MODELING WEEKLY RAINFALL IN COLOMO CITY

Hondaarachchi Patabendige Thanuja Nilanthi Silva

(168001A)

Thesis submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy

Department of Mathematics

University of Moratuwa Sri Lanka

April 2020

DECLARATION

õl declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.ö

õAlso, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).ö

Signature:

Date: 28.05.2020

The above candidate has carried out research for the PhD thesis under my supervision.

Name of the supervisor: Senior Professor T. S. G. Peiris

A Thasilva

Signature of the supervisor:

Preseives

Date: 28.05.2020

ABSTRACT

Modeling weekly rainfall has become a demanding assignment due to the complexity of rainfall pattern. Accurate inferences on weekly rainfall prediction facilitate to fill the noticeable gap with respect to the climate monitoring to reduce the climate stress in the country. However, relatively, few measures have been taken to perform the modeling of rainfall in the context of long memory. This study therefore, provides an assessment of such a phenomenon by fitting a novel time series models to weekly rainfall. As the weekly rainfall exhibits the blend features of long memory and time dependence variance, various class of long memory models were fitted by accounting the heteroskedasticity. The best fitted model developed is ARFIMA-GARCH for deseasonalized data. The model was trained using weekly rainfall data from 1990 to 2014 and validated using data from 2015 to 2017 in Colombo city, obtained from the Department of Meteorology, Sri Lanka. The exact maximum likelihood estimation method was utilized to estimate model parameters. For the evaluation of the suitability of the method for parameter estimation, Monte Carlo simulations were carried out with various non seasonally and seasonally fractionally differenced parameter values along with the variance model parameters. The forecasting performance of the five types of long memory models developed was evaluated based on the novel index developed using absolute error for an independent data set in addition to the classical indicators. The rainfall percentiles with the 95% confidence intervals were also developed by exploring temporal variability of weekly rainfall based on parametric approach and bootstrapping approach. It was found that the high likelihood to form extreme rainfall events during beginning of South West Monson (SWM) (30th April to 10th June) and during withdrawal of SWM rainfall (17th-30th September) as well as with the time span from 8th October to 11th November during Second Inter Monsoon (SIM) rainfall. Based on the real coverage probabilities which derived using bootstrap calibration, it was found that there is a discrepancy of the nominal and calculated coverage probabilities of the 95% confidence intervals of rainfall percentiles. The deviation of the normality of the fitted distribution with the small size of sample could be a reason for the such a disparity. The novel long range dependency model is recommended to be used in forecasting weekly rainfall in Colombo city in Sri Lanka since the forecasting performance of the new model is not much diluted with the increase of the forecasting length. The study highlights various challenges for applied statisticians in modeling weekly rainfall.

Keywords: Weekly Rainfall, Long Range Dependency, ARFIMA-GARCH, Forecasting, Coverage Probability, South West Monsoon **DEDICATION**

To My Mother, Stather, Husband and Lovely OSon

ACKNOWLEDGEMENTS

I would like to convey my sincere gratitude to all the eminent people who helped me to complete this research successfully. Firstly, and foremost, I express my heartiest thanks to my supervisor, Prof. T. S. G. Peiris, Senior Professor in Applied Statistics and former Head of the Department of Mathematics, Faculty of Engineering, University of Moratuwa, whose immense knowledge, experience and valuable guidance helped me greatly to complete this research successfully. My sincere appreciation to Prof. S. Samitha, Department of Crop Science, University of Peradeniya who helped me to initiate the research.

I am much obligated to acknowledge gratefully the support extended by the University research grant committee and leave committee, University of Sri Jayewardenepura, Sri Lanka for offering me a research grant (Grant No. ASP/01/RE/HSS/2016/75) and study leave which facilitated the successful completion of this research.

I would like to express my immense thanks to Dr. G. Sanjaya Dissanayake, and Prof. Shelton Peiris, School of Mathematics and Statistics, University of Sydney, Australia for their valuable advice, guidance and inspiration for the successful achievement of my research. I would also like to express my thanks to Prof. Thomas Mathew, University of Maryland Baltimore Country (UMBC), USA for providing his valuable advice and suggestions related to my research during his short visit to the Department of Mathematics, University of Moratuwa.

My heartiest gratitude to the members of my progress review committee, Prof. (Mrs.) N.R. Abeynayake and Dr. (Mrs.) S.C. Mathugama for their valuable suggestions and constructive comments to improve the quality of my research. Also, I would like to thank to Dr. P.M. Edirisinghe, research Coordinator in the Department of Mathematics, University of Moratuwa for giving vital advice and suggestions related to my research.

I would like to express my thanks to Dr. Duminda Kuruppuarachchi, University of Otago, New Zealand for giving great support to me for the successful achievement of my research and my thank also goes to Mr. K. H. M. S. Premalal, a former Director General of the Department of Meteorology, Sri Lanka for giving advice and suggestions to enhance the quality of my research.

I am greatly indebted to Mrs. K. A. D. S. A. Nanayakkara who always encouraged me throughout the period of research by sharing her knowledge and providing her valuable suggestions related to the research. I would like to express my thanks to Mr. J. A. A. U.Weerasena for giving great support to me to success of my research journey and I would like to express my sincere thanks to, Mrs. R. M. K. G. U. Rathnayake and Mrs. P. A. C. P. P. Arachchi, who encouraged me to initialize the study. I would also like to thank all the academic and non-academic members of the Department of Social Statistics, University of Sri Jayewardenapura and all the academic and non-academic members of the Department of Mathematics, University of Moratuwa for their assistance throughout my study.

Last but not the least, I am ever grateful to my mother, father, my husband and my lovely son for their support and encouragement in achieving my goals throughout the period of my research. Their good deeds, indeed, a source of inspiration and a hall mark which gave me motivation.

TABLE OF CONTENTS

DEC	LARATION	ii
ABS	TRACT	iii
DED	ICATION	iv
ACK	NOWLEDGEMENTS	v
TAB	LE OF CONTENTS	vii
LIST	OF TABLES	xii
LIST	OF FIGURES	xvii
LIST	OF ABBREVIATIONS	xxi
1.	INTRODUCTION	
1.1.	Background	1
1.2.	Climate Change in Sri Lanka	2
1.3.	Annual Rainfall Pattern in Sri Lanka	3
1.4.	Impact of Unpredicted Rainfall	5
1.5.	Motivation to the Study	7
1.6.	Objectives of the Study	9
1.7.	Chapter Outline	9
2.	LITERATURE REVIEW	
2.1.	Prediction of Rainfall Using ARIMA/SARIMA	11
	2.1.1. Prediction of Annual Rainfall	11
	2.1.2. Prediction of Seasonal Rainfall	12
	2.1.3. Prediction of Monthly Rainfall	12
	2.1.4. Prediction of Weekly Rainfall	16
2.2.	Use of Artificial Neural Network for Modeling Rainfalls	17
2.3.	Use of Multiple Linear Regression for Rainfall Forecasting	21
2.4.	Hybrid Models for Rainfall Forecasting	23
2.5.	Impact of Other Climatic Variables on Rainfall	26
2.6.	Long Memory Models	27

2.6.1. Estimating of Fractional d of ARFIMA Models	27
2.6.2. Use of Long Memory Models	28
2.6.3. Use of Gegenbauer ARMA Models	28
2.6.4. Use of Seasonal Autoregressive Fractionally Integrated	
Moving Average (SARFIMA) Models	28
2.6.5. Models for Capture Heteroskedasticity	29
2.6.6. GARMA Class of Models with Heteroskedasticity	30
2.7. Summary of the Chapter 2	30

3. RESEARCH METHODOLOGY

3.1.	Study Site	32
3.2.	Data Description	32
3.3.	Analysis of the Weekly Rainfall Percentiles for SWM	34
3.4.	Analysis of the Weekly Rainfall Percentiles for SIM	36
3.5.	The Best Fitted Statistical Distribution for Weekly Rainfall	37
3.6.	The Use of Bootstrapping Approach	37
3.7.	Coverage Probability for Weekly Rainfall Percentiles	38
3.8.	Modeling Weekly Rainfall Using Classical Models	38
	3.8.1. Stationary Series	39
	3.8.2. ARIMA Modeling	39
	3.8.3. SARIMA Modeling	40
	3.8.4. Concept of ARCH/GARCH Modeling	40
	3.8.5. Testing for the Serial Correlation	41
	3.8.6. Testing for the ARCH Effect	41
	3.8.7. VAR Modeling	42
	3.8.8. Granger Causality Test	42
3.9.	Modeling Weekly Rainfall Using Novel Approach	42
	3.9.1. The Discrepancy Between Short and Long Memory Series	44
4.	EXPLANATORY DATA ANALYSIS	

4.1.	Descriptive Ana	lysis of Annua	l Rainfall	45
------	-----------------	----------------	------------	----

4.2. Descriptive Analysis of Seasonal Rainfall	46
4.3. Descriptive Analysis of Monthly Rainfall	48
4.4. Explanatory Analysis of Weekly Rainfall	50
4.4.1. Descriptive Analysis of Weekly Rainfall for SWM	50
4.4.2. Descriptive Analysis of Weekly Rainfall for SIM	52
4.4.3. Descriptive Analysis of Weekly Rainfall for FIM	53
4.4.4. Descriptive Analysis of Weekly Rainfall for NEM	55
4.5. Descriptive Analysis of the Weekly Temperature	56
4.5.1. Minimum Weekly Temperature	56
4.5.2. Maximum Weekly Temperature	58
4.5.3. Average Weekly Temperature	59
4.6. Descriptive Analysis of the Relative Humidity	60
4.6.1. Minimum Weekly Relative Humidity	60
4.6.2. Maximum Weekly Relative Humidity	61
4.6.3. Average Weekly Relative Humidity	63
4.7. Descriptive Analysis of the Vapor Pressure	64
4.7.1. Minimum Weekly Vapor Pressure	64
4.7.2. Maximum Weekly Vapor Pressure	65
4.7.3. Average Weekly Vapor Pressure	67
4.8. Summary of the Chapter 4	67
5. COVERAGE PROBABILITY FOR WEEKLY RAINFALL PERCENT	FILES
CONFIDENCE LIMITS	
5.1. Trend Estimation	69
5.2. Weekly Rainfall Percentiles	71
5.3. The 95% Confidence Intervals for the Weekly Rainfall	
Percentiles using Parametric Approach	72
5.3.1. Distribution of Weekly Rainfall	73
5.3.2. Randomness of the Weekly Series	74
5.3.3. Normality of Weekly Rainfall Series	77
5.3.4. Common Distribution for Weekly Rainfall Totals	79
5.3.4.1. Properties of the Best Fitted Models for Weeks in SWM	[81

		5.3.4.2. Properties of the Best Fitted Models for Weeks in SIM	82
	5.3.5.	Confidence Intervals for Weekly Rainfall in SMW	83
	5.3.6.	Confidence Intervals for Weekly Rainfall in SIM	87
5.4	. The 93	5% Confidence Intervals for the Weekly Rainfall	
	Percer	ntiles using Bootstrapping Approach	89
	5.4.1.	Percentile Bootstrap Method	90
		5.4.1.1. CI for Weekly Percentiles in SWM	91
		5.4.1.2. CI for Weekly Percentiles in SIM	93
5.5	. Accura	ate Confidence Interval Bands	94
	5.5.1.	Weibull Distribution	95
	5.5.2.	The Coverage Probability	96
	5.5.3.	Data for the Simulation	97
	5.5.4.	The Simulation Procedure	98
	5.5.5.	Results Obtained from the Simulation	99
5.6	. Summ	ary of the Chapter 5	103
6.	MOD	ELING OF WEEKLY RAINFALL: CLASSICAL TIME SERIES	
	APPR	OACHES	

6.1.	Variability of Weekly Rainfall during 1990-2014	105
6.2.	Identification of ARIMA Model	106
6.3.	Development of GARCH/ARCH Model	114
6.4.	Modeling for Deseasonalized Data	115
6.5.	Modeling Weekly Rainfall with Exogenous Variables using VAR	122
	6.5.1. Modeling Deseasonalized Weekly Rainfall with Exogenous	
	Variables	130
6.6.	Summary of the Chapter 6	135
7.	NOVEL APPROACH TO MODEL WEEKLY RAINFALL	
7.1.	Concept for New Modeling	137
7.2.	ARFIMA Long Range Dependency Model	138
7.3.	Results of Monte Carlo Simulation - ARFIMA (0,d,0)	141

7.4. Modeling Weekly Rainfall Using ARFIMA Model 143

	7.4.1. Residual Analysis for the Model ARFIMA (4, 0.05792421, 4)	144
7.5.	ARFIMA Long Range Dependency Model for Deseasonalized Data	148
	7.5.1. Residual Analysis	149
7.6.	ARFIMA Long Range Dependency Model with Heteroskedasticity	153
7.7.	The Results of Monte Carlo Simulation - ARFIMA-GARCH	155
7.8.	Modeling Weekly Rainfall Using ARFIMA-GARCH Model	158
	7.8.1. Residual Analysis for the Model ARFIMA	
	(4,0.116577,6)-GARCH(1,1)	160
7.9.	ARFIMA Long Memory Model for Desesonalized	
	data with Heteroskedasticity	162
	7.9.1. Residual Analysis for the Model ARFIMA	
	(6,0.243588,5) -GARCH(1,1) for Deseasonalized Series	164
7.10	Adjusted SARFIMA -GARCH Long Range Dependency Model	166
7.11	. The Result of Monte Carlo Simulation - Adjusted	
	SARFIMA-GARCH	168
7.12	Modeling Weekly Rainfall Using Adjusted SARFIMA-GARCH Model	172
7.13	Comparison of the Five Long Range Dependency Models	175
7.14.	. Summary of the Chapter 7	180
8.	CONCLUSIONS, RECOMMENDATIONS AND FUTURE STUDIES	
8.1.	Conclusions	182
8.2.	Recommendations	184
8.3.	Future Studies	185
9.	PUBLICATIONS BASED ON THIS STUDY	
9.1.	List of Publications	187
REF	ERENCES	247
APP	ENDIX 1: WEEKLY RAINFALL PATTERNS AND THEIR	
	DISTRIBUTIONS	262
APP	ENDIX 2: AUTO CORRELATION FUNCTIONS OF WEEKLY	
	RAINFALL	266
APP	ENDIX 3: INDICES FORMATION	270

LIST OF TABLES

Table 3.1	Standard weeks in a year	34
Table 3.2	The weeks pertaining to the SWM	35
Table 3.3	The running totals of weeks pertaining to the SWM	35
Table 3.4	The weeks pertaining to the SIM	36
Table 3.5	The running totals of weeks pertaining to the SIM	36
Table 3.6	The difference between short and long memory series	44
Table 4.1	The summary statistics of annual rainfall total (in mm) for the period of 56 years (1960-2015)	45
Table 4.2	The summary statistics of seasonal rainfall total (in mm) from 1960 to 2015	47
Table 4.3	The summary statistics of monthly rainfall total (in mm) for the period of 56 years (1960-2015)	49
Table 4.4	The summary statistics of weekly rainfall total pertaining to SWM (week18-39) from 1960 to 2015	51
Table 4.5	The summary statistics of weekly rainfall total pertaining to SIM (week 40- 48) from 1960 to 2015	52
Table 4.6	The summary statistics of weekly rainfall total pertaining to FIM (week 0-17) for the period of 56 years	54
Table 4.7	The summary statistics of weekly rainfall total pertaining to NEM (week 49-52 and week 1-9) for the period of 56 years (1960-2015)	55
Table 4.8	The summary statistics of the minimum weekly temperature	57
Table 4.9	The descriptive statistics of the maximum weekly temperature	58
Table 4.10	The summary statistics of the average weekly temperature	59
Table 4.11	The descriptive statistics of the minimum weekly relative humidity	61
Table 4.12	The descriptive statistics of the maximum weekly relative humidity	62
Table 4.13	The descriptive statistics of the average weekly relative humidity	63
Table 4.14	The descriptive statistics of the minimum weekly vapor pressure	65
Table 4.15	The descriptive statistics of the maximum weekly vapor pressure	66
Table 4.16	The descriptive statistics of the average weekly vapor pressure	67
Table 5.1	The coefficients (slope) of the linear trend along with the P-values	71

Table 5.2	The coefficients of linear and quadratic along with the P-values of the randomly selected weeks	71
Table 5.3	The Probability density functions	79
Table 5.4	The best fitted statistical models and maximum likelihood estimates for weekly rainfall during SWM	81
Table 5.5	The best fitted statistical models and maximum likelihood estimates for weekly rainfall during SIM	83
Table 5.6	The formulas used for percentiles and variance estimates	84
Table 5.7	The formulas used for confidence intervals for percentiles	84
Table 5.8	The percentiles of the weekly rainfall and the corresponding 95% confidence intervals during SWM in the city Colombo	85
Table 5.9	The percentiles of the weekly rainfall and the corresponding 95% confidence intervals during SIM in the city Colombo	88
Table 5.10	The 95% confidence intervals of weekly rainfall percentile (based on 1000 bootstrap samples) pertaining to SWM (week 18-39)	91
Table 5.11	The 95% confidence intervals of weekly rainfall percentiles (based on 1000 bootstrap samples) pertaining to SIM (week 40-48)	93
Table 5.12	Descriptive statistics of the weekly rainfall data (week 24)	97
Table 5.13	The coverage probabilities of five percentiles $(P_{50}-P_{90})$ based on the 300 samples derived from the Sample68	99
Table 5.14	The coverage probabilities of five percentiles $(P_{50}-P_{90})$ based on the 300 samples derived from the Sample 423	100
Table 5.15	The coverage probabilities of five percentiles $(P_{50}-P_{90})$ based on the 300 samples derived from the Sample 802	101
Table 5.16	The coverage probabilities of five percentiles $(P_{50}-P_{90})$ based on the 300 samples derived from the Sample 1551	102
Table 5.17	Average accurate confidence level based on the 95% confidence level for Weibull percentiles	102
Table 5.18	The confidence bands of percentiles of week 24 (nominal and actual values)	103
Table 6.1	Result of Dickey Fuller Test	107
Table 6.2	Selected models and values of the selection criteria	109
Table 6.3	Test result of the Breusch-Godfrey serial correlation LM test	111
Table 6.4	Test results of the heteroskedasticity ARCH effect	112

Table 6.5	Parameter estimation of the model $SARIMA(1,0,0)(1,1,0)_{52}$ -GARCH(1,2)	114
Table 6.6	The result of ARCH effect of AR(1) for deseasonalized data	116
Table 6.7	The result of serial correlation of AR(1) for deseasonalized data	116
Table 6.8	The result of the estimated AR(1)-GARCH(1,1) model for deseasonalized series	118
Table 6.9	The result of ARCH effect of AR(1)-GARCH(1,1) for deseasonalized data	118
Table 6.10	The absolute error in mm for the weekly rainfall in 2015	121
	[AR(1) - GARCH(1,1)] model for deseasonalized data	
Table 6.11	Result of Augmented Dickey Fuller (ADF) test for determining the stationary of the time series	122
Table 6.12	The correlation between rainfall and exogenous climatic variables at lag 1 and lag 2	123
Table 6.13	Analysis of Variance of stepwise regression at lag 1	124
Table 6.14	Analysis of Variance of stepwise regression at lag 2	124
Table 6.15	Values of the selection criterion for selecting the optimal lag order	125
Table 6.16	VAR Model for weekly rainfall series	126
Table 6.17	Result of Granger Causality test	128
Table 6.18	Result of Augmented Dickey Fuller (ADF) test for the deseasonalized rainfall series	130
Table 6.19	Values of the selection criterion for selecting the optimal lag order	130
Table 6.20	VAR model for the deseasonalized Data	131
Table 6.21	Result of Granger Causality test	133
Table 7.1	Result for exact maximum likelihood estimator of d for a generating process of ARFIMA(0,d,0)	142
Table 7.2	The parameter estimates of the model ARFIMA (4,0.05792421, 4)	143
Table 7.3	The result of ARCH LM test of ARFIMA(4,0.0579,4)	144
Table 7.4	The analysis of absolute error (in mm) for the weekly rainfall in 2015 - [ARFIMA(4,0.0579,4)]	148
Table 7.5	The parameter estimates of the model ARFIMA (5,0.05999,5)	149
Table 7.6	The result of ARCH LM test of ARFIMA(5,0.0599,5)	152
Table 7.7	The analysis of absolute error (in mm) for the weekly rainfall in 2015 [ARFIMA(5,0.0599,5)]	153

Table 7.8	The MLE of d, $_0$, $_1$ and $_1$ of a generating process of ARFIMA(0,d,0)-GARCH(1,1) with $_0 = 0.15$, $_1 = 0.2$, $_1 = 0.6$	156
Table 7.9	and d=0.1 The MLE of d, $_0$, $_1$ and $_1$ of a generating process of ARFIMA(0,d,0)-GARCH(1,1) with $_0 = 0.15$, $_1 = 0.2$, $_1 = 0.6$ and d=0.15	157
Table 7.10	The MLE of d, $_0$, $_1$ and $_1$ of a generating process of ARFIMA(0,d,0)-GARCH(1,1) with $_0 = 0.15$, $_1 = 0.2$, $_1 = 0.6$ and d=0.3	157
Table 7.11	The MLE of d, $_0$, $_1$ and $_1$ of a generating process of ARFIMA(0,d,0)-GARCH(1,1) with $_0 = 0.15$, $_1 = 0.2$, $_1 = 0.6$ and d=0.45	158
Table 7.12	The parameter estimates of the model ARFIMA (4,0.116577,6)-GARCH (1,1)	159
Table 7.13	The result of weighted Ljung-Box test on standardized residuals of the model ARFIMA(4,0.116577,6)-GARCH(1,1)	160
Table 7.14	The result of weighted Ljung-Box test on standardized squared residuals of the model ARFIMA(4, 0.116577,6)-GARCH(1,1)	160
Table 7.15	The result of weighted ARCH LM test of the model ARFIMA(4,0.116577,6)-GARCH(1,1)	161
Table 7.16	The absolute error in mm for the weekly rainfall in 2015 ARFIMA $(4, 0.116577, 6)$ -GARCH $(1,1)$	162
Table 7.17	The parameter estimates of the model ARFIMA(6,0.243588,5) - GARCH(1,1) for deseasonalized series	163
Table 7.18	The result of weighted Ljung-Box test on standardized residuals of the model ARFIMA(6,0.243588,5)-GARCH(1,1)	164
Table 7.19	The result of weighted Ljung-Box test on standardized squared residuals of the model ARFIMA(6,0.243588,5)-GARCH(1,1)	164
Table 7.20	The result of weighted ARCH LM test of the model ARFIMA(6,0.243588,5)-GARCH(1,1)	165
Table 7.21	The analysis of absolute error in (mm) for the weekly rainfall in 2015 ARFIMA(6,0.243588,5)-GARCH(1,1) for deseasonalized data	166

Table 7.22	The MLE of D, d, $_{0}$, $_{1}$ and $_{1}$ of a generating process of SARFIMA(0,d,0)(0,D,0) ₅₂ -GARCH(1,1) with $_{0} = 0.15$, $_{1} = 0.2$, $_{1} = 0.6$ and d=0.1 and D=0.45	169
Table 7.23	The MLE of D, d, $_0$, $_1$ and $_1$ of a generating process of SARFIMA (0,d,0)(0,D,0) ₅₂ -GARCH(1,1) with $_0 = 0.15$, $_1 = 0.2$, $_1 = 0.6$ and d=0.15 and D=0.45	170
Table 7.24	The MLE of D, d, $_0$, $_1$ and $_1$ of a generating process of SARFIMA(0,d,0)(0,D,0) ₅₂ -GARCH(1,1) with $_0 = 0.15$, $_1 = 0.2$, $_1 = 0.6$ and d=0.3 and D=0.3	171
Table 7.25	The MLE of D, d, $_0$, $_1$ and $_1$ of a generating process of SARFIMA(0,d,0)(0,D,0) ₅₂ -GARCH(1,1) with $_0 = 0.15$, $_1 = 0.2$, $_1 = 0.6$ and d=0.45 and D=0.1	172
Table 7.26	The parameter estimates of the model SARFIMA(1,0.115677,1)(1,0.170750,0) ₅₂ with GARCH(1,1)	173
Table 7.27	The analysis of absolute error in mm for the weekly rainfall in 2015 SARFIMA $(1, 0.116, 1) \times (1, 0.171, 0)_{52}$	175
Table 7.28	The weights assigned for the absolute forecasting error category	176
Table 7.29	The comparison of five long range dependency models	177

LIST OF FIGURES

Figure 3.1	The city of Colombo is in the Colombo district	33
Figure 4.1	Annual rainfall in Colombo city in mm (1960-2015)	
Figure 4.2	Seasonal rainfall during the time span from the 1960 to 2015	
Figure 4.3	Distribution of rainfall for the four seasons from 1960 to 2015	48
Figure 4.4	Box plot of the monthly rainfall	50
Figure 4.5	Box plot of the weekly rainfall pertaining to the SWM	51
Figure 4.6	Box plot of the weekly rainfall pertaining to the SIM	53
Figure 4.7	Box plot of the weekly rainfall pertaining to the FIM	54
Figure 4.8	Box plot of the weekly rainfall pertaining to the NEM	56
Figure 4.9	The time series plot of the minimum weekly temperature	57
Figure 4.10	Mean minimum weekly temperature	58
Figure 4.11	Mean maximum weekly temperature	59
Figure 4.12	The time series plot of the minimum weekly relative humidity	60
Figure 4.13	Mean minimum weekly relative humidity	61
Figure 4.14	Mean maximum weekly relative humidity	62
Figure 4.15	The time series plot of the average weekly relative humidity	63
Figure 4.16	The time series plot of the minimum weekly vapor pressure	64
Figure 4.17	Mean minimum weekly vapor Pressure	65
Figure 4.18	The time series plot of the maximum weekly vapor pressure	66
Figure 4.19	Mean maximum weekly vapor Pressure	67
Figure 5.1	The time series plots of the weekly rainfall of weeks 1,10,18	
	and 23	69
Figure 5.2	The time series plots of the weekly rainfall of weeks 32,39,46	
	and 51	70
Figure 5.3	Histogram of the total weekly rainfall for week numbers: week 20,	
	28, 32 and 34	73
Figure 5.4	Histogram of the total weekly rainfall for week numbers: week 41,	
	44,46 and 48	74
Figure 5.5	The auto correlation plot of the week 20 belongs to SWM	75

Figure 5.6	The auto correlation plot of the week 34 belongs to SWM	75
Figure 5.7	The auto correlation plot of the week 41 pertains to SIM	76
Figure 5.8	The auto correlation plot of the week 44 pertains to SIM	76
Figure 5.9	The normal probability plot of the week 20 in SWM	77
Figure 5.10	The normal probability plot of the week 34 in SWM	77
Figure 5.11	The normal probability plot of the week 41 in SIM	78
Figure 5.12	The normal probability plot of the week 44 in SIM	78
Figure 5.13	The 90th Percentiles of running total of weekly rainfall and 95%	
	confidence intervals during SWM in Colombo	87
Figure 5.14	The 90th Percentiles of running total of weekly rainfall and 95%	
	confidence intervals during SIM in Colombo	89
Figure 5.15	Density functions of Weibull distribution with different scale	
	and shape parameters	95
Figure 5.16	Histogram of weekly rainfall data (week 24)	97
Figure 6.1	Time series plot of the weekly rainfall $\{Y_t\}$ from 1990 to 2014	105
Figure 6.2	Autocorrelation plot of the series from 1990 to 2014	106
Figure 6.3	ACF of the Z_t series from 1990 to 2014 with 52 lag	107
Figure 6.4	PACF of the series from 1990 to 2014 with 52 lag	108
Figure 6.5	The correlogram plot of the residual of the model	
	SARIMA (1,0,0) ×(1,1,0) ₅₂	110
Figure 6.6	The normality test of the residuals of the model	
	SARIMA (1,0,0) (1,1,0) ₅₂	111
Figure 6.7	The correlogram of squared residuals of the model	
	SARIMA (1,0,0) (1,1,0) ₅₂	112
Figure 6.8	Observed and predicted weekly rainfall in 2015 using the	
	model SARIMA (1,0,0)(1,1,0) ₅₂	113
Figure 6.9	Observed and predicted weekly rainfall in 2015 using the	
	model SARIMA (1,0,0)(1,1,0) ₅₂ -GARCH(1,2)	115
Figure 6.10	The correlogram of squared residuals of the model	
	AR(1) for deseasonalized data	117
Figure 6.11	The correlogram of residuals derived from the model AR(1)-	
	GARCH(1,1) for the deseasonalized data	119

Figure 6.12	2 The correlogram of squared residuals derived from the model	
	AR(1)-GARCH(1,1) for the deseasonalized data	120
Figure 6.13	Actual and predicted weekly rainfall in 2015 using	
	AR(1)-GARCH(1,1) for deseasonalized data	121
Figure 6.14	Impulse response function of average relative humidity to rainfall	129
Figure 6.15	Impulse response function of average relative humidity to	
	deseasonalized rainfall	134
Figure 6.16	Actual and predicted rainfall in 2015 using VAR model for	
	desesonalized data	135
Figure 7.1	The periodgram of the rainfall series from 1990 to 2014	137
Figure 7.2	The correlogram of residuals of the model ARFIMA(4,0.0579,4)	145
Figure 7.3	The correlogram of squared residuals of the model	
	ARFIMA(4,0.0579,4)	146
Figure 7.4	Observed and predicted weekly rainfall in 2015 using the	
	ARFIMA(4,0.0579,4)	147
Figure 7.5	The correlogram of residuals of the model ARFIMA(5,0.0599,5)	150
Figure 7.6	The correlogram of squared residuals of the model	
	ARFIMA(5,0.0599,5)	151
Figure 7.7	Observed and predicted weekly rainfall in 2015 using the	
	ARFIMA(5,0.0599,5) for deseasonalized data	152
Figure 7.8	Observed and predicted weekly rainfall in 2015 using the model	
	ARFIMA (4, 0.116577, 6)–GARCH(1,1)	161
Figure 7.9	Observed and predicted weekly rainfall in 2015 using the model	
	ARFIMA(6,0.243588,5)-GARCH(1,1) for deseasonalized data	165
Figure 7.10	Observed and predicted weekly rainfall in 2015	
	using the SARFIMA $(1, 0.116, 1) \times (1, 0.171, 0)_{52}$	174
Figure 7.11	Observed and predicted weekly rainfall from 2015 to 2017 using	
	the model ARFIMA (4,0.05792,4)	178
Figure 7.12	Observed and predicted weekly rainfall from 2015 to 2017 using	
	the model ARFIMA (5,0.05999,5) for deseasonalized data	178

Figure 7.13	3 Observed and predicted weekly rainfall from 2015 to 2017	
	using the model ARFIMA(4,0.116577,6)-GARCH (1,1)	179
Figure 7.14	Observed and predicted weekly rainfall from 2015 to 2017	
	using the model ARFIMA(6,0.243588,5)-GARCH(1,1) for	
	deseasonalized data	179
Figure 7.15	Observed and predicted weekly rainfall from 2015 to 2017	
	using the adjusted SARFIMA(1,0.115677,1) ×(1,0.17075,0) -	
	GARCH(1,1) model	180

LIST OF ABBREVIATIONS

Abbreviation Description

ACF	Auto Correlation Function
AIC	Alkina Information Criterion
ANN	Artificial Neural Network
ARCH	Autoregressive Conditional Heteroskedasticity
ARFIMA	Autoregressive Fractionally Integrated Moving Average
ARIMA	Autoregressive Integrated Moving Average
ARMA	Autoregressive Moving Average
CV	Coefficient of Variation
FIM	First Inter Monsoon
GARCH	Generalized Autoregressive Conditional Heteroskedasticity
MAE	Mean Absolute Error
MAPE	Mean Absolute Percentage Error
MAX	Maximum
MFE	Mean Forecast Error
MIN	Minimum
MLE	Maximum Likelihood Estimators
MLR	Multiple Linear Regression
MRE	Mean Relative Error
MSE	Mean Square Error
NEM	North East Monsoon
PACF	Partial Auto Correlation Function
RMSE	Root Mean Square Error
SARFIMA	Seasonal Autoregressive Fractionally Integrated Moving Average
SARIMA	Seasonal Auto Regressive Integrated Moving Average
SD	Standard Deviation
SE	Standard Error
SIM	Second Inter Monsoon

SWM	South West Monsoon
TMIN	Minimum Temperature
VAR	Vector Auto Regression