the best performing model.

Since the aim of the application is to create a model that can perform well in

real time to near real time scenarios looking at the execution speed is important.

We obtain the mean frames per second value for each experiment to gauge the

expected performance in terms of processing speed. The figure 4-3b shows that
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Table 4.3: Experimental results

model Clip Matches Switches Precision Recall IDF1 mean FPS
clip12 224 233 0.9560 0.7009 0.0320 11.03
clip14 825 886 0.9052 0.5232 0.0163 10.85
clip16 79 68 1.0000 0.5231 0.0658 11.35

IOU clip18 420 406 0.9987 0.6276 0.0168 10.88
clip24 350 337 0.9956 0.5100 0.0276 10.92
clip25 114 108 1.0000 0.4577 0.2357 11.37
clip26 299 267 1.0000 0.4054 0.0490 10.99
clip27 557 512 1.0000 0.4014 0.0246 10.93
clip12 570 30 0.8310 0.9202 0.6370 10.64
clip14 2306 81 0.8564 0.7299 0.5268 12.26
clip16 213 5 1.0000 0.7758 0.7323 11.26

KF clip18 1076 37 0.9056 0.8457 0.6331 10.40
clip24 891 76 0.9641 0.7178 0.4258 10.73
clip25 295 29 1.0000 0.6680 0.7980 10.75
clip26 819 23 1.0000 0.6031 0.6234 10.76
clip27 1512 78 1.0000 0.5970 0.4502 10.50
clip12 600 24 0.8020 0.9570 0.7521 7.43
clip14 2499 46 0.8254 0.7782 0.6965 3.74
clip16 230 1 1.0000 0.8220 0.8980 10.25

Re-ID clip18 1143 30 0.8893 0.8913 0.8051 4.44
clip24 1083 59 0.9383 0.8478 0.7267 5.78
clip25 333 31 1.0000 0.7505 1.0224 9.74
clip26 896 9 1.0000 0.6482 0.7812 5.98
clip27 1719 52 1.0000 0.6650 0.6958 4.86

the overall performance of the Re-ID model with regard to FPS is lower than the

other approaches. However considering that the FPS values used in broadcast

videos range from 24 fps to 30 fps, this performance can be deemed suitable for

near realtime applications where the speed of delivery is not mission critical.

When considering the overall results the superior performance of the Re-ID

model is evident.However the low FPS rate in comparison to the other two ap-

proaches may be of concern. The main reason for this lack of speed is because

of the object entity re-identification network. For our application of automated

player tracking we conclude that the performance gain in terms of tracking accu-

racy far outweighs the hindrances caused by the low processing speed. Possible

approaches to improve the performance in terms of speed will discussed in the
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(a) Number of switches (b) Number of matches

Figure 4-2: Results for number of switches and matches

(a) ID F1 score (b) frames per second

Figure 4-3: Results for ID measures and FPS values
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next chapter.

Since this study is unique in it’s application of multi target tracking to the

domain of Rugby, there are no other studies that we can make a fair comparison

of the results. However we are able to report the results from MOT16 [47], which

is a benchmark for multi object tracking. The MOT16 uses 14 sequences of videos

containing footage of pedestrians in a street setting. The results from the MOT16

benchmark in comparison to our Re-ID model cab be seen in table 4.4.

Table 4.4: Re-ID model performance in comparison to the MOT16 benchmark

Tracker MOTA MOTP IDF1
BD_MOT16 73.2967 78.9515 69.4906
PA_MOT16P 71.4550 77.6016 65.6695
HT_SJTUZTE 71.2722 79.2697 67.6229
LMP_p 70.9968 80.2248 70.0714
FM16 68.7050 80.2782 70.4039
KDNT 68.1781 79.4059 59.9653
PT16 68.1603 80.1060 67.3698
POI 66.1142 79.5237 65.1117
CNNMTT 65.2146 78.4287 62.1947
TAP 64.7960 78.6537 73.5462
Re-ID 69.7712 64.9287 79.7225

As discussed earlier there is a vast difference when comparing a pedestrian

setting with that of footage from Rugby. We believe that tracking Rugby players

from broadcast footage is an immensely difficult task due to the high number of

occlusions, high speed movements of players and sudden changes of directions.

With the use of a state of the art object detector retrained for the specific case of

Rugby and a data association approach which takes into account both appearance

and motion information we were able to achieve results comparable to that of the

MOT16 benchmark. In the next chapter we discuss the contributions made by

our research and possible avenues for further research.

50



Chapter 5

CONCLUSIONS AND RECOMMENDATIONS

The increasing influence of various professional sports and the multi million dollar

economies surrounding these respective sports leagues has created a demand for

informed decision making at strategic and tactical levels. With the availability

of numerous channels of data collection, we are seeing increased involvement of

data analytics in various professional sports teams.

Tracking players during practice sessions and during matches can be consid-

ered an important tool in the analytics toolbox and provide insights when making

high level strategic decisions or low level tactical decisions. Although a significant

number of studies focussing on player tracking have been conducted with regard

to professional sports such as American Football, Basketball and Soccer, to the

best of our knowledge there are no studies that has applied automated computer

vison based player tracking to Rugby. This can be explained by the fact that

Rugby Union is a relatively new sports to enter into the domain of professional

sports. The lack of studies conducted on Rugby player tracking provided us a

unique opportunity, to apply research in computer vision and to develop a system

to track players. The fact that Rugby is still a growing professional sport and

the increasing demand for data analytics and tools served as a motivating factor

for this research.

Our contributions from this research is threefold. We have developed a frame-

work that can be utilised for tasks in multi target tracking. The framework

contains modules for training object detector models, tracking players on new

footage and for evaluating the end to end tracking performance. The system ar-
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chitecture is developed in a modular manner, with minimal coupling enabling the

integration of different object detection and tracking modules if necessary. The

most impactful contribution from this study is a YOLO model trained on Rugby

footage with the use of transfer learning. We were able to leverage the perfor-

mance of the trained object detector to achieve considerable results in tracking

rugby players. Our final contribution is an annotated dataset that can be used for

detection and tracking tasks applied to Rugby. One of the biggest impediments

that we had to tackle early on in the research was the lack of tracking data on

Rugby. We have painstakingly annotated and compiled a dataset from broadcast

footage available in the public domain. We believe that these contributions will

be valuable for further research in this domain. The authors plan to release the

code, models and the dataset to the public domain in the future .

5.1 Further research

One of the areas that was deemed out of scope of this study was the feature to

visualise player trajectories on a birds eye view projection of the play field. One

of the main barriers we faced with this regard was that the camera angles did not

clearly capture play field markings all the time, thus the problem of estimating

player location relative to the play field became a non trivial problem which would

require a separate research on it’s own.

Another area for improvement would be to reduce the performance bottle-

neck that occurs at the entity embedding network. Currently each image patch

for a detected player is sent through the network to obtain the 128 dimension

embedding vector. Further research can be carried out test the ability to reuse

the CNN features corresponding to the detection bounding boxes and route them

via the last layer of the embedding network. If this is achievable it will save

computational cost as the need to feed the image patches through many layers of

the embedding network is bypassed.

Although the current iteration of this system is limited to tracking players

the authors envision a future system that is capable of tracking playing field
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movements in realtime and provide coaches with outcome predictions of the next

playing scenario as a game progresses. To this end the work done so far provides

a good foundation.

5.2 Conclusion

The main objective of this study was to develop a system capable of automati-

cally tracking players from broadcast footage, to this end we have been successful

in developing a system with a significantly high accuracy. Considering the high

number of occlusions that occur in a game of rugby we believe the success rate

reported by the experiments are impressive. To the best of our knowledge this is

the first study of this nature that tries to solve the problem of automated player

tracking in Rugby Union. We believe that we have succeded in making contri-

butions for further research applied to Rugby and to the domains of computer

vision and multiple object tracking in general.
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