

APPLICATION OF MATHEMATICAL MODELLING FOR ASSESSMENT OF NEARSHORE WAVE CLIMATE

By D.P.L.RANASINGHE

THIS THESIS WAS SUBMITTED TO THE DEPARTMENT OF CIVIL ENGINEERING OF THE UNIVERSITY OF MORATUWA IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA MORATUWA SRI LANKA

2008

91200

Abstract

In Sri Lanka, nearshore wave climate is influenced by the simultaneous occurrence of swell waves approaching from a more or less southerly direction and sea waves mainly influenced by monsoonal weather pattern. Some nearshore areas are also vulnerable for occasional impact of cyclonic wave conditions. This complexity and high degree of temporal and spatial variability of waves clearly emphasize the need for accurate assessment of near shore wave climate.

The lack of wave recordings at nearshore location restricts the assessment of nearshore wave climate to some extent. This deficiency in wave data can be overcome by transforming waves from location at which wave data are available through wave propagation modelling. This research study is aimed to develop two dimensional mathematical model based on an irregular wave description capable of simulating wave propagation from offshore to nearshore considering wave transformations due to shoaling, refraction , wave breaking and bottom friction dissipation. The wave conservation equation and the model of Battjes and Janssen were used as the basis to develop the model.

Galle (70m depth) is considered as offshore location which represents the entire deep water wave climate off the southern offshore coast. Hambantota (17m depth) and Kudawella(I5m depth) were selected as nearshore locations to establish the directional wavestatistics for swell and sea waves by applying the developed mathematical model.

Finally based on obtained nearshore wave data base, predictions for extreme wave conditions were made as design wave parameters for coastal and harbour structures. Extremewave heights analysis were done for both offshore and nearshore locations in southerncoast of Sri Lanka using two statistical extreme value probability distributions, namely Gumbel (Fischer-Tippet Type 1) distribution and the Weibull distribution

LB/DON/47/08

APPLICATION OF MATHEMATICAL MODELLING FOR ASSESSMENT OF NEARSHORE WAVE CLIMATE

LIBRARY -UNNERSITY OF LIORATUWA, STILLIUA MORATUWA

By

D.P.L.RANASINGHE

THIS THESIS WAS SUBMITTED TO THE DEPARTMENT OF CIVIL ENGINEERING OF THE UNIVERSITY OF MORATUWA IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR DEGREE OF MASTER OF SCIENCE

C: C: 6:4(045)

ć, ب²

DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA MORATUWA SRI LANKA

91200

JUNE 2008

University of Moratuwa 91200

91200

DECLARATION

I certify that this dissertation does not incorporate without acknowledgement of any material previously submitted for a Degree or Diploma in any University and to the best of my knowledge and belief it does not contain any material previously published or written or orally communicated by another person except, where due reference is made in the text.

D.P.L D.P.L.RANASINGHE

Admission No: 06/8023

Certified by

UOM Verified Signature

Dr. P.P.Gunaratna (Supervisor)

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

CONTENTS

÷

.4

*

y

4

Table of contents	i
List of Tables	iii
List of Figures	vi
Acknowledgement	ir
Abstract	r
110517 401	Х
Chapter 1	
1.0 INTRODUCTION	001
1.1 Background	001
1.2 Scope of the Study	002
1.3 Objectives	002
Chapter 2	
2.0 COASTAL ENVIRONMENT	004
2.1 Coastal Zone	004
2.2 Types of Fluid Motions in Sea	007
2.2.1 Tides	007
2.2.2 Waves	007
2.2.3 Currents	008
2.2.4 Storm Surgest consists of Monotonic Seri Los	009
2.2.5 Electronic Theses & Dissertation	ns 009
Chapter www.lib.mrt.ac.lk	
3.0 WAVE CHARACTERISTICS	011
3.1 Wave Generation	011
3.2 Regular Waves	012
3.2.1 Small Amplitude Wave Theory	012
3.2.2 Higher Order Wave Theories	014
3.3 Transformation of Irregular Waves	015
3.3.1 Wave Shoaling	016
3.3.2 Wave Refraction	017
3.3.3 Wave Diffraction	018
3.3.4 Wave Reflection	019
3.3.5 Wave Decay due to Bottom Friction	019
3.3.6 Wave Breaking	020
3.4 Irregular Waves	024
3.4.1 Irregular Waves in Deep Water	024
3.4.2 Irregular Waves in Shallow Water	026
Chapter 4	
4.0 LITERATURE REVIEW	028
4.1 Wave Propagation Models	028
4.1.1 Simple Models	029
4.1.2 Complex Models	031

4.2 Rev	iew of Available wave data	034
4.2.1	General	034
4.2.2	Wave Measurements	034

Chapter 5

5.0 MAT	HEMATICAL MODEL FOR WAVE PROPAGATION	037
5.1 Basic	Approach	037
5.1.1	The wave conservation equation	037
5.1.2	The model of Battjes & Janssen	039
5.2 Mathe	ematical model	041
5.2.1	Introduction	041
5.2.2	Input data for the model	042
5.2.3	Output data from the model	042
5.2.4	Computational steps in the numerical Scheme	042
5.3 Limita	ations	044

Chapter 6

4

4

¥

ŧ

6.0 APPLICATION OF THE MODEL	045
6.1 Wave transformation	045
6.2 Selected locations	046
6.3 Assessment of offshore wave climate	046
6.4 Model setup University of Moratuwa Sri Lanka	048
6.5 Waye transformation matrices	049
6.6 Assessment of nearshore wave climate Dissertations	056
6.7.1 Hambantotavw.lib.mrt.ac.lk	056
6.7.2 Kudawella	075
6.7 Extreme wave height analysis	094
6.7.1 Extreme wave height at offshore	097
6.7.2 Extreme wave height at nearshore	100

Chapter 7

7.0 RESULTS & DISSCUSSION	111
7.1 Offshore Wave Climate	111
7.2 Nearshore Wave Climate	113
7.2.1 Hambantota	113
7.2.2 Kudawella	116
7.3 Comparison of Results	119

Chapter	8	
8.0 CO	NCLUSION & RECOMMENDATIONS	123
8.1 Con	clusion	123
8.1.1	Application of Mathematical Model	123
8.1.2	Offshore Wave Climate	123
8.1.3	Nearshore Wave Climate	123
8.2 Rec	ommendations	124

List of References

List	of	Tab	les
------	----	-----	-----

7

.

Table 3.1	Wave Classification	014
Table 4.1	Summary of the Simple Nearshore Wave Models	033
Table 4.2	Summary of the Complex Nearshore Wave Models	033
Table 4.3	The Summary of Available Wave Data in Southern Sri Lanka	036
Table 6.1	Selected Locations for Model Application	046
Table 6.2	Summary of Swell and Sea Wave Directional Distribution at Galle 70m	048
Table 6.3	Details of Model Bathymetries	048
Table 6.4	Wave conditions at Up Wave boundary	049
Table 6.5	Transformation Matrices for Swell Waves-Deep Water to Galle 70m	050
Table 6.6	Transformation Matrices for Sea Waves-Deep Water to Galle 70m	051
Table 6.7	Transformation Matrices for Swell Waves-Deep Water to Hambantota 17m	052
Table 6.8	Transformation Matrices for Sea Wayes-Deep Water to Hambantota 17m	053
Table 6.9	Transformation Matrices for Swell Waves-Deep Water to Kudawella 15m	054
Table 6.10	Transformation Matrices for Sea Waves-Deep Water to Kudawella 15m	055
Table 6.11	Summary of Swell Wave Transformation-Hambantota 17m	061
Table 6.12	Summary of Sea Wave Transformation-Hambantota 17m	061
Table 6.13	Directional Wave Statistics-Hambantota 17m-Swell Waves-South West Monsoon Season	063
Table 6.14	Directional Wave Statistics-Hambantota 17m-Swell Waves-Inter Monsoon	064
Table 6.15	Directional Wave Statistics-Hambantota 17m-Swell Waves-North East Monsoon Season	065
Table 6.16	Directional Wave Statistics-Hambantota 17m-Swell Waves-Inter Monsoon	066
Table 6.17	Directional Wave Statistics-Hambantota 17m-Sea Waves-South West	067
Table 6.18	Directional Wave Statistics-Hambantota 17m-Sea Waves-Inter Monsoon 1	068
Table 6.19	Directional Wave Statistics-Hambantota 17m-Sea Waves-North East Monsoon Season	069

iii

Table 6.20	Directional Wave Statistics-Hambantota 17m-Sea Waves-Inter Monsoon 2 Season	070
Table 6.21	Summary of Swell and Sea Wave Condition at Hambantota 17m	075
Table 6.22	Summary of Swell Wave Transformation-Kudawella 15m	080
Table 6.23	Summary of Sea Wave Transformation-Kudawella 15m	080
Table 6.24	Directional Wave Statistics-Kudawella 15m-Sea Waves-South West Monsoon Season	082
Table 6.25	Directional Wave Statistics-Kudawella 15m-Swell Waves-Inter Monsoon 1	083
Table 6.26	Directional Wave Statistics-Kudawella 15m-Swell Waves-North East	003
Table 6.27	Monsoon Season Directional Wave Statistics-Kudawella 15m-Swell Waves-Inter Monsoon 2	085
Table 6.28	Directional Wave Statistics-Kudawella 15m-Sea Waves-South West	005
Table 6.29	Directional Wave Statistics-Kudawella 15m-Sea Waves-Inter Monsoon 1	000
Table 6.30	Season Directional Wave Statistics-Kudawella 15m-Sea Waves-North East	087
Table 6.31	Monsoon Season Directional Wave Statistics-Kudawella 15m-Sea Waves-Inter Monsoon 2 Season	088
Table 6.32	Summary of Swell and Sea Wave Condition at Kudawella 15m	094
Table 6.33	Results of Extreme Significant Wave Height Analysis Galle 70m Swell Waves All Yearway hib mrt ac lk	099
Table 6.34	Results of Extreme Significant Wave Height Analysis-Galle 70m Sea Waves-North East Monsoon Season	099
Table 6.35	Results of Extreme Significant Wave Height Analysis-Galle 70m Sea Waves-South West Monsoon Season	100
Table 6.36	Constants for Unbiased Plotting Position	101
Table 6.37	Return Period Related to Each Distribution-Hambantota Swell- All Year	105
Table 6.38	Return Period Related to Each Distribution-Hambantota Sea- South West Monsoon Season	105
Table 6.39	Return Period Related to Each Distribution-Hambantota Sea- North East Monsoon Season	105
Table 6.40	Return Period Related to Each Distribution- Kudawella Swell - All Year	109
Table 6.41	Return Period Related to Each Distribution- Kudawella Sea- South West	110
Table 6.42	Return Period Related to Each Distribution- Kudawella Sea- North East	110
Table 7 1	Monsoon Season	110
14018 /.1	Swen wave Condition at Gane Onshore-/Uni	111

4

-

>

4

iv

Table 7.2	Sea wave Condition at Galle offshore-70m	111
Table 7.3	Estimated Extreme Wave Occurrences at Galle 70m Water Depth Swell Waves – All Year	112
Table 7.4	Estimated Extreme Wave Occurrences at Galle 70m Water Depth Sea Waves – South West Monsoon Season	112
Table 7.5	Estimated Extreme Wave Occurrences at Galle 70m Water Depth Sea Waves – North East Monsoon Season	112
Table 7.6	Swell Wave Condition at Hambantota-17m	113
Table 7.7	Sea wave Condition at Hambantota-17m	114
Table 7.8	Extreme Wave Condition at Hambantota-17m-Swell Waves-All year	114
Table 7.9	Extreme Wave Condition at Hambantota-17m-Sea Waves -South West Monsoon Season	115
Table 7.10	Extreme Wave Condition at Hambantota-17m-Sea Waves -North East Monsoon Season	115
Table 7.11	Swell Wave Condition at Kudawella-15m	117
Table 7.12	Sea Wave Condition at Kudawella-15m	117
Table 7.13	Extreme Wave Condition at Kudawella-15m-Swell Waves-All year	117
Table 7.14	Extreme Wave Condition at Kudawella-15m-Sea Waves -South West Monsoon Season Diversity of Moratuwa, Sri Lanka.	118
Table 7.15	Extreme wave Condition at Kudawella 15m Sea Waves North East Monsoon Seasonyww.lib.mrt.ac.lk	118

List of Figures

4

4

4

Fig. 2.1	The Terminology Associated with "Coastal Zone"	005
Fig. 2.2	The Distribution of Energy among Different Wave Motions	010
Fig. 3.1	Definition Sketch – Small Amplitude Wave Motion	013
Fig. 3.2	Variation of Shoaling Coefficient with Depth	016
Fig. 3.3	Wave Refraction	017
Fig. 3.4	Wave Diffraction Pattern at a Semi Infinite Breakwater	018
Fig. 3.5	Wave Breaker Types	021
Fig. 3.6	Breaker Height index vs Deepwater Wave Steepness	023
Fig. 3.8	Wave Spectrum with Sea and Swell	025
Fig. 5.1	Derivation of the Wave Conservation Equation in Wave Ray Form	037
Fig. 5.2	Typical Grid Domain Used for the Model	041
Fig. 6.1	Directional Distribution of Swell Waves at Galle 70m E All Seasons	047
Fig. 6.2	Directional Distribution of Sea Waves at Galle 70m – All Seasons	047
Fig. 6.3	Directional Distribution of Swell Waves at Hambantota17m-Recorded	057
Fig. 6.4	Directional Distribution of Swell Waves at Hambantota17m-Recorded	057
2	and Transformed Wave Data –Inter Monsoon 1	057
Fig. 6.5	Directional Distribution of Swell Waves at Hambantota17m-Recorded	0.50
	and Transformed Wave Data –North East Monsoon	058
Fig. 0.0	and Transformed Wave Data Inter Monsoon 2	058
Fig. 6.7	Directional Distribution of Sea Waves at Hambantota17m-Recorded and	050
1.8.011	Transformed Wave Data –South West Monsoon	059
Fig. 6.8	Directional Distribution of Sea Waves at Hambantota17m-Recorded and	
	Transformed Wave Data –Inter Monsoon 1	059
Fig. 6.9	Directional Distribution of Sea Waves at Hambantota17m-Recorded and	0.00
Ein (10	Transformed Wave Data –North East Monsoon	060
Fig. 6.10	Transformed Wave Data Inter Monsoon 2	060
Fig. 6.11	Directional Distribution of Swell Waves Established for Hambantota	000
	17m- South West Monsoon Season	071
Fig. 6.12	Directional Distribution of Swell Waves Established for Hambantota	
	17m- Inter Monsoon 1 Season	071

vi

Fig. 6.13 Directional Distribution of Swell Waves Established for Hambantota	072
Fig. 6.14 Directional Distribution of Swell Wayes Established for Hambantota	072
17m- Inter Monsoon 2 Season	072
Fig. 6.15 Directional Distribution of Sea Waves Established for Hambantota 17m-	
South West Monsoon Season	073
Fig. 6.16 Directional Distribution of Sea Waves Established for Hambantota 17m-	072
Inter Monsoon I Season Fig. 6.17 Directional Distribution of Sea Wayee Established for Hambantota 17m	075
North East Monsoon Season	074
Fig. 6.18 Directional Distribution of Sea Waves Established for Hambantota 17m-	07.
Inter Monsoon 2 Season	074
Fig. 6.19 Directional Distribution of Swell Waves at Kudawella 15m-Recorded	
and Transformed Wave Data –South West Monsoon	076
Fig. 6.20 Directional Distribution of Swell Waves at Kudawella 15m-Recorded	
and Transformed Wave Data –Inter Monsoon 1	076
Fig. 6.21 Directional Distribution of Swell Waves at Kudawella 15m-Recorded	
and Transformed Wave Data –North East	077
Fig. 6.22 Directional Distribution of Swell Waves at Kudawella 15m-Recorded	077
and Transformed Wave Data –Inter Monsoon	0//
Fig. 6.23 Directional Distribution of Sea Waves at Kudawella 15m-Recorded and	078
Fig. 6.24 Directional Distribution of Sea Wayes at Kudayella 15m Recorded and	078
Transformed Wave Data - Inter Monsoon 1	078
Fig. 6.25 Directional Distribution of Sea Wayes at Kudawella 15m-Recorded and	0.0
Transformed Wave Data –North East	079
Fig. 6.26 Directional Distribution of Sea Waves at Kudawella 13m-Recorded and	
Transformed Wave Data - Inter Monsoon 2	079
Fig. 6.27 Directional Distribution of Swell Waves Established for Kudawella 15m-	
South West Monsoon Season	090
Fig. 6.28 Directional Distribution of Swell Waves Established for Kudawella 15m-	000
Inter Monsoon 1 Season	090
Fig. 6.29 Directional Distribution of Swell Waves Established for Kudawella 15m-	001
North East Monsoon Season Fig. 6 20 Directional Distribution of Swall Wayor Established for Kudawalla 15m	091
Fig. 0.50 Directional Distribution of Swell waves Established for Rudawena 15m-	091
Fig. 6.31 Directional Distribution of Sea Wayes Established for Kudawella 15m-	071
South West Monsoon Season	092
Fig. 6.32 Directional Distribution of Sea Wayes Established for Kudawella 15m-	
Inter Monsoon 1 Season	092
Fig. 6.33 Directional Distribution of Sea Waves Established for Kudawella 15m-	
North East Monsoon Season	093
Fig. 6.34 Directional Distribution of Sea Waves Established for Kudawella 15m-	
Inter Monsoon 2 Season	093
Fig. 6.35 Extreme Wave Heights of Swell Waves at Hambantota 17m- All Year-	100
Weibull Distribution	102
Fig. 6.36 Extreme Wave Heights of Swell Waves at Hambantota 17m- All Year-	100
Gumbel Distribution	102

*

vii

Fig.	6.37	Extreme Wave Heights of Sea Waves at Hambantota 17m- North East	100
		Monsoon Season-Weibull Distribution	103
Fig.	6.38	Extreme Wave Heights of Sea Waves at Hambantota 17m- North East	
		Monsoon Season-Gumbel Distribution	103
Fig.	6.39	Extreme Wave Heights of Sea Waves at Hambantota 17m-South West	
		Monsoon Season-Weibull Distribution	104
Fig.	6.40	Extreme Wave Heights of Sea Waves at Hambantota 17m-South West	
		Monsoon Season-Gumbel Distribution	104
Fig.	6.41	Extreme Wave Heights of Swell Waves at Kudawella 15m- All Year-	
		Weibull Distribution	106
Fig.	6.42	Extreme Wave Heights of Swell Waves at Kudawella 15m- All Year-	
		Gumbel Distribution	107
Fig.	6.43	Extreme Wave Heights of Sea Waves at Kudawella 15m- North East	
		Monsoon Season-Weibull Distribution	107
Fig.	6.44	Extreme Wave Heights of Sea Waves at Kudawella 15m- North East	
		Monsoon Season -Gumbel Distribution	108
Fig.	6.45	Extreme Wave Heights of Sea Waves at Kudawella 15m- South West	
		Monsoon Season-Weibull Distribution	108
Fig.	6.46	Extreme Wave Heights of Sea Waves at Kudawella 15m- South West	
		Monsoon Season-Gumbel Distribution	109
Fig	71	Extreme Wave Heights at Hambantota	116
1.9.	/ . 1		
Fig	7.2	Extreme Wave Heights at Kudawella	119
9			
Fig	7.3	Comparison of Results-Hambantota-Swett Waves-Att Yearka	120
<u>.</u> .		Flectropic Theses & Dissertations	
Fig	7.4	Comparison of Results-Hambantota-Sea Waves-South West Monsoon	100
		Season WWW.IID.mrt.ac.IK	120
Fig	7.5	Comparison of Results-Hambantota-Sea Waves- North East Monsoon	101
		Season	121
Fig	7.6	Comparison of Results-Kudawella-Swell Waves-All Year	122
-			
Fig	7.7	Comparison of Results-Kudawella-Sea Waves-All Year	122

4

1

•

#

viii

Acknowledgement

I would like to express my deepest gratitude to **Dr P. P. Guneratna**, Senior Lecturer, Department of Civil Engineering, University of Moratuwa, supervisor of the project for his guidance and encouragement towards the successfully completion of the project from the time of beginning. Without his constructive ideas and feedback throughout the project I would not have succeeded.

My appreciation is also extended to the Chairman of the Research Progress Review Committee of the project **Dr. K. Raveenthiran**, Senior Research Engineer, Lanka Hydraulic Institute Ltd for his constructive comments and guidance.

I convey my appreciation to Senior Lecturer, Department of Civil Engineering, **Dr. S.P. Samarawickrama** acting as a Committee member for my MSc. Research Progress Review Committee and reacting positively for all necessary requests

My gratitude also goes to **Prof. S.A.S. Kulathilake**, Senior Lecturer, Department of Civil Engineering as the research Co-ordinator specially allocating his time to attend progress review proceedings.

I also thank Senarce Research Committee for funding the research. Electronic Theses & Dissertations

With a special consideration W. would like tokthank my all colleagues including Ms. W.C.D.K. Fernando, Ms. E. K. Champika for their fullest corporation.

Credit must be given to the technical staff in Hydraulic Engineering Laboratory headed by **Mr. H.W Kumarasinghe** and **Mr A.A.D.I.A. Jayawardhana** for their kind support

I wish to thank all the **academic and non academic staff members** in Department of Civil Engineering, University of Moratuwa for their support.

Finally I'm indebted to a number of persons who helped me in numerous ways towards successful completion of this project and I thank them all.

Abstract

In Sri Lanka, nearshore wave climate is influenced by the simultaneous occurrence of swell waves approaching from a more or less southerly direction and sea waves mainly influenced by monsoonal weather pattern. Some nearshore areas are also vulnerable for occasional impact of cyclonic wave conditions. This complexity and high degree of temporal and spatial variability of waves clearly emphasize the need for accurate assessment of nearshore wave climate.

The lack of wave recordings at nearshore location restricts the assessment of nearshore wave climate to some extent. This deficiency in wave data can be overcome by transforming waves from location at which wave data are available through wave propagation modelling. This research study is aimed to develop two dimensional mathematical model based on an irregular wave description capable of simulating wave propagation from offshore to nearshore considering wave transformations due to shoaling, refraction, wave voreaking and obottom frietion dissipation. The wave conservation equation and the model of Battjes and Janssen were used as the basis to www.lib.mrt.ac.lk

Galle (70m depth) is considered as offshore location which represents the entire deep water wave climate off the southern offshore coast. Hambantota (17m depth) and Kudawella (15m depth) were selected as nearshore locations to establish the directional wave statistics for swell and sea waves by applying the developed mathematical model.

Finally based on obtained nearshore wave data base, predictions for extreme wave conditions were made as design wave parameters for coastal and harbour structures. Extreme wave heights analysis were done for both offshore and nearshore locations in southern coast of Sri Lanka using two statistical extreme value probability distributions, namely Gumbel (Fischer-Tippet Type 1) distribution and the Weibull distribution