

HYDRAULIC PERFORMANCE OF STATICALLY STABLE BERM BREAKWATERS & GABION STRUCTURES

by

K. P. Manori Femando

A thesis submitted to University of Moratuwa for the Degree in Master of Science

> Research supervised by Professor S. S. L. Hettiarachchi

DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORA TUWA MORATUWA SRI LANKA

2008

Abstract

The ability to predict the level of reflection, transmission and dissipation for various types of coastal structures plays an important role in the assessment of their hydraulic performance. These parameters together with the hydraulic, geotechnical and structural stability of the individual components and of the structure as a whole determine the overall performance of the structure.

This study has done a literature review and presents the results from a study of the hydraulic performances especially on wave reflection and transmission characteristics of a wide range of structures (vertical, sloping and berm) used in harbour and coastal engineering.

Hydraulic model test can provide reliable method to quantify many of the wave structure response functions for breakwaters. A detailed hydraulic model investigation (1:20) relating to the hydraulic performances of berm breakwater with berm width of 6m was done as a part of this study. It was tested in Lanka Hydraulic Institute (LHI), Katubedda, Moratuwa.

The results are compared with a model investigation done on a berm structure with the berm width of 12m at a scale of 1:20 (also tested in Lanka Hydraulic Institute in 1999) and Allsop and Channel (berm widths of 4m, 8m and 16m) test sections.

The investigations were designed to obtain a full profile of the energy dissipation characteristics of the structures tested, including the damping of waves as they propagate through the structure.

LB/DON /39/08

€, ∻

HYDRAULIC PERFORMANCE OF STATICALLY STABLE BERM BREAKWATERS & GABION STRUCTURES

by

K. P. Manori Fernando

LIBRARY UNIVERSITY OF MORATUWA, SRI LANKA MODATUWA

A thesis submitted to University of Moratuwa for the Degree in Master of Science University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.

65 q "or 604 (043)

Research supervised

91164

by

Professor S. S. L. Hettiarachchi

DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA MORATUWA SRI LANKA

University of Moratuwa 91164

ABSTRACT

The ability to predict the level of reflection, transmission and dissipation for various types of coastal structures plays an important role in the assessment of their hydraulic performance. These parameters together with the hydraulic, geotechnical and structural stability of the individual components and of the structure as a whole determine the overall performance of the structure.

This study has done a literature review and presents the results from a study of the hydraulic performances especially on wave reflection and transmission characteristics of a wide range of structures (vertical, sloping and berm) used in harbour and coastal engineering.

Hydraulic model test can provide reliable method to quantify many of the wave structure response functions for breakwaters. A detailed hydraulic model investigation (1:20) relating to the hydraulic performances of berm breakwater with berm width of 6m was done as a part of this study. It was tested in Lanka Hydraulic Institute (LHI), Katubedda, Moratuwa.ww.lib.mrt.ac.lk

The results are compared with a model investigation done on a berm structure with the berm width of 12m at a scale of 1:20 (also tested in Lanka Hydraulic Institute in 1999) and Allsop and Channel (berm widths of 4m, 8m and 16m) test sections.

The investigations were designed to obtain a full profile of the energy dissipation characteristics of the structures tested, including the damping of waves as they propagate through the structure.

ACKNOWLEDGEMENT

I would like to take this opportunity to express my gratitude to the Vice Chancellor, Dean of Engineering Faculty and the Senate Research committee, Head- Department of Civil Engineering, Director- Postgraduate Studies of University of Moratuwa, for funding this project through Asian Development Bank and giving me an opportunity to carry out a research project leading to the M.Sc. Degree in Engineering.

I wish to express my special thanks to Professor S.S.L Hettiarachchi for his supervision, encouragement and guidance provided during the course of research study. I am thankful for him for arranging me to work at Lanka Hydraulic Institute (LHI), Katubedda, Moratuwa, for the model investigation. I am also grateful for him for the support given me in all aspects.

My sincere thanks are also due to Dr. Saman Samarawickrama for his support during my research work niversity of Moratuwa, Sri Lanka.

Electronic Theses & Dissertations

I wish to thank the management and staff of Lanka Hydraulic Institute (LHI) for their utmost corporation and allowing me to use their facilities at a reduced cost. My special thanks go to Mr. Jayantha Rajapakse for the support given in my model testing.

My heartfelt gratitude goes to my husband Nalin for the encouragement given and standing by me throughout my research.

Declaration

The work described in this thesis is a research carried out in the Department of Civil Engineering, University of Moratuwa, Sri Lanka, under the supervision of Prof. S.S.L. Hettiarachchi and Dr. S.P. Samarawickrama.

The author wishes to declare that, except for commonly understood ideas, or where specific reference has made to the work of authors, the content of thesis has his original work and include nothing, which is the outcome of work done in collaboration. The work has not been previously submitted, in part or in whole to any other university for any degree, diploma or any other qualification.

This thesis contains 174 pages.

PlTomaulos .

K.P.M. Fernando University of Moratuwa, Sri Lanka. Department of Civil Engineeringic Theses & Dissertations University of Moratuwa W.lib.mrt.ac.lk Sri Lanka

UOM Verified Signature

Supervisor Prof. S.S.L. Hettiarachchi Department of Civil Engineering University of Moratuwa Sri Lanka

CONTENTS

ABS	STRACT		i
AC	KNOWL	EDGEMENT	ii
DE	CLARAT	TION	iii
CO	NTENTS		iv
LIS	T OF TA	BLES AND FIGURES	viii
CH	APTER 1	: Introduction	1
1.1	Backgro	ound	2
1.2	Objectiv	ve of the study	3
1.3	Guide to	the thesis inversity of Moratuwa, Sri Lanka. Electronic Theses & Dissertations	3
СН	APTER 2	 www.lib.mrt.ac.lk Ports and Harbour strucctures 	5
2.1	Harbour	r planning & layout	6
2.2	Breakwa	aters & Internal Harbour Structures	8
	2.2.1	Breakwaters	8
	2.2.2	Internal Harbour Structures	9
2.3	Rock A	rmoured Rubble Mound Breakwaters	10
2.4	Concret	e Armoured Rubble Mound Breakwaters	12
	2.4.1	Development of Concrete Armour units	12
	2.4.2	Lessons learnt from breakwater failures	13
	2.4.3	Desired features of concrete armour units	14
	2.4.4	Types of concrete armour units	15
2.5	Vertical	structures	17
	2.5.1	Types of porous vertical structures	17
	2.5.2	Gabion Structures	20

)

• ••.

CH	APTER 3 :	Flow Through Porous Media and Wave Str	ucture
		Interaction	28
3.1	Flow through	gh Porous Media	29
	3.1.1 Fl	ow Regimes in Porous Media	29
	3.1.2 St	eady Darcy Flow	29
	3.1.3 St	eady non-Darcy Flow in Porous Media	31
	3.1.4 U	nsteady Flow in Porous Media	35
	3.1.5 W	ave Action on Porous Structures	36
3.2	Influence o	f Geometry and Hydraulic Conductivity	37
	3.2.1 G	overning Geometric and Hydraulic Parameters	37
	3.2.2 Re	elevant investigations on geometry and permeability in	
	re	lation to breakwaters	37
3.3	Important a	spects of wave-structure interaction	39
3.4	Assessment	t of Hydraulic performance and Energy Dissipation	42
3.5	Relevance of	of large scale hydraulic models	46
3.6	Hydraulic F	Performance and Stability of Naturally Reshaping	
	Berm Break	waterniversity of Moratuwa, Sri Lanka.	46
	3.6.1 D	sign concepts of re-shaping ferm break waters is	46
	3.6.2 D	ynamics of reishaping structures and their stability	47
	3.6.3 In	fluence of the porous mass armour and the berm	48
	3.6.4 Du	urability of rocks	49
	3.6.5 Pe	erformance under extreme conditions	49
	3.6.6 Ec	conomy of construction	50

CHAPTER 4 :		4: Reanalysis of selected Previous Inv	Reanalysis of selected Previous Investigations on		
		Gabion Structures	56		
4.1	Applica	tion of gabion structures	57		
4.2	Literatu	re review	58		
4.3	Re-anal	ysis of experimental data	59		
	4.3.1	Data of LeMehaute	60		
	4.3.2	Data of Keulagan	61		

v

•

Ĵ

ł

	4.3.3	Data of H	ettiarachchi and Amaraweera	61
		4.3.3.1	Strucutre with an open rear end	63
		4.3.3.2	Strucutre with a solid vertical wall at the rear end	63
		4.3.3.3	Structure with a berm and having an open end	63
4.4	Conclus	ions		64

CHAPTER 5 :		: Reanalysis of selected Previous Investigation	Reanalysis of selected Previous Investigations on		
		Sloping and Berm structures	101		
5.1	Sloping	structures	102		
	5.1.1	Re-analysis of experimental data	103		
		5.1.1.1 Hettiarachchi & Georgandtzis data	103		
5.2	Berm st	ructures	105		
	5.2.1	Classification of berm breakwaters	105		
	5.2.2	Re-analysis of experimental data	106		
		5.2.2.1 Experiment carried out by Allsop and Channell	107		
		5.2.2.2 Experiment carried out by Hettiarachchi and			
		Electivitiagalleneses & Dissertations	108		

)

5.3 Conclusions

CH	APTER (5: Experimental Investigations on Berm	- San
		Structures	135
6.1	Objectiv	ve of the investigation	136
6.2	Approa	ch to the study	137
6.3	Experin	nental details	138
	6.3.1	Structure investigated	139
	6.3.2	Relevance of Large Scale Hydraulic Model	139
	6.3.3	Experimental Setup	140
	6.3.4	Discussion of Results	141
	6.3.5	Conclusions	143

www.lib.mrt.ac.lk

CHAPTER 7 :	Conclusion & Recommendations	171
Reference		175
Annex A Measurement of W	ave Reflection for random waves and regular waves	179
Annex B Photos of 1:20 mod	del investigation	190

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

SUMMARY OF FIGURES AND TABLES

FIGUR	E DESCRIPTION	PAGE
2.1	Typical cross section of a rubble mound breakwater (no overtopping conditions)	22
2.2	Types of Rock armoured rubble mound breakwaters	23
2.3	Concrete Armour Units	24
2.4	Single and double screen for protection against waves	25
2.5	Multiple screen, wave absorbing pier	25
2.6	Perforated breakwater having a rock fill compartment	25
2.7	Slotted breakwater with internal permeable wall	26
2.8	Stacked voided blocks-Igloo Unit	26
2.9	Stacked voided blocks-Neptune Onistuwa, Sri Lanka.	26
2.10	Cylindrical cribwork using steel hoops	27
3.1	Relationship between block stability and voids ratio Whillock (1981)	51
3.2	Definition of Reflection and Transmission coefficients for open and closed block structures	52
3.3	Comparison of the flow regime for conventional breakwater and mass armoured breakwaters (Hall 1987)	54
3.4	Typical armour layer failure characteristics for various types	
	of rubble mound structures (Burcharth 1993)	54
4.1	Kr Vs Steepness (water depth=60cm, Φ =5.9cm) Width = 8cm	66
4.2	Kr Vs Steepness (water depth=60cm, Φ =5.9cm) Width = 15cm	66

.

4.3	Kt Vs Steepness (water depth=60cm, Φ =5.9cm) Width = 8cm	67
4.4	Kt Vs Steepness (water depth=60cm, Φ =5.9cm) Width = 15cm	67
4.5	Kr Vs Steepness (water depth=100cm, Φ =5.9cm) Width = 44cm	68
4.6	Kr Vs Steepness (water depth=100cm, Φ =5.9cm) Width = 84cm	68
4.7	Kr Vs Steepness (water depth=100cm, Φ =5.9cm) Width = 124cm	68
4.8	Kt Vs Steepness (water depth=100cm, Φ =5.9cm) Width = 44cm	69
4.9	Kt Vs Steepness (water depth=100cm, Φ =5.9cm) Width = 84cm	69
4.10	Kt Vs Steepness (water depth=100cm, Φ =5.9cm) Width = 124cm	69
4.11	Kt Vs Steepness (water depth=100cm, Φ =1.8cm) tions Width = 24cm www.lib.mrt.ac.lk	70
4.12	Kr Vs Steepness (water depth=100cm, Φ =1.8cm) Width = 42cm	70
4.13	Kr Vs Steepness (water depth=100cm, Φ =1.8cm) Width = 62cm	70
4.14	Kt Vs Steepness (water depth=100cm, Φ =1.8cm) Width = 24cm	71
4.15	Kt Vs Steepness (water depth=100cm, Φ =1.8cm) Width = 42cm	71
4.16	Kt Vs Steepness (water depth=100cm, Φ =1.8cm) Width = 62cm	71
4.17	Kr Vs Steepness (water depth = 30.5 cm, ϕ =1.28cm) Width = 7.6cm	72
4.18	Kr Vs Steepness (water depth = 30.5 cm, ϕ =1.28cm) Width = 15.2 cm	72

ł

4.19	Kr Vs Steepness (water depth = 30.5cm, ϕ =1.28cm) Width = 30.5cm	73
4.20	Kr Vs Steepness (water depth = 30.5cm, ϕ =1.28cm) Width = 61cm	73
4.21	Kt Vs Steepness (water depth = 30.5cm, ϕ =1.28cm) Width = 7.6cm	74
4.22	Kt Vs Steepness (water depth = 30.5cm, ϕ =1.28cm) Width = 15.2cm	74
4.23	Kt Vs Steepness (water depth = 30.5cm, φ=1.28cm) Width = 30.5cm	75
4.24	Kt Vs Steepness (water depth = 30.5 cm, ϕ =1.28cm) Width = 61cm	75
4.25	Kr Vs Steepness (water depth = 30.5cm, ϕ =1.89cm) Width = 7.6cm	76
4.26	Kr Vs Steepness (water depth = 30.5cm, ϕ =1.89cm) Width = 15.2cm	76
4.27	KrVs Steepness (water depth = 30.5cm) = 1.89cm)ons Width = 30.5cm www.lib.mrt.ac.lk	77
4.28	Kr Vs Steepness (water depth = 30.5 cm, ϕ =1.89cm) Width = 61 cm	77
4.29	Kt Vs Steepness (water depth = 30.5 cm, ϕ =1.89 cm) Width = 7.6 cm	78
4.30	Kt Vs Steepness (water depth = 30.5 cm, ϕ =1.89cm) Width = 15.2 cm	78
4.31	Kt Vs Steepness (water depth = 30.5 cm, ϕ =1.89cm) Width = 30.5 cm	79
4.32	Kt Vs Steepness (water depth = 30.5 cm, ϕ =1.89cm) Width = 61 cm	79
4.33	Kr Vs Steepness (water depth = 30.5 cm, ϕ = 2.53 cm) Width = 7.6 cm	80
4.34	Kr Vs Steepness (water depth = 30.5 cm, ϕ = 2.53 cm) Width = 15.2 cm	80

x

4.35	Kr Vs Steepness (water depth = 30.5 cm, ϕ = 2.53 cm) Width = 30.5 cm	81
4.36	Kr Vs Steepness (water depth = 30.5 cm, ϕ = 2.53 cm) Width = 61 cm	81
4.37	Kt Vs Steepness (water depth = 30.5 cm, ϕ = 2.53 cm) Width = 7.6 cm	82
4.38	Kt Vs Steepness (water depth = 30.5 cm, ϕ = 2.53 cm) Width = 15.2 cm	82
4.39	Kt Vs Steepness (water depth = 30.5 cm, ϕ = 2.53 cm) Width = 30.5 cm	83
4.40	Kt Vs Steepness (water depth = 30.5 cm, ϕ = 2.53 cm) Width = 61 cm	83
4.41	Kr Vs Steepness (water depth = 30.5 cm, ϕ = 3.81 cm) Width = 7.6 cm	84
4.42	Kr Vs Steepness (water depth = 30.5cm, ϕ =3.81cm) Width = 15.2cm	84
4.43	Kr Vs Steepness (water depth = 30.5cm) ϕ =3.81cm)ons Width = 30.5cm www.lib.mrt.ac.lk	85
4.44	Kr Vs Steepness (water depth = 30.5 cm, ϕ = 3.81 cm) Width = 61 cm	85
4.45	Kt Vs Steepness (water depth = 30.5 cm, ϕ = 3.81 cm) Width = 7.6 cm	86
4.46	Kt Vs Steepness (water depth = 30.5 cm, ϕ = 3.81 cm) Width = 15.2 cm	86
4.47	Kt Vs Steepness (water depth = 30.5 cm, ϕ = 3.81 cm) Width = 30.5 cm	87
4.48	Kt Vs Steepness (water depth = 30.5 cm, ϕ = 3.81 cm) Width = 61 cm	87
4.49	Experimental setup of three gabion structures	88
4.50	Kr vs steepness (pervious core)	89
4.51	Kt vs steepness (pervious core)	89
4.52	Variation of Kt (Ht/His) vs steepness (pervious core)	90

xi

4.53	Variation of Kt (Ht/Hns) vs steepness (pervious core)	90
4.54	Kd vs steepness (pervious core)	91
4.55	Variation of Kt along the structure (pervious core)	92
4.56	Kr vs steepness (impervious core)	92
4.57	Kd vs steepness (impervious core)	93
4.58	Variation of Kt (Ht/His) vs steepness (impervious core)	93
4.59	Variation of Kt (Ht/Hns) vs steepness (impervious core)	94
4.60	Variation of Kt along the structure (impervious core)	94
4.61	Kr vs steepness (berm)	95
4.62	Kt vs steepness (berm)	95
4.63	Variation of Kt vs steepness (berm)	96
4.64	Variation of Kt.vs steepness (berm) University of Moratuwa, Sri Lanka.	96
4.65	Kays steepness (berm) c Theses & Dissertations	97
4.66	Variation of Kr along the structure (berm)	97
5.1	Details of the 1:40 scale model- Homogeneous trapezoidal breakwater	111
5.2	Kr vs steepness for homogeneous trapizoidal breakwater Glass spheres (19mm)	112
5.3	Kr vs steepness for homogeneous trapizoidal breakwater Glass spheres (25mm)	112
5.4	Kr vs steepness for homogeneous trapizoidal breakwater Glass spheres (12.8mm - Mix A)	113
5.5	Kr vs steepness for homogeneous trapizoidal breakwater Glass spheres (8.76mm - Mix B)	113
5.6	Kr vs steepness for homogeneous trapizoidal breakwater Mixed spheres (50% A, 50% B)	114
5.7	Kr vs steepness for homogeneous trapizoidal breakwater Mixed spheres (75% A, 25% B)	114

-

5.8	Kt vs steepness for homogeneous trapizoidal breakwater Glass spheres (19mm)	115
5.9	Kt vs steepness for homogeneous trapizoidal breakwater Glass spheres (25mm)	115
5.10	Kt vs steepness for homogeneous trapizoidal breakwater Glass spheres (12.8mm - Mix A)	116
5.11	Kt vs steepness for homogeneous trapizoidal breakwater Glass spheres (8.76mm - Mix B)	116
5.12	Kt vs steepness for homogeneous trapizoidal breakwater Mixed spheres (50% A, 50% B)	117
5.13	Kt vs steepness for homogeneous trapizoidal breakwater Mixed spheres (75% A, 25% B)	117
5.14	Variation of Transmission coefficient with steepness 19mm diameter spheres	118
5.15	Variation of Transmission coefficient with steepness 25mm diameter spheres University of Moratuwa, Sri Lanka.	118
5.16	Variation of Transmission coefficient with steepness OTS 9.53mm $< \Phi < 16$ mm diameter Stones (Mix A)	119
5.17	Variation of Transmission coefficient with steepness $6mm < \Phi < 9.53mm$ diameter Stones (Mix B)	119
5.18	Variation of Transmission coefficient with steepness 50% of Mix A and 50% of Mix B	120
5.19	Variation of Transmission coefficient with steepness 75% of Mix A and 25% of Mix B	120
5.20	Model test section (Allsop and Channell)	121
5.21	Bermed slope section, effect of steepness of mean local wave length, Berm length =0.2m, slope 1:1:5	122
5.22	Bermed slope section, effect of steepness of mean local wave length, Berm length =0.4m, slope 1:1:5	122
5.23	Bermed slope section, effect of steepness of mean local wave length, Berm length =0.8m, slope 1:1:5	123
5.24	Bermed slope section, effect of steepness of mean local wave length,Berm length =0.4m, slope 1:2:5	123

xiii

5.25	Bermed slopes sections F/1 to F/3, effect of steepness of mean local wave length	124
5.26	Bermed slopes sections F/1 to F/3, effect of steepness of mean offshore wave length	124
5.27	Bermed slopes sections F/1 to F/3, effect of relative berm length to local wave length	125
5.28	Bermed slopes sections F/1 to F/3, effect of relative berm length to offshore wave length	125
5.29	Bermed slopes sections $F/2$ and $G/1$, effect of slope angle	126
5.30	Simple slope with two layers (slope 1:1:5)	126
5.31	Comparison of Simple slope with two layers and bermed slope (slope 1:1:5)	127
5.32	Effect of berm structure	127
5.33	Prototype structure	128
5.34	Experimental setup for 1:20 scale model wa, Sri Lanka. Electronic Theses & Dissertations	128
5.35	Kr Vs Steepness (7m water depth, Regular waves)	129
5.36	Kr Vs Steepness (8m water depth, Regular waves)	129
5.37	Kr Vs Steepness (9m water depth, Regular waves)	129
5.38	Kt Vs Steepness (7m water depth, Regular waves)	130
5.39	Kt Vs Steepness (8m water depth, Regular waves)	130
5.40	Kt Vs Steepness (9m water depth, Regular waves)	130
5.41	Kr Vs Steepness for Random waves	131
5.42	Kt Vs Steepness for Random waves	131
6.1	Typical structural configurations of berm breakwaters investigated by researches (Torum 1995)	145
6.2	Experimental setup	146
6.3	Details of the model (1:20)	147

6.4	Lanka Hydraulic Institute (LHI) – Laboratory Flume	148
6.5	Kr Vs Steepness (7m water depth, Regular waves)	149
6.6	Kr Vs Steepness (8m water depth, Regular waves)	149
6.7	Kr Vs Steepness (9m water depth, Regular waves)	149
6.8	Kr Vs Steepness (7m water depth, Random waves)	150
6.9	Kr Vs Steepness (8m water depth, Random waves)	150
6.10	Kr Vs Steepness (9m water depth, Random waves)	150
6.11	Kt Vs Steepness (7m water depth, Regular waves)	151
6.12	Kt Vs Steepness (8m water depth, Regular waves)	151
6.13	Kt Vs Steepness (9m water depth, Regular waves)	151
6.14	Kt Vs Steepness (7m water depth, Random waves)	152
6.15	Kt. Vs. Steepness (8m water depth, Random wayes)	152
6.16	Ki Vs Steephess (9m water depth, Random waves) ons	152
6.17	Kd Vs Steepness (7m water depth, Regular waves)	153
6.18	Kd Vs Steepness (8m water depth, Regular waves)	153
6.19	Kd Vs Steepness (9m water depth, Regular waves)	153
6.20	Kd Vs Steepness (7m water depth, Random waves)	154
6.21	Kd Vs Steepness (8m water depth, Random waves)	154
6.22	Kd Vs Steepness (9m water depth, Random waves)	154
6.23	Variation of Kt Vs Steepness (7m water depth, Regular waves)	155
6.24	Variation of Kt Vs Steepness (8m water depth, Regular waves)	155
6.25	Variation of Kt Vs Steepness (9m water depth, Regular waves)	156
6.26	Variation of Kt Vs Steepness (7m water depth, Random waves)	156
6.27 [.]	Variation of Kt Vs Steepness (8m water depth, Random waves)	157
6.28	Variation of Kt Vs Steepness (9m water depth, Random waves)	157

xv

6.29	Variation of Kt along the structure (7m water depth, Regular waves)	158
6.30	Variation of Kt along the structure (8m water depth, Regular waves)	158
6.31	Variation of Kt along the structure (9m water depth, Regular waves)	159
6.32	Variation of Kt along the structure (7m water depth, Random waves)	159
6.33	Variation of Kt along the structure (8m water depth, Random waves)	160
6.34	Variation of Kt along the structure (9m water depth, Random waves)	160

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

TABLE	DESCRIPTION	PAGE
3.1	Damage reported to sea walls (Thomas and Hall 1992)	55
4.1	Wave conditions investigated experimentally on gabion structure LeMehaute data	98
4.2	Wave conditions investigated experimentally on gabion structure Keulegan data	98
4.3	Prototype wave conditions investigated experimentally on gabion structure with an open rear end (scale 1:5)	99
4.4	Prototype wave conditions investigated experimentally on gabion structure with having a solid vertical wall at the rear end (scale 1:5)	99
4.5	Prototype wave conditions investigated experimentally on gabion structure with a berm and having an open rear end (scale 1:5)	100
5.1	Equivalent prototype conditions investigated experimentally on 1:40 scale models of Homogeneous Trapezoidal Breakwaters (Tests conducted at Imperial College, London)	132
5.2	Percentage of wave energy dissipation computed from model measurements corresponding to the sections where wave probes were located. Scale ratio 1:40, Water depth = 8m (prototype)	132
5.3	Experimental data for test sections - Allsop and Channel	133
5.4	Model test results of Berm breakwater carried by Mirihagalla	134
6.1	Experimental data for 7m water depth (raw data & proto type data)	161
6.2	Experimental data for 8m water depth (raw data & proto type data)	162
6.3	Experimental data for 9m water depth (raw data & proto type data)	164
6.4	Measured parameters and results of the structure investigated (proto type)	166

.

-

6.5	Prototype conditions investigated experimentally on Trapizoidal layered Breakwater with a Berm (Scale 1:20)	168
6.6	Results of the experiment with 6m berm	169
6.7	Percentage of wave energy dissipation at the sections where wave transmission was measured. (6m Berm- Random waves)	170
6.8	Percentage of wave energy dissipation at the sections where wave transmission was measured. (6m Berm – Regular waves 7m depth)	170

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk