THREE-DIMENSIONAL MODELLING OF EARTH RESISTIVITY FOR NON-UNIFORM SOIL CONDITIONS

K. RAJKUMAR

(159319 E)

Degree of Master of Science in Electrical Engineering

Department of Electrical Engineering

University of Moratuwa Sri Lanka

March 2020

THREE-DIMENSIONAL MODELLING OF EARTH RESISTIVITY FOR NON-UNIFORM SOIL CONDITIONS

K. RAJKUMAR

(159319 E)

Dissertation submitted in partial fulfillment of the requirements for the

Degree Master of Science in Electrical Engineering

Department of Electrical Engineering

University of Moratuwa Sri Lanka

March 2020

DECLARATION OF THE CANDIDATE AND SUPERVISOR

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

.....

Date:

Signature of the candidate

(K. Rajkumar)

The above candidate has carried out research for the Masters Dissertation under my supervision.

.....

.....

Signature of the Supervisor

Date:

(Dr. Asanka Rodrigo)

Abstract

The Grounding Resistance and Soil Resistivity plays a major role for the safe operation of electrical power systems, earthing system design, lightning protection systems etc. the corrosion level underground items like piling pipelines also can be evaluated with ground resistivity profiles.

The researches and standards are mostly referring 2-layer soil conditions and horizontal multi layers, still the results are misinterpreted for different possible types of soil layers.

In this research, three-dimensional modelling of earth resistivity layers done using apparent soil resistivity readings and applying the optimization algorithm. A methodology has been proposed to model the actual soil resistivity and layer thickness for a multi-layered soil structure. The apparent earth resistivity measured using Wenner four - point method. The readings further analyzed with MATLAB using genetic algorithm (GA).

The results provided by the GA Constitute the three-dimensional modelling of actual earth resistivity profile for a non-uniform soil. The nobility of the research is to obtain the multilayer soil characteristics and conclude it to a three-dimensional model through the measurements in soil electric properties in the top surface soil.

Keywords: Soil Resistivity Measurements, Multilayered Soil, Genetic Algorithms (GSs), Optimization.

Acknowledgement

This research study was carried out in partial fulfillment of the Master of Science in Electrical Engineering at University of Moratuwa.

It is my great pleasure to express gratitude to those who were behind me in completing my research project.

First and foremost, I wish to express my gratitude towards Dr. Asanka Rodrigo for providing this visionary concept to study, the invaluable support and continuous guidance provided throughout the period in order to complete this research.

My sincere thanks go to Mr. Manjula Perera – MD - WindForce (Pvt) Ltd., Prof. W.D. Anura S. Wijayapala - CEO - WindForce (Pvt) Ltd and all my colleagues at WindForce (Pvt) Ltd who helped me in many ways during this period.

Further, I thank to the academic and nonacademic staff of University of Moratuwa, University of Jaffna for the great support they have rendered throughout this research study as well as MSc Program.

Last but not least, I would express my heartiest gratitude and love to my family members who took a lot of burden and patient, which helped me to complete this work in difficult circumstances.

Table of Contents

DECLARATION OF THE CANDIDATE AND SUPERVISOR	i
Abstract	ii
Table of Contents	iv
List of Figures	vi
List of Tables	ix
List of Abbreviations	ix
1. INRODUCTION	1
1.1. Background	1
1.2. Objectives of study	2
1.3. Motivation	2
1.4. Methodology	2
2. LITERATURE REVIEW	4
3. SOIL LAYER MODELS	7
4. CALCULATIONS	8
4.1. Soil Model	8
4.2. Wenner method	13
4.3. Mathematical Model	
4.4. Analysis	21
4.4.1. Equation Development	
4.4.2. Genetic Algorithm	
4.4.3. Algorithm Development	
 FIELD MEASUREMENTS 	
5.1. Preliminary Test	

5.2. Earth Resistivity Measurement Plan	27
5.2.1. Wenner Four Probe Measurement Plan	27
5.2.2. Topsoil Measurement Plan	27
5.3. Location 1	28
5.3.1. Earth Resistivity Wenner Method Measurements	29
5.3.2. Topsoil Resistivity Measurements	33
5.4. Location 2	35
5.4.1. Earth Resistivity Wenner Method Measurements	36
5.4.1. Top Soil Resistivity Measurements	
6. ANALYTICAL RESULTS	41
6.1. Measurements	41
6.2. Location 1 - 10 MW Solar Power Plant - Vavuniya	44
6.2.1. Results Validation	49
6.3. Location 2 - 20 MW Wind Power Plant - Kilinichchi	52
6.3.1. Results Validation	57
7. CONCLUSIONS AND RECOMMENDATIONS	58
7.1. Achievement of Objective and Research Outcome	58
7.2. Limitations of the study	58
7.3. Applications and Recommendations	59
8. References	60

List of Figures

Figure 3.1: Soil Layers	7
Figure 4.1: Soil Electrical Property Model	8
Figure 4.2: Current Flow in Homogeneous Media due to Single Electrode	9
Figure 4.3: Current Flow in Homogeneous Media due to Two Electrodes	9
Figure 4.4: Current Flow path in 3-Dimensional view and equipotential lines	10
Figure 4.5: Current Flow path variation in soil layers	10
Figure 4.6: Current flow path with different probe spacings	11
Figure 4.7: Apparent Earth Resistivity Graph1	11
Figure 4.8: Apparent Earth Resistivity Graph2	11
Figure 4.9: Wenner method with equally spaced test probes	13
Figure 4.10: Two-layer Earth Model	17
Figure 4.11: Three-layer Earth Model	20
Figure 4.12: Multi-layer Earth Model	20
Figure 4.13: Horizontal Soil Layers	21
Figure 4.14: Global Optimization Approaches	22
Figure 4.15: Data Acquisition of the Algorithm	23
Figure 4.16: Flowchart of GA evaluation process for the proposed framework	24
Figure 5.1: Digital Earth Resistance Meter GEOHM 5	25
Figure 5.2: Apparent Resistivity (pa) vs distance between the electrodes	26
Figure 5.3: Apparent Earth Resistivity Reading Measurement Plan	27
Figure 5.4: Soil box for soil resistivity measurement	27
Figure 5.5: Created Soil box for soil resistivity measurement	28
Figure 5.6: Selected area for the field measurement – Location 1	28
Figure 5.7: Selected area on the map	29
Figure 5.8: Earth Resistivity Measurement	29
Figure 5.9: Earth Resistivity Measurement	30
Figure 5.10: Earth Resistivity probe arrangement – Location 1	30
Figure 5.11: Top soil excavation and soil box filling	33
Figure 5.12: Soil box testing for location 1	33

Figure 5.13: Soil box dimensions	34
Figure 5.14: Soil box Readings	34
Figure 5.15: Selected area for the field measurement – Location 2	35
Figure 5.16: Selected area on the map	35
Figure 5.17: Earth Resistivity Measurement	36
Figure 5.18: Earth Resistivity probe arrangement – Location 2	36
Figure 5.19: Top soil excavation and soil box filling	39
Figure 5.20: Soil box testing for location 2	39
Figure 5.21: Soil box dimensions	40
Figure 5.22: Soil box Readings	40
Figure 6.1: Wenner four probe earth resistivity measurement method	41
Figure 6.2: 1 m Probe Spacing Data Coordinates	41
Figure 6.3: 2 m Probe Spacing Data Coordinates	42
Figure 6.4: 3 m Probe Spacing Data Coordinates	42
Figure 6.5: 4 m Probe Spacing Data Coordinates	43
Figure 6.6: 5 m Probe Spacing Data Coordinates	43
Figure 6.7: 1 m Probe Spacing Resistivity Data Plot	44
Figure 6.8: 2 m Probe Spacing Resistivity Data Plot	44
Figure 6.9: 3 m Probe Spacing Resistivity Data Plot	45
Figure 6.10: 4 m Probe Spacing Resistivity Data Plot	45
Figure 6.11: 5 m Probe Spacing Resistivity Data Plot	46
Figure 6.12: All Probe Spacing Resistivity Readings Data Plot – Location 1	46
Figure 6.13: Final Results- 3 D Modelling of Earth Resistivity for Location 1	49
Figure 6.14: Borehole Locations	49
Figure 6.15: Borehole excavation	50
Figure 6.16: Borehole Location 1	50
Figure 6.17: Rock at 2m Depth	50
Figure 6.18: Rock Sample from the Large Bed Rock	50
Figure 6.19: Borehole Location 2	51
Figure 6.20: Borehole up to 3.5 m	51
Figure 6.21: 1 m Probe Spacing Resistivity Data Plot	52
Figure 6.22: 2 m Probe Spacing Resistivity Data Plot	52

Figure 6.23: 3 m Probe Spacing Resistivity Data Plot	53
Figure 6.24: 4 m Probe Spacing Resistivity Data Plot	53
Figure 6.25: 5 m Probe Spacing Resistivity Data Plot	54
Figure 6.26: All Probe Spacing Resistivity Readings Data Plot – Location 2	54
Figure 6.27: Final Results- 3 D Modelling of Earth Resistivity for Location 2	57

List of Tables

Table 4.1: Average soil resistivity for common soil types	12
Table 5.1: Resistivity Measurements	26
Table 5.2: Apparent Earth Resistivity Readings – Location 1	31
Table 5.3: Soil box Measurements	34
Table 5.4: Apparent Earth Resistivity Readings – Location 2	37
Table 5.5: Soil box Measurements	40
Table 6.1: Apparent Resistivity Readings from the Data Plot	47
Table 6.2: Final Results from the Genetic Algorithm Optimization	48
Table 6.3: Apparent Resistivity Readings from the Data Plot	55
Table 6.4: Final Results Generated with Genetic Algorithm Optimization	56

List of Abbreviations

Description
Institute of Electrical and Electronics Engineers
British Standards
Genetic Algorithm

List of Appendices

Appendix	Description
Appendix A	Soil test report of 20 MW Wind Power Plant, Kilinochchi
Appendix B	Research Papers