UNIVERSITY OF MORATUWA

USING CONTROLLED DETENSIONING

BY

ARUMUGAM SABESH

LIBRARY UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA 624 "08"

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

01166

University of Moratuwa
91166

MORATUWA, SRI LANKA
MAY, 2008

91166

DECLARATION

I hereby, declare, that the work included in this thesis in part or whole, has not been submitted for any other academic qualification at any institution.

A. Sabesh

Author

UOM Verified Signature

Dr. I. R. A. Weerasekera Supervisor/ Senior Lecturer

Department of Civil Engineering
University of Moratuwa
Sri Lanka

ABSTRACT

Pretensioned prestressed concrete can be produced in a number of ways. Among them several options can be considered depending on the structure constructed and how prestress is transferred. In the recent times radial and longitudinal cracks have been observed due to high tensile stresses developed in concrete around prestressing steel. In practice to eliminate these harmful conditions modifications are required to ensure serviceability functions of the composite high quality material.

Often excessive prestress is reduced by lowering the tensile stress in the prestressing steel or / and the magnitude of the eccentricity towards the end of the member which in vulnerable to this type of effect. In the global context debonding of tendons towards the end of a member, drapping of tendon towards the central portion of the member or controlled detensioning can be applied to achieve the desire outcomes. All these techniques require a sound basis for prestress transfer which is achieved by bond. Some of the practices are prohibitive to developing countries due to the high cost of holding down devices buried in the concrete. Further in third world countries cost of hardware is expensive as opposed to cheep labour encountered in production.

Electronic Theses & Dissertations

This research is valimed at strengthening our understanding of bond mechanism by extending cohesive cracking approach established by experiment and matched by a sound theoretical basis to complement each other. Currently some of the global practices are carried out by relying on intuition as opposed to theoretical formulations.

This study covers a comprehensive analysis of bond development for the controlled detensioned process. The experimental verification is not part of the present scope. However the parameters influencing such as strand diameter, initial prestress, concrete strength and cover or half the spacing have been identified as main influences to ascertain bond strength based on available test results exhumed from literature.

A parametric study has also been carried out and simplified empirical formulae have been developed to predict normal transfer bond length and the type of bond length required for controlled detensioning. The derived theory is also applicable even to debonded tendons as well as drapped tendons accurately. Further study is required to support these findings by providing experimental evidence.

ACKNOWLEDGMENTS

The completion of this research was possible due to the contributions of many people; first and foremost I would like to thank my supervisor Dr. I.R.A Weerasekera for his great help and guidance throughout this project. It has been interesting and rewarding to work with him.

I would like to thank University of Moratuwa, Senate Research Committee for supporting and financing my research work. Also, I would like to thank my colleagues for their support during my research work.

Finally, I would like to warmly thank my parents for their support, encouragement and understanding.

TABLE OF CONTENTS

ABSTRACT	ii
ACKNOWLEDGMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	viii
LIST OF FIGURES	ix
NOTATION	xiv
	CHAPTER 1
1.1. BACKGROUND	1
1.2. OBJECTIVE University of Moratuwa, Sri Lanka.	3
1.3. Electronic Theses & Dissertations www.lib.mrt.ac.lk	3
	CHAPTER 2
LI	TERATURE REVIEW
2.1. INTRODUCTION	5
2.2. TRANSFER LENGTH	5
2.2.1. Strand Diameter	6
2.2.2. Strand Surface Condition	6
2.2.3. Strand Spacing	7
2.2.4. Concrete Cover	7
2.2.5. Concrete Strength at Transfer	7
2.3. DETERMINATION OF TRANSFER LENGTH	8
2.3.1. 90 % Strain Line Method	8
2.3.2. 95 % Average Maximum Strain (95% AMS) Method	8

	2.3.3.	100 % Average Maximum Strain (100% AMS) Method	10
	2.3.4.	Slope - Intercept Method	10
2.4	. CR	ITICAL REVIEW OF THE METHOD	11
2.5	. TR	RANSFER LENGTH EQUATIONS	11
2.6	6. B <i>A</i>	ACKGROUND RESEARCH	15
	2.6.1.	Zia and Mostafa (1977)	15
	2.6.2.	Weerasekera (1991)	15
	2.6.3.	Shahawy, Issa and Batchelor (1992)	16
	2.6.4.	Lane (1992)	17
	2.6.5.	Mitchell, Cook, Khan, and Tham (1993)	17
	2.6.6.	Gross and Burns (1995)	18
	2.6.7.	Russell and Burns (1996)	19
	2.6.8.	Barnes, Burns, and Kreger (1999)	20
	2.6.9.	Hwan Oh, Sung Kim and Soo Kim (2001)	21
	2.6.10	Marti, Fernandez, Arbelaez, Serna and Miguel (2006)	22
	2.6.11.	Morgan and Tuon (2006) University of Moratuwa, Sri Lanka.	22
2.7	7.	A DITEONAL METHODS OF PRESSRESSING	24
	2.7.1.	www.lib.mrt.ac.lk Harped or Draped Strand Method	24
	2.7.2.	Debonded Strand Method	27
		CHAP	TER 3
		METHODO	LOGY
3.1	l. IN	NTRODUCTION	29
3.2	2. BC	OND MECHANISM	29
3.3	3. PR	OCEDURE TO DETERMINE THE INTERFACE PRESSURE (p)	30
	3.3.1.	Compatibility Condition	30
	3.3.2.	Analysis of the Section	32
3.4		ETERMINATION OF AXIAL STRESSES IN CONCRETE ND STEEL AT LEVEL OF TENDON	39

	ND CURVATURE OF THE CONCRETE STRESSES, STRAIN	
3.5.1. 3.5.2.	Instantaneous Effects Time dependent effects	42 43
3,3.2.	Time dependent effects	73
	СН	APTER 4
	MODEL RESULTS AND DETERMINATION OF TRANSFER	LENGTI
4.1. BA	ACKGROUND	46
4.1.1.	Strand Diameter	46
		49
4.1.2.	Concrete Strength Initial Prestress	51
	Concrete Cover	51
		53
7.2.	DRMULATION OF NEW TRANSFER LENGTH EQUATION	55
	University of Moratuwa, Sri Lanka.	ADTED
	Electronic Theses & Dissertations	APTER
	www.lib.mrt.ac.lk DISC	USSION
5.1. DI	ISCUSSION ON TRANSFER LENGTH	55
5.1.1.	Data Collection	
		55 61
5.1.2. 5.1.3.	Comparison of Proposed Equations with Current Codes	
5.1.3. 5.1.4.	Comparison of Other Proposed Equations	63 65
	Comparison of new proposed equation NRAMETRIC STUDY	66
5.2.1.	Strand Diameter	66
5.2.2.	•	67
5.2.3.		69
	ISCUSSION ON CONTROLLED DETENSIONING METHOD	
5.3.1.	Modern Construction Materials	71
5.3.2.	Why Need a Controlled Detensioning Method	73
5.3.3.	Procedure For The Controlled Detensioning Method	78

5.3.4.	Equipment Required and curing method for Controlled	
	detensioning	79
5.3.5.	Transfer length equation for Controlled Detensioning Method	81
5.3.6.	Comparison of Detensioning Method with Other	
	Conventional Methods	83
5.3.7.	Disadvantages of The Controlled Detensioning Method	84
5.3.8.	Design Example Of The Controlled Detensioning Member	86
	СНА	PTER (
	CONCLUSIONS AND RECOMMENDA	ATIONS
		24
	NCLUSIONS	91
6.2. RE	ECOMMENDATIONS	92
	University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk	
REFERENCES	;	93
APPENDIX A	- ISOTROPIC ELASTIC ANALYSIS	96
APPENDIX B	- ANISOTROPIC ELASTIC ANALYSIS	101
APPENDIX C	- MODEL STRAIN PROFILES	105
APPENDIX D	- ANALYSIS RESULTS OF CONTROLLED DETENSIONED	159
	BEAM	

LIST OF TABLES

Table 2.1: Code provision for transfer length equation	12
Table 2.2: Predicted transfer length expression by different researchers	13
Table 4.1: Variation of model transfer lengths	47
Table 5.1: Experimental transfer length data from different researchers	56

LIST OF FIGURES

Figure 2.1: Determination of transfer length	9
Figure 2.2: Prestressing strand profile	25
Figure 2.3: Harping devices	25
Figure 3.1: Tendon subject to tensile force and bond stress	29
Figure 3.2: Typical idealization of the section	31
Figure 3.3: Relative radial displacement of steel and concrete	32
Figure 3.4: Stress-Crack width curve	36
Figure 3.5: Flow chart of fully cracked analysis	40
Figure 3.6: Flow chart of partially cracked analysis	41
Figure 3.7: Member cross section and strain distribution	42
Figure 3.8: concrete strain variation over the time	44
Figure 4.1: Variation of the $l_t f_{ci}^{0.3}$ over the concrete strength	50
Figure 4.2: Variation of the $l_t f_{ci}^{\ 0.5}$ over the concrete strength	50
Figure 4.3: Variation of the $l_t f_{ci}^{0.7}$ over the concrete strength University of Moratuwa, Sri Lanka.	51
Figure 4.4: More transfer length variations over the concrete cover Electronic Theses & Dissertations	
Figure 4.5: Model transfer length variation over the $\frac{d_b f_{si}}{c_y^{0.2} \sqrt{f_{ci}}}$	53
Figure 5.1: Comparison of measured transfer lengths with ACI /AASHTO Standard	62
Figure 5.2: Comparison of measured transfer lengths with A ASHTO-LRFD	
Specification	62
Figure 5.3: Comparison of measured transfer lengths with Russell et al and	
Martian et al.	64
Figure 5.4: Comparison of measured transfer lengths with Zia et al and	
Mitchell et al.	64
Figure 5.5: Comparison of measured transfer lengths with new proposed equation	65
Figure 5.6: Comparison of transfer length expressions over the strand diameter	66
Figure 5.7: Comparison of code transfer length expressions over the concrete	
strength	68
Figure 5.8: Comparison of transfer length expressions over the concrete strength	68
Figure 5.9: Comparison of code transfer length expressions over the concrete cover	70
Figure 5.10: Comparison of transfer length expressions over the concrete cover	70

Figure 5.11: Bending Moment diagram for simply supported beam using straight	
strands.	72
Figure 5.12: Sequence of radial crack formation	74
Figure 5.13: Stress build-up curve	76
Figure 5.14: Radial cracks at the end. (Courtesy, Weerasekera (1991))	77
Figure 5.15: Sequence of Controlled detensioning method	80
Figure 5.16: Steel stress variation over the distance	
Figure 5.17: Shear transfer by shear key	85
Figure 5.18: Controlled detensioned beam	87
Figure 5.19: Concrete stress variation along the top fiber	88
Figure 5.20: Concrete stress variation along the bottom fiber	89
Figure 5.21: Deflection over the Distance	90
APPENDIX	
Figure A.1: Stresses acting on element	97
Figure C.1: Variation of steel stress in transfer zone University of Moratuwa. Sri Lanka.	105
Figure C.2 Variation of steel stress in transfer zone ertations	105
Figure C.3: Variation of steelistness in transfer zone	106
Figure C.4: Variation of steel stress in transfer zone	106
Figure C.5: Variation of steel stress in transfer zone	107
Figure C.6 : Variation of steel stress in transfer zone	107
Figure C.7: Variation of steel stress in transfer zone	108
Figure C.8: Variation of steel stress in transfer zone	108
Figure C.9: Variation of steel stress in transfer zone	109
Figure C.10: Variation of steel stress in transfer zone	109
Figure C.11: Variation of steel stress in transfer zone	110
Figure C.12: Variation of steel stress in transfer zone	110
Figure C.13: Variation of steel stress in transfer zone	111
Figure C.14: Variation of steel stress in transfer zone	111
Figure C.15: Variation of steel stress in transfer zone	112
Figure C.16: Variation of steel stress in transfer zone	112
Figure C.17: Variation of steel stress in transfer zone	113
Figure C.18: Variation of steel stress in transfer zone	113

Figure C.19: Variation of steel stress in transfer zone	114
Figure C.20: Variation of steel stress in transfer zone	114
Figure C.21: Variation of steel stress in transfer zone	115
Figure C.22 : Variation of steel stress in transfer zone	115
Figure C.23: Variation of steel stress in transfer zone	116
Figure C.24: Variation of steel stress in transfer zone	116
Figure C.25: Variation of steel stress in transfer zone	117
Figure C.26: Variation of steel stress in transfer zone	117
Figure C.27: Variation of steel stress in transfer zone	118
Figure C.28: Variation of steel stress in transfer zone	118
Figure C.29: Variation of steel stress in transfer zone	119
Figure C.30: Variation of steel stress in transfer zone	119
Figure C.31: Variation of steel stress in transfer zone	120
Figure C.32: Variation of steel stress in transfer zone	120
Figure C.33: Variation of steel stress in transfer zone	121
Figure C.34: Variation of steel stress in transfer zone	121
University of Moratuwa, Sri Lanka. Figure C.35 Variation of steel stress in transfer zone Electronic Theses & Dissertations	122
Figure C.36: Variation of steel stress in transfer zone	122
Figure C.37: Variation of steel stress in transfer zone	123
Figure C.38: Variation of steel stress in transfer zone	123
Figure C.39: Variation of steel stress in transfer zone	124
Figure C.40: Variation of steel stress in transfer zone	124
Figure C.41: Variation of steel stress in transfer zone	125
Figure C.42 : Variation of steel stress in transfer zone	125
Figure C.43: Variation of steel stress in transfer zone	126
Figure C.44 : Variation of steel stress in transfer zone	126
Figure C.45: Variation of steel stress in transfer zone	127
Figure C.46: Variation of steel stress in transfer zone	127
Figure C.47: Variation of steel stress in transfer zone	128
Figure C.48: Variation of steel stress in transfer zone	128
Figure C.49: Variation of steel stress in transfer zone	129
Figure C.50: Variation of steel stress in transfer zone	129
Figure C.51: Variation of steel stress in transfer zone	130

Figure C.52 : Variation of steel stress in transfer zone	130
Figure C.53 : Variation of steel stress in transfer zone	131
Figure C.54: Variation of steel stress in transfer zone	131
Figure C.55: Variation of steel stress in transfer zone	132
Figure C.56 : Variation of steel stress in transfer zone	132
Figure C.57: Variation of steel stress in transfer zone	133
Figure C.58: Variation of steel stress in transfer zone	133
Figure C.59: Variation of steel stress in transfer zone	134
Figure C.60: Variation of steel stress in transfer zone	134
Figure C.61: Variation of steel stress in transfer zone	135
Figure C.62: Variation of steel stress in transfer zone	135
Figure C.63: Variation of steel stress in transfer zone	136
Figure C.64: Variation of steel stress in transfer zone	136
Figure C.65: Variation of steel stress in transfer zone	137
Figure C.66: Variation of steel stress in transfer zone	137
Figure C.67: Variation of steel stress in transfer zone	138
University of Moratuwa, Sri Lanka. Figure C.68 Variation of steel stress in transfer zone Electronic Theses & Dissertations	138
Figure C.69: Variation of steel stress in transfer zone	139
Figure C.70: Variation of steel stress in transfer zone	139
Figure C.71: Variation of steel stress in transfer zone	140
Figure C.72: Variation of steel stress in transfer zone	140
Figure C.73: Steel stress profile for the controlled detensioning method	141
Figure C.74: Steel stress profile for the controlled detensioning method	142
Figure C.75: Steel stress profile for the controlled detensioning method	143
Figure C.76: Steel stress profile for the controlled detensioning method	144
Figure C.77: Steel stress profile for the controlled detensioning method	145
Figure C.78: Steel stress profile for the controlled detensioning method	146
Figure C.79: Steel stress profile for the controlled detensioning method	147
Figure C.80: Steel stress profile for the controlled detensioning method	148
Figure C.81: Steel stress profile for the controlled detensioning method	149
Figure C.82: Steel stress profile for the controlled detensioning method	150
Figure C.83: Steel stress profile for the controlled detensioning method	151
Figure C.84: Steel stress profile for the controlled detensioning method	152

Figure C.85 : Steel stress profile for the controlled detensioning method	153
Figure C.86: Steel stress profile for the controlled detensioning method	154
Figure C.87: Steel stress profile for the controlled detensioning method	155
Figure C.88: Steel stress profile for the controlled detensioning method	156
Figure C.89: Steel stress profile for the controlled detensioning method	157
Figure C.90: Steel stress profile for the controlled detensioning method	158

NOTATION

A	-area of the cross section
A_{b}	-area of prestressing strand
A_{c}	-area of concrete section
\boldsymbol{B}_{c}	-concrete first moment about the reference axis
A_p	-area of prestressing steel
В	-first moment about the reference axis
C	-radius of outer surface concrete
c_y	-concrete cover to surface of prestressing strand
d_b	-strand diameter
e	-outer radius of cracked zone
\boldsymbol{e}_{y}	-eccentricity of prestressing strand
\boldsymbol{E}	-modulus of elasticity
E_c	- modulus of elasticity of concrete
E_{cr}	- reduced circumferential modulus of elasticity at the outer surface of
_	cracked zone
E_p	- modulus of elasticity of prestressing steel
E_r	-modulus of elasticity in the radial direction
$E_{\it ref}$	-reference modulus of elasticity University of Moratuwa, Sri Lanka modulus of elasticity in the axial direction Electronic Theses & Dissertations
\boldsymbol{E}_{z}	- modulus of elasticity in the axial direction
E_{θ}	- circumferential modulus of elasticity of cracked concrete
f_{cz}	-axial stress in the concrete at a distance z from the free end
f_{pj}	-prestress prior to transfer
f_{si}	-initial prestress
f_{pu}	-ultimate strength of concrete
f_{pz}	-axial stress in the prestressing steel at a distance z from the free end
f_{ι}	-tensile strength of concrete
f_{tr}	- reduced tensile strength of concrete at the outer surface
f_{ci}	-compressive strength of concrete at transfer
$f_{\scriptscriptstyle{m{ heta}}}$	-stress in circumferential direction
h, k, m	-constant in hyperbolic stress-crack width equation for cracked concrete
I	-second moment of inertia
I_c	concrete second moment about the reference axis
l_{t}	-transfer bond length
l_{t_i}	-transfer length of concrete zone i
L	-gauge length
Lc	-extent of radial cracking
N	-number of radial cracks
p D	-interface pressure
P	-prestressing force

P_{j}	-jacking prestressing force
r	-radial distance
r_o	-radius of the unstressed prestressing strand
r_{j}	-radius of the prestressed prestressing strand at jacking
r_n	-radial distance to section n
R	-radial distance to the inner boundary of elastic uncracked section
t	-step size
и	-radial displacement -radial displacement of outer surface of steel cylinder
u_o	
u_{j}	- radial displacement of inner surface of concrete cylinder
u_n	-radial displacement at section n
ur_j	-radial displacement of inner surface of cracked concrete
W	-crack width of radial crack
y	-vertical distance to prestressing steel from section centroid
Z	-distance from the free end of the prestressing steel -length of concrete zone <i>i</i>
Z_i $Ac(t, t)$	t_a) -increased axial strain during the period t_a to t_a
ϕ	-creep coefficient
ψ	-curvature
Δf_i	
$\Delta \sigma_{pr}$	-detensioned pressure for the section i University of Moratuwa, Sri Lanka. -reduced relaxation during the period it Dissertations
$oldsymbol{arepsilon}_{cs}$	-concrete strain -free shrinkage of concrete
$\boldsymbol{\mathcal{E}}_{cz}$	-axial strain of concrete at a distance z from free end
$\boldsymbol{\mathcal{E}}_{pz}$	-axial strain of prestressing steel at a distance z from the free end
$\boldsymbol{\mathcal{E}}_z$	-strain in the radial direction
$\mathcal{E}_{ heta}$	- strain in the circumferential direction
\mathcal{E}_o	- strain at reference point o
μ	-overall coefficient
ν	-Poisson's ratio
V_c	- Poisson's ratio for concrete
V_p	- Poisson's ratio for prestressing steel
σ_r	-normal stress in radial direction
σ_z	- normal stress in axial direction
$\sigma_{\scriptscriptstyle{ heta}}$	- hoop stress acting in the circumferential direction
Σo	-perimeter of the strand
τ	-bond stress